
Wayne State University

Wayne State University Dissertations

1-1-2010

Clustering-Based Pre-Processing Approaches To
Improve Similarity Join Techniques
Yufen Tan
Wayne State University

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Tan, Yufen, "Clustering-Based Pre-Processing Approaches To Improve Similarity Join Techniques" (2010). Wayne State University
Dissertations. Paper 222.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/222?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages

CLUSTERING-BASED PRE-PROCESSING APPROACHES TO IMPROVE
SIMILARITY JOIN TECHNIQUES

by

YUFEN “LISA” TAN

DISSERTATION

Submitted to the Graduate School

of Wayne State University

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2011

 MAJOR: COMPUTER SCIENCE

 Approved by:

 Advisor Date

© COPYRIGHT BY

YUFEN “LISA” TAN

2011

All Rights Reserved

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Dr. Farshad Fotouhi,

for his continuing support and guidance. His advice, constructive criticism, and

numerous suggestions played a significant role in my research and were highly

appreciated. I would like to thank Dr. William Grosky. His guidance strengthened

and refined my research. I would also like to thank Dr. Horia F. Pop. His

suggestions were a source of inspiration for me and my study. A series of

discussions between my advisor, Dr. Farshad Fotouhi, Dr. Bill William Grosky,

Dr. Horia F. Pop, and myself helped me prepare for and complete the research

detailed in this dissertation. Special thanks to all my committee members, Dr.

Farshad Fotouhi, Dr. Bill William Grosky, Dr. Shiyong Lu, and Dr. Ming Dong for

all of their guidance, encouragement and support.

Many thanks go to my research colleagues from Wayne State University's

Database Information System Laboratory and the faculty and staff of the

department of Computer Science, Wayne State University. I also wish to thank

my colleagues, John S. Camp who reviewed this dissertation and Joseph F.

Sawasky, Morris Reynolds, Daren E. Hubbard, and Robert M. Thompson, from

the Division of Computing and Information Technology, Wayne State University,

for their encouragement and support to pursue a doctoral degree.

On a more personal note, I would like to thank all the members of my

family for their loves and supports, especially my son Matthew who graciously

gave me the time to work on my research.

 ii

TABLE OF CONTENTS

Acknowledgements …... ……………………………………………………………ii

List of Tables ….. ……………………………………………………………………v

List of Figures …… ………………………………………………………………….vii

 CHAPTER 1 – Introduction.. 1

SECTION 1.1 – Motivation .. 2

SECTION 1.2 – Contributions.. 8

SECTION 1.3 – Structure of the Thesis ...10

CHAPTER 2 – General Similarity Join Approaches.. 12

SECTION 2.1 – Similarity Join Approaches... 12

SECTION 2.2 – Summary ... 19

CHAPTER 3 – Similarity Distance Metrics .. 21

SECTION 3.1 – Edit Distance Metric .. 23

SECTION 3.2 – Q-gram Distance Metric .. 26

SECTION 3.3 – Summary ... 32

CHAPTER 4 – Attribute-Based Clustering Approach (ABCA) 33

SECTION 4.1 – Introduction .. 33

SECTION 4.2 – Attribute-based Clustering Approach 37

 SECTION 4.2.1 – Identifying Clustered Join Attributes............ 37

 SECTION 4.2.2 – Similarity Join on ABCA 43

 SECTION 4.3 – Experimental Evaluation ... 44

 SECTION 4.4 – Summary .. 51

 iii

CHAPTER 5 – Value-Based Clustering Approach (VBCA) 52

SECTION 5.1 – Introduction .. 52

SECTION 5.2 – Related Work ... 53

SECTION 5.3 – Proposed Work .. 56

SECTION 5.4 – Experimental Evaluation .. 67

SECTION 5.5 – Summary.. 71

CHAPTER 6 – Comparisons between ABCA and VBCA 73

 SECTION 6.1 – Environmental Setup... 73

 SECTION 6.2 – Experimental Studies .. 74

 SECTION 6.3 – Cost Comparisons .. 81

 SECTION 6.4 – Distance Metric Studies .. 85

 SECTION 6.5 – Summary .. 89

CHAPTER 7 – Future Work.. 91

 SECTION 7.1 – Summary of Contributions .. 91

 SECTION 7.1 – Future Work .. 93

Bibliography………………………………………………………………………….97

Abstract. ... 106

Autobiographical Statement ... 108

 iv

LIST OF FIGURES

Figure 1-1 Example data and result for a similarity... 5

Figure 1-2 Example for a duplicate elimination similarity join 6

Figure 3-1 Compute edit Distance between “test” and “tent” 25

Figure 3-2 Edit Distance Functions... 26

Figure 3-3 Q-gram Similarity Join in SQL Version .. 29

Figure 3-4 Revised Q-gram Similarity Join in SQL Version 30

Figure 3-5 Q-gram Distance Function in High-Level Language Version......... 31

Figure 4-1 Commercial SQL Join vs Similarity Join.. 34

Figure 4-2 Similarity Join on Different Group Attributes.................................. 35

Figure 4-3 Attribute-Based Clustering Approach .. 40

Figure 4-4 BEA Clustering Algorithm.. 41

Figure 4-5 Binary Split Algorithm.. 42

Figure 4-6 Clustering Attributes and Similarity Join .. 43

Figure 4-7 ED Precision on Attribute(s) .. 46

Figure 4-8 ED Recall on Attribute(s)... 47

Figure 4-9 Q-gram Precision on Attribute(s) ... 48

Figure 4-10 Q-gram Recall on Attribute(s).. 48

Figure 4-11 ED and Q-gram Precision on Affinity Clustered Attributes 49

Figure 4-12 ED and Q-gram Recall on Affinity Clustered Join Attributes........ 50

Figure 4-13 ED and Q-gram F-measure on Affinity Clustered Attributes........ 50

Figure 5-1 Value-Based Clustering Approach .. 56

Figure 5-2 Symmetric Dissimilarity Matrix .. 58

 v

Figure 5-3 Sammon Mapping ... 60

Figure 5-4 Fuzzy Clustering Results... 61

Figure 5-5a Tree Structure ... 64

Figure 5-5b Tree Structure ... 65

Figure 5-5c Tree Structure ... 66

Figure 5-5d Tree Structure ... 67

Figure 5-6 ED and Q-gram precision on affinity clustered attributes 69

Figure 5–7 ED and Q-gram recall on affinity clustered join attributes............. 69

Figure 5–8 ED and Q-gram F-measure on affinity clustered attributes........... 70

Figure 5-9 Running Time of Similarity Join Algorithms 71

Figure 5-10 DB Temporary Spaces .. 71

Figure 6-1 Precision on ED Using Various Predicates 75

Figure 6-2 Precision on Q-gram Using Various Predicates 76

Figure 6-3 Recall on ED Using Various Predicates .. 77

Figure 6-4 Recall on Q-gram Using Various Predicates 78

Figure 6-5 F-measure on ED Using Various Predicates................................. 79

Figure 6-6 F-measure on Q-gram Using Various Predicates.......................... 80

Figure 6-7 Running Time on 5,000 Records... 83

Figure 6-8 Running Time on 50,000 Records... 84

Figure 6-9 Running Time on 500,000 Records... 84

Figure 6-10 Predicates vs. Distance Metrics .. 87

Figure 6-11 Pre-processing vs. Distance Metrics on Running Time 88

 vi

LIST OF TABLES

Table 4-1 Attribute Usage Matrix .. 38

Table 4-2 Attribute Affinity Matrix.. 38

Table 4-3 Clustered Affinity Matrix.. 39

Table 5-1a Partition Coefficient vs. Classification Entropy 64

Table 5-1b Partition Coefficient vs. Classification Entropy 65

Table 5-1c Partition Coefficient vs. Classification Entropy.............................. 65

Table 5-1d Partition Coefficient vs. Classification Entropy 66

Table 6-1 Parameters used for Pre-processing .. 81

Table 6-2 Cost of Pre-processing Approaches... 82

 vii

 1

CHAPTER 1

INTRODUCTION

With the tremendous success of technologies like the Internet and the

Web, a significant, ever-growing amount of information is available from an

increasing number of databases and other information systems. The search for

highly efficient and accurate algorithms to find and consolidate all instances of

similar objects in these databases is becoming increasingly important. Finding

techniques that accurately join similar but complex data in minimal time is not a

trivial task.

In general, similarity join approaches for finding redundancies and

consolidating data are widely used in data integration [HM 04], bio-informatics,

web searching, and data management environments. Those approaches

construct the basis of data models in which data can be linked, queried,

condensed, or cleaned based on the degree of data similarity of objects or

values.

With more and more companies, institutions and even business units

inside companies and department units inside institutions storing information in

their local database systems, the availability of generalized and specialized

information data has been multiplying enormously. Really, a very limited amount

of data is needed to be processed for coping with our day-to-day tasks. The effort

condensing or finding the small pieces of information users are after is the

greatest challenge for providing a high-level of availability of relevant data.

 2

Fortunately, to some degree, a turning point has been reached in

resolving the above conflicts [BN 06] in Information and Computer Science.

Researchers have shifted their focus from how to make information data

available to how to make information data more useful. However, the biggest

concern in retrieving useful data from vast available data is data duplication.

Appropriate similarity join approaches are the common way to handle data

duplication issues. There exist many similarity join approaches. An approach to

be chosen is typically based on the purpose of user’s goal or the type of

applications.

This research is focused on one of the similarity join approaches’ issues.

Similarity join is described differently from various research communities as

record linkage, entity identification, or the same-object problem. In general, the

term similarity has been broadly used in a variety of areas with different usage

and definition. In Computer Science, similarity is referred to as a similarity

relationship to applications, objects, record sets or attributes. Similarity Join has

been specifically used in fields of information retrieval [Rij 79, SM 83] and

knowledge-based systems. The integration processing [SSS04] will have to

exceed conventional query processing when the integration needs to handle

significant amounts of data from multiple sources based on their similarity values.

1.1 Motivation

The concept of similarity join [Alb 67] was introduced during the 1960’s.

Since it has been used for a long period of time and in various areas, this

methodology has been attracted significant attention in different research

 3

communities including statistics, artificial intelligence and databases. Each

community [ABU 79] has formulated the problem differently and different

techniques have been proposed. Statistics refers to a similarity join as record

linkage armed at minimizing the probability of misclassification. AI uses

supervised learning to learn the parameters of a string to edit distance metrics.

Database uses knowledge intensive approach to edit distance as a general

record match scheme. This study focused on improving similarity joins in

structured databases.

For a real-world example of the type of joins that could be of interest,

consider a prospective graduate student dataset for recruitment purposes at a

public university. One source of data could come from the university's relational

management system that keeps track of prospective students with recruiting

records stored in an SQL server database. Another source of data is the

university's Oracle database of all students previously and currently enrolled at

the university. One need is to identify all prospective graduate students who have

never taken classes in the past and then personalize automated communications

designed to attract previously enrolled and never enrolled students. In this case,

a similarity join algorithm is needed to identify duplications across the databases

so that appropriate actions for cleaning up the data and corresponding with

students can take place.

 When one tries to get a report based on both existing students’ data and

potential students’ data, one cannot assume that there exist global identifiers for

those data across two structured sources even though there are unique

 4

identifiers in each individual record. The example shown in Figure 1-1

demonstrates some of common problems in application domains. The scenarios

causing “data dirt” are typically raised by a) missing data: for data entry, some of

the fusion data are produced and used by different entities for different purposes.

For example, a person’s age is an important marketing fact for a recruiting

purpose from a campaign's point of view, but may not be useful for accounting

purposes from an administrative point of view. b) data errors: although the same

naming conventions may be used in different databases, data can still contain

errors, normally caused by mistyping; for example “John Smith” and “John Smth”.

c) data duplication problem: to map real-world entities into a data set, the same

person from different systems might have been created multiple times by using

different conventions; For example, the same recruiting or current students may

be created in different tables or schemas by slightly different but correct names,

such as “John Smith”, “Smith John” or “J. Smith.” This problem is sometimes

referred to in the literature as the object or instance identification problem or the

record linkage problem [TKM 2001]. d) different data formats: too often standard

notation isn’t imposed when people do data entry, and all kinds of free-form fields

may be embedded. For example, a street field incorrectly contains the zip code

and the country name. Or records use synonyms as well as abbreviations to refer

to an object that is represented by full names in another record. e) data

inconsistencies: for example, the age of the same person may be different in

different databases for any number of reasons. Therefore, a query to correlate

these databases and create a campaign report using either a natural equality join

 5

operation or similarity string join methods might fail to produce the desired

results. To effectively address this data integration problem, one needs

techniques for identifying all pairs of approximately matching strings in databases

[GIJMS 01, GIJS 03].

Name Addr Phone ……

John

Smith

Maple

St.

430-871-

8294

Harrison

Ford

Culver

Blvd

292-918-

2813

Tom

Hanks

Main St. 23407621234

…… …… ……

Name Addr Phone ……

Ton Hamks Main Street 234-762-1234

Kevin

Spacey

Frost Blvd 928-345-3424

John a

Smith

Maple

Street

430-871-8294

 …… …… ……

Name Addr Phone ……

John Smith Maple St. 430-871-8294

Harrison Ford Culver Blvd 292-918-2813

Tom Hanks Main St. 234-762-1234

Kevin Spacey Frost Blvd 928-345-3424

…… …… ……

Figure 1-1: Example data and result for a similarity

The above problems could be handled by a string similarity join. However,

effectively and efficiently performing a similarity join even in a local database

itself is a great challenging task and topic of current research. This includes the

results presented in the following chapters of this dissertation. In general, with

diverse data applications, this research assumed a virtually integrated scenario

where the data resides in different databases accessible only through possible

 6

very limited query interfaces. In this case, identifying prospect entries who

became students based on possibly conflicting representation of their names,

addresses and phone numbers is a complex problem. This issue can be

addressed by the proposed techniques developed for this study.

Figure 1-2 shows another challenge during data identification, namely the

identification and reconciliation of 'tuples' representing the same real-world entity.

The input relation represents the combined information on recruiting information

from a number of source systems, which might overlap and provide incomplete

or imprecise information. Besides that, the example also illustrates a complex

similarity involving in the join like the name, addr1, or birthday, and the field value

might be missed in some of them.

Name Addr1 Birthday ……

John

Smith

Maple

St.

John

Smith

Maple

St.

Nov. 16,

1956

John a

Smith

Maple

Street

Nov. 16,

1956

Tom

Hanks

Main

Street

Aug. 6

1962

Ton

Hamk

Main St. Aug. 6,

1962

Harrison

Ford

Culver

Blvd

Apr. 28,

1963

…… …… …… ……

Name Addr1 Birthday ……

John

Smith

Maple

St.

Nov. 16,

1956

Tom

Hanks

Main St. Aug. 6,

1961

Harrison

Ford

Culver

Blvd

Apr. 28,

1963

……. …… ……

Figure 1-2: Example for a duplicate elimination similarity join

Moreover, any automated join process needs to handle the fact that more

than two records might represent the same real-world entity, and among these

representations might exist varying degrees of similarity. Since all of them are

 7

related to the same real-world entity, the proposed approach in this study can

identify similar objects based on clustering related fields or attributes on the

integrated data sources.

The presented examples show that accurate actions based on complex

similarity conditions are not trivial to make. For example although the data on

current students, Tom Hanks and Ton Hamk look different, they actually

represent the same person. Therefore, the design of similarity predicates as part

of the design of the integrated system is a complicated task which involves the

analysis of falsely identified and falsely unidentified objects.

No matter during the integration of query results from multiple data

sources or in the same database schema, dirty records tremendously comprise

the further tasks for improving data quality like transformation, outlier detection,

data mining etc. In current existing SQL-based commercial products, this

research routinely use the group by operator [CGK 06] and the key attributes of

the records in combination with aggregate functions for reconciling divergent

non-key attribute values to eliminate record duplications. Unfortunately, those

approaches are restricted to known join attributes. In other words, all the existing

approaches were under the assumption that the join attributes have been pre-

defined so the existing approaches focused on the efficiency of similarity join

approaches. In this research, other attributes have been introduced to help

similarity join functions. The research shows the clustering will help to identify

clustering related attributes to improve overall precision of the results. This

dissertation proposed two approaches to identify those attributes. The first

 8

approach is based on attribute usages from applications. Another approach is

based on actual value of attributes. The experimental results have showed some

improvements by utilizing identified clustering attributes as join predicates on

well-known similarity join metrics, namely Edit Distance metric [CRF 03] and Q-

gram Distance metric.

1.2 Contributions

 Identifying clustering related attributes before applying similarity join

approaches is the main contribution in this dissertation. The novel aspects of

clustering approaches outlined in the following chapters are described here in

more detail. Furthermore, some research results were previously published and

are listed with the respective references.

Attribute-Based Clustering Approach: Using clustering related

attributes as join predicates is a new concept. This research has developed an

approach to find those attributes before applying similarity join. The attribute-

based approach is to analyze actual attribute usages from applications to

determine how attributes are closely related. In the attribute-based approach, it

has also used the Greedy Method in the development to reduce the overall

complexity. Furthermore, complex similarity conditions and special aspects of

similarity relations are most often neglected in related research. Corresponding

research results were previously published for instance in [TFG 09]. During the

verification, this research developed a high-level language version of Q-gram that

tremendously improved performance in sense of space and time.

 9

Value-Based Clustering Approach: this is another novel pre-processing

approach for similarity join on value-based clustering related attributes in

common data integration scenarios. This data pre-processing approach on

identifying clustering related attributes was developed as part of a duplication

identified process and, alternatively, using the extensibility interfaces of the

database management system Oracle 10g. Furthermore, the value-based

clustering approach provides a natural way to find the clustering related

attributes. This approach has the beauty of using the attribute value of dataset

itself without any pre-knowledge of the application as the first approach does.

Finally, this approach has also applied a Greedy concept to reduce overall

complexity. The results of the proposed approach were previously published in

[TFGPM 09].

 To summarize, the work presented in this dissertation targets the

inclusion of data pre-processing on similarity-based concepts in integration

scenarios. This problem is addressed on choosing or identifying optimal

predicates. Approaches on identifying clustering related attributes based on

either attribute usage or value of the data set are introduced, suitable for a wide

range of applications. Aspects of the development of such pre-processing

approaches are described for homo-generous or semi-generous integration

scenarios. For evaluation purposes the focus was on string similarity predicates,

because there is a general lack of support for these in current data management

as well as only partial solutions provided by current research.

 10

1.3 Structure of the Dissertation

This dissertation is structured to provide a reader who has a solid

comprehension of database and information retrieving all the necessary

information to fully understand the scope and contents of the described research

results. Literature references are used to refer to sources where detailed

descriptions are described or further interests can be found in mentioned topics

beyond the scope necessary to understand the content of this dissertation.

 After this brief introduction to the motivation, the contributions, and

structure of this dissertation, Chapter 2 will give more detail about what similarity

join approaches have been proposed on the current state of distributed

environments [OV 91]. Typical aspects of similarity join and resulting problems

are introduced based on the commonly considered characteristics of distributed

and homogeneous databases. Important aspects of similarity join research

areas on query processing in distributed and homogeneous environments are

briefly described. The main approaches to attribute-based clustering, related

attributes, and value-based clustering related attributes are positioned based on

the previously introduced characteristics and related to the contributions of this

dissertation.

Chapter 3 includes an overview of common used similarity join distance

metrics such as edit distance metric and Q-gram distance metric. This chapter

sets the evaluation methods for the experiments in the later chapters.

Chapter 4 and 5 are the chapters describing the main contributions of the

dissertation. Both chapters can be distinguished by the kind of application

 11

knowledge they target. The approach presented in Chapter 4 described pre-

processing algorithm where pre-knowledge of application is mandated and the

usages of attributes affect the clustering results. This pre-processing technique

groups the attributes which are commonly used together in the querying the data

sources. To get the optimal attribute partitioning point [SW 85] on the attribute

set, the proposed approach is to gracefully calculate partitioning quality based on

the usage of the attributes. That knowledge information will significantly impact

the result of approximate string similarity join. Chapter 5 proposes a different

pre-processing approach by utilizing the nature of the dataset. For that purpose,

identifying clustering related attributes does not rely on the previous knowledge

of the applications but on the dataset itself. .This approach is generally applicable

in any integration scenarios and it is much flexible and promising approach and

the value of attributes impacts the clustering results. Changing attributes’ value

or adding new records might change the clustering results. Furthermore, the

implementations for identifying clustering related attributes are outlined and their

efficiency is evaluated. There is a substantial improvement on the complexity

when the greedy approach is applied. Also using high-level language to

implement Q-gram distance metric has great improvements on time and space.

Chapter 6 compares the complexity among Edit Distance and Q-gram on

identified clustering fields. In Chapter 7 the dissertation is concluded by a

summary and an outlook on directions of possible further work is given.

 12

CHAPTER 2

GENERAL SIMILARITY JOIN APPROACHES

Similarity Join is an important operation for many applications in the

current digital information era. In brief, a similarity join operation computes all

records (x, y) within a defined threshold ε for any given data sets. It is widely

used to solve various problems in many application domains, such as data

integration, data cleansing, data de-duplication, name matching, duplicate Web

documents detection and information retrieval. The following section includes

descriptions of the most recent approaches for similarity joins.

2.1 Similarity Join Approaches

Xiao et al in [XWLS 09] addressed one of the traditional form of the

similarity join operation concerns, which is to require a user to input a similarity

threshold. In many application scenarios, the threshold is not known before hand

and is likely to vary according to datasets and application scenarios. The

common traditional approach is to compute similarity values for all possible

record pairs and then select the top k pairs. Xiao’s approach is to carefully

exploit the prefix filtering principle and upper bound the similarity values of

unseen pairs to reduce the number of record pairs needing to be compared. The

rationale behind the prefix filtering principle is that if two records are similar,

some fragments of them should overlap with each other. The proposed

approach is to devise an incremental version of prefix filtering algorithm. In the

incremental version, any candidate pairs whose similarity value is less than the

defined threshold hold cannot be discarded. Also the largest k pairs are the only

 13

pairs needed to be kept. The other revision from the original prefix filtering

algorithm is to devise a new stopping condition. Xiao’s algorithm will stop the

execution when the similarity value of the current k-th result is larger than the

next similarity threshold. There are several advantages to use top-k similarity

join. The first one is to compute most similar record pairs without the need to

specify a similarity threshold. The second one is to support interactive near

duplicate detection applications [SB 02], where users are presented

progressively with top-k most similar record pairs. The last one is that it

produces the most meaningful results when users perform a similarity join under

certain resource or time constraints. In brief, Xiao’s approach provides an

effective way to identify the best threshold value on the common similarity join

approaches.

 Gravano et al in [GIJS 03] presented a technique for building approximate

string join capabilities on top of commercial database applications by exploiting

facilities already available in them. It divides a known join string predicate into

short substrings of length q, called Q-grams, creates an auxiliary table to hold Q-

gram related information, and takes into account both positions of individual

matches and the total number of such matches. The theory of this approach

enables one to say when two strings are within a small edit distance, they are

treated as similar strings. This occurs when they share a large number of q-

grams in common. The outcome from this approach supports join string

predicates like “name similar to Campbell” with an accepted error rate of ε.

 14

 Jestes et al in [JLYY 10] proposed a novel technique, called Probabilistic

String Similarity Joins, to solve the problem in probabilistic string databases,

using the expected edit distance as the similarity measure. Jestes' paper

described two probabilistic string models to capture the uncertainty in string

values in real-world applications. The string level model is complete, but is

expensive to represent and process. The character-level model has a much

more succinct representation when uncertainty in strings only exists at certain

positions. The researchers designed efficient and effective pruning techniques

that can be easily implemented in existing relational database engines for both

models. Although the probabilistic string similarity join demonstrated order of

magnitude improvements over the baseline, the approach is best suited to

probabilistic datasets.

Liu et al in [LLFZ 08] proposed a Nondeterministic Finite-state

Automation-based method for effective approximate string search. The purpose

of the NFA-based approach is to eliminate false positive results from existing

similarity join algorithms. To address the problem, the method models strings as

'trie' (from retrieval) and constructs an NFA on top of the trie. A trie is an ordered

tree data structure that is used to store strings. The idea behind trie is that all

strings sharing a common stem or prefix hang off a common node. All the

descendants of any one node have a common prefix of the string associated with

that node, and the root is associated with the empty string. The elements in a

string can be recovered in a scan from the root to the leaf that ends a string. All

strings in the trie can be recovered by a depth-first scan of the tree. Trie is used

 15

to do a fast exact-search in large string collection. Moreover, trie provides some

advantages as looking up strings is faster; tries can require small space when

they contain a large number of short strings and tries help with longest-prefix

matching. In brief, Liu’s trie indexes and tree automata (TITAN) method employ

an NFA-based method to identify similar strings based on edit distance and by

adopting tree automata theory. The TITAN is best used on effective approximate

string search or approximate string join area.

Chaudhuri et al. in [XWLS 09] propose Set Similarity Join (SSJoin)

operator as a foundational primitive. Their operator extends Sarawagi et al. [SK

04] set overlap approach without requiring plug-in functions during the

implementation of each similarity function. The basic theory behind SSJoin

approach is that when two strings are almost equal, their overlap similarity is high

and this somehow is a natural similarity join predicate to express. Formally,

SSJoin operator is defined by mapping the strings to sets and measuring their

similarity using set overlap. They propose to partition the set of strings by

delimiters which is a well-known string mapping method called Q-gram. The

overlap similarity is the weight of the intersection of the string sets. Their

implementation of SSJoin operator can be easily integrated into a relational

database system, applied to a variety of other textual similarity functions, and

even composed with the top-k operator to address the form of top-K queries.

The integration with top-K can find the threshold which produces the best

matches. In short, their approach is used as a primitive operator SSJoin for

performing similarity joins on textual or non-textual similarity functions.

 16

Bayardo et al. in [BMS 07] proposed a simple algorithm based on novel

indexing and optimization strategies. Their approach works better on a large

collection of sparse vector data in a high dimensional space [NU 00]. With the

Web-based applications growing, the number of distinct search queries issued

over a single day to any large search engine is in the tens of millions. If any one

wishes to perform collaborative filtering on data from sites such as Google or

eBay, the algorithms need to scale to tens of millions of users. Their approach is

to deal with those large scales of data. The rationale behind the approach is to

exploit the inverted list, store the vector weights within the inverted index itself

instead of scan each one individually, and accumulate scores in a hash-based

map. The approach offers improved locality and avoids the logarithmic overhead

of the heap structure and dramatically reduces the number of candidate pairs

considered, reduces overhead such as index construction and inverted list

scanning during score accumulation, and vastly decreases the search space by

ordering the vectors in addition to the dimensions. Shortly, their approach

aggressively exploits All Pairs Similarity Search approaches and is suitable for a

large collection of sparse vector data in a high dimensional space.

Ding et al. in [DTS 08] proposed an efficient Trajectory Similarity Join

(TSJoin) for large sets of moving object trajectories. With introducing more

technologies on Location-Based Services (LBS), Wireless Communication

Systems, Miniaturization Computing Devices and Global Positioning Systems

have been bringing researchers’ attention on how to handle the intrinsic

characteristics of the datasets. Their previous research focused on efficient

 17

similarity search in time series datasets. Those approaches have been improved

efficiency for a variety of time series application domains. Their wDF approach

intends to meet moving object trajectories’ need. The moving object trajectories

constitute a special category of time series data. wDF utilizes a novel distance

measure based on Frechet distance to effectively identify similar trajectories,

applies lower and upper bounding approximations of the exact distance measure

to the spatio-temporal indices to prune a significant portion of the search space,

and combines the distance calculation with incremental accesses to the spatio-

temporal indices in the native space. Briefly, TSJoin approach is appropriate for

location-related time series data sets.

Kriegel et al. in [KKR 10] proposed a new Probabilistic Similarity Join

approach to handle vague and uncertain data. Vague and uncertain data are

expressing as spatio-temporal query processing of moving objects, sensor

databases or personal identification systems [TKM 01]. For example, on mobile

services, the mobile devices consistently change their locations so that fixing

location information is almost impossible to obtain; on multimedia databases [FL

95] such as image [SM 00] or music databases, face recognition and fingerprint

analysis from personal identification systems can not be exactly determined. The

uncertain data can be handled by assigning confidence intervals to the feature

values, or by specifying probability density functions indicating the likelihoods of

certain feature values. Their approach uses probabilistic distance functions to

measure the similarity between uncertain objects. The distance function is

defined as the Euclidean distance between two feature vectors. The distance

 18

range join of two multidimensional or metric sets R and S is the set of pairs

where the distance of the object does not exceed a given threshold ε. Their

approach doesn’t need distance functions which express the similarity between

two objects by exactly one numerical value and can be applied to any uncertain

data sets.

Kalashnikov et al. in [KP 07] proposed two fast similarity join approaches

for multi-dimensional data. The authors conclude that most existing approaches

are good for high-dimensional disk-based joins over large amounts of disk-based

data. In reality, the data sets of multimedia databases, data mining databases,

location based applications and time-series analysis can be high dimensional

and/or low dimensional. Their approaches work well with either dimensional

datasets not like the previous Grid-join and EGO*-join. The main concept on

their approaches is to utilize main memory in the system instead of disk spaces

in the system since the memory becomes cheap and real-time computation may

be critical and require main memory evaluation. The new Grid-join is based upon

a uniform grid, builds an index on the points of dataset, and processes a circle

region query for each point so the performance tends to faster than the original

Grid-join which builds an index on the region. The EGO*-join is based upon the

original EGO-join algorithm and is able to determine non-joinable sequences.

The improvement of EGO*-join comes from the large reduction of the number of

sequences. Their experiments show Grid-join is good for low-dimensional

datasets and EGO*-join is good for high-dimensional datasets.

 19

Wen et al. in [WAK 08] proposed a similarity join approach for XML data.

XML is an Extensible Markup Language which has been increasingly used for

data exchange on the Internet and has been recommended by the World Wide

Web Consortium. XML is currently popularly used in many applications because

it can represent any kind of data from multiple sources. With the growing amount

of XML data on various applications in different un-structured systems, the more

similar contents will exist in the different sources, and the more integration will

need to extract useful information from those heterogeneous sources. Their

approach is to resolve this emergent need by serializing XML data as XML node

sequences, extracting semantically coherent subsequences, filtering out

dissimilar subsequences using textual information, and extracting pairs of

subsequences as the final result by checking structure similarity. This

serialization approach works extremely well on tree structure representation of

XML data because it is hard to measure the similarity on the tree structure data.

2.2 Summary

This chapter includes descriptions of similarity join approaches which have

been studied recently. Each approach has its strengths in a way which mostly

specifically meets the needs of specific applications. Generally, what similarity

join approach to be used is really depending on application domains and there is

no best similarity join approach that works better than any other approach in all

application domains.

However, all applications have some common characteristics, captured

under the metric space model. There is a universe of objects, and a

 20

nonnegative distance function defined among them. Objects

in do not necessarily have coordinates (for instance, strings and images). The

distance function gives us a dissimilarity criterion to compare objects from the

database. Thus, the smaller the distance between two objects, the more “similar”

they are. The distance satisfies some properties in a metric space.

The metric properties hold for many reasonable similarity approaches.

Typically, there exists a finite database or dataset X which is a subset of the

universe of objects U and can be preprocessed to build an index. As the

distance is expensive to compute (think, for instance, in comparing two

fingerprints in the homeland security database), it is customary to define the

complexity of the search as the number of distance evaluations performed,

disregarding other components such as CPU time for side computations and

even I/O time. Thus, the ultimate goal is to implement an approach so as to

compute many fewer distances when solving similarity join queries. Also

different metric approaches can be chosen to resolve different domain issues.

 21

CHAPTER 3

SIMILARITY DISTANCE METRIC

Just as similarity join approaches vary, there are a number of distance

metrics for measuring similarity. Goldstone in [Gol99] did a rough classification

models for measuring similarity as geometrical models, featural models,

alignment-based models and transformational models. Out of those models,

transformational models are applied in approximate string matching [BN 99]

which is most relevant for the research presented in this research.

The most common usage of similarity measures refers to distances in

metric space defined as follows on [Wei99].

Definition 3.1 A metric space is a set with a global distance function (the

metric g) which gives the distance between every two points as a non-

negative real number . A metric space must also satisfy

S

Sba ∈,

+∈Rbaa),(

 1. babagSba =⇔=∈∀ 0),(:, (Constancy of Self-similarity)

 2.),(0),(:, abgbagSba ⇔=∈∀ (Symmetry)

 3.),(),(),(:,, cagcbgbagScba ≥+∈∀ (Triangular Inequality)

Accordingly similarity metric [ABU 79] is a special case of the distance

similarity or distance measure defined as:

Definition 3.2 A similarity metric is a similarity measure that satisfies all axioms

for a metric.

Typical examples for a metric space are the n-dimensional Levenshtein

distance space [Lev 66], Euclidean distance space, Minkowski distance,

 22

Manhattan distance space, Chebyshev distance space and so on. There are

several advantages of similarity metrics resulting from the metric axioms,

especially when the metrics are used for data processing. Based on those metric

properties, the approximate string similarity join is defined by Navarro in [Nav01]

as follows:

Definition 3.3 Let be a finite alphabet of size ∑ σ=∑ || . Let be a text of

length . Let be a pattern of length

*∑∈t

|| tn = *∑∈p || pm = . Let be the maximum

error allowed. Let be a distance function. The problem of

approximate string matching in texts is: given and , return the set of

positions

Rk∈

RXd →∑∑ **:

,,, kpt d

j such that there exists for which i kjtitpd ≤])[..[,(.

Rather than finding position within texts, this research focuses on finding

the degree of similarity between strings in sets, which will, for instance, be the

number of the difference characters between strings. Hence, the definition is

slightly modified.

Definition 3.4 Let be a source string set and 1Rs∈ 2Rt∈ be a target string set

over the same alphabet. The problem of approximate string similarity join from

two datasets is given and , return the set of all strings such

that .

,,, kts d 21 RRT ∪∈

ktsd ≤),(

Suitable distance measures for string values are transformational

measures according to the classification given by Goldstone in [Gol99], i.e. they

measure the dissimilarity in terms of operations necessary to transform one

string to another. Various distance measures can be distinguished based by

• The kinds of operations allowed, and

 23

• The costs assigned to these operations.

Typical operations are the deletion, insertion, replacement, or

transposition of characters. Other considered operations for instance include

reversals or the permutation of complete substrings, such as for instance the

Block edit distance introduced by Tichy in [Tic84]. Similarly, Ukkonen in [Ukk92]

described similarity of strings in terms of common substrings of a fixed length

called q-grams. The most common string distance measures based on the

typically considered operations mentioned above are Levenshtein Distance,

Jaccard Distance, Generalized Edit Distance, Hamming Distance, Q-gram

Distance, Euclidean Distance, etc. In this dissertation, the experiments are

utilizing Edit Distance and Q-gram Distance metrics to evaluate proposed

techniques. The detail information of these two distance metrics will be

presented in the following sections.

3.1 Edit Distance Metric

Edit distance is a fundamental and common distance [XWL 08, KMK 09]

used in various research communities. There are different types of edit

distances. If different operations have different costs or the costs depend on the

characters involved, the operation is referred to general edit distance. Otherwise,

if all the operations cost 1, the operation is referred to Levenshtein edit distance

or simple edit distance or just edit distance (LD). For simplicity this research is

going to focus on the simple edit distance in this dissertation. In the simple edit

distance, this research simply seeks for the minimum number of insertions,

deletions and substitutions to transform one string to another. If

 24

][]...2[]1[ixxxxi = and][]...2[]1[jyyyy j = are strings with all character

 and ikkx ≤≤∑∈ 1,][jlly ≤≤∑∈ 1,][over one alphabet ∑ , the edit distance of

the two strings can be computed as follows:

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

≤∨≤∞
==

=

−−

−

−

−−

else
yxLD
yxLD

yxLD
jyixifyxLD

jiif
jiif

yxLD

ji

ji

ji

ji
ji

),(
),(
),(

min

][][),(
00

00

),(

11

1

1

11

Three properties are described as follows.

• Insertion – an insertion is a character needs to be inserted into s to make

s match t at the same position.

• Deletion – a deletion is a character needs to be deleted from s to make s

match t at the same position. This is the opposite of insertion.

• Substitution – a substitution is a character needs to be replaced on s to

make s match t at the same position.

For example,

• If s is "test" and t is "test", then 0),(=tsLD , because no transformations

are needed. The strings are already identical.

• If s is "test" and t is "tent", then 1),(=tsLD , because one substitution

(change "s" to "n") is sufficient to transform s into t.

Generally, to compute LD, one could imagine a matrix LD will be filled with

, where the cell of the matrix will be set to the minimum number),(jiLD),(jiLD

 25

of operations needed to match source string to target . Based on the LD

definition above, the three cases are computed as follows:

is ..0 jt ...0

a. The cell .

b. The cell .

c. The cell if

idi =0...

jd j =...0

=jid ,)(ji ts = then 1,1 −− jid

 else)min(1 1,1,1,,,1 −−−−+ jijiji ddd

The above rationale is obvious. First, and represent the edit

distance between a string of length i or

0..is jt ..0

j and the empty string, where i or j

deletions are needed on the nonempty string. For two nonempty strings of length

 or i j , this research assumes inductively that all the edit distances between

shorter strings have already been computed, and try to convert into .

Figure 3.1 illustrates a general approach to compute LD("test," "tent").

is ..1 jt ..1

 t e s t

 0 1 2 3 4

 t 1 0 1 2 3

 e 2 1 0 1 2

 n 3 2 1 1 1

 t 4 3 2 2 1

Figure 3-1: Compute edit Distance between “test” and “tent”
 The bold entries show the path to the final result

To fill in the matrix by using the algorithm as shown in the following Figure

3-2, the upper, left, and upper-left neighbors of a cell are computed prior to

 26

computing the cell. This can be easily achieved by either a row-wise left-to-right

traversal or a column-wise top-to-bottom traversal. Therefore, the complexity for

the algorithm is in the worst and average case, where the space is

required only because if the approach uses a column-wise

processing, only the previous column needs to be stored to compute the new

one.

|)|*|(| tsO

|)||,(max(| tsO

Figure 3-2: Edit Distance Functions

editDistance(s,t)

1. set | to be the length |s

t

=s

=t s

s

2. set | to be the length | t

3. if | , return || 0| t

4. if | , return | 0| |

5. define a nxm matrix

6. initialize the first row of the matrix to nxm idi =0,

7. initialize the first column of the nxm matrix to jd j =,0

8. check each character of in sequence where from 1 to s i n

9. check each character of t in sequence where j from 1 to m

10 if is equal to t , the cell][is][j 1,1, −−= jiji dd

11 if isn’t equal to , the cell][is][jt

),,min(1 1,11,,1, −−−−+= jijijiji dddd

12 after finishing all characters’ checking in and from steps s t

 (8,9,10,11), return the cell d mn,

3.2 Q-gram Distance Metric

Q-gram is one of the popular distance metrics [Wang 10] that can be used

to calculate similarity of two strings. The Q-gram concept is coming from an n-

 27

gram and can be traced to an experiment by Claude Shannon’s work in

Information Theory [En] in early 1900. An n-gram is defined as a subsequence

of n items from a given sequence. The items in the definition can be phonemes,

syllables, letters, words or base pairs according to the application. n-gram

models are widely used in statistical natural language processing. It can also be

used for efficient approximate matching by converting a sequence of items to a

set of n-grams. However, the set of n-grams make the approach lose information

about the strings. A positional Q-gram was born to compensate some

weaknesses of n-grams.

In the literature, the notion of positional Q-gram [Sutinen E. 1995] is

“Given a string s, its positional Q-grams are obtained by “sliding” a window of

length over the characters ofq s . Since Q-grams at the beginning and the end

of the string can have fewer than characters from q s , the approach introduces

new characters “#” and “$” not in ∑ (finite alphabets), and conceptually extend

the string s by prefixing it with q-1 occurrences of “#” and suffixing it with q-1

occurrences of “$”. Thus, each Q-gram contains exactly q characters, though

some of these may not be from the sigma.”

Definition 3.6 A positional Q-gram of a string s is a pair , where

 is the Q-gram of

)1...|,(−+ qiisi

|1...| −+ qiis s that starts at position I, counting on the extended

string. The set of all positional Q-grams of a string sG s is the set of all the

 pairs constructed from al Q-grams of1|| −+qs s .

The rationale behind the use of Q-grams is that when two strings s and

are within a small edit distance of each other, they share a large number of Q-

t

 28

grams in common [Sutinen E. 1995]. With no edits, any string with a length L will

have Q-grams. For edit distance k , there could be at most

replacements, insertions or deletions which can be performed. Two strings s and

t with edit distance have at least

1++ qL k

k≤ kqqts −−+]1|)||,[max(| Q-grams in

common, where is a number of characters in a string || s s and is a number

of characters in a string t .

|| t

For example, if one wants to generate the positional Q-grams of length

for Benjamin Peterson, its Q-gram will be {(1,##B), (2,#Be), (3,Ben), (4,enj),

(5,nja), (6,jam), (7,ami), (8,min), (9, in%), (10,n%P), (11,%Pe), (12,Pet), (13,ete),

(14,ter), (15,ers), (16,rso), (17,son), (18,on$), (19,n$$)}; similarly, the positional

Q-grams of length for Peterson Benjamin are {(1,##P), (2,#Pe), (3,Pet),

(4,ete), (5,ter), (6,ers), (7,rso), (8,son), (9,on%) (10,n%B), (11,%Be), (12,Ben),

(13,enj), (14,nja), (15,jam), (16,ami),(17,min),(18,in$), (19,n$$)}. If one ignores

the positional fields in the examples, there are a total of 12 sub-strings in

common, and the positions of the corresponding match q-grams are shifts either

forward by 9 positions or backward by 9 positions. This illustrates that the

positional q-gram for string similarity join by its name involves the position

comparison of matching q-grams after some positional shifts. Since 12 sub-

strings in common are greater than [17 + 3 - 1] – 3*3 = 8 and less than [17 + 3 –

1] – 3*2 = 11, these two strings are taken to be similar when the threshold of edit

distance is defined as 3.

3=q

=q 3

 A Q-gram has three significant properties which are count filtering,

position filtering and length filtering.

 29

• Count filtering is to compare the two sets of Q-gram if they are within the

small edit distance without considering the position. k

• Position filtering is to count the difference of the same Q-grams from two

sets if the difference is not more than positions. k

• Length filtering is to compare the length of two set strings if their difference

is not more than . k

The intuition behind the count filtering is if two strings are within a small

edit distance, they will have a large number of Q-gram in common. The position

filtering restricts in position to avoid mismatching Q-gram. The length filtering

quickly eliminates strings which are not within the desired edit distance.

k

 SELECT ji ARARARAR .,.,.,. 210201

 FROM QARRQARR ji 2211 ,,,

 WHERE AND 0101 .. AQARAR i=

 0202 .. AQARAR j= AND

 QgramQARQgramQAR ji .. 21 = AND

 kPosQARPosQAR ji ≤− |..| 21 AND

 kARstrlenARstrlen ji ≤− |)()(| 21

 GROUP BY ji ARARARAR .,.,.,. 210201

 HAVING COUNT(*) AND qkARstrlen i
*

1)1(1)(−−−≥

 COUNT(*) qkARstrlen j
*

2)1(1)(−−−≥

Figure 3-3: Q-gram Similarity Join in SQL Version

 SELECT R ji ARARARA .,.,.,. 210201

RQARR ji 2211 ,,,

i

 FROM QAR

WHERE 0101 .. AQARAR = AND

 0202 .. AQARAR j= AND

 QgramQARQgramQAR ji .. 21 = AND

 PosQARPosQAR ji ≤− k.. 21 || AND

 kARstrlenARstrlen ji ≤− |)()(| 21

ARARAR .,.,.,. 210201

−−≥

−−≥

 GROUP BY ji AR

 HAVING COUNT(*) AND qkARstrlen i
*

1)1(1)(−

 COUNT(*) qkARstrlen j
*

2)1(1)(−

Figure 3-3 described in [17] shows three filters in the SQL expression.

The approach augments the database with positional Q-grams corresponding to

the original database strings. The augmented information is stored in an

 30

auxiliary table such as and with

three attributes (). However, the auxiliary table is very expensive as a join

predicate. The approach made very subtle changes to improve data processing

time as shown in the following Figure 3-4. Our version has added an inexpensive

UDF invocation edit_distance(R1.Ai, R2.Aj, k) to directly filter the data without

calculating the length in the where clause. The UDF invocation is in the Having

clause which likely happens on just a small fraction of all possible string pairs so

the performance is better than using length filter in the Where clause of the SQL.

),,(01 QgramPosAQAR i),,(02 QgramPosAAjQR

 SELECT R ji ARARARA .,.,.,. 210201

i

 FROM QARRQARR ji 2211 ,,,

 WHERE R 0101 .. AQARA = AND

 0202 .. AQARAR j= AND

 QgramQARQgramQAR ji .. 21 = AND

 kPosQARPosQAR ji ≤− |..| 21

AR ji

 GROUP BY ji ARARARAR .,.,.,. 210201

 HAVING COUNT(*) AND qkARstrlen i
*

1)1(1)(−−−≥

 COUNT(*) AND qkARstrlen j
*

2)1(1)(−−−≥

 editDistance R kkA ≤),21 ,(

Figure 3-4: Revised Q-gram Similarity Join in SQL Version

Obviously, either original SQL version or our revised SQL version uses

only the database feature but the implementation requires a certain amount of

the temporary table spaces to hold auxiliary Q-gram records on the fly. When

the dataset becomes large, it needs large amount of temporary memory to hold

the Q-gram data so it is very expensive to utilize any SQL version on a large

 31

dataset. Our second implementation shown on the Figure 3-5 uses a high-level

programming language to calculate Q-gram distance on the fly. The Q-gram

calculation has taken into consideration three filters just like the SQL version. By

calculating Q-gram distance on demand, the approach not only saved significant

amount of temporary table space but also avoided heavy Cartesian join.

Therefore, there is no need for building auxiliary tables to hold Q-gram and the

performance has been tremendously improved.

 Figure 3-5: Q-gram Distance Function in High-Level Language Version

qgramDistance (),, kts

ts=

 set || s to be the length of source string s

 set || t to be the length of target string t

 set max_len |)||,max(|

 set distance value 0=dq and value as desired q

 if s − |||| return false exit// length filtering kt >||

 for max_len

form with qs ps as position in s

 form with as position in t qt pt

 if will be increased by 1 qtqs = dq

 else record qs to as non and to as non nqs qs qt nqt qt

 for nqsqs∈ and nqtqt ∈

 if will be increased by 1 qtqs = dq

 if psps −| return false exit //position filtering k>|

 if dq kqkts −−+<)1|)||,(max(| return false exit //count filtering

 return true

In the above implementing algorithm, the number of q-gram for is

 and the number of q-gram for t is

s

1|| −+qs 1|| −+qt . The complexity for Q-gram

 32

distance will be |)||,max(|*2),max()1||,1|max(| tsnqtnqsqtqs ≅+−+−+

 which has much better complexity as Edit Distance does. It also

increases true positive results and reduces false negative results. This new

approach can be implemented in any high-level language. It is quite easy to be

adapted to other distance metrics in the database domain.

→

|)||,|(max(tsnO

3.3 Summary

Edit Distance is a common and fundamental distance metric for string

similarity joins. It can be computed in time and space

via a standard programming approach. Q-gram distance is a very effective and

widely used distance metric for approximate string matching. The newly

proposed Q-gram implementation has overcome temporary memory space in

SQL implementation. The complexity of Q-gram distance metric in

 is better than the complexity of edit distance metric

in . In this dissertation, the approach is using Edit Distance and Q-

gram Distance in the experiments to verify the pre-processing funding in the

following chapters.

|)||(| txsO |))||,(max(| tsO

|))||,(max(| tsO

|)||(| txsO

 33

CHAPTER 4

ATTRIBUTE-BASED CLUSTERING APPROACH

 String is a primary data format in a majority of applications. With the rapid

growth of diverse data driven applications in the current digital world, retrieving

such data from different structured sources becomes more and more significant

and challenging as described earlier in this dissertation. It is true that all existing

approaches have made an assumption that join predicates are always the

optimal predicates. It will not matter what similarity join metrics are chosen and

all of those approaches are applied on known join fields and don’t consider the

relationship between attributes. In reality, known or pre-defined join attributes

might not give a desired or accurate result. In this chapter a pre-processing

approach is proposed by combining a traditional clustering algorithm [FK 99] with

a distance metric algorithm on the relational database. In the following each

section is going to step through the works, which were developed by utilizing

well-known edit distance metric and Q-gram distance metric as the evaluation

methods.

4.1 Introduction

 In the current digital information world, the more diverse applications are

introduced to the world, the more backend databases are used, the more data

integration is required, and the more similarity joins are needed. The primary

data format for data integration is a string. The integration of string data is of

central interest for many database integration applications, such as semantic

query processing, data warehousing, data mining, and web searching. Dealing

 34

with data dirty is a fundamental task in data integration applications. Similarity

join has been used to handle data dirty and data identification. There are many

possible join predicates besides the known join predicate. Identifying optimal

similarity join predicates is the central focus of this research.

Example 1: assume hospital sources exist with name, age, address, and

telephone as attributes; one source contains about 25K patient visits records and

another has about 24K patient satisfaction survey records. The natural equijoin

on one attribute produces about 15K records. The natural join with like

statement on one attribute produces about 3k records. The natural equijoin on

two attributes returns about 9K records. Similarity join on a single attribute

returns about 18K records when the threshold is 1.

Effect of Threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4

Threshold

Pr
es

is
io

n

Equijoin on Single
Attribute
Join on Single Attribute
with Like Statement
Equijoin on Two
Attributes
Similarity Join on Single
Attribute

Figure 4-1: Commercial SQL Join vs Similarity Join

Figure 4-1 shows a natural equijoin on two attributes provides less

precision than equijoin on a single attribute; equijoin on a single attribute

 35

provides much higher precision than join on a single attribute with like statement;

and similarity join provides better precision than any commercial SQL joins.

Figure 4-2 shows there are 18K, 20K, 15K, and 22.5K records returning

when the same similarity join algorithm is applied with {name}, {name, address},

{name, address, telephone}, {name, telephone} respectively when the threshold

is equal to 1.

Effect of Threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6

Threshold

Pr
ec

is
io

n

ED on name

ED on name and
address

ED on name,
address and
telephone
ED on name and
telephone

Figure 4-2: Similarity Join on Different Group Attributes

From the preceding experiments found that a commercial product couldn’t

return the person record if the join is based on name and the name is recorded in

the patient visiting data source as Tom Hanks and in the survey data source as

Ton Hamks when the threshold is equal 2. However, the similarity join was able

to pick up Tom Hanks as one of the join result sets when the threshold was equal

to 2. In this case, the precision of similarity join was better than natural join. In

addition, applying similarity join on a single attribute might not produce the

 36

desired result sets, and applying similarity join on multiple attributes might give

much better result sets. The question arising from here is how the approach can

find the best combination of the join attributes to produce more promising join

result sets.

This chapter includes a pre-processing approach to improve existing string

similarity join algorithms by grouping the attributes which are commonly used

together in querying the data sources. The main contributions of this approach

are a). To the best of our knowledge, a clustering-based pre-processing

approach identifying clustered join attributes is the first attempt to use grouped

attributes in the context of a relational DBMS for an approximate string match

join. With an adequate threshold, the approach can reduce the number of false

negatives and the number of false positives. b) The research studied challenges

on applying proposed approach, including using user defined functions (UDFs)

versus strict SQL and popular edit distance versus Q-grams [18]. c) This

dissertation conducts a thorough experimental evaluation of the approach. The

experimental results show that the technique can improve overall precision,

recall, and F-measure on similarity join.

The remainder of this chapter is organized as follows. In the next section,

a vertical clustering technique is described to identify groups of clustered related

attributes and with corresponding experimental results; and in section 3 a

clustering technique is presented to identify groups of clustered related attributes

and a comparison of experimental results. Finally, section 4 summarizes the

 37

research, describes some weaknesses to the approach, and suggests directions

for refinements to the approach used in this research.

4.2 Attribute-based Clustering Approach

 In this section, this dissertation describes a pre-processing method to

identify join attributes which are closely related based on the number of times

they are accessed together. The research refers to such group of closely related

join attributes as clustered join attributes. The experiment will show that using

the proposed pre-processing step, the precision of existing similarity join

algorithms will be improved significantly.

4.2.1 Identifying Clustered Join Attributes

 To identify clustered join attributes, the approach considers the usage of

the attributes with respect to various applications. This research proposes to use

an attribute clustering approach. The rationale behind the attribute clustering

approach [Bez 81, HBV 02] is to produce fragments, groups of attribute columns

that “closely match” the requirements of applications.

 Given a relation R with attributes denoted by , the

approach uses the existing Bond Energy Algorithm (BEA) [4] as the attribute

clustering approach to identify partitions as , each of them containing

a subset of R’s attributes.

bAA ,...,1),...(1 bAAR

rRRR ,...,, 21

 Let be the set of user applications (queries) that will run on

relation R. For each application and each attribute , the approach

associates an attribute usage value, denoted as , and defined as:

},...,{ 1 qqqQ =

kq jA

),(jk Aquse

 38

 1 if attribute is referenced by application jA kq
=),(jk Aquse

 0 otherwise

 Table 4-1 shows the weight of application frequencies , defined as

how often each application accesses attributes on the relation R.

)(kqacc

kq

Table 4-1: Attribute Usage Matrix

 Name Phone Birthday Address Access

Freq

q1 1 1 0 0 35

q2 1 0 1 0 30

q3 1 1 1 0 35

q4 0 0 0 1 25

 Affinity indicates how attributes are related based on attribute usages.

Attribute affinity measures the bond between two attributes of a relation

according to how they are accessed by applications and is defined as

 where attribute affinity is the

summation of access frequencies for all queries referring to attributes

and .

∑
=∧=

=
1),(1),(|
)(),(

jkik AquseAquserk
kji qaccAAaff),(ji AAaff

)(kqacc

iA jA

 Table 4-2: Attribute Affinity Matrix
 Name Phone Birthday Address

Name 100 70 65 0

Phone 70 85 35 0

Birthday 65 35 65 0

Address 0 0 0 25

 39

 For example, in Table 4-1, both and refer to name attribute and

phone attribute so

1q 3q

703535),(=+=phonename AAaff as shown in Table 4-2.

 The result of computation forms a matrix called attribute

affinity matrix where is the number of attributes in the relation

),(ji AAaff nxn

)(AA n R . Table 4-

2 shows a calculated from the value in Table 4-1. The research then uses

BEA to find some means of grouping the attributes of a relation

AA

R based on the

attribute affinity values in . BEA takes a matrix, permutes its rows and

columns and generates a clustered affinity matrix . As Table 4-3 shows, the

purpose of this permutation is to maximize the global affinity measure and results

in the grouping of large affinity values with large affinity attributes and small

affinity values with small affinity attributes.

AA AA

)(CA

Table 4-3: Clustered Affinity Matrix

 Address Birthday Name Phone

Address 25 0 0 0

Birthday 0 65 65 35

Name 0 65 100 70

Phone 0 35 70 70

 When you look at Table 4-3 closely, the CA has three possibilities to split

the set of attributes into two clustered fragments. To identify the best clustered

attribute fragment from the , the approach is to compute split quality

based on the access model. The is defined as

CA)(SQ

SQ

 40

2
2121),()(*)(VFVFafVFafVFafSQ −= where stands for access frequency

for vertical fragment and stands for access frequency for

vertical fragment and vertical fragment . For instance, in Table 4-3, for

the first possible split {Address} and {Birthday, Name, Phone},

; for the second possible split {Address, Birthday}

and {Name, Phone}, ; for the third possible split

{Address, Birthday, Name} and {Phone}, . The best clustered attribute

group will be the cluster which produces a positive contribution for the good

cases and a negative for the bad cases. This approach can be described in a

high level in Figure 4-3.

)(1VFaf

)(1VFaf),(21 VFVFaf

1VF 2VF

62500)353530(*25 =++=SQ

4225)3530(2 −=+−=SQ

235−=SQ

Figure 4-3: Attribute-Based Clustering Approach

 41

 In Figure 4-3, the core of the attribute-based clustering approach is

presented and is to produce a clustered attribute affinity matrix and partition

attributes as non-overlapping groups. The high level of clustering algorithm is

shown in Figure 4-4.

Figure 4-4: BEA Clustering Algorithm

clusteringBEA)(AA

 Set b to be the number of row in AA

 Initialize a bxb cluster attribute matrix CA

 Assign column 1 of AA to column 1 of CA

 Assign column 2 of to column 2 of CA AA

 Set Index = 3;

 While index <= b do

 For (i=1; i<=index-1; i++)

 Calculate contribution cont(Ai-1, Aindex, Ai);

 cont(Aindex, Aindex, Ai)

 loc = position of the corresponding maximum cont

 for (j=index; j<=loc; j--)

 copy CA(., j-1 column to CA(.,j) column

 copy index column AA(.,index) to CA(.,loc) column

 index++;

 swapping the rows according to the relative ordering of columns

return CA

The above detail pseudo-code for the Clustering approach contains three

main blocks. The first one is the initialization which places and fixes one of the

columns of attribute affinity matrix arbitrarily into the clustered affinity matrix. The

second one is the iteration which picks each of the remaining columns and ib −

 42

tries to place them in the remaining 1+i positions in the CA matrix, chooses the

placement that makes the greatest contribution to the global affinity measure and

continues this step until no more columns remain to be places. The last one is

the row ordering which places the rows matching the relative position of the

columns.

 The complexity of implementing BEA Clustering approach shown in the

preceding clusterBEA Algorithm is , where b is the number of attributes in

the relation database table. Since the clustering approach is an attribute-based

approach, the clustering group will not be changed when if the value of attributes

gets changed or more records are added to the dataset.

)(2bO

Figure 4-5: Binary Split Algorithm

biSplitNonoverlapping)(CA

 Set n to be the number of row in AA
 Set SQ to have a size 1−b array

 1max,1 == PPos

 While bPos < do

 Calculate (af and af)...1 PosVF

(*)(]1[......1...1...1 bPosPosPos VFVFafVFafVFafPos

)(...nPosVF

 Calculate SQ),()Pos −=−

 1+= PosPos

 1=Pos

 While bPos < do

 Identify the biggest max(value and set)PosSQ Pmax

Return Pmax

 In Figure 4-3, the clustering output will be the input of binary split non-

overlapping method. Figure 4-5 shows a high level of the split approach. There

are possible ways to split the CA matrix along the diagonal, where n is the 1−b

 43

size of the (i.e., the number of attributes in the table). The complexity of the

split approach is . Therefore the final complexity for the attribute-based

approach is . In general, the approach is quite inexpensive since the

number of attributes is much smaller than the number of records in the dataset.

CA

)(bO

)(2bO

4.2.2 Similarity Join on Attribute-Based Clustering Fields

Figure 4-6 shows a high-level approach from application access

information to any general similarity join.

Figure 4-6: Clustering Attributes and Similarity Join

 44

 The objective of the attribute-based clustering approach is to improve the

outcomes and the performance of existing similarity joins by using identified

optimal clustering attributes as join predicates. When edit distance metric is

used to measure join predicates, for any given relational tables with

number of records and with number of records, the ED similarity join

approach will measure each record as on against each record as t on

via the editDistance described on Figure 3-2. The complexity of this

approach is .

1R 1n

2R 2n

s 1R 2R

),(ts

|)|*||**(21 tsnnO

 Q-gram is another distance measurement that the approach will apply on

identified optimal clustering attributes to further improve the precision and the

performance of the results. The Q-gram distance similarity join is similar to edit

distance similarity join instead of calling an editDistance function, but calling

qgramDistance function to compare a source string from one source

with number of records to a target string t from another source with

number of records. The complexity of this approach is

which is better than from edit distance similarity join approach.

),,(kts s 1R

1n 2R 2n

|))||,max(|**(21 tsnnO

|)|*||**(21 tsnnO

4.3 Experimental Evaluation

 The previous section described how to identify clustering attributes. This

section demonstrates the performance improvement on two of existing similarity

join approaches by using identified clustering attributes as join predicates. The

two similarity join metrics are edit distance and Q-gram distance, which were

introduced in the previous chapter.

 45

4.3.1 Environment Setup

[CHS 07] indicated there is no common benchmark dataset on similarity

join. [LPSL 10] used one or two attributes from public datasets to evaluate their

approaches. All the data used in this experiment were from a real dataset that

consists of university student information. In the development of the string

similarity join, the relation consists of 980,000 data items, 60% of a student

data set, and the relation contains 50,000 data items, 80% from the whole

employee dataset. The attributes in the dataset are name, address, telephone,

and birthday. The approach tries to retrieve all distinct pairs of records

 such that the error rate between the corresponding fields of

strings are less than or equal to the given threshold value. The research

developed Java and PL/SQL applications on the identified join attributes in the

relation and . The experiments were performed on a Sun Solaris 9 OS

system and Oracle 9i database with 900MHz 2 CPU and 4GB memory. The

experimental results were very consistent on multiple runs.

1R

2R

),(),(2121 RRrr ∈

k

1R 2R

In the experiments, the approach evaluates the quality performance of

retrieval records in terms of precision, recall, and F-measure. Precision is defined

as the ratio of the number of relevant records retrieved by similarity join to the

total number of retrieved records. Recall is defined as the ratio of the number of

relevant records retrieved by similarity join to the total number of existing relevant

records. It is very normal that when the threshold increases, both the true

relevant records and false relevant records are increasing but false irrelevant

records are decreasing so there is an inversion between precision and recall.

 46

Therefore precision and recall are not usually discussed in isolation. F-measure

is used to leverage between precision and recall. F-measure is defined as the

weighted harmonic mean of precision and recall:

)/()*(*2 recallprecisionrecallprecisionF +=

4.3.2 Edit Distance on Attribute-based Clustered Attributes

 In this experiment, the approach applied ED on all possible combination

attributes. In Figure 4-7, the results in terms of the precision performed by edit

distance computation on different attributes for different threshold values are

presented. This experiment indicates that not all multiple attribute joins can

produce more relevant records than a single attribute join. From the above

definition of precision, the higher the precision rate is, the less false positive

records are in the returned dataset, and the more the returned data consists of

relevant data.

k

Effect of Threshold

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12
Threshold

Pr
ec

is
io

n

ED on name

ED on name and address

ED on name and birth

ED on name and telephone

ED on name, address and
telephone

ED on name, birth,
telephone

ED on name, birth, address
and telephone

Figure 4-7: ED Precision on Attribute(s)

 47

Figure 4-8 shows the results in term of recall performed by the edit

distance on different attributes with different values. Based on the above

definition of recall, the higher the recall rate is, the less false negative records are

in the returned dataset, and the more relevant data is on the returned dataset.

k

Effect of Threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 4 6 8 10 12

Threshold

R
ec

al
l

ED on name

ED on name and address

ED on name and birth

ED on name and telephone

ED on name, address and telephone

ED Recall on name, birth, telephone

ED on name, birth, address and
telephone

Figure 4-8: ED Recall on Attribute(s)

The above experimental result has shown the best combination attributes

are name, birth, and phone which match the result of clustered join attributes

calculated from the application access frequencies and attribute usage gathering

from the applications in the previous section.

4.3.3. Q-gram Distance on Attribute-based Clustered Attributes

 In this experiment, the approach applied Q-gram on all possible

combination attributes. In Figure 4-9, the results in terms of the precision

performed by Q-gram distance computation on different attributes for different

threshold values are presented. This experiment also indicates that not all

k

 48

multiple attribute joins can produce more relevant records. The result shows the

higher the precision rate is, the less false positive records are in the returned

dataset, and the more the returned data consists of relevant data. That matches

perfectly with the above definition of precision,

Effect of Threshold

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12

Threshold

Pr
ec

is
io

n

Q-gram on name

Q-gram on name and
address
Q-gram on name and
birth
Q-gram on name and
telephone
Q-gram on name,
address and telephone
Q-gram on name, birth,
telephone
Q-gram on name, birth,
address and telephone

Figure 4-9: Q-gram Precision on Attribute(s)

Effect of Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12

Threshold

Re
ca

ll

Q-gram on name

Q-gram on name and
address
Q-gram on name and
birth
Q-gram on name and
telephone
Q-gram on name,
address and telephone
Q-gram on name, birth,
telephone
Q-gram on name, birth,
address and telephone

Figure 4-10: Q-gram Recall on Attribute(s)

 49

Figure 4-10 shows the results in term of recall performed by the Q-gram

distance on different attributes with different values. The results show that the

higher the recall rate is, the less false negative records are in the returned

dataset, and the more relevant data is on the returned dataset.

k

4.3.4. ED vs. Q-gram Distance on Attribute-based Clustered Attributes

The preceding experimental result has shown the best combination

attributes are name, birth, and phone which match the result of clustered join

attributes calculated from the application access frequencies and attribute usage

gathering from the applications in the previous section.

 Figure 4-11 shows the precisions of Q-grams and edit distance on

identified clustered join attributes which are name, birth, and telephone number.

This figure shows that using Q-grams could return about 10% more relevant

records on average, using different threshold values, than using edit distance.

Effect of Affinity Fields

0
0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9

1

2 4 6 8 10 12

Threshold

P
re

ci
si

on

ED on Affinity Fields

Q-gram on Affinity Clustered
Fields

Figure 4-11: ED and Q-gram Precision on Affinity Clustered Attributes

 Figure 4-12: shows the results in terms of recall performed by the edit

distance on name, birth, and telephone attributes and Q-gram on name, birth,

 50

and telephone attributes, with different threshold values. The results show that

using Q-grams on the affinity clustered join attributes produces about 5% less

relevant records, on average, for different k threshold values, than using edit

distance on the affinity clustered attributes.

k

Effect of Affinity Fields

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 4 6 8 10 12

Threshold

R
ec

al
l

ED on Aff inity Clustered
Fields

Q-gram on Aff inity Clustered
Fields

Figure 4-12: ED and Q-gram Recall on Affinity Clustered Join Attributes

Effect of Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 6 8 10 12

Threshold

F-
m

ea
su

re F-measure on ED

F-measure on Q-
gram

Figure 4-13: ED and Q-gram F-measure on Affinity Clustered Attributes

 51

 Based on the combined measure of recall and precision, Figure 4-13

shows the F-measure results for Figure 4-11 and Figure 4-12. These results

show that Q-grams on clustered affinity attributes have about 15% better F-

measure than Edit Distance on clustered affinity attributes. The results indicate

that the Q-grams clustered approach can produce more relevant results than ED

clustered approach.

4.4 Summary

 In this chapter, the research determined how to find groups of related

fields to improve the performance of existing similarity join methods.

 This dissertation introduced a pre-processing approach to take into

consideration groups of related fields through the well-known Energy Bond

Clustering algorithm. The pre-processing approach was applied to existing

similarity join algorithms. The experiment showed some promising performance

improvements over existing algorithms using F-measure.

 The current proposed pre-processing method is highly dependent on

knowledge of the data, which sometimes is not possible to have in advance. In

the next chapter, this dissertation will introduce the second method to identify

clustered related attributes.

 52

CHAPTER5

VALUE-BASED CLUSTERING APPROACH

5.1 Introduction

 The previous chapter introduced a pre-processing approach for similarity

join techniques that takes into consideration groups of clustered related attributes

through the well-known Bond Energy Clustering Algorithm (BEA). The rationale

behind BEA, a vertical partitioning method, is to produce fragments, groups of

attribute columns that closely match the requirements of transactions. In the

literature, the term clustering has been used to refer to non-disjoint fragments.

Since BEA relies on the requirements of multiple transactions, information on the

transactions of the applications has to be predefined to use this approach. In

reality, it is likely impossible to obtain this knowledge when the join has to take

place. Also the previous approach treats the data as either fully dependent or

fully independent. However, this assumption is too restrictive for real-world

applications.

 Clustering [Bez 75] is a mathematical approach that attempts to discover

structures or certain patterns in a data set, where the data inside each cluster

show a certain degree of similarity. The goal of clustering is to determine the

intrinsic grouping in a set of unlabeled data. Fuzzy clustering [BP 92] is a

process of assigning membership levels and using them to assign data to one or

more clusters. It allows data to belong to more than one cluster with different

memberships (between 0 and 1) and vague or fuzzy boundaries between

 53

clusters. That indicates the strength of the association between the data and a

particular cluster.

 Fuzzy C-means (Bezeek 1981) is one of the most widely used fuzzy

clustering algorithms. The FCM algorithm attempts to partition a finite collection

of n data into a collection of C fuzzy clusters with respect to some

given criterion. In the approach, it utilizes fuzzy C-means to divide data into

clusters so that data in the same class is as similar as possible, and data in

different classes are as dissimilar as possible. To utilize Fuzzy C-means, the

proposed approach is to use a popular edit distance, which maps numerical data

to categorical data, to produce the dissimilarity values between all records in

between relational database tables on columns or groups of columns; runs multi-

dimensional scaling on each dissimilarity matrix and generates a numerical array

for every record, applies a fuzzy clustering procedure to determine the best

cluster structure on each group of attributes, and then uses a greedy method to

determine the best clustering of attributes.

},...,{ 1 nxxX =

 The remainder of this chapter is organized as follows. Section 2 gives an

overview of the previous approach related to clustering similarity join. Section 3

describes a new proposed approach. Section 4 presents some experimental

results. Section 5 concludes the paper and suggests potential future research.

5.2 Related Work

 As the previous work indicated, one of the serious concerns arising in

string matching problems is how to identify string records across different data

sources that refer to the same entity.

 54

 Jin [JL 05] presented a novel technique, called Selectivity Estimation of

Approximate PredIcAtes (SEPIA). The approach is to solve the problem of

estimating the selectivity of fuzzy (approximate) string predicates for query

optimizers and supports fuzzy queries. For instance, consider a query with two

predicates like name similar to Campbell and salary > 50,000. If there are many

records that satisfy the first predicate and only a few satisfy the second,

processing the second predicate first might be a good choice. The SEPIA uses

the set concept to avoid the processing order issue on the existing fuzzy query

technique. It groups string datasets into subsets called clusters via known

horizontal clustering approaches, builds a histogram structure for each cluster,

and constructs a global histogram for the database. It is based on the intuition:

given a query string q, a preselected string p in a cluster, and a string s in the

cluster, based on the proximity between q and p, and the proximity between p

and s, one can obtain a probability distribution from the global histogram about

the similarity between q and s.

 Lieberman [LSS 08] presented an approach, executing on a Graphics

Processing Unit (GPU), exploiting its parallelism and high data throughput. As

GPUs only allow simple data operations, such as the sorting and searching of

arrays, the approach uses these two operations to cast a similarity join operation

as a GPU sort and search problem. Also, the approach processes each point p of

the other dataset in parallel. This approach showed a good balance between

time and work efficiency using the data structure.

 55

 Wu [WZZ 05]] presented an efficient and effective multi-database mining

approach for classifying multiple databases. Indexing databases by features is a

common technique for evaluating the relevance between different databases.

The approach focuses on a transaction database and all items in a transaction

database are used as features to index the database. If two databases share a

significant number of common items, the two databases are relevant to each

other. The approach has addressed effectively measurement on the relevance

of database independent applications and search for the best database mining

classification.

 Zhang [ZWZ 03] presented a new multi-database mining process for

helping analyze data in different sources. The process focuses on database

clustering and local pattern analysis with searching for a good classification [Mac

67], identifying high-vote patterns and exceptional patterns, and synthesizing

local patterns by weighting. The process has addressed some of the pressing

issues on mining multi-database.

 The approaches of Jin, and Lieberman are applied on string records under

the assumption that the predicates, selection criteria, or join attributes are a

known join condition. While the similarity approaches of Wu and Zhang focus on

the multi-database mining. The solution proposed in this chapter complements

existing approaches in such a way that groups of related attributes are computed

and used as join attributes on database, so the overall F-measure and precision

will improve.

 56

 The fuzzy paradigm [SW 85] has a much better fit in the scenario where

there is no clear boundary between clusters. Since the target datasets are

categorical in nature, to use the fuzzy set [Bez 74, Zah 65] paradigm, the

approach have to find a way to transform categorical data to numerical data and

have a way to map numerical data back to categorical data.

5.3 Proposed Work

 Computing dissimilarity value between two categorical data can map

categorical data to numerical data. The similarity measure controls how the

numerical data is formed.

Figure 5-1: Value-Based Clustering Approach

Value-based Clustering Approach:

Input: a data set R is concatenated from two union compatible or
 semi-compatible relational data sets

 with records and with records 1R 1n 2R 2n
 Total records of R is 21 nnn += with attributes kARAR 1

Output: a group of clustered related attributes

 Initialize variables
 Pick a common attribute to start
 For each level
 for each combination of attributes on each level
 Step A: Convert categorical data to numerical data and form

 vectors using dissimilarity values
 Step B: Map vectors to a lower-dimensional space using
 Sammon Mapping

Step C: Partition lower-dimensional vectors to fuzzy C -Means
 clusters
 Step D: Calculate partition entropy and partition coefficient

 (
)(PE

)PC
 End for
 Step E: Evaluate PE and PC
 Choose the best pair of PE and PC
 Return the optimal clustered related attributes

 57

 Figure 5-1 summarizes the proposed approach in 5 steps to transform

categorical data to numerical data by using an edit distance approach to compute

the dissimilarity values between all records of join attributes, apply a Sammon

mapping method [RD 97, Sam 69] on dissimilarity values to map high

dimensional vectors to lower dimensional vectors, partition [MNAA 07] the lower

dimensional vectors to -Means clusters using the fuzzy C -Means algorithm,

and then select the best cluster set of join attributes by a greedy method.

C

 The greedy approach is to evaluate PE and for each level and each

combination of attributes, and then pick the best

PC

PE and on each level. This

approach can significantly reduce the overall complexity from to

where n is the number of attributes as the approach showed on the previous

section. Since the fuzzy approach is based on the dataset, the re-computation is

needed when the record is inserted into the table or the record is deleted from

the table. The following sub-section will give more detail information on each of

the above steps.

PC

)(nnO)(2nO

5.3.1. Transform Categorical Data to Numerical Data and form multi-

dimensional vectors

 To transform categorical data to numerical data, the approach works on a

single attribute or a group of attributes to build a set R and form an nxn

Dissimilarity Matrix as by self-joining the attribute or a group of

attributes, where the stands for the dissimilar value of the row and

column in the nxn matrix. To calculate the difference between these records,

this research proposed to use edit distance to measure their dissimilarities.

nxnijxDM][

ijx thi thj

 58

 Example 1: Consider that a relation has 10 records and a relation

has 10 records with attributes name, primary email, alternative email, address,

phone and birthday. After concatenating them, the approach has a new relation

which has 20 records. For simplicity, the approach use bottom up approach and

start from the name attribute because people normally can be identified by their

name. After computing all the dissimilar value between 20 records, the approach

produces a 20 by 20 symmetric dissimilarity matrix. The approach shows it as a

vector form in Figure 5-2.

1R 2R

}0 18, 14, 17, 19, 15, 17, 17, 14, 19, 13, 14, ,17, 16 15, 15, 14, 16, 14, 19,{

},18 0, 18, 17, 18, 18, 16, 19, 18, 19, 18, 16, 18, 18, 16, 15, 17, 15, 17, 18,{

},14 18, 0, 16, 17, 15, 14, 18, 11, 19, 10, 13, 17, 13, 13, 13, 12, 14, 13, 20,{

},17 17, 16, 0, 16, 16, 15, 18, 15, 18, 14, 14, 19, 16, 13, 15, 13, 16, 14, 19,{

},19 18, 17, 16, 0, 18, ,16, 18 17, 20, 18, 17, 18, 15, 16, 18, 16, 15, 18, 18,{

},,15 18 15, 16, 18, 0, 17, 19, 15, 20, 17, 14, 13, 15, 15, 16, 15, 14, 15, 20,{

},17 16, 14, 15, 16, 17, 0, 19, 12, 18, 12, 12, 18, 14, 12, 13, 13, 13, 13, 18,{

},17 19, 18, 18, 18, 19, 19, 0, 18, 17, 19, 19, 20, 19, 15, 17, 18, 18, 18, 15,{

},14 18, 11, 15, 17, 15, 12, 18, 0, 18, 10, 11, 17, 13, 11, 14, 11, 13, 13, 19,{

},19 19, 19, 18, 20, 20, 18, 17, 18, 0, 18, 18, 17, 17, 17, 20, 19, 18, 19, 19,{

},13 18, 10, 14, 18, 17, 12, 19, 10, 18, 0, 12, 18, 14, 12, 12, 10, 14, 10, 19,{

},14 16, 13, 14, 17, 14, 12, 19, 11, 18, 12, 0, 19, 14, 12, 13, 11, 14, 11, 20,{

},17 18, 17, 19, 18, 13, 18, 20, 17, 17, 18, 19, 0, 17, 17, 18, 18, 13, 19, 18,{

},16 18, 13, 16, 15, 15, 14, 19, 13, 17, 14, 14, 17, 0, 14, 15, 13, 14, 14, 17,{

},15 16, 13, 13, 16, 15, 12, 15, 11, 17, 12, 12, 17, 14, 0, 13, 10, 13, 12, 18,{

},15 15, 13, 15, 18, 16, 13, 17, 14, 20, 12, 13, 18, 15, 13, 0, 14, 15, 13, 18,{

},14 17, 12, 13, 16, 15, 13, 18, 11, 19, 10, 11, 18, 13, 10, 14, 0, 14, 11, 19,{

},16 15, 14, 16, 15, 14, 13, 18, 13, 18, 14, 14, 13, 14, 13, 15, 14, 0, 16, 18,{

},14 17, 13, 14, 18, 15, 13, 18, 13, 19, 10, 11, 19, 14, 12, 13, 11, 16, 0, 21,{

},19 18, 20, 19, 18, 20, 18, 15, 19, 19, 19, 20, 18, 17, 18, 18, 19, 18, 21, 0,{

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

2

2

1

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Figure 5-2: Symmetric Dissimilarity Matrix

 59

5.3.2 Multi-Scaling Mapping

 Multidimensional Scaling (MDS) [BG 97, MU 00, BMS 07] is a set of data

analysis techniques that display the structure of similar or dissimilar data as a

geometrical picture and help understand people’s judgments of the similarity or

dissimilarity of members of a set of objects. In this implementation, the set of

objects on DM is defined as column vectors of an matrix. The approach uses

one of MDS techniques to detect meaningful underling dimensions to explain the

observed dissimilarities between the investigated records of an attribute or

groups of attributes.

nxn

 Sammon mapping (Sammon 1969) [Sam 69] is one of the MDS algorithms

and reveals the inherent structure of the data to explore the data, to find possible

clusters, correlations or underlying distributions. The fundamental theory behind

Sammon mapping is to consider a set of dimensional vectors as

 and distances between the vectors as

 for the matrix. Each vector is represented by

one point in a - dimensional space. The purpose of the Sammon mapping is to

transform these points into a lower, -dimensional space

n

},...,2,1,),....,,(|{ 21 nkxxxxxX T
nkkkkk ===

Xxxxxdd jijiij ∈= ,),,(nxnijxDM][

n

n n

},...,2,1),,...,,(|{ 21 dkyyyyyY dkkkkk === (nd <) with distances between the

output vector as where),(*
jiij yydd = Yyy ji ∈, , in such a way that the

corresponding distances approximate the original ones as much as possible and

the Sammon mapping minimizes the error function E as follows:

 60

∑ ∑
∑ ∑

−

= +=
−

= +=

−
=

1

1 1

2*

1

1 1

),(
)),(),((

),(

1 N

i

N

ij
N

i

N

ij

jid
jidjid

jid
E

 Without loss of generality, the approach projects dimensions into a 2-

dimensional space for the purpose of data visualization. Continuing with the

above example, the above matrix is the input of the Sammon mapping

which maps 40x40 high dimensions to 20x2 lower dimensions as shown in Figure

5-3.

n

2020xDM

Figure 5-3: Sammon Mapping

5.3.3 Fuzzy Cluster Technique

 Fuzzy clustering is used to classify datasets into related groups. In this

approach, it has n two dimensional points. The process of clustering is to assign

the points into pre-defined clusters by checking their

closeness using the distance assignment principle.

n },...,1:{)(Kkc k =

 61

 The Fuzzy c -Means algorithm assigns points to clusters by the distance

assignment principle, which assigns a new point to a cluster such that the

distance from the point to the center of the cluster is the minimum over all c

clusters. The fuzzy c-means clusters Sammon Mapping 20 by 2 results in Figure

5-3 and produces fuzzy c-means shown in Figure 5-4.

Figure 5-4: Fuzzy Clustering Results

5.3.4. Calculate Partition Coefficient and Partition Entropy

 To evaluate the approach, it has group of attributes as candidates, the set

of optimal attributes as predicate, partition coefficient and partition entropy as a

selection and objective function. The approach uses a greedy concept to find a

subset of group of attributes from a collection of candidates, where the subset

must satisfy some specified criteria, such that the objective function is optimized.

 Bezdek’s partion coefficient (PC) [Bez 74]] is used to measure the amount

of “overlap” between clusters. The partition coefficient of c , denoted by ,)(cPC

 62

produces an average of the squared values of the membership grades

encountered in the partition matrix:

∑∑
= =

=
c

i

n

j
iju

N
cPC

1 1

2)(1)(

Where is the membership of data point in cluster i),...,2,1:,...,2,1(Njciuij == j

If each point belongs to a single cluster (hard partition), the partition coefficient

assumes its maximal value of 1. If points share their membership across all

clusters, with the same membership grade equal to , this gives rise to the

lowest value of which in this case equals . In other words, the coefficient

quantifies the ambiguity of the partition matrices so that the approach can rank

them and select the one with the lowest ambiguity.

c/1

)(cP c/1

 Bezdek’s partition entropy also satisfies the relation

 for all cluster partitions , where Partition Entropy is

defined as

)()(10 cCEcPC <=−<= c

 ∑∑
= =

=
c

i

N

j

ij
ij uu

N
cCE

1 1
)log()(1)(.

It is basically a measure for the fuzziness of the cluster partition, which is similar

to the partition coefficient. The values of the partition entropy range from 0 to

. If the approach considers Boolean entries of the partition matrix, the

entropy is equal to 0. The highest value is obtained when there is a uniform

distribution of membership grades (equal to), which is .

)ln(N

c/1)ln()(ccCE =

 While the partition coefficient and partition entropy exhibit interesting

properties that are useful in quantifying the ambiguity of partition matrices. Both

 63

of them provide information about the membership matrix without considering the

data itself. The maximum values of the partition coefficient imply a good partition

in the meaning of a least fuzzy clustering [XB 91]. The minimum values of the

partition entropy imply a good partition in the meaning of a more crisp partition.

The PC for the fuzzy c-means result in the previous section is 0.5919 and CE is

0.7871.

5.3.5 Select Best Set of Join Attributes

 Generally, a greedy approach is any algorithm that makes the locally

optimal choice at each stage with the hope of finding the global optimum. In this

approach, it applies the greedy strategy to the same number of attribute sets to

find the optimal path on the tree structure attribute sets. The top-down greedy

approach is to choose a logical meaningful attribute as a starting solution set,

add an optimal attribute to the solution set one at a time, calculate PE and CE for

each set, select the best solution set with optimal PE and CE, keep adding the

attribute until the optimal solution set is formed.

 In other words, the greedy method involves finding a group of attributes

which has an optimized PE and CE. Without using greedy method, for any

number of attributes , the approach starts with a single attribute. It has n

possible groups the approach needs to evaluate. In the 2nd level, the approach

will have possible groups to be evaluated. The method will continue adding

the attributes until finishing so the complexity is . Using

greedy method, for any number of attributes the approach has the complexity

n

1−n

)(1)...2)(1_(nnQnnn =+−

n

 64

as . Therefore the greedy approach is less

expensive than the previous approach.

)(1)...2()1_(2nQnnn =+−++

 Table 5-1a, 5-1b, 5-1c, and 5-1d show PC and PE values for different

combination of group attributes. The partition coefficient values and partition

entropy values exhibit interesting properties. These properties are useful in

quantifying the ambiguity of partition matrices. Both of them provide information

about the membership matrix without considering the data itself. The maximum

values of the partition coefficient indicate a good partition in the meaning of a

least fuzzy clustering. The minimum values of the partition entropy indicate a

good partition in the meaning of a more crisp partition.

 The name field is chosen as the starting point of the experiment. This is

because the name field is the most meaningful identified field in all the

databases. Figure 5-5a, 5-5b, 5-5c, and 5-5d show adding one attribute at a

time, calculating their PEs and CEs, and picking the best combination of them as

the approach moves to the next path, shown in the dashed arrow pointer. The

approach iterated group of attributes until the approach found the best optimized

group of clustered related attribute set.

Table 5-1a. PARTION COEFFICIENT vs CLASSIFICATION ENTROPY

 Name Name

Primary

Email

Name

Alternative

Email

Name

Address

Name

Birthday

Name

Phone

PC 0.4981 0.6238 0.5837 0.5537 0.5219 0.5347

PE 0.7689 0.6873 0.7456 0.7124 0.7639 0.7791

 65

Name

Figure 5-5a: Tree Structure

Table 5-1b. PARTION COEFFICIENT vs CLASSIFICATION ENTROPY

 Name

Primary

Email

Name

Primary Email

Alternative

Email

Name

Primary

Email

Birthday

Name

Primary

Email

Address

Name

Primary

Email

Phone

PC 0.6238 0.6534 0.7126 0.6428 06378

PE 0.6873 0.6739 0.6368 0.6617 0.6457

Figure 5-5b: Tree Structure

Table 5-1c. PARTION COEFFICIENT vs CLASSIFICATION ENTROPY

Name

Primary Email

Birthday

Name

Primary Email

Address

Name

Primary Email

Name

Primary Email

Phone

Name

Primary Email

Alternative Email

Name

Phone

Name

Alternative Email

Name

Address

Name Name

Birthday Primary Email

 66

 Name

Primary

Email

Birthday

Name

Primary

Email

Birthday

 Alternative

Email

Name

Primary

Email

Birthday

 Address

Name

Primary

Email

Birthday

Phone

PC 0.7126 0.6826 0.6731 0.6548

PE 0.6368 0.6849 0.6578 0.7024

Name

Primary Email

Birthday

Figure 5-5c: Tree Structure

Table 5-1d. PARTION COEFFICIENT vs CLASSIFICATION ENTROPY

 Name

Primary Email

Birthday

 Alternative

Email

Name

Primary Email

Birthday

 Alternative

Email

Address

Name

Primary Email

Birthday

Alternative

Email

Phone

Name

Primary Email

Birthday

 Alternative

Email

Birthday

Phone

PC 0.6826 0.6471 06559 0.6349

PE 0.6849 0.7256 07137 07429

Name

Primary Email

Birthday

Address

Name

Primary Email

Birthday

Phone

Name

Primary Email

Birthday

Alternative Email

 67

Name

Primary Email

Birthday

Alternative Email

Name Name

Primary Email Primary Email

Birthday Birthday

Alternative Email Alternative Email

Address Phone

Name

Primary Email

Birthday

Alternative Email

Address

Figure 5-5d: Tree Structure

5.4 Experimental Evaluation

 In the previous section, this dissertation described how to identify

clustered attributes in detail using value-based clustering approach. In this

section, this dissertation utilizes the identified clustering attributes as join

predicates on two of existing similarity join algorithms. The approach is evaluated

in term of precision, recall and F-measure.

 68

5.4.1. Environmental Setup

As [CHS 07] indicated, there is no common benchmark dataset on

similarity join. In this experiment, all the data were from a university student

recruiting dataset. The data were integrated from two sources; one is student

prospecting and recruiting information in a customer relationship management

system that keeps track of prospecting and recruiting records stored in SQL

server databases; the other was data in administrative information of returning

students in an Oracle databases. In the development of the string similarity join,

the relation consists of 153,000 data items, 60% of a student dataset, and the

relation contains 168,000 data items, 80% from the whole recruiting dataset.

The attributes in the dataset are name, primary email, alternative email, address,

birthday, and phone. The approach tries to retrieve all distinct pairs of records

 such that the error rate between the corresponding fields of

strings are less than or equal to the given threshold value. Java and PL/SQL

applications were developed on the identified join attributes in the relation and

. The experiments were performed on a Sun Solaris 10 OS system and an

Oracle 10g database, with 2 1200MHz CPU and 8GB memory. The

experimental results were consistent on multiple runs.

1R

2R

),(),(2121 RRrr ∈

k

1R

2R

5.4.2 ED and Q-gram on Clustering Fields

 Figure 5-6 shows the precisions of Q-grams and edit distance on identified

clustering join attributes. This figure shows that using Q-grams could return

about 10% more relevant records on average in term of different threshold values

than using edit distance.

 69

Effect of Threshold

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

Threshold
Pr

ec
is

io
n

ED on name,
primary
email, and
phone

Q-gram on
name,
primary
email, and

Figure 5-6: ED and Q-gram precision on affinity clustered attributes

 Figure 5-6 shows the precisions of Q-grams and edit distance on identified

clustered join attributes. This figure shows that using Q-grams could return

about 10% more relevant records on average, using different threshold values,

than using edit distance.

Effect of Threshold

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6

Threshold

R
ec

al
l

ED on name,
primary email,
and phone

Q-gram on
name, primary
email, and
phone

Figure 5–7: ED and Q-gram recall on affinity clustered join attributes

 Figure 5-7 shows the results in term of recall performed by the edit

distance on name, birth, and telephone attributes and Q-gram on name, birth,

and telephone attributes, with different ε threshold values. The results show that

 70

using Q-grams on the affinity clustered join attributes produces about 5% less

relevant records, on average, for different ε threshold values, than using edit

distance on the affinity clustered attributes.

Effect of Threshold

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

Threshold

F-
m

ea
su

re

F-measure
on ED

F-measure
on Q-gram

Figure 5–8: ED and Q-gram F-measure on affinity clustered attributes

 Based on the combined measure of recall and precision, Figure 5-8 shows

the F-measure results for Figure 5-6 and Figure 5-7. These results show that Q-

grams on clustered affinity attributes have about 15% better F-measure than Edit

Distance on clustered affinity attributes. The results indicate that the Q-grams

clustered approach can produce more relevant results than ED clustered

approach.

5.4.3 Q-gram implementation comparison

 In the implementation, the approach has changed Q-gram distance from

pure SQL to high level language. That gives it great performance comparing to

the original version.

 Figure 5-9 shows the time over number of records on Edit Distance, Q-

gram Distance in Java and Q-gram Distance in SQL. The time increases

 71

tremendously is because of the huge amount of temporary spaces. As this

dissertation indicated earlier, temporary database spaces are needed to hold Q-

gram records in pure SQL implementation. The spaces are growing as the

records growth as well as the length of the length of records’ growth. Figure 5-10

shows temporary database space on Edit Distance, Q-gram Distance in Java

and Q-gram Distance in SQL.

Complexity for Threshold 1

00:00.0

12:00.0

24:00.0

36:00.0

48:00.0

00:00.0

12:00.0

50 100 200 400 800 1600 3200

Number of Records

R
un

ni
ng

 T
im

e

Edit Distance

Q-gram in Java

Q-gram in SQL

Figure 5-9: Running Time of Similarity Join Algorithms

DB Temporary Spaces

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

50 10
0

20
0

40
0

80
0

16
00

32
00

Number of Records

D
B
 T

ab
le

 S
pa

ce

Edit Distance

Q-gram in Java

Q-gram in SQL

Figure 5-10: DB Temporary Spaces

5.5 Summary

In this chapter another pre-processing technique was presented to

improve the true positives and decrease the false negatives of similarity joins or

 72

similarity searches. At the beginning a brief overview of the previously proposed

approach was given. That highly relies on knowledge of the data, and the

concept of the previous approach, which is based upon the assumption that data

are either fully dependent or fully independent. Therefore, the previous

approach is not applicable or practical in some real applications.

In this current approach, it uses a fuzzy clustering paradigm. This

approach is to place no sharp boundary between clusters and no pre-knowledge

of the data is required. The experimental results have shown that this new

approach is better than the previous approach in the sense of true positives and

false negatives. The results can be applied to any approximate similarity join,

approximate search, and data integration from multiple heterogeneous sources.

The current proposed approach is great for static, homogeneous and short

string datasets to identify group of clustered related attributes. The potential

future research will devise a way to handle static and long string datasets. Based

on the nature of the datasets, the approach could identify the best clustered

attributes to enhance existing similarity joins.

 73

CHAPTER 6

PERFORMANCE COMPARISONS BETWEEN ABCA AND VBCA

 The previous chapters described two proposed clustering-based pre-

processing techniques to identify clustering related attributes. This chapter

presents experimental results for performance and cost comparisons which

should affect potential future studies. Firstly, performance comparisons were run

on both edit distance and Q-gram distance using ABCA attributes, VBCA

attributes and know join attributes as join predicates. Secondly, cost

comparisons were made between pre-processing similarity join and non pre-

processing similarity join. Thirdly, distance metrics were compared to further

study the proposed approaches. Lastly the summary of the chapter is given.

6.1. Environmental Setup

Currently there are no commonly accepted benchmark datasets [CHS 07]

for similarity joins. However, some researchers have used public datasets in

their experimental studies. Although those public datasets are not benchmark

datasets, they were used consistently in some recent studies [SK 04, XWL 08,

LPSS 10]. In this experiment, the Digital Bibliography & Library Project (DBLP)

dataset was used. DBLP is an important landmark snapshot for the Database

community. It contains almost 1.4M records. Each record includes the author,

title, publisher, year and pages. The author and title are quite often used as join

attributes because they are the most meaningful fields to identify the records in

the datasets and so they were treated as know join attributes for this study.

 74

Java and PL/SQL applications were developed to identify attribute-based

clustering attributes, value-based clustering attributes, and all distance metric

functions. The experiments were performed on a Sun Solaris 10 OS system and

running an Oracle 11g database, with four 1200MHz CPUs and 16GB of main

memory. The experimental results were consistent on multiple runs.

6.2. Experimental Studies

 Previous chapters described how edit distance and Q-gram distance were

used in the experiments to evaluate the pre-processing results. This section

includes descriptions of how the comparison experiments were conducted by

applying edit distance and Q-gram distance to groups of clustering related

attributes (Author, Title, Year) identified by ABCA, groups of clustering related

attributes (Author, Title, Page Number) identified by VBCA, and known join

attributes (Author, Title) identified by common sense.

 The experiment conducted in this section is as follows: we chose two

datasets of 5,000 records each. Each dataset was randomly selected from

DBLP. We then performed similarity join operation between the two datasets on

attributes Author and Title obtaining the resulting relation . To calculate true

positive (T

T

P) in T , we first identified all the records that were exact match using

equi-join operation. Assume that the number of such records is . For the

remaining tuples in

1t

T , we then performed an equijoin operation on attribute

Page Number to find out which tuples in T are truly similar. Let us assume the

number of such tuples is . Therefore, we calculate the number of true positive

to be . We performed this experiment 50 times and calculated the average

2t

21 tt +

 75

of . For this experiment, we selected threshold to be 3 because this was

determined by Gravano [GIJS 01]and others to be the best possible threshold.

TPs

Effect of Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6

Threshold

Pr
ec

is
io

n

ED on ABCA Attributes

ED on VBCA Attributes

ED on Know n Join Attributes

Figure 6-1: Precision on ED Using Various Predicates

 Figure 6-1 shows the precision of edit distance on attribute-based

clustering related attributes, value-based clustering related attributes and known

join attributes. This figure shows that applying ED on value-based clustering

related attributes will return about 10-15% more relevant records on average,

using different threshold values, than applying ED on attribute-based clustering

related attributes. It also shows that applying ED on attribute-based clustering

related attributes will return about 10% more relevant records on average, using

different threshold values, than applying ED on known join attributes. These

observations validate the assumption, presented in previous chapters, that if the

result of VBCA, the result of ABCA and the know join attributes are different,

 76

VBCA can provide more accurate results than ABCA does because the value-

based approach is more accurate than an attribute-based approach.

Effect of Threshold

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6

Threshold

Pr
ec

is
io

n

Q-gram on ABCA Attributes

Q-gram on VBCA Attributes

Q-gram on Know n Join
Attributes

Figure 6-2: Precision on Q-gram Using Various Predicates

 Similarly, Figure 6-2 shows the precision of Q-gram distance on attribute-

based clustering related attributes, value-based clustering related attributes and

known join attributes. This figure shows that applying Q-gram on value-based

clustering related attributes will return about 8~12% more relevant records on

average, using different threshold values, than applying Q-gram on attribute-

based clustering related attributes. It also shows that applying Q-gram on

attribute-based clustering related attributes will return about 10% more relevant

records on average, using different threshold values, than applying Q-gram on

known join attributes. These observations further show that when the result of

VBCA, the result of ABCA and the know join attributes are different, VBCA can

provide more accurate results than ABCA does since VBCA is based on the

 77

value of datasets but ABCA is based on the application access information. The

access information will vary upon some business needs.

Effect of Threshold

0.48
0.5

0.52
0.54
0.56
0.58
0.6

0.62
0.64

1 2 3 4 5 6

Threshold

R
ec

al
l

ED on ABCA
Attributes

ED on VBCA
Attributes

ED on Know n Join
Attributes

Figure 6-3: Recall on ED Using Various Predicates

 Figure 6-3 shows the recalls of ED distance on attribute-based clustering

related attributes, value-based clustering related attributes and known join

attributes. This figure shows that applying ED on value-based clustering related

attributes could return about 5-10% less relevant records on average, using

different threshold values, than applying ED on attribute-based clustering related

attributes. It also suggests that applying ED on attribute-based clustering related

attributes could return about 5% less relevant records on average, using different

threshold values, than applying ED on know join attributes.

 Figure 6-4 shows the recall of Q-gram distance on attribute-based

clustering related attributes, value-based clustering related attributes and known

 78

join attributes. This figure shows the same performance patterns as Figure 6-3

does.

Effect of Threshold

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

1 2 3 4 5 6

Threshold

R
ec

al
l

Q-gram on ABCA Attributes

Q-gram on VBCA Attributes

Q-gram on Know n Join
Attributes

Figure 6-4: Recall on Q-gram Using Various Predicates

 The observations in the above figures confirmed the common theory,

described in the previous chapter, that when threshold increases, the true

relevant records and false relevant records increase but false irrelevant records

decrease. These inverse results are shown by comparing Figure 6-1 and Figure

6-3 as well as Figure 6-2 and Figure 6-4.

 Figure 6-5 shows the F-measure of ED distance on attribute-based

clustering related attributes, value-based clustering related attributes and known

join attributes. This figure shows that applying ED on value-based clustering

related attributes could return about 4~7% more relevant records on average,

using different threshold values, than applying ED on attribute-based clustering

related attributes. It also shows that applying ED on attribute-based clustering

related attributes could return about 4-7% more relevant records on average,

 79

using different threshold value, than applying ED on known join attributes. These

experimental observations confirm the theoretical assumption presented in

previous chapters, that overall VBCA can provide more accurate results than

ABCA does because a value-based approach is based on the value of datasets

and more precise than an attribute-based approach, where the attribute-based

approach depends on how the applications use the attributes.

Effect of Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6

Threshold

F-
m

ea
su

re

ED on ABCA Attributes

ED on VBCA Attributes

ED on Know Join
Attributes

Figure 6-5: F-measure on ED Using Various Predicates

 Figure 6-6 shows the F-measure of Q-gram distance on attribute-based

clustering related attributes, value-based clustering related attributes and known

join attributes. Figure 6-6 presents a similar performance pattern as Figure 6-5

does. These experimental observations further show that if the clustering

attributes are different than know join attributes, applying similarity join

approaches on pre-processing clustering attributes will produce better

performance results than applying similarity join on know join attributes because

the clustering attributes can identify entities more accurately than no clustering

 80

attributes. Both Figure 6-5 and Figure 6-6 also show overall VBCA can return

more accurate results than ABCA does.

Effect of Threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6

Threshold

F-
m

ea
su

re

Q-gram on ABCA Attributes

Q-gram on VBCA Attributes

Q-gram on Know Join
Attributes

Figure 6-6: F-measure on Q-gram Using Various Predicates

 In summary, the preceding figures present the results in terms of the

precision, in terms of the recall, and in terms of F-measure, of these three join

approaches. In general, the proposed pre-processing clustering-based

approaches in this study produced some improvements in overall precision and

F-measure compared with using ED distance and Q-gram distance on known join

attributes if identified clustering attributes are different than known join attributes.

Also VBCA used value of datasets to identify clustering attributes which were

used as join predicates and returned more true positive results than ABCA did.

Therefore, the proposed pre-processing approaches can unveil join predicates,

reflect true attribute affinity on either ABCA or VBCA, and result in promising

outcomes.

 81

6.3. Cost Comparisons between Pre-processing and Non-preprocessing

Approaches

 This section includes cost comparisons that were conducted between two

proposed clustering-based pre-processing approaches and non pre-processing

by complexities and running time of the approaches. These comparisons can be

used to determine if the pre-processing approaches are necessary when

similarity join techniques are applied in the applications. This discussion

presents some pros and cons about the approaches and focuses on edit

distance metric and q-gram distance metric, that serve as base-line, efficient and

effective similarity join techniques. More distance metric studies will be

presented in the following sections to extend the choices of evaluation

approaches.

Table 6-1: Parameters used for Pre-processing

Parameter Meaning

a

b

||1 An =

||2 Bn =

n

|| s

|| t

q

Number of applications

Number of attributes in datasets

Number of records in the first datasets A

Number of records in the second datasets B

Sum)(21 nnn += of records in both datasets

Length of source string s

Length of target string t

Number of the q-gram

 82

 Table 6-1 lists parameters needed for the following analysis. All the

parameters are either known or calculated before pre-processing except for

number of the q-gram , which can be based on the applications’ needs. In this

experiment, was chosen as 3, that is based on the experimental results in

Gravano’s paper [GIJMS 01].

q

q

Table 6-2: Cost of Pre-processing Approaches

 Complexity Space

ABCA 2*ba ba *2+

VBCA 2* nb n*2

Edit Distance Metric ||*|| ts |)||,(|*2 ts

Q-gram Distance Metric |)||,max(| ts |)||,max(| ts

 Table 6-2 shows the cost summary from the previous chapters. Since the

cost of ABCA is and the cost of VBCA is , the attribute-based

clustering approach is much less expensive than value-based clustering

approach. The cost of general edit distance is and the cost of Q-gram is

, therefore ED uses more time than Q-gram does.

)*(2baO)*(2nbO

||*|| ts

|)||,max(| ts

 The experiment conducted in this section is as follows: we chose two

datasets of 5,000 records, 50,000 records, and 500,000 records each. Each

dataset were randomly selected from DBLP. We assume the running time for

ABCA is and the running time for VBCA is . We then performed similarity

join operation between pair wise datasets on attributes Author and Title obtaining

am vm

 83

the resulting relation T . Assume the running time is . To calculate true

positive in

1m

T , we first identified all the records that were exact match using equi-

join operation. Assume that the running time is . For the remaining tuples in 2m

T , we then performed an equijoin operation on attribute Page Number to find

out which tuples in T are truly similar. Let us assume the running time is .

Therefore, we calculate the running time is

3m

321 mmm ++ for known join attributes,

for for ABCA, and 321 + mmmma ++ 321 mmmmv +++ for VBCA. We performed

this experiment 50 times and calculated the average of those running times. For

this experiment, we selected threshold to be 3 because this was determined by

Gravano [GIJS 01]and others to be the best possible threshold.

Running Time

1000
2000
3000
4000
5000
6000
7000
8000
9000

1 2 3 4 5 6

Threshold

Ti
m

e
in

 M
ill

is
ec

od
s

0

Similarity Join
for Know n
Predicates

Similarity Join
for ABCA

Similarity Join
for VBCA

Figure 6-7: Running Time on 5,000 Records

 Figure 6-7 shows the running time increases for all approaches when the

threshold is increased. The figure presents the time using an ABCA approach is

closer to VBCA approaches when the threshold is small. However, when the

 84

threshold gets large, the time on ABCA approach is close to known join

attributes’ approaches.

Running Time

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4 5 6

Threshold

Ti
m

e
in

 M
ill

is
ec

on
ds

Similarity Join for
Know n
Predicates

Similarity Join for
ABCA

Similarity Join for
VBCA

Figure 6-8: Running Time on 50, 000 Records

Running Time

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1 2 3 4 5 6

Threshold

Ti
m

e
in

 M
ill

is
ec

on
ds Similarity Join for

Know n Predicates

Similarity Join for
ABCA

Similarity Join for
VBCA

Figure 6-9: Running Time on 500,000 Records

 Figure 6-8 and Figure 6-9 show similar experimental outcomes, except

one can tell there is an intersection between threshold 3 and 4. The cross point

 85

indicates after the intersection point, ABCA approach requires less running time

than a known join attribute approach.

6.4. Distance Metric Studies

 As some authors [CHS 07, LPSL 10] found, there are various similarity

distance metrics, such as Euclidean distance, Cosine distance, Q-gram distance,

and edit distance, used to quantify similarity values between entities or objects.

Generally, there is no metric that is universally best for all kinds of application

domains so which metric is to be used depends on application domains.

Wikipedia [Wiki 09] has a comprehensive summary of all the distance metrics.

This study dealt with string applications in the database domain.

 In the database domain, there are 9 commonly used distance metrics

[Wiki 09], which are: Hamming distance [Ham 50, PWP 08], Levenshtein

distance [Lev 66], Jaro distance [Jar 89, Jar 95], Jaro Winkler distance [Jar 99],

SoundEx distance, Jaccard similarity [Jac 01] or Jaccard Coefficient or Tanimoto

coefficient [Tan 57], Euclidean distance, Cosine similarity , and Q-gram [GIJMS

01]. These distance metrics have been implemented for different types of

applications in the database domain. Hamming distance is defined as the

number of bits which differ between two binary strings and suitable for exact

length comparisons. Levenshtein distance is the basic distance and good for any

type of strings. Jaro Winkler distance is an extension of Jaro distance which

takes into account typical spelling deviations. Soundex distance is a coarse

phonetic indexing scheme focused upon individual names so it has not been

provably applied to a more general context. Jaccard similarity is a token based

 86

vector space similarity measure and frequently used as similarity measure for

chemical compounds. Euclidean distance is a vector space similarity distance

and a standard metric for geometrical problems. Cosine similarity is a common

vector based similarity measure and a great similarity measure for document

text. More precisely, cosine distance is a measure of similarity between two

vectors of dimensions by finding the cosine of the angle between them. Q-

gram distance is typically used in approximate string matching.

n

 Wei [Wei 10] summarized different areas of similarity join metrics and

found Q-gram distance metric is the best approach to reduce false positives

since q-gram is a substring of the original string and the short string comparison

is more accurate than the long string comparison. Chandel and others [CHS 07]

grouped the types of similarity distance metrics, showed accuracy and

performance on similarity functions, and observed cosine similarity metric had

comparatively good accuracy and performance on detecting errors from string

datasets. An efficient similarity join algorithm is derived from cosine similarity

distance.

 The experiment conducted for different distance metric comparison is as

follows: we chose two datasets of 5,000 records each. Each dataset were

randomly selected from DBLP. We assume the running time for ABCA is and

the running time for VBCA is . We then performed similarity join operation

between the two datasets on attributes Author and Title obtaining the resulting

relation . Assume the running time is . To calculate true positive in

am

vm

T 1m T , we

first identified all the records that were exact match using equi-join operation.

 87

Assume that the number of such records is t1 and the running time is . For the

remaining tuples in

2m

T , we then performed an equijoin operation on attribute

Page Number to find out which tuples in T are truly similar. Let us assume the

number of such tuples is t2 and the running time is Therefore, we calculate

the number of true positive to be

3m

21 tt + and he running time is 321 mmm ++ for

known join attributes, for 321 mmmma +++ for ABCA, and 321 mmmmv +++ for

VBCA. We performed this experiment 50 times and calculated the average of

and running times. For this experiment, we selected threshold to be 3 because

this was determined by Gravano [GIJS 01] and others to be the best possible

threshold.

sTP

Pre-processing vs. Distance Metric

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

AB VBCA Know Predicates

Pre-processing Approach

Pr
ec

is
io

n

CA

Humming Distance

Edit Distance

Jaro Distance

Jaro Winkler Distance

SoundEx Distance

Jaccard Distance

Euclidean Distance

Cosine Similarity

Q-gram Distance

Figure 6-10: Predicates vs Distance Metrics

 Figure 6-10 shows the experimental results from different predicates run

with various string distance metrics. The Q-gram distance metric was the best

 88

distance metric for string similarity join applications. Based on characteristics of

string distance metrics described previously, humming distance was good for

exact length comparisons and DBLP dataset contains strings in various length so

it has the worst precision on the figure; Jaro and Jaro Winkler distances were

good for spelling deviations, and SoundEx distance was good for phonetic

applications although it doesn’t have good precision when data are dirty caused

by a numerous reasons such as typo, different name convention, etc., Euclidean

distance, Jaccard similarity and Cosine similarity are great for document

matching and searching applications although they are not optimally used on

short string dataset but they still return sort of good precision but not as good as

Q-gram distance. For running time comparisons, including pre-processing time

and similarity join time, this study considered Edit distance, Cosine similarity and

Q-gram distance.

Running Time

0

10000

20000

30000

40000

50000

60000

70000

80000

ABCA VBCA Known Predicates

Pre-processing Approach

Ti
m

e
in

 M
ill

is
ec

on
ds

Edit Distance

Cosine Similarity

Q-gram Distance

Figure 6-11: Pre-processing vs. Distance Metric on Running Time

 89

 Figure 6-11 shows the experimental results on pre-processing approaches

against distance metric. The results showed that because it takes time to break

strings into Q-gram substrings and compare those substrings, Q-gram is the

most expensive distance and Cosine similarity is the least expensive distance.

By considering the precision result from Figure 6-10, Q-gram distance should be

used if datasets contain more short strings; Cosine similarity should be used if

datasets contain more long strings.

6.5. Summary

 In this chapter, theoretical and experimental comparisons have been given

between clustering approaches ABCA and VBCA. The results showed that both

clustering-based approaches will improve the performance of similarity join

techniques. However, those improvements added additional cost. The value-

based clustering approach had better performance results than attribute-based

clustering approach does. The choice of approaches should depend on the

applications. If the application data are more static, VBCA is a better choice

because VBCA provides better performance results. If the data are more

dynamic, ABCA is a better choice because there is no need for re-clustering

when the data are changed. Distance metric studies were summarized in this

chapter along with the pros and cons of the different distance metrics. Among

those metrics, Q-gram gave the best precision results and Cosine gave the best

running time result. To get the better running time results, Q-gram is good when

it is used with short string datasets and Cosine is good when it is used with long

string datasets. These comparisons not only produced some trade-offs between

 90

the two approaches and distance metrics but also suggested some potential

areas for additional research.

 91

CHAPTER 7

FUTURE WORK

 This study addressed one of similarity join issues in data integration.

Similarity join has been a topic of research for more than forty years and has

gained in popularity over recent years because of the continuously increasing

amount and availability of data from local and global sources. While the similarity

join in early research tackled issues mostly related to the availability of data, the

focus of recent research has shifted toward aspects of data usability in

distributed and heterogeneous environments.

 Data usability is highly dependent on the correctness of data output

results. Dirty data caused by missing data, data errors, data duplication, different

data format, and data inconsistencies has attracted a significant amount of

attention. Therefore, there are many similarity join approaches having been

proposed to address immediate issues. Unfortunately, those approaches

assumed that the join predicates were pre-defined and optimal. This study

addressed the issues of similarity join predicates.

7.1 Summary of Contributions

This study focused on developing, implementing and evaluating two

clustering-based pre-processing approaches to improve existing string similarity

join techniques.

Attribute-Based Clustering approach: The dissertation proposed and

implemented an attribute-based clustering pre-processing approach for

improving existing similarity join techniques. This first proposed approach

 92

was based on the usage of attributes in the applications. Changing the

value of datasets will not impact clustering results, but changing names of

attributes or access frequencies of attributes might impact clustering

results. Results showed that Attribute Based Clustering was an excellent

approach for dynamic datasets. It can be embedded with existing

similarity join techniques and would be effective and extendable for more

general similarity techniques.

Value-Based Clustering approach: The second clustering-based pre-

processing approach was based on the values of attributes in the

datasets. This second proposed approach was used fuzzy c-means to

find clusters in a collection of unlabeled data. Changing the value of

datasets might impact the clustering results; however, changing names of

attributes or access frequencies of attributes will not impact the clustering

results. The experiment showed this approach is superior for static

datasets. Contrasted with Attribute Based Clustering, this approach can

be easily applied when there is no prior-knowledge about the applications

using the datasets. The approach also works well when there are vague

or fuzzy boundaries between clusters. The experiments also have shown

a value- based clustering approach is more reliable and accurate than an

attribute- based clustering approach.

Greedy Approach: Greedy strategy was utilized on the implementation of the

value-based clustering approach. The greedy strategy evaluates every

possibility of attribute combinations and picks the best options at each

 93

level before moving to the next level. The approach will eliminate the 1−l

paths on each level where is the total number of possible ways to cluster

attributes. The overall of complexity improvement was not only

demonstrated by the experiments but also showed on the mathematical

calculation.

l

New Q-gram Implementation: The typical Q-gram implementation used the

native of database language – SQL and temporary table space created on

the fly to store Q-grams. In this study, the approach used the nature of

high-level language to do database connection calls to get the data and

handle data comparisons on the fly. The experiments showed that this

new Q-gram approach provided improvements on both complexity and

table spaces.

7.2 Future Work

String similarity join for data integration has been gaining noticeable

attention in various research areas due to its significance in many applications as

well as the expanding and increasing use of eTechnology. The pressure on

online repository, oral human-machine communication, the heterogeneity, and

spelling errors presented in textual databases, web searching, data warehouse

and bio-informatics drives the research to produce much higher precision results.

This research only addressed one of the many open issues related to string

similarity join, namely, how to find a group of clustering related attributes to

improve the performance of existing similarity join techniques.

 94

Both of the proposed approaches in this study showed some promising

results when they were used in short strings, static schema, static attribute

usage, static datasets and homogenous environments. However, in the real-

world, databases will be of various forms and even in the same database the

structure of data schema can be different. Data are frequently changed on the fly;

the usage of applications is changed based on the application needs, the size of

datasets is often massive especially in medical fields and the types of data are

various based on specific business requirements. All of those changes require

more sophisticated approaches to identify and simplify similarity records to help

in diverse database settings and very large datasets [ZRK 96].

To meet the above potential research challenges on reducing false

negative and increasing true positives, this research was focused on extending

the proposed approaches to efficiently and effectively handle long strings,

heterogeneous, dynamic data, dynamic schema and dynamic attributes usage,

Clustering-based Pre-processing Approach for Long String: For long

strings, researchers must deal with different data types like LOB which is

used in many online applications for collecting comments or medical

explanation or documents. Those kinds of long strings contain many

articles and conjunctions which might not need to be exactly the same to

produce the same meaning so extracting key words before doing

similarity join might be one of the approaches to avoid the long string

comparisons.

 95

Clustering-based Pre-processing Approach for Heterogeneous Datasets: In

current diversified environments, it is normal that schemas are different

between different databases even in the same database. This study

assumed that the source schemas are the same, if they are not the same,

they can be easily mapped. In future work, researchers could extend

these approaches to deal with more general schema. The potential

approach is to look at ontology methodologies and use the ontology to

map the schema between different naming convention databases before

a clustering-based pre-processing approach is applied.

Clustering-based Pre-processing Approach for Dynamic Datasets: in current

eTechnoloy era, data are changed often for numerous reasons. In this

study, the approaches were applied on simply datasets and datasets did

not consider dynamic. When data are changed, the cluster might get

changed with a value-based clustering approach. The potential future

work should consider developing an approach to limit or eliminate masterly

re-classification from to cope with data changed on the datasets. The

possible solution is to analyze the change records to see how serious

impact could be on partitioning entropy and partitioning co-efficiency.

Based on analyzing the results, the approach should be able to

conditionally decide if the master recalculation is necessary or not. If this

approach can be implemented, it will reduce the overall complexity for re-

classification.

 96

Clustering-based Pre-processing Approach for Dynamic Attribute Usages:

in real-world, it is likely usages of attributes are being changed because of

changes in the application requirements. In this study, the ABCA

approach fit well with the static attribute usage. A potential solution for

changes on the usages of attributes is to analyze the attribute usage

change to see if there is a need to do a re-classification. Finding an

efficient re-classification approach should produce a significant benefit

when using an ABCA approach.

Clustering-based Pre-procession Approach for dynamic schema: there are

many applications that use large amounts of attribute fields to meet their

application needs. The approaches in this study work well with small

amount of attributes, for example, in ABCA, bi-non-overlapping split

approach was used to find the best clustering group. When the amount of

attributes is increased, the bi-non-overlapping split approach might not

work as well. The possible approach to deal this change is to analyze the

access frequency before deciding how many split segments will need to

be generated. Finding a right number of attribute splits for applications is

other challenging task on this type of research fields.

 The most pressing challenge among the above is to avoid master

recalculation when attribute usages are getting changed on attribute-based

clustering approach and the new records are added or the some records are

deleted on value-based clustering approach.

 97

Bibliography

[ABU 79] A. H. Aho, C Beeri and J.D. Ullman “The Theory of Join Relational

 Databases,” ACM Trans. Database Syst. vol. 4, no. 3, 1979, pp. 297-314.

[Alb 67] Cyril N. Alberga, “String Similarity and misspellings,” Commun. ACM 10,

 Vol. 5, 1967, pp. 302-313

[Bez 74] James C. Bezdek, “Cluster Validity with Fuzzy Sets,” Journal of

 Cybernetics, vol. 3, no. 3, 1974, pp. 58-72.

[Bez 75] James C. Bezdek, “Mathematical Models for Systematics and

 Taxonomy,” Proceedings of the 8-th International Conference on Numeric

 Taxonomy, San Francisco, CA, 1975, pp. 143-166.

[Bez 81] James C. Bezdek, “Pattern Recognition with Fuzzy Objective Function

 Algorithms”, Plenum Press, NY, 1981.

[BG 97] I. Borg and P. Groenen, “Modern Multidimensional Scaling: Theory and

 Applications”, Springer-Verlag, New York, 1997.

[BMS 07] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant, “Scaling

 Up All Pairs Similarity Search”, Proceeding of the 16th Int’l Conf. on World

 Wide Web, Canada. 2007, pp.131-140

[BN 06] Jens Bleiholder and Felix Naumann, “Conflict Handling Strategies in an

 integrated Information System”, WWW Workshop in Information

 Integration on the Web (IIWeb). Edinburgh, UK. 2006, pp. 246-259

 98

[BN 99] R. Baeza-Yates and G. Navarro, “Very fast and Simple Approximate

 String Matching”, in Proc. Of the 10th Annual Symposium on

 Combinatorial Pattern Matching (CPM’99) LNCS 1645, 1999, pp.163-185

[BP 92] James C. Bezdek and S. K. Pal, “Fuzzy Models for Pattern Recognition:

 Methods That Search For Structures in Data”, IEEE Press, New York,

 1992.

[CGK 06] S. Chaudhuri, V. Ganti, and R. Kaushik. ”A primitive operator for

 similarity joins in data cleaning”. In Proc. of the 22nd Intl. Conf. on Data

 Engineering, 2006, pp.5-22

[CHS 07] Amit Chandel, Oktie Hassanzadeh, and Divesh Srivastava,

 “Benchmarking Declarative Approximate Selection Predicates”,

 Processings of the 2007 ACM SIGMOD international conference on

 Management of data, 2007, pp. 353-364

[CRF 03] William Cohen, P. Ravikumar, and S. E. Fienberg, “A comparison of

 string distance metrics for name-matching tasks”, In Proceedings of the

 IJCAI-2003 Workshop on Information Integration on the Web (IIWeb-03),

 to appear. 2003, pp. 73-78

[DTS 08], Hui Ding, Goce Trajcevski, Peter Scheuermann, “Efficient Similarity

 Join of Large Sets of Moving Object Trajectories”. 15th International

 Symposium on Temporal Representation and Reasoning, TIME 2008, pp.

 79-87

 99

[FK 99] H Frigui, R. Krishnapuram, “A Robust Competitive Clustering Algorithm

 with Applications in Computer Version,” IEEE Transactions on Pattern

 Analysis and Macine Intelligence, vol. 21, no. 5, 1999, pp. 450-465.

[FL 95] Christos Faloutsos and King-Ip (David) Lin, “FastMap: A Fast Algorithm

 for Indexing, Data-Mining and Visualization of Traditional and Multimedia

 Datasets”, Proceedings of the 1995 ACM SIGMOD international

 conference on Management of data, San Jose, USA, 1995, pp.163-175

[GIJMS 01] L. Gravano, P. Iperirotis, H. V. Jagadish, N Koudas, S.

 Muthukrishnam and D. Srivastav, “Approximate String Joins in a Database

 (Almost) for Free,” Proceedings of the 27th VLDB, 2001, pp. 491-500.

[GIJS 03] L. Gravano, P. Iperirotis, H. V. Jagadish, N. Koudas and D.

 Srivastava, “Text joins in an RDBMS for web data integration”, In IEEE,

 May, 2003, pp. 90-101

[Ham 50] Richard W. Hamming, “Error detecting and error correcting codes”, Bell

 System Technical Journal, Vol. 29, 1950, pp. 147-160

[HBV 02] M. Halkidi, Y. Batistakis, M. Vazirgiannis, “Cluster Validity Methods”,

 SIGMOD Record, Part I and II, 2002, pp. 458-469.

[HM 04] Yingping Huang and Gregory Madey, “Web Data Integration Using

 Approximate String Join”, Proceedings of the 13th International World

 Wide Web conference on Alternate track papers & posters, NY USA

 2004, pp.557-584.

 100

[Jac 01] Paul Jaccard, “Étude comparative de la distribution florale dans une

 portion des Alpes et des Jura”, Bulletin de la Société Vaudoise des

 Sciences Naturelles, Vol. 37, 1901, pp.547–579.

[Jar 89] M. A. Jaro, "Advances in record linkage methodology as applied to the

 1985 census of Tampa Florida". Journal of the American Statistical

 Society 84 (406), 1989, pp. 414–420.

[Jar 95] M. A. Jaro, “Probabilistic linkage of large public health data file “,

 Statistics in Medicine, Vol. 14, 1995, pp. 491-498

[KKR 10] Hans-Peter Kriegel, Peer Kroger, and Matthias Renz, “Techniques for

 efficiently searching in spatial, temporal, spatio-temporal, and multimedia

 databases”, Proceeedings of the 26th International Conference on Data

 Engineering, ICDE 2010, California, USA, 2010, pp.1218-1219

[KMK 09] Manish Kumar, Shane Moriah, Srikumar Krishnamoorthy,

 “Performance Evaluation of Similarity Join for Real Time Information

 Integration”, Proceedings of the 2nd Bangalore Annual Compute

 Conference, 2009, pp. 476-483

[KP 07] Dmitri V. Kalashnikov and Sunil Prabhakar. “Fast similarity join for multi-

 dimensional data”, Information Systems, Vol. 32. 2007, pp.160-177

[JLYY 10] Jeffrey Jestes, Feifei Li, Zhepeng Yan, and Ke Yi, “Probabilistic string

 similarity joins”, Indiana, USA, 2010, pp.327-338

[JL 05] Liang Jin and Chen Li, “Selectivity Estimation For Fuzzy String Predicates

 in Large Data Sets”, Proceedings of the 31st VLDB conference,

 Trondheim, Norway, 2005, pp. 397-408.

 101

[JS 08] E. H. Jacox and H. Samet, “Metric space similarity joins”, ACM Trans.

 Database Syst., 33(2), 2008, pp.517-529

[Lev 66] V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions,

 Insertions and Reversals,” Soviet Physics-Doklady, vol. 10, 1966, pp. 707-

 710.

[LLFZ 08] Xuhui Liu, Guoliang Li, Jianhua Feng, and Lizhu Zhou, “Effective

 Indices for Efficient Approximate String Search and Similarity Join”,

 Proceedings of the 2008 The Ninth International Conference on Web-Age

 Information Management, 2008, pp.127-134

[LPSL 10] Dogjoo Lee, Jaehui Park, Junho Shim, and Sang-goo Lee, “An

 Efficient Similarity Join Algorithm with Cosine Similarity Predicate”, DEXA

 2010, Part II, LNCS 6262, 2010, pp. 422-436

[LSS 08] Michael D. Lieberman, Jagan Sankaranarayanan, Hanan Samet, “A

 Fast Similarity Join Algorithm Using Graphics Processing Units,” In

 Proceedings of the 24th IEEE International Conference on Data

 Engineering, Cancun, Mexico, April 2008, pp. 1111-1120.

[Mac 67] J. B. MacQueen, “Some Methods for Classification and Analysis of

 Multivariate Observations,” Proceedings of 5-th Berkeley Symposium on

 Mathematical Statistics and Probability, Berkeley, University of California

 Press, vol. 1, 1967, pp. 281-297.

[MNAA 07] Farhi Marir, Yahiya Najjar, Mahmoud Y. AlFaress, and Hassan I.

 Abdalla, “An Enhanced Grouping Algorithm for Vertical Partitioning

 102

 Problem in DDBS”, 22nd International Symposium on Computer and

 Information Sciences, Ankara, Turkey, 2007, pp.364-371

[MSW 72] W. T. McCormick, P. J. Schweitzer and T. W. White, “Problem

 Decomposition and Data Reorganization by a Clustering Technique”,

 Oper. Res. (1972), 20(5), 1972, pp. 993-1009

[MU 00] Nigam K. McCallum and L. H. Ungar, “Efficient clustering of high-

 dimensional data sets with application to reference matching”, In

 Knowledge Discovery and Data Mining, 2000, pp. 169–178

[Nav 01] Gonzalo Navarro, “A Guided Tour to Approximate String Matching,”

 ACM Computing Surveys, vol. 33, no.1, March, 2001, pp. 31-88.

[NU 00] McCallum, K. Nigam and L. H. Ungar, Efficient clustering of high-

 dimensional data sets with application to reference matching, In

 Knowledge Discovery and Data Mining, 2000, pp.169–178

[OV 91] M. Tamer Ozsu and Patrick Vlduriez, “Principles of Distributed Database

 Systems,” Prentice Hall, Englewood Cliffs, New Jersey, 1991, pp. 104-

 135.

[PWP 08] C. D. Pilcher, J. k. Wong, S. K. Pillai, “Inferring HIV transmission

 dynamics from phylogenetic sequence relationships”, PloS Med. Vol. 5(3),

 2008, pp. 69-84

[RD 97] Dick de Ridder, Robert P. W. Duin, “Sammon’s Mapping using Neural

 Networks,” Pattern Recognition Letters, vol. 18, 1997, pp. 1307-1316.

[Rij 79] C.V. Van Rijsbergen, “Infromation Retrieval”, London: Boston.

 Butterworth, 2nd Edition, ISBN 0-408-70929-4, 1979.

 103

[Sam 69] J. W. Sammon, “A Nonlinear Mapping for Data Structure

 Analysis,”IEEE Transactions on Computer, vol. C, no. 18, 1969, pp. 401-

 409.

[SB 02] Sunita Sarawagi and Anuradha Bhamidipaty, “Interactive deduplication

 using active learning”, In Proc. of the Eighth ACM SIGKDD International

 Conference on Knowledge Discovery and Data Mining(KDD-2002),

 Edmonton, Canada, July 2002, pp. 269-278

[SK 04] S. Sarawagi and A. Kirpal, “Efficient set joins on similarity predicates”, In

 Proceedings of the 2004 ACM SIGMOD international conference on

 Management of data, 2004, pp. 743-754

[SM 00] Jianbo Shi and Jitendra Malik, “Normalized Cuts and Image

 Segmentation,” IEEE Transactions on Pattern Analysis and Machine

 Intelligence, vol. 22, no. 8, August 2000, pp. 888-905.

[SM 83] G Salton and M. J. McGill, “Introduction to Modern Information

 Retrieval”, McGraw-Hill, 1983.

[SSS 04] Eike Schallehn, Kai-Uwe Sattler, Gunter Saake, “Efficient similarity-

 based operations for data integration”, Data & Knowledge Engineering,

 Vol. 48(3), 2004, pp.361-387.

[SW 85] Domenico Sacca and Gio Wiederhold, “Database Partitioning in

 aCluster of Processors”, ACM Trans. Database Syst. 10(1), 1985, pp. 29-

 56

[Tan 57] T. T. Tanimoto, “IBM Internal Report”, 1957, pp.637-653.

 104

[TFG 09] Lisa Tan, Farshad Fotouhi, William Grosky, “Improving Similarity Join

 Algorithms using Vertical Clustering Techniques,” ICADIWT, 2009, pp.

 491-496.

[TFGPM 09] Lisa Tan, Farshad Fotouhi, William Grosky, Horia F. Pop,

 Noureddine Mouaddib, “Improving Similarity Join Algorithms Using Fuzzy

 Clustering Technique, ” IEEE International Conference on Data Mining,

 2009, pp.545-550

[TKM 01] S. Tejada, C. A. Knoblock and S. Minton, “Learning object identification

 rules for information integration”, Information Systems 26(8), 2001, pp.

 607–633.

[WAK 08] Lianzi Wen, Toshiyuki Amagasa, and Hiroyuki Kitagawa, “An approach

 for XML similarity join using tree serialization”, Proceedings of the 13th

 international conference on Database systems for advanced applications,

 India, 2008, pp.562-570

[Wang 10] Wei Wang, “Similarity Joins as Stronger Metric Operations”,

 SIGSPATIAL, Vol. 2, 2010, pp.24-27

[Wiki 09] Wikipedia, http://en.wikipedia.org/wiki/String_metric, 2009

[Win 99] W. E. Winkler, “The state of record linkage and current research

 problems”, Statistics of Income Division, Internal Revenue Service

 Publication, Vol. 4, 1999, pp. 350-365

[WXLZ 09] W. Wang, C. Xiao, X. Lin, and C. Zhang, “Efficient approximate entity

 extraction with edit constraints”, In SIMGOD, 2009, pp.759-770

http://en.wikipedia.org/wiki/String_metric

 105

[WZZ 05] Xindong Wu, Chengqi Zhang and Shichao Zhang, “Database

 Classification for Multi-Database Mining,” Information Systems, vol. 30,

 2005, pp. 71-88.

[XB 91] L. X. Xie and G. Beni, “Validity Measure for Fuzzy Clustering,” IEEE

 Transactions on Pattern Analysis and Machine Intelligence, vol. 3, no. 8,

 1991, pp. 841-847.

[XWL 08] Chuan Xiao, Wei Wang, and Xuemin Lin, “Ed-Join: An Efficient

 Algorithm for Similarity Joins With Edit Distance Constraints”, VLDB, 08,

 pp.933-944.

[XWLS 09] Chuan Xiao, Wei Wang, Xuemin Lin, Haichuan Shang, “Top-k Set

 Similarity Joins”, Proceeding of ICDE, 2009 pp. 916–927.

[Zah 65] L. Zaheh. “Fuzzy sets,” Information and Control, vol. 8, 1965, pp. 338-

 352.

[ZRK 96] T. Zhang, R. Ramakrishnan, and M. Livny, BIRCH: “An Efficient Data

 Clustering Method for Very Large Databases,” Proceedings of ACM

 SIGMOD Conference, Montreal, Canada, 1996, pp. 103–114.

[ZWZ 03] Shichao Zhang, Xindong Wu and Chengqi Zhang, “Multi-Database

 Mining,” IEEE Computational Intelligence Bulletin, vol. 2, no. 1, June

 2003, pp. 5-13.

 106

ABSTRACT

CLUSTERING-BASED PRE-PROCESSING APPROACHES TO IMPORVE
SIMILARITY JOIN TECHNIQUES

by

YUFEN (LISA) TAN

May 2011

Advisor: Dr. Farshad Fotouhi

Major: Computer Science

Degree: Doctor of Philosophy

Research on similarity join techniques is becoming one of the growing

practical areas for study, especially with the increasing E-availability of vast

amounts of digital data from more and more source systems. This research is

focused on pre-processing clustering-based techniques to improve existing

similarity join approaches.

Identifying and extracting the same real-world entities from different data

sources is still a big challenge and a significant task in the digital information era.

Dissimilar extracts may indeed represent the same real-world entity because of

inconsistent values and naming conventions, incorrect or missing data values, or

incomplete information. Therefore discovering efficient and accurate approaches

to determine the similarity of data objects or values is of theoretical as well as

practical significance.

 107

Semantic problems are raised even on the concept of similarity regarding

its usage and foundation. Existing similarity join approaches often have a very

specific view of similarity measures and pre-defined predicates that represent a

narrow focus on the context of similarity for a given scenario. The predicates

have been assumed to be a group of clustering [MSW 72] related attributes on

the join. To identify those entities for data integration purposes requires a

broader view of similarity; for instance a number of generic similarity measures

are useful in a given data integration systems.

This study focused on string similarity join, namely based on the

Levenshtein or edit distance and Q-gram. Proposed effective and efficient pre-

processing clustering–based techniques were the focus of this study to identify

clustering related predicates based on either attribute value or data value that

improve existing similarity join techniques in enterprise data integration

scenarios.

 108

AUTOBIOGRAPHICAL STATEMENT

YUFEN “LISA” TAN

EDUCATIONS:

2011 Ph.D. Department of Computer Science

 Wayne State University, Detroit, MI

2000 M.S. Department of Computer Science

 Wayne State University, Detroit, MI

1999 B.S. Computer & Information Science

 Queen’s University, Ontario, CA

1986 B.E. Department of Automation Control

 Central South University of Technology

 Changsha, China

PROFESSIONAL EXPERIENCES:

2001 - Current Lead System Integrator, Computing & Information

 Technology, Wayne State University, Detroit, MI

1986 – 1996 Sr. Researcher, Guangzhou Nonemet Research

 Institute, Guangzhou, China

	Wayne State University
	1-1-2010
	Clustering-Based Pre-Processing Approaches To Improve Similarity Join Techniques
	Yufen Tan
	Recommended Citation

	IMPROVING SIMILARITY JOIN ALGORITHMS USING CLUSTERING TECHNIQUES

