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CHAPTER 1 

 

INTRODUCTION 

 
Interest in central nervous system (CNS) started in the 19

th
 century. Rudolf Virchow 

(1821-1902), a German physician, was first to suggest the name „myelin‟ when he described the 

sheaths that encircled axons. For several decades research in the field of myelin was dominated 

by pathology and continued to make instrumental advancement into the clinical and histological 

description of several demyelinating diseases. Many of the disorders with white matter 

involvement cannot be placed under the narrow concept of leukodystrophy, which implies 

inherited demyelinating disorder. The broader term “white matter disorders” and 

“leukoencephalopathies” are defined as all conditions in which predominantly or exclusively 

white matter is affected (van der Knaap 2001). Key concepts throughout this dissertation are (1) 

demyelination, used when there is loss of myelin; (2) hypomyelination, which means that too 

little myelin is formed and this deficiency is permanent; (3) dysmyelination, used when the 

process of myelination is disturbed, leading to abnormal, patchy, or irregular myelination.    

  The underlying genetic involvement is not fully understood in all types of 

leukodystrophies, and because phenotypic expression of the same genotype can also be variable, 

diagnosis of many leukodystrophies presents a considerable challenge. Leukodystrophies often 

express themselves within the first two years of life corroborating with the critical window of 

normal myelination (Barkovich 2000; Barker and Horska 2004). The diagnostics of cerebral 

white matter disorders was revolutionized by the advent of magnetic resonance imaging (MRI) 

in the late 1980s. While leukodystrophies were previously defined based on pathological 

findings alone, MRI has provided a powerful tool for investigating the cerebral white matter in 

living patients (van der Knaap, Smit et al. 1997). The previously known “classical” 
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leukodystrophies have been demonstrated to show characteristic patterns of MRI abnormalities 

(Cheon, Kim et al. 2002). MRI offers superior soft tissue contrast, multiple contrast mechanisms 

for improved tissue characterization, and artifact-free imaging of the brain stem and cerebellum. 

Advanced MR modalities such as diffusion tensor imaging (DTI), magnetization transfer (MTR) 

and proton magnetic resonance spectroscopy (H-MRS) are evolving as a primary diagnostic tool 

in the evaluation of leukodystrophies.  MRI has changed the field entirely with it now possible to 

visualize white matter abnormalities in detail in living individuals and to incorporate what is 

known regarding the pathologic nature to provide a complete diagnostic description of the 

disease.   

This dissertation will examine the role of conventional MRI and DTI to further 

characterize Pelizaeus-Merzbacher disease (PMD), which is a rare and progressive condition that 

is an X-linked recessive leukodystrophy of the central nervous system myelin. Furthermore, this 

work will examine the neuropathology of patients characterized by mutations affecting the PLP1 

gene and is instrumental in describing how CNS white matter pathology complements 

neuroimaging in characterizing PMD.    

 

Pelizaeus-Merzbacher disease 

Pelizaeus-Merzbacher disease (PMD) is a rare and progressive condition that is an X-

linked recessive leukodystrophy of the central nervous system myelin.  The underlying 

disturbance of myelination in PMD is attributed to the failure to form myelin (Seitelberger 1970; 

Seitelberger, Urbanits et al. 1996), rather than to breakdown of preexisting myelin as observed in 

multiple sclerosis (MS). PMD is caused by mutations of the proteolipid protein 1 (PLP1) gene 

found on chromosome Xq22 and manifests with a clinical heterogeneous phenotype that may 
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depend upon the location and type of mutation (Garbern, Cambi et al. 1999; Garbern, Cambi et 

al. 1999; Cailloux, Gauthier-Barichard et al. 2000; Hubner, Orth et al. 2005; Garbern 2007). The 

functional significance of PLP is its role as a major protein in CNS myelin, making up about half 

of the total myelin protein mass (Lees, Samiullah et al. 1984). Serving as an integral membrane 

protein, PLP is a structural protein acting as a strut that maintains the morphology of the 

intraperiod line of compacted myelin in the CNS (Duncan, Hammang et al. 1987; Boison and 

Stoffel 1994; Boison, Bussow et al. 1995; Griffiths, Klugmann et al. 1998). The exact type of 

PLP1 mutation dictates the onset and severity of PMD and can be classified according to the 

mutational mechanisms, including the deletion/insertion of the entire gene (Pham-Dinh, 

Boespflug-Tanguy et al. 1993; Garbern, Cambi et al. 1999; Garbern, Moore et al. 2002), point 

mutations that affect splicing or regulation of gene expression and increased dosage of the PLP1 

gene (Ellis and Malcolm 1994; Sistermans, de Wijs et al. 1996; Sistermans, de Coo et al. 1998). 

In PLP1 related defects of myelination, the clinical severity of PMD varies from the severe 

„connatal‟ form (Seitelberger, 1970) that begins during infancy to a much milder variant spastic 

paraplegia type 2 (SPG2) which has a relatively normal life span (Saugier-Veber, Munnich et al. 

1994; Hudson 2003; Inoue 2004). The clinical description exhibits clinical and genetic 

heterogeneity which reflects X-linked recessive traits and distinct myelin pathology that begins 

at birth or early in infancy, representing the connatal and classical forms of PMD (Zeman, 

DeMyer et al. 1964; Seitelberger 1970; Koeppen, Ronca et al. 1987).  

The most severe form, connatal PMD, (Seitelberger 1970) presents at birth or during the 

first few weeks of life with pendular nystagmus, hypotonia, respiratory distress, pharyngeal 

weakness and stridor. Affected males later develop significant spasticity and have little voluntary 
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muscle control. Cognitive impairment is likely. Pharyngeal weakness causes swallowing 

difficulties, and infants can have stridor, optic atrophy and seizures (Garbern 2005).   

Classical form (Pelizaeus 1885; Merzbacher 1910) is the most common form of the 

disease, also present in infancy, usually within the first two to four months of life. Affected 

males develop nystagmus, hypotonia with lower extremity weakness, trunk and limb ataxia, and 

head titubation. The motor milestones are delayed, and children develop spastic quadriparesis. 

Most children never walk independently. Language function can be normal, although dysarthric, 

and cognitive impairments are common. The affected patients do not exhibit respiratory 

involvement and can survive at least until the sixth decade of life (Garbern 2005). In classical 

PMD, PLP1 duplications comprise of 65-70% of the cases with mild to moderate severity 

(Inoue, Osaka et al. 1996; Sistermans, de Wijs et al. 1996; Inoue 2004). The PLP1 gene dosage 

effect and clinical severity are linearly correlated indicated that the PLP1 gene is dosage 

sensitive. Studies have found that three or more copies of the PLP1 gene in patients have a more 

severe form of PMD (Wolf, Sistermans et al. 2005), while those that have a deletion of the PLP1 

gene or SPG2 have a relatively mild form of PMD.   

A subset of patients with null mutations presents into the first 5 years of life with mild 

spastic quadriparaesis, mostly affecting the lower extremities (Garbern, Moore et al. 2002). 

Patients with the null syndrome are able to ambulate despite the increased tone. They have 

ataxia, but do not exhibit pendular nystagmus. While they have mild to moderate cognitive 

difficulties, language skills develop initially. The PLP1 null syndrome is further distinguished 

from other forms of PMD by the presence of a mild demyelinating peripheral neuropathy 

(Garbern 1999).   
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White matter  

The CNS tissue is comprised of grey matter structures and an extensive array of 

connecting white matter tracts. The white matter is made up of myelinating axons, a large 

number of glial cells and vasculature that supply nourishment. The glial cells include 

oligodendrocytes, which are myelin-forming cells, astrocytes, which are responsible for the 

blood-brain barrier and other functions, and microglia cells, which have phagocytic function. 

Understanding the complexity of glial cell function is evolving. On a dry weight basis, 40-50% 

of white matter is myelin (Baumann and Pham-Dinh 2001).  

Myelin is a modified plasma membrane that spirally wraps and insulates the axons (Fig 

1).  Each myelin sheath is composed of multiple segments which are modified extensions of 

oligodendrocytes. Myelination in the CNS is differs from that of the PNS in that a single 

oligodendrocyte can myelinate up to 50 different internodal segments on neighboring axons. The 

myelinated axons under electron microscopy (Arroyo and Scherer 2000) shows the myelin 

sheath composed of multiple plasma membrane layers with the opposed membranes forming the 

intraperiod line with a the thin space between the adjacent myelin leaflets contiguous with the 

extracellular space (Fig. 1). The myelinated axons are completely covered by myelin except in 

<1µm gaps known as nodes of Ranvier that contain a cluster of voltage-gated sodium channels 

essential for saltatory conduction of electrical impulses (Black, Kocsis et al. 1990; Arroyo and 

Scherer 2000; Arroyo, Xu et al. 2001).  

To discriminate between the various mechanisms involved in the sorting and transport of 

myelin components and how they related to disease pathogenesis, it is relevant to first provide 

insight into the molecular composition of the myelin sheet. During myelin formation, OLGs 

mature in a process in which development stages can be identified (Fig 1.1). The cells 
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differentiate from bipolar progenitor cells (O2A stage) to a cell with branched processes (GalC 

stage), when the earliest myelin specific protein 2‟, 3‟-cyclic nucleotide 3‟ phosphodiesterase is 

expressed (Pfeiffer, Warrington et al. 1993).  Maturation into myelin forming OLGs and the 

assembly of the myelin sheath as such is characterized by the sequential expression of the 

proteins that make up the myelin, including myelin-associated glycoprotein (MAG), myelin 

basic protein (MBP), proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG) 

Pfeiffer, Warrington et al. 1993). 

Myelin can be considered to be subdivided into a compact region, responsible for its 

physical insulation properties and a non-compact region called the radial component  

(Arroyo and Scherer 2000). The compact myelin is formed by the apposition of the external 

faces of the membrane of the myelinating cell, forming the intraperiodic line; the apposition of 

the internal faces, followed by extrusion of cytoplasm, gives rise to the formation of the major 

dense line (Fig 1.2). A tight junctional array is located between compact and non-compact 

myelin, which likely serves as a diffusion barrier between these myelin subdomains (Gow, 

Southwood et al. 1999; Morita, Sasaki et al. 1999). The compact region is enriched with 

glycosphingolipid galactocerebroside and sulfatide. In this region, the major myelin proteins are 

proteolipid protein (PLP) and myelin basic protein (MBP), accounting for 50% and 30% of the 

total protein mass, respectively (Garbern 1999). 

 

PLP1 gene and proteolipid protein 

The PLP1 gene is composed of seven exons that extend over 17 kb of genomic sequences 

located on chromosome Xq22 (Diehl, Schaich et al. 1986). Expression of PLP1 dominates in the 

CNS OLGs lineage and correlates with the onset of myelination that begins during the 3
rd
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trimester of pregnancy in humans (Inoue 2004). The alternative splicing of the PLP1 gene 

generates two proteins, PLP and DM-20 which lacks amino acids 116-150 of the PLP sequence 

(Nave, Lai et al. 1987). The proteoplipid protein is the major integral membrane protein of CNS 

myelin (Griffiths, Klugmann et al. 1998). PLP spans the membrane four times (Fig. 1.3) and is 

highly hydrophobic with 50% hydrophobic amino acids (Popot, Pham-Dinh et al. 1991; Weimbs 

and Stoffel 1992). As a structural protein, PLP plays a major role in assembly and stabilization of 

the myelin sheath in that the proteins brings about the correct apposition of the extracellular 

myelin leaflets, thereby stabilizing the multilayer membrane structure after compaction (Duncan, 

Hammang et al. 1987; Boison and Stoffel 1994; Boison, Bussow et al. 1995; Griffiths, 

Klugmann et al. 1998; Bizzozero, Bixler et al. 2001; Rosenbluth, Nave et al. 2006). Surprisingly, 

mice lacking PLP1 and DM20 are not critical for oligodendrocyte differentiation and assembly 

of CNS myelin (Boison, Bussow et al. 1995; Klugmann, Schwab et al. 1997). However, 

ultrastructural examinations of myelin in both knockout mice and patients with a deletion of the 

PLP1 gene have shown myelin to be physically fragile (Boison and Stoffel 1994; Klugmann, 

Schwab et al. 1997). Furthermore, in hereditary spastic paraplegia and the absence of PLP in 

mice and PMD patients not only causes structural instability, but causes axonal injury resulting 

in late-onset axonal swellings and degeneration without any significant reduction in myelin 

(Garbern, Moore et al. 2002; Deluca, Ebers et al. 2004).  PLP1 point mutations results in 

premature arrest of OLGs differentiation and early death, while overexpression of the normal 

PLP1 gene in transgenic mice leads to severe dysmyelination (Kagawa, Ikenaka et al. 1994; 

Readhead, Schneider et al. 1994). In humans, a variety of mutations, including missense 

mutations (Cailloux, Gauthier-Barichard et al. 2000), deletions (Raskind, Williams et al. 1991; 

Garbern, Cambi et al. 1997; Garbern, Yool et al. 2002) and duplications (Wolf, Sistermans et al. 
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2005) are known to cause the dysmyelinating disorder PMD and spastic paraplegia (Saugier-

Veber, Munnich et al. 1994; Inoue, Khajavi et al. 2004).  Gene duplications of the human PLP 

locus are responsible for the majority of the cases leading to enhanced expression of the PLP1.  

Although it is evident that PLP plays a vital role in myelin assembly and maintenance, on a 

functional and molecular level, its precise role remains undefined. 

 

Trafficking of PLP 

PLP and its alternatively spliced isoform DM20 are synthesized in the endoplasmic 

reticulum (ER) and subsequently transported via vesicles to the Golgi, followed by transport to 

the compact internodal region of the myelin sheath. Upon removal from the Golgi, PLP1 is now 

assembled together with cholesterol and galactocerebroside-enriched membrane domains in 

myelin rafts during transportation to be inserted into oligodendrocytes membrane.  Point 

mutations, mostly resulting from missense amino acid substitutions comprised of 15- 20% of the 

genetic abnormalities responsible for PMD. Clinical phenotypes are quite variable extending from 

mild (SPG2) to severe (connatal PMD). Majority of PLP1 point mutations cause more severe 

dysmyelinating and demyelinating disease rather than that caused by null mutations that suggest 

the absence of functional PLP is not involved in the proper maintenance of myelinating axons and 

not from a cytotoxic effect of mutant protein. Mutant PLP has been demonstrated that misfolded 

protein accumulates in the ER inducing the unfolded protein response (UPR) (Gow, Southwood et 

al. 2002; Southwood, Garbern et al. 2002) and not allowing the protein to reach the Golgi to 

interact with cholesterol and other lipids into myelin rafts (Simons, 2000). Because of the 

retention and failure to transport PLP the oligodendrocyte cell membrane this mechanism is 

considered to cause premature oligodendrocyte death (Gow, Southwood et al. 1998). The 
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trafficking of both PLP/DM20 results in a severe clinical phenotype compared to a milder 

phenotype (SPG2), which results from an accumulation of PLP1 and not DM20 (Southwood, 

Garbern et al. 2002). Protein misfolding and activation of the UPR is not an unknown entity 

unique to just PMD, but it is also found in other neurodegenerative diseae such as Alzheimer‟s 

disease and Parkinson disease (Hoozemans, Veerhuis et al. 2005; Hoozemans, van Haastert et al. 

2007; Hoozemans, van Haastert et al. 2009). Unlike missense mutations, there are no spontaneous 

animal models for PLP1 gene duplications, but transgenic mice have been generated by (Kagawa, 

Nakao et al. 1994; Readhead, Schneider et al. 1994). The homozygous mice with high PLP1 gene 

dosage exhibit a severe early-onset dysmyelination with increased oligodendrocyte cell death, 

which maybe due to the accumulation of PLP1 in late endosome/lysosomes. The exact 

pathogenesis is not fully understood, but the imbalance in transport and assembly of myelin 

constituents adversely affects myelin assembly in the Golgi (Garbern 2007). The severe 

dysmyelinating pattern and clinical phenotype found in homozygous mice have also been 

identified in patients with three or more copies of PLP1 (Wolf, Sistermans et al. 2005). On ther 

other hand, hemizygous mice with a lower copy number develops normally with no clinical signs 

until later in life. The clinical signs develop later in life due to the late onset demyelination and 

axonal shperoids and degeneration (Anderson, Schneider et al. 1998). Taken together, the 

pathologic and clinical severity is similar to that of PLP1 knockout mice relfecting the sensitivity 

to changes in gene dosage of „too much or none at all.‟         

 

Magnetic resonance imaging investigation of white matter disorders 

MRI is very sensitive in showing signal abnormalities in the white matter. Apart from myelin 

disturbances (hypomyelination, dysmyelination, and demyelination), damage to other components of 

the white matter may contribute to the observed signal abnormality. These include edema, seen for 
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instance in conjunction with increased vascular permeability, and gliosis, which occurs when 

astrocytes react to diverse forms of injury (van der Knaap 2001).  

 T1-weighted images are used to assess the anatomic structures. During the early phases of 

myelination, small amounts of myelin are better visualized on T1-weighted images. On these images, 

normally myelinated white matter appears bright and cerebrospinal fluid (CSF) is black. Pathological 

white matter gives a decreased signal and appears dark on T1-weighted images.  

T2-weighted images are superior in showing the pathological processes of white matter. For 

subjects aged 9-10 months or beyond, T2-weighted images are more useful in evaluating the stage of 

myelination. Normal myelinated white matter appears dark and CSF is bright on these images. 

Pathology in the white matter leads to an abnormally high signal on T2-weighted images.  

FLAIR (Fluid attenuated inversion recovery) is a T2-weighted sequence, where the signal of 

the free fluid, e.g. CSF, is nullified. In these images, the CSF is black and myelinated white matter is 

dark. If white matter is pathologic, it appears hyperintense and especially periventricular lesions are 

easily distinguished. The cystic nature of the lesions is also revealed by FLAIR images.  

As the white matter myelinates, it changes from hypointense (dark) to hyperintense (bright) 

relative to gray matter on T1-weighted images and from hyperintense to hypointense relative to gray 

matter on T2-weighted images. These changes in signal intensity are caused by increasing brain lipid 

concentration and decreasing water content (Barkovich 2000). The myelin signal appears earlier on 

T1-weighted images. In a newborn, myelin is seen in the posterior limbs of the internal capsules and 

in the dorsal brainstem (Fig 1.4). During the first year of life, progressive myelination is seen, with 

sensorimotor and visual pathways maturing first and subcortical association areas maturing last (Fig 

1.4) (Barkovich 2005). By the age of 24 months, myelination appears essentially mature in MRI 

(Barkovich 2000).  
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Myelination Milestones 

Myelination within the CNS begins approximately the fourth month of fetal development 

at the cervical levels of the spinal cord. In the brain, myelination begins approximately the sixth 

month of gestation and is known to be limited to the region of the basal ganglia. The trend for 

myelination evolves more rapidly in areas of the brain linked to functional systems that are 

utilized during early periods of life, such as motor behavior (Barkovich 2005).  Myelination 

progress is from caudal to cephalad and from dorsal to ventral. Thus, the occipital lobes of the 

cerebral hemispheres myelinate early while the frontal lobes myelinate late. White matter 

changes are seen best on T1-weighted images during the first six to eight months of life and T2-

weighted images are best to evaluate myelination between six and eighteen months of life.  

T1-weighted MRI of maturing white matter found in figure 1.4 shows the striking feature 

that much of the brain remains unmyelinated in a neonate. However, an increase in white matter 

signal intensity is observed in the newborn at the level of posterior aspect of the posterior limb of 

the internal capsule. Around 5 month of age, the corticospinal tracts of the posterior limb of the 

internal capsule becomes more pronounced expressing hyperintensity of white matter seen 

throughout both the anterior and posterior limbs of the internal capsule. Continuing on to the 8
th

 

month, the deep white matter appears hyperintense, however the subcortical white matter from 

the frontal to occipital poles remains hypointense (Barkovich 2005). The peak of myelin 

formation rapidly occurs during the first 24 months of postnatal development, however, 

myelination can precede slowly through the second decade of life in some cortical fibers, 

predominately those tailored to associative areas (Baumann and Pham-Dinh 2001).  

An understanding of the development and structure of myelin is helpful in explaining the 

change in white matter signals during brain development and thus in improving the reliability to 
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differentiate demyelination vs. dysmyelination disorders. Furthermore, the location of myelin 

disturbances is critically important to disease phenotype. Often abnormal MRI signal intensities 

may precede clinical signs of the disease. Leukodystophies such as PMD are aggressive and can 

produce distinct patterns of abnormalities on MRI that can help distinguish them.  

 The myelination milestones of various white matter structures (Table 1) becomes pivotal 

in understanding and describing cerebral white matter abnormalities found in many inherited 

diseases. Among the “classical” leukodystrophies, metachromatic leukodystrophy, Krabbe 

disease, X-linked adrenal leukodystrophy are lysosomal and peroxisomal diseases in which 

progressive demyelination occurs in both the CNS and the PNS (Melhem, Barker et al. 1999; 

Suzuki, Armao et al. 2001; Gieselmann, Franken et al. 2003). Alexander disease is a primary 

astrocytic disorder caused by dominant mutations of the GFAP gene (Brenner, Johnson et al. 

2000). Canavans disease is an organic acid disorder with spongiform leukoencephalopathy 

(Matalon and Michals-Matalon 2000) and last Pelizaeus Merzbacher disease is an X-linked 

hypomyelinating disorder that has been well described by (Seitelberger 1970; Ulrich and 

Herschkowitz 1977; Seitelberger 1995). 

 

MRI characteristics of Pelizaeus-Merzbacher disease  

An appreciation of the normal appearance of unmyelinated and myelinated white matter 

structures on brain MRI is helpful for understanding imaging studies of infants and children with 

a dysmyelinating leukodystrophy (Barkovich 2005). In normal full-term infants, myelination is 

usually evident on MRI in the pons and cerebellum, and by the age of three months, normal 

infants show myelination in the posterior limb of the internal capsule, splenium of the corpus 

callosum, and optic radiations (Barkovich 2005). Absence of these MRI findings suggests the 
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diagnosis of a dysmyelinating syndrome such as PMD. The brain MRI of older children with the 

PMD often reveals diffuse hypomyelination marked by increased signal intensity in the cerebral 

hemispheres, cerebellum, and brainstem on T2-weighted or fluid-attenuated inversion recovery 

(FLAIR) sequences (Fig 1.5). No clear correlation between genotype, clinical phenotype, and 

MRI phenotype has been established for PMD, but reasonable assessments can be inferred. 

However, some experts have noted an inverse correlation between the amount of myelin present 

and the clinical disease severity (van der Knaap, Breiter et al. 1999). As an example, no myelin 

is present at all in some infants with connatal PMD, the most severe form of PMD (van der 

Knaap, Breiter et al. 1999). In patients with the classic PMD phenotype, the white matter 

abnormalities on MRI have been divided into three subtypes (Nezu, Kimura et al. 1998; Nezu, 

Kimura et al. 1998): 

1. Type I: diffuse abnormality in the hemispheres with lesions affecting the corticospinal 

tracts; this type was found in patients with a PLP1 duplication.  

2. Type II: similar hemispheric lesions without corticospinal involvement.  

3. Type III: patchy hemispheric involvement. The patchy areas of myelin forming the 

"tigroid" pattern are not readily apparent on neuroimaging in most patients (Takanashi, 

Sugita et al. 1999).  

Patients with the SPG2 phenotype are said to have less severe abnormalities on brain MRI 

compared with the PMD phenotype. However, the reported abnormalities on T2 MRI in SPG2 

range from discrete or patchy hyperintensities to more diffuse leukoencephalopathy (Cambi et 

al., 1995; Hodes et al., 1999).  
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Significance 
 

The most important clinical tools for investigating white matter disorders in living 

patients are magnetic resonance techniques to evaluate macroscopic structural changes and the 

integrity of the microstructural infrastructure. With modern MRI techniques, we can now 

complement that which is examined pathologically to monitor the pathogenesis and response to 

therapeutic intervention in white matter disease.  

Imaging in living patients can be used to detect and quantify gray- and white-matter 

abnormalities on both macrostructural and microstructural levels. Conventional structural 

magnetic resonance imaging (MRI) reveals the size, shape, and tissue composition (gray vs. 

white matter) of the brain and its constituent parts. Alterations of normal appearing white matter 

(NAWM) is of great importance because its true patho-physiological significance is not 

completely understood. An immediate goal is to provide a firmer basis of magnetic resonance 

techniques as a tool to reveal the integrity of white-matter connectivity.  

The primary parameters accessible from DTI, the directional diffusivities, are often 

combined into summary parameters sensitive to tissue pathology and morphology. DTI can make 

reasonable assessments into the integrity of white matter connectivity and the associated 

pathological conditions that perturb the higher organization of the CNS by monitoring the 

changes in diffusion of water over the course of disease progression. However, such parameters 

lack specificity to detect and differentiate axon vs. myelin degeneration alone, which warrant the 

application of MRS. The high sensitivity of DTI to microscopic structural tissue changes can be 

applied to the development, pathology and monitoring of neurological diseases. The degree of 

myelination, axonal swelling, microglia proliferation and reduced extracellular matrix will 

influence the behavior of microscopic water diffusion and therefore, reflect the pathological 



 15 

 

changes as they take place in real time. Magnetic resonance imaging techniques can make 

reasonable assessments into the pathological conditions of PMD. The goal is to provide a basis 

for the application of magnetic resonance techniques such as DTI as tools to evaluate the 

microstructural architecture of axonal pathology and myelin degeneration not only in the 

pathogenesis of PMD, but also in other diverse groups of dysmyelinating and demyelinating 

disorders. 

 

Hypothesis 

 The central hypothesis is that novel MRI techniques may provide insight into 

differentiating between axonal pathology & myelin degeneration, in vivo, in patients with PMD.  

In white matter tracts, water diffusion is greater parallel to the axon than perpendicular to it, due 

to the presence of directional subcellular structures that include axon membranes, cytoplasm 

filaments that comprise the axonal cytoskeleton and the myelin sheath with act as barriers to 

diffusion. We propose that axonal damage will cause a decrease in parallel diffusivity and 

fractional anisotropy caused by a decrease in the lengths of the axons as axons degenerate, but 

changes may only be measurable at the distal ends of the major neuronal pathways.  In addition, 

dysmyelination may also cause increased radial diffusion if increased free water is present 

between the normally dehydrated leaflets comprising compact myelin or if the packing density of 

axons is increased due to the thinning of myelin sheaths.  

 

AIMS OF THE STUDY  

One of the objectives in current MRI research of white matter diseases with axonal 

pathology and alterations in myelin structure and function is to provide more sensitive and 
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specific markers of the biological effects of the disease as well as better monitor disease 

progression and response to treatment. There is currently no non-invasive modality capable of 

assessing the axonal and myelin components explicitly. However, a number of MR techniques 

are available that allow the study of these structures by indirect methods.  

Specific Aim 1: To investigate structural MRI studies to quantify and compare the relative 

volumetric proportions of white matter of the brain in children and adults with PMD to a functional 

disability score. Volumetric analysis will provide an important contribution to our understanding of 

the severity of PLP1 gene mutations correlated with functional disability score assessment of 

patients. In this MRI study, volumetric analysis is critical to our understanding of the 

neuroanatomical development in PMD. Region of interest not only includes a global perspective of 

cerebral white matter, but also to consider focal white matter regions such as the sensorimotor area 

confined to the pre and post central gyrus.  Investigating white matter volumes from a diffuse and 

focal perspective may provide a correlation to clinical phenotype found in PMD. A further aim will 

be to measure the intercaudate distance, to validate the whole brain volumetric analysis and to serve 

as a validation or potential substitution when demarcation of white vs. grey matter become too 

difficult to discern.  

Specific Aim 2: To quantitatively investigate the parameters of DTI in patients with 

genetically confirmed PMD, characterizing the microstructural changes that may have significant 

therapeutic implication. The parameters of DTI analysis will validate specific markers of axonal 

damage and myelin degeneration regarding the pathogenesis of PMD. This method will be 

instrumental in assessing particular white matter pathways such as the corticospinal tract, a 

prominent descending motor pathway and the dorsal columns which include assemblies of major 

ascending sensory fibers. A further aim is the reconstruction of the motor and sensory pathways 
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using DTI as an in vivo method for mapping white matter fiber trajectories and measuring the 

density of the axonal fibers. The goal of DTI is to characterize WM tissue such that DTI parameters, 

unique in their ability to probe tissue microstructure, provide a greater degree of sensitivity and/or 

specificity for pathologic tissue changes than what conventional MRI is able to provide. The goal of 

fiber tractography is to map the brain‟s network of interconnections and establish connectivity 

patterns between subcortical areas involved in motor movement.  

 Specific Aim 3. To perform a neuropathologic examination on patients clinically 

diagnosed with Pelizaeus-Merzbacher disease. Exact type of PLP1 mutation dictates the onset 

and severity of PMD and can be classified according to the mutational mechanisms, including 

the deletion of the entire gene, point mutations that affect splicing or regulation of gene 

expression and increased dosage of the PLP1 gene. The objective is to examine in particular the 

brain pathology of PMD patients that have a range of mutational mechanisms. The white matter 

structure of particular interest is the corpus callosum. The reason extends from preliminary 

results of our diffusion tensor imaging analysis demonstrating a 107% increase in radial 

diffusion compared to age match control subject. 
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Figure 1. Left: The relationship between a oligodendrocytes and myelinated nerve fibers in 

the CNS. A single oligodendroctye is capable of myelinating up to 50 internodal segments. 

Right: The ultrastructure of a myelinated fiber. (a) The EM shows an axon (a) and its 

compact myelin sheath (m). (b) This EM shows that the compact myelin sheath is composed 

of alternating major dense and intraperiod lines (Arroyo and Scherer 2000) 

 

Figure 1.1 Illustrations of the various stages of oligodendrogenesis. (Woodruff, et al. 2001) 
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Figure 1.2 Composition of myelin. The myelin membrane is composed of repeated layers 

with protein-lipid-protein-lipid-protein structure. Glycolipids and cholesterol are located at 

the extracellular faces and phospholipids at the cytoplasm (intracellular) faces of the lipid 

bilayer. In compact CNS myelin, MBP and PLP are the major protein and in the PNS P0 and 

PMP22 are the major proteins. The closely apposed external faces of the membrane form the 

double intraperiod lines. The fused internal faces of the myelin membrane form the major 

dense lines. Modified from (Baumann and Pham-Dinh 2001) 
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Figure 1.3 Proposed model for the secondary structure of PLP as it lies 

in the lipid bilayer. PLP is a transmembrane protein with two 

extracellular loops and one intracellular loop with its N- and C- termini 

facing the cytoplasm, The PLP specific region (blue) differentiates PLP 

from DM20. Known PLP1 mutations are shown with the most severe 

phenotype (red) at a single amino acid position. Mutations that lie in the 

large second extracellular loop can lead to abnormal crosslinking that 

result in retention of the mutated PLP1 in the endoplasmic reticulum 

(Garbern 2007).  
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Figure 1.4 MRI changes of a normal pattern of myelination at the level of the basal 

ganglia. (A, B) Neonate MRI shows that myelination onT1-weighted image (A) and 

T2-weighted images (B)  is limited to the posterior limb of the internal capsule at 

this level (black arrow). (B) Same patient shown in panel A. (C, D) of a 5-month-

old patient shows hyperintensity in the entire internal capsule, optic radiations, and 

splenium of the corpus callosum. (D) Same patient shown in panel C shows 

hypointensity limited to the posterior limb of the internal capsule and a portion of 

the optic radiations. (E, F) 8-month-old patient shows hyperintensity in all white 

matter except the immediate subcortical regions. (F) Same patient shown in panel 

(E) shows hypointensity in the entire corpus callosum, the entire posterior limb of 

the internal capsule, and part of the anterior limb of the internal capsule. (G) 12-

month-old patient shows hypointensity in the entire internal capsule, in the 

subcortical white matter of the motor cortex, and in the subcortical white matter of 

the visual cortex. (H) 18-month-old patient shows hypointensity in most of the deep 

white matter but lack of maturity of subcortical white matter. (I) Image of a 24-

month-old patient show that essentially all white matter is hypointense. (Barkovich, 

2000) 
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Table 1. Modified from Barkovich, AJ. Pediatric Neuroimaging. 3
rd

 ed. Lippincott 

Williams & Wilkins Philadelphia 2000 pg. 38 
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Figure 1.5 (a) Normal. Phenotypic expression is quite variable with the (b) classical form (i.e. 

duplications) exhibiting a high T2 signal located periventricularly with small foci of less 

affected areas of preserved myelin (a “tigroid” pattern). (c) Severe „connatal‟ form generally 

exhibits severe hypomyelination reflecting the reduced T1 signal and a diffuse high T2 signal, 

whereas (d) the mild null mutation consists of a relatively normal T1 and T2 signal, although 

periventricular hyperintensity may persists, but not always evident.  



 25 

 

Chapter 2 

 

NEURORADIOLOGIC CORRELATES OF CLINICAL 

DISABILITY AND PROGRESSION IN PELIZAEUS-

MERZBACHER DISEASE 

Pelizaeus-Merzbacher disease (PMD), an X-linked dysmyelinating disorder, is caused by 

mutations in the gene encoding proteolipid protein (PLP1), the major structural protein in central 

nervous system (CNS) myelin. Patients with PMD display a variety of neurological signs and 

symptoms, including spastic paraparesis, nystagmus, cognitive and visual impairment, and may 

also have a peripheral neuropathy. The majority of patients with PMD have a variable sized 

duplication of a region of the X-chromosome containing the PLP1 gene, suggesting that 

overexpression of PLP1 in oligodendrocytes is the cause of the disease.  More than 100 point 

mutations in the PLP1 coding region have also been identified in patients with PMD, however, 

accounting for approximately 15-25% of cases (Hodes,et al. 1993) see 

http://www.med.wayne.edu/Neurology/plp.html), and have been shown to have a variety of 

deleterious effects on oligodendrocyte function and myelination. Although the disease is both 

genetically and phenotypically variable in humans, its pathogenesis in rodent, canine, and pig 

models has been convincing shown to be a result of dysmyelination. 

Brain MRI studies in patients with PMD have demonstrated patterns consistent with 

hypomyelination, both in patients with duplications and in patients with point mutations. A study 

by Garbern and coworkers has also shown that some patients with PMD caused by a PLP1 null 

mutation, have decreased levels of N-acetylaspartate (NAA) due to a length-dependent axonal 

degeneration. In contrast, a study of patients with PLP1 duplications has found increased brain 

http://www.med.wayne.edu/Neurology/plp.html
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levels of NAA. These MRI studies have not yet delineated a common pathogenic mechanism in 

PMD, and have not provided a framework to correlate the clinical phenotype of patients to their 

underlying genotype.  

In our current work we have analyzed the clinical phenotypes and MRI scans of 49 male 

patients with PMD and 10 female carriers for whom the PLP1 genotype had been determined. 

Nine patients had PLP1 duplications, two had PLP1 triplications, while the other 50 individuals 

had one of 29 different PLP1 point mutations. To estimate the clinical severity of these patients 

we developed a 32-point functional disability scoring system, based on a scale for analyzing 

patients with ALS, and validated it for inter-rater reliability in 22 patients with PMD. We then 

quantified total brain volume, white matter volume, inter-caudate ratio, and corpus callosum 

volume for our cohort of patients using conventional T1- and T2-weighted MRI sequences as well 

as a three-dimensional volumetric radiofrequency spoiled gradient echo (SPGR) series.  Taken 

together, our data demonstrate that decreased white matter volume is a common finding for all 

the PMD patients in this cohort, regardless of genotype. In addition, clinical severity, measured 

by our functional disability scoring system, is correlated with white matter volume, inter-caudate 

ratio and corpus callosum volume. Although there are multiple genetic and molecular 

mechanisms causing PMD in this cohort, these data imply that white matter atrophy is the major 

pathological determinant of the clinical disability in most patients.  

Materials and Methods 

PMD patients 

 Our study population included 45 males and 10 females with known PLP1 mutations. The 

patients were analyzed serially from our population of patients with known PMD and selected 

based on their willingness to participate in this study. The age of each individual at the time of 
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MRI analysis, their functional disability score,  and PLP1 mutation are listed in Table 2.3 Nine 

patients had PLP1 duplications, two had PLP1 triplications, while the other 50 individuals had 

one of 29 different PLP1 point mutations. Seven patients were between 4 and 5 years of age, 7 

were between 5 and 10 years of age, 12 were between 10 and 20 years of age, 18 were between 

20 and 40, and 10 were older than 40 years of age. The age of one patient at the time of analysis 

was not known.  

Inter-caudate Ratio  

 The inter-caudate distance (ICD) and transverse skull diameter (TSD) were measured 

from the most caudal axial T1 weighted MRI image for each of the 55 PMD patients in our study. 

The ICD was defined as the linear distance on this image between the medial borders of the head 

of the caudate nucleus; the TSD was defined as the distance separating the inner table of the 

skull on this same image. The inter-caudate ratio (ICR) was then calculated by dividing the ICD 

by the TSD at the same axial section level, as described previously by Caon and co-workers 

(Caon, Zvartau-Hind et al. 2003). NIH image was used to perform all measurements. A set of 

typical measurements is shown in Figure 2.  

MR imaging acquisition and processing for volumetric measurements 

Patients were evaluated with routine clinical brain MR image scans (T1-weighted and T2-

weighted sequences) and three-dimensional volumetric radiofrequency spoiled gradient echo 

(SPGR) series at Children‟s Hospital of Michigan on a GE-Sigma 1.5 tesla scanner (General 

Electric, Milwaukee, WI), and their total brain volume, white matter volume and grey matter 

volume measured from these scans. Patients were excluded from this analysis because the 

contrast between grey and white matter was insufficient for volume segmentation. Four examples 

of coronal sections from SPGR series with varying grey matter-white matter contrast are shown 
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in Figure 2.4d. Volume segmentation could not be performed from scan is part d of this figure 

because of lack of contrast. The raw, GE-sigma-formatted image data from these scans were then 

transferred to Apple Macintosh Power PC workstation, and the SPGR image data were imported 

into the program NIH 1.62 for visualization, processing, and quantitative analysis. DICOM 

images were also obtained and were imported into ImageJ (version 1.32j) to partition the series 

into an ordered 124 contiguous slices. The scale for each slice was set to 10.666 pixels per 

centimeter, 16 bit unsigned with dimensions of 256 X 256.  

To prepare the stacks for volumetric measurements, non-brain structures, including the 

skull, dura, subarachnoid spaces, ventricles, cerebellum, and brainstem were excluded from the 

region of interest (ROI) by manually tracing around them using the NIH program 1.62 as shown 

in Figure 2.1. The color threshold was manually adjusted for each slice to insure accurate 

segmentation of white and grey matter boundaries. This methodology was used to measure the 

ROI for each of the 62 slices available for each MRI scan. The brain volumes are expressed in 

units of cubic centimeter. 

Corpus callosum area measurements 

The corpus callosum area was analyzed in 36 patients from a mid-sagittal section in which the 

genu, body, and splenium of the corpus callosum could be visualized. The corpus callosum area 

was measured using the program NIH 1.62 as described above by manually tracing around the 

corpus callosum and the area expressed in square centimeters.   
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Results 

White matter atrophy accounts for brain atrophy in patients with PMD 

 

Comparison of total brain volume to white matter volume for 46 patients with PMD, 

shown in Figure 2.2, demonstrates a linear relationship (Pearson r =.91, P=<0.0001). Since this 

analysis includes patients with different ages that could confound this relationship, we also 

plotted white matter volume against patient age. As shown in Figure 2.3, there is no significant 

correlation between white matter volume and patient age. These data thus suggest that white 

matter atrophy is the major pathological feature in PMD for patients of all ages and mutation 

type.  

 

A scoring system to measure functional disability in patients with PMD 

In order to determine whether changes in white matter volume are associated with 

clinical disability in patients with PMD, we developed and validated a simple and reproducible 

clinical scale adapted from a scale used for patients with ALS (Cedarbaum, Stambler et al. 

1999). This functional scale (0 to 32) shown in table 2 (also, see Appendix B), measures the 

ability of patients to perform routine tasks of daily living, such as feeding, bathing, dressing, and 

walking. The scoring system does not depend on any specific disease process or neurological 

sign, and can be assessed from a short interview with the patient‟s caregiver. Using this scale 

four neurologists at Wayne State University School of Medicine have estimated the functional 

disability of a group of 22 patients with genetically confirmed PMD. 

The inter-rater reliability of this scoring system, shown in Table 2.1 and 2,2, is greater 

than 95%, and is thus quite reliable. The scores, however, shown in Table 1 (also, see Appendix 

B), suggest that functional disability is not equally distributed throughout the possible variable 
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range, but instead occurs in 3 clusters: 0-10 (severe); 10-20 (moderate); and 20 and above (mild). 

Interestingly, these clusters probably represent patients with connatal PMD, classic/transitional 

PMD and progressive spastic paraparesis, similar to the categories originally proposed by 

Seitelberger, 1970.  

 

The functional disability score (FDS) is correlated with white matter volume in patients 

with PMD 

A comparison of white matter volume to that of the patient‟s functional disability score 

(FDS) is shown in Figure 2.5. As can be seen from this data, white matter volume is positively 

correlated to the FDS (Pearson r= 0.50, P < 0.0001) suggesting that white matter atrophy is a 

major cause of clinical disability in PMD for patients of all ages and mutation type.  

 

The FDS is correlated with the inter-caudate ratio (ICR) in patients with PMD 

To establish a simple MRI metric to follow PMD disease progression, and to confirm the 

relationship of white matter atrophy and functional disability described above (Fig 2.6), we 

measured the inter-caudate ratio (ICR) for all 55 PMD patients, and compared it to their 

functional disability score as shown in Figure 2.7. The ICR has been used previously as an MRI 

metric in patients with multiple sclerosis (MS), and has been shown to correlate with disability in 

this disease as measured by the expanded disability scoring system (EDSS), suggesting that it is 

well suited for analyzing diseases of white matter. As can be seen in the figure the ICR is 

positively correlated to the FDS (Pearson r=-0.35, P=< 0.0001), further suggesting that white 

matter atrophy is a cause of clinical disability in PMD for patients of all ages and mutation type 

(Fig 2.6). 
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The FDS is correlated with corpus callosum area in patients with PMD 

As an additional check on our data relating white matter atrophy to functional disability 

(Fig 2.9), we measured the area of the corpus callosum at its midpoint for 36 PMD patients for 

which this MRI section was available (Fig 2.8). Since the corpus callosum is the largest white 

matter track in the brain, the functional disability of PMD patients should be correlated with 

demyelination and thus atrophy within this structure.  

 

Discussion 

MRI has been proven to be instrumental in the diagnostic work-up in cases of 

leukodystrophies (van der Knaap and Valk 1995) Most individual leukodystrophies have distinct 

patterns of MRI abnormalities that maintain white matter region consistency among patients with 

the same disorder.  Distinctive MRI pattern of leukodystrophies have been well documented 

(André, Monin et al. 1990; van der Knaap 2001; Barker and Horska 2004; Phelan, Lowe et al. 

2008; Kohlschutter, Bley et al. 2010). The MRI pattern that exists among patient groups with the 

same disorder is not applicable to PMD, which expresses a rich heterogeneous pattern among 

patients with duplications among the (4) descriptive classes of PMD, not including the 

interfamily heterogeneity.  

These results demonstrate the sensitivity that MRI technology imposes in detecting 

clinically relevant changes or monitoring the progression of the disease or a response to 

therapeutic treatment. The results show that WM atrophy positively correlates and the ICD 

negatively correlates with functional disability in PMD patients. Thus conventional MRI 

provides a reasonable measure that can assist in a predictive outcome and the progressive 
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development of disability. These findings indicate that this quantitative measure, including the 

results is clinically relevant, gradable, objective and practical enough for inferring about the 

pathogenesis of PMD. The presence of WM atrophy in excess of what might be expected for age 

is well described in several WM disorders, predominately, in multiple sclerosis (MS) studies. 

Atrophy is a clinically relevant entity in MS (Losseff and Miller 1998) and atrophy in the 

cerebellum (Davie, Barker et al. 1995) has been correlated with ataxia.  Studies that involve 

WM, GM or both have shown a corroborating trend in the correlation with clinical 

measurements of motor and cognitive disability. Volumetric atrophy, global or localized, have 

been shown to correlate with clinical disability and cognitive scales in Alzheimer‟s disease 

temporal lobe atrophy (Visser, Verhey et al. 2002), GM atrophy associated with cerebellar 

function (Anderson, Fisniku et al. 2009), and thalamic atrophy observed in MS (Houtchens, 

Benedict et al. 2007).  

These findings are reproducible and relevant to PMD and can provide constructive 

relationships between clinical disability and a non-invasive approach to monitoring progressive 

changes as well as responses to therapeutic treatments. This study shows evidence that during the 

natural progression of PMD; WM atrophy is a clinically relevant entity and is responsible in part 

for the decline in functional disability in PMD. The severity of dysmyelination and atrophy of 

pre-existing WM is dependent upon the type of PLP1 gene mutation, as it is a factor in assessing 

the severity of myelin loss. It is naive to ignore the role axonal fibers play in the clinical and 

pathological outcome in PMD and their impact on clinical disability. Most patients with PMD 

lack primary axonal degeneration (Mar and Noetzel 2010), but some axonal loss has been found 

in completely demyelinated areas (Gencic, Abuelo et al. 1989). Axonal damage has been 

reported in patients with a null mutation (Garbern, Yool et al. 2002), as well as in PLP knockout 
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mouse model (Griffiths 1998; Griffiths, Klugmann et al. 1998; Edgar, McLaughlin et al. 2003). 

These studies exemplify the importance of interpreting WM pathology in the context of mutation 

type with additional support that the absence of PLP, the major CNS protein is instrumental in 

maintaining axonal integrity.  Furthermore, animal models that experience natural occurring and 

spontaneous mutations may show an occasional axonal spheroid, but the majority show well 

preserved axonal fibers (Griffiths 1996). Transgenic mice engineered to carry extra copies of the 

PLP1 gene serve as an experimental model for patients with duplications and reports show that 

axonal degeneration is a significant pathological feature (Anderson, Schneider et al. 1998). The 

cluster of PMD patients with duplications and triplications who exhibit the greatest decrease in 

WMV and decline in FDS may reflect the involvement of axonal injury found in the transgenic 

models. The findings are further supported by the observation found in patients with three and 

five copies of the PLP1 gene that the level of expression is related to increased clinical severity 

(Wolf, Sistermans et al. 2005). 

As the disease progress to a more severe clinical phenotype, axonal injury may contribute 

and become a contributing variable responsible for the decline in disability. Axonal loss is 

widely accepted as contributing to the cause of neurological disability in MS (De Stefano, 

Matthews et al. 1998) and correlates with the degree of inflammatory demyelination (Trapp, 

Peterson et al. 1998; Trapp, Bo et al. 1999). Together, the lack of mature myelin, late stage 

demyelination and axonal damage are variables that should be accounted for in white matter 

pathologies and should all be evaluated to explain the strong linear correlation between WM 

atrophy and FDS. Axonal pathology is well documented in CNS pathologies, most notably MS, 

but is also observed in variety of myelin disorders (Bjartmar, Yin et al. 1999; Bjartmar and Trapp 

2001; Mar and Noetzel 2010).  In PMD, the extent of axonal injury increases with age and 
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coexists with the infantile onset of PMD, thus accounting for the progressive neurologic signs in 

PMD.  Some axonal loss is evident; especially those axons that have undergone complete loss of 

the very little existing myelin that originally encircled the axons, due to a lack of functional PLP 

(Gencic, 1989). Most patients do not demonstrate signs of primary axonal pathology, however, 

in both the PLP1 knockout mouse model and patients with a null mutation experience axonal 

pathology that manifest in a length-dependent pattern (Garbern, Yool et al. 2002).  

The simple linear measurement of the intercaudate distance may act as a surrogate 

measure of cerebral atrophy, especially in PMD patients that have a severe dysmyelinated CNS 

that causes the white-grey matter segmentation nearly impossible to differentiate.  This simple 

method has been utilized in monitoring and understanding the pathology of MS by measuring 

brain atrophy as a marker for neuroaxonal loss and disease progression (Bermel, Bakshi et al. 

2002; Caon, Zvartau-Hind et al. 2003) and is not only applicable to PMD, but other form of 

leukodystrophies that have strictly a demyelinating pathogensis.  

 

Conclusion 

The clinical severity measurements and MRI volumetric findings are consistent with the 

idea that white matter volume is inversely correlated with PMD severity. The correlation was 

moderate, although highly significant. The diagnoses of cerebral white matter disorders was 

revolutionized by the advent of MRI. Leukodystrophies were previously defined based on 

autopsy pathological findings alone, but MRI has provided a powerful tool for investigating and 

monitoring disease progression in living patients. The MR imaging findings in our patients are 

compatible with diffuse hypomyelination of the cerebral hemispheres. Although significant 

advances in the understanding and diagnosis of leukodystrophies using MRI have been made in 
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the last decade, many problems remain. A substantial number of leukodystrophies remain 

unclassified despite multiple investigations using clinical, genetic, biochemical, or imaging 

studies. In addition, the common observation of abnormal white-matter signal on MRI (T2 

hyperintensity) can reflect multiple different underlying pathologic changes, including acute or 

chronic demyelination, inflammation, edema, or gliosis. Therefore, conventional MRI studies 

might lack specificity. Because of this issue, there has been interest over the last few years in 

alternative advanced magnetic resonance methodologies (in particular magnetic resonance 

spectroscopy) that might provide more specific or complementary information regarding brain 

structure and composition particularly to examine the role of axonal injury in a vast array of 

white matter diseases.   

Our data demonstrate that reduced white matter volume is likely one determinant of 

neurological disability in PMD patients, while axonal dysfunction or loss correlates with clinical 

progression, which is a late (typically post-adolescent) phenomenon. The findings in this study, 

explicitly shows how the degree of WM atrophy appears to be dependent on the type of PLP1 

mutation.  

The use of MRI as a clinical tool to follow the natural history of PMD and incorporate its 

application in the evaluation of future therapies is instrumental making this study and the 

functional disability score assessment applicable to other forms Leukoencephalopathies. 

 

 

 

 

 



 36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2. 

Figure 2.1 (a) SPGR MRI outlining the brain parachyma excluding non-brain 

structures (i.e. bone and dura matter), cerebellum and brainstem. (b) 

Application of the color threshold highlighting the WM to be quantified. In 

addition to subtracting CNS tissue and non-brain structures from the analysis, 

the lateral ventricles and subarachnoid spaces also were excluded.  
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Figure 2.2 Changes in white matter volume account for the change in 

total brain volume.  

Figure 2.3 Changes in white matter volume is not confounded by the 

patient‟s age.  
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Table 2. Functional disability score.  
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Patient Phys. #1 Phys. #2  Phys. #3 Phys. #4 Mutation Deletion size 

(kb) 

BD 13 12 12 10 Duplication 330-890 

BC 27 27 27 27 DelG4 heterozygote  

KB 7 7 6 6 Del G4 male  

JB 9 10 9 9 Del G4 male  

MB 

(#0007) 

20 20 20 20 Del G4 male  

S 14 14 13 12 unknown  

AD 

(#0017) 

4 4 4 4 Pro14Leu  

JS 5 5 5 5 Lys150Asn  

A1 27 27 27 27 Ile186Thr (rsh)  

A2 27 27 27 27 Ile186Thr (rsh)  

JR 14 14 16 16 duplication 1320-2013 

MR1C 16 15 15 15 duplication 1320-2013 

CM 20 17 17 20 Del 19 bp intron 3  

ST 16 14 16 15 Duplication 1020-1440 

MS 2 2 2 2 +3 IVS 6 (skips exon 6)  

SC 4 4 4 3 Duplication 220-740 

DC 6 7 6 6 Duplication 220-740 

PC 16 16 16 16 Duplication 220-740 

HB 27 27 27 27 unknown  

GK 9 8 8 7 Duplication 630-860 

       

Pairwise 

Rater 

Pairwise 

Correlation 

Average Spearman 

Correlation 

R1-R2 0.99467  

R1-R3 0.99086  

R1-R4 0.95802  

R2-R3 0.98935  

R2-R4 0.99164  

R3-R4 0.99696  

   

 5.9215 0.986916667 

Table 2.1 Functional disability scores used for interrater reliability estimate 

 

Table 2.2 Interrater reliability estimates 



 40 

 

 

  

Figure 2.4 SPGR MRI of three PMD patients with duplications of the PLP1 gene. 

(a) normal myelination of the subcortical WM and internal capsule. (b)  

Subcortical WM is isotense with a gradual decrease in hyperintensity of the 

internal capsule. Patients FDS = 20. (c) Moderate thinning of the subcortical WM 

with notable reduction in the temporal lobe. The internal capsule exhibits 

significant hypointensity reflective of a substantial reduction to absent of WM. 

Patients FDS = 12. (d) Diffuse reduction to absence of myelinated fibers with 

moderate enlargement of the lateral ventricles and periventricular hyperintensities 

representing preserved islands of myelin fibers. Patients FDS = 5. 
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Figure 2.5 Change in white matter volume account for the changes in overall 

functional disability in patients with PMD.   
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Figure 2.6 (a) Axial T1-weighted MRI of a normal myelinated brain. (b) FLAIR MRI of a 

PMD patient with a delC279 frameshift mutation resulting in a nonfunctional truncated 

PLP. The WM of the internal capsule is relatively normal with a slight reduction to 

thinning of the subcortical WM. Patients FDS = 20. (c) Axial T1-weighted MRI of a PMD 

patient with a P14L missense mutation. A uniform and diffuse reduction of cerebral WM 

exemplified by a decrease in T1 signal intensity and marked reduction of the posterior limb 

of the internal capsule with a corresponding increase in ventricular enlargement.     
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Figure 2.7 The inter-caudate ratio increases as white matter volume decreases in 

PMD and is a linear measure that changes in respect to a decrease in functional 

disability. 
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Figure 2.8 Sagittal T1-weighted MRI of corpus callosum in PMD. (a) Normal myelination. 

(b) PMD patient with a complete deletion of the PLP1 gene. The corpus callosum WM is 

relatively normal with a uniform thickness. Patients FDS =18. (c) Patient with a duplication 

of PLP1 gene exhibits a severe reduction to absence of WM fibers of corpus callosum. 

Patients FDS =9.  

Figure 2.9 Corpus callosum area positively correlates with a decrease in  patient 

functional disability. Atrophy of the corpus callosum is an indirect measure of a 

large white matter fiber bundle that is affected by dys/demyelination and axonal 

loss.  
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PMD Patients  PLP1 Mutation      Age Sex FDS ICD              WMV     CCV  

B.D. Duplication 10 M 12 0.09              .21          NA  

B.W. Duplication 3.5 M 12 0.15              .26         1.84  

J.E. Duplication 11.9 M 9 0.10              .26         2.21  

J.H. Duplication 10.8 M 20 0.12              .26         2.14   

J.S. Duplication 16.2 M 5 0.16              .24         3.06  

J.J. Duplication 6.5 M 15 0.10              .32         2.26  

N.C. Duplication 3.8 M 9 0.10              .44         2.23  

P.C. Duplication 43.9 M 16 0.14              .31         2.38  

T.B. Duplication 40.5 M 16 0.10              .25         2.76  

B.S. X276W 10 M 25 0.09              .40         1.39  

C.E. delC279 23 M 20 0.09              .27          1.5  

S.P. delC279 11.8 M 21 0.06              .42         1.79  

B.H K143X 16.2 M 25 0.09              .57         5.92  

J.R. del403-419 18.9 M 18 0.13              .35         2.11  

T.B. del403-419 35.5 M 9 0.15              .25         3.23  

T.B. del403-419 35 M 25 NA                .36        NA  

C.G. Deletion 14 M 18 0.11              .44         4.62    

T.F. DelG1/hetero 40 F 32 0.12              .47         4.83  

J.F. DelG1/hetero 15.6 F 32 0.11              .44         3.84  

J.F. DelG1 18.5 M 20 0.08              .41         3.06  

C.B. delG1/hetero 47 F 30 0.11              .40         4.83  

T.K. W144X/hetero 46.1 F 29 0.12               .48        6.49  

M.K. W144X 23.4 M 25 0.07               .43        4.11  

T.D. c.454-322G>A                       NA M       11                                                 .12                .55          2.7  

J.H. Del 37E 1.8 M 4 0.11              .51          2.9  

J.H. F50V 2.9 M 5 0.10               NA        4.1  

A.S. C34R 8.2 M 2 0.11               NA        NA  

G.W. G245W 4.7 M 6 0.14               NA        NA  

A.W. H139Y 8.9 M 27 0.05              .42          NA  

W.M. I186T 45.6 M 30 0.08              .46         5.01  

J.L. L80R 5.2 M 4 0.08               NA         NA  

M.G. L80R 7.9 M 4 0.12               NA         NA  

C.R. L84R 3.7 M 10 0.10              .49           2.85  

J.T. L86P 1 M 5 0.10               NA         NA  

A.D. P14L 23.1 M 4 0.08               NA         NA   

M.E. R136W      12 M 32  0.1                NA         3.86  

P.D. P14L hetero 40 F 32 0.08               .50          6.5  

H.B. P172S       4.1 M 6 0.16               NA         NA  

C.M. R136G 12 M 14 0.08               .39          3.86  

J.E. X277W hetero 26.4 M 32 0.09               .46          NA  

R.S. Y156H NA M 13 0.09               .38          3.11  

A.S. Y206H 2.1 M 30 0.10               .39          5.41  

C.J. Y206H 28.3 M 25 0.10               .39          4.69  

J.S. V218F 25.5 M 15 0.12               .32          1.79  

Table 2.3 
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A.J. Y206H/hetero 57.6 F 32 0.11               .43          NA  

C.S. Y206H/hetero 34.2 F 32  NA               .41          NA                

       J.H.        p.226S>P 56.6 F 32  0.10              .58          NA  

       M.H.        p.226S>P 31.1 F 32  0.12              .47          NA  

       R.H.        p.226S>P 45.8 M 30  0.10              .51          NA    

       T.H.        p.226S>P 28.1 M   29  0.10              .49          NA  

P.G. X278C 35.2 M 31         .11                .27           5.0  

S.G. X278C 38.4 M 31        .10                .37           4.7  

C.S. IVS6+3G>T 49 F 30  0.1               .35            NA  

       M.S. IVS6+3G>T 23 M 3 .16                NA           NA  

P.S. IVS6+3G>T 25 M 3 .13                NA           NA  

Z.B. IVS6-1G>T 3.8 M 11 .09                .34           5.14       

C.M. IVS3 del+28-+46 12.3 M 20 0.10              .46           6.17  

J.S. Triplication NA M 6 0.11               NA          NA  

N.T. Triplication 1 M 4 0.13               NA          2.36  

H.B. NOT PMD 51.4 M 31           0.10               .55          5.68  

M.P. NOT PMD 25.4 M 32 0.10               .40          5.84  

 

  



 47 

 

CHAPTER 3 

 

ALTERED WHITE MATTER MICROSTRUCTURAL 

INTEGRITY REVEALED BY DIFFUSION TENSOR IMAGING 

IN PELIZAEUS-MERZBACHER DISEASE 

 

The central nervous system (CNS) undergoes profound developmental changes during 

the first few years of life that provide the structural and functional elements necessary for normal 

neurological development. The maturation of white matter (WM) pathways, which are dependent 

on the process of myelination, is critical towards the development of the nervous system(van der 

Knaap, Valk et al. 1991). Dysmyelinating disorders or leukodystrophies comprise those disorders 

in which myelin is not formed properly, or when myelin formation is delayed or arrested (van 

der Knaap and Valk 1995). Failure to myelinate produces deficits in motor, sensory and 

cognitive function due to impairment, or interruption, in the connectivity of WM pathways to 

various gray matter regions. The underlying pathology of a neurological disease may involve 

axonal injury, myelin degeneration, or both. An accurate and non-invasive evaluation of the 

underlying WM pathology is crucial for diagnosing and monitoring clinical disease progression 

and responses to therapeutic intervention.  

 Owing to its high sensitivity, magnetic resonance imaging (MRI) is the primary 

neuroimaging modality used to detect and characterize white matter abnormalities in patients 

with leukodystrophies (Cheon, Kim et al. 2002) but has not been shown to provide insight into 

the underlying WM pathology and provide an examination of the microstructural properties of 

the CNS tissue. The development of diffusion tensor – magnetic resonance imaging (DTI-MRI) 
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allows a greater degree of sensitivity towards characterizing the effects of the neurological 

disease on the cytoarchitecture of the CNS tissue. Because patients serve as their own baseline 

reference, DTI makes it possible to follow subjects longitudinally to determine how the 

microstructural properties change over time.  

The diffusion tensor describes the magnitude, the degree of anisotropy, and the 

orientation of diffusion anisotropy voxel by voxel, providing a unique way to study WM 

architecture in vivo. Although this MR technique may be of diagnostic utility, it is currently 

applied most often to characterize fiber tracts and serves as a biomarker for fiber integrity 

(Werring, Clark et al. 1999; Ciccarelli, Werring et al. 2001; Le Bihan, Mangin et al. 2001). 

Diffusion represents the translational motion of in vivo water molecules and is dominated by the 

cytoarchitecture to probe the integrity and organization of the static neuroanatomy.  In the CNS, 

the diffusive properties of water depend on the local molecular and biochemical environment and 

are restricted by microstructures, such as cell membranes, axons, myelin sheaths, extracellular 

matrix and sub-cellular organelles, which include microtubules, microfilaments and proteins. In 

particular, and unique to the CNS, is the compartmentalization of intra- and extra-cellular water 

by the formation and cylindrical packing of the longitudinal array of axonal fibers.  The pattern 

of diffusion is dependent on the water‟s anatomical localization. In organized bundles of nerve 

fibers, the net motion of water is greater parallel to the longitudinal axis than perpendicular to 

them. This preferential directionality of diffusion is attributed to cell membranes of both axons 

and the numerous lipid bilayer‟s of myelin. The relative effects of the different intra- and extra-

cellular compartments on water diffusion in CNS white matter is still uncertain and debated, but 

generally presumed to be dominated by the water within axons and that in the extracellular 

spaces, which are also constrained by axonal and myelin membranes (Song, Sun et al. 2002; 
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Peled 2007). The relative contributions of intramyelinic water and the periaxonal space to the 

magnitude of water diffusivity is not fully established (Laule, Leung et al. 2006). Canavan 

disease represents a global disturbance of cerebral water homeostasis with the development of 

intramyelinic edema resulting from N-Acetyl Aspartoacylase accumulation in neurons increasing 

water diffusion into the periaxonal space (Baslow 2000; Engelbrecht, Scherer et al. 2002; Patay 

2005).  

Many of the animal models of neurologic disease, in particular those of still unknown 

cause, such as multiple sclerosis, Alzheimer disease, Parkinson disease and epilepsy are of 

uncertain relevance to human disease although they may share some similarities with the human 

conditions that they are meant to recapitulate. Induction of disease in these animals has 

potentially non-specific and widespread effects that confound analysis and interpretation of 

experimental results. For example, experimental autoimmune encephalitis (Gold, Hartung et al. 

2000), regarded as the best model for multiple sclerosis, typically involves treatments that result 

in variable degrees of inflammation, generation of reactive oxidative compounds, edema, 

demyelination (Song, Yoshino et al. 2005) and axonal damage (Onuki, Ayers et al. 2001).  

The analysis of animals with mutations affecting defined subcellular components of the 

CNS, in contrast, provides powerful insights into the understanding the more important effects 

on the diffusion of water in normal myelinated pathways as well as into changes in water 

diffusion caused by disease pathology. Pelizaeus-Merzbacher disease (PMD) is an X-linked 

disorder of the central nervous system (CNS), caused by a wide variety of mutations affecting 

proteolipid protein 1 (PLP1), the major protein in CNS myelin (Hudson, Puckett et al. 1989; 

Trofatter, Dlouhy et al. 1989; Raskind, Williams et al. 1991; Inoue, Osaka et al. 1999). PLP1 is 

the major structural protein in CNS myelin, and is believed to form „adhesive struts‟ that bind 
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adjacent lamellae of myelin membrane. (Boison and Stoffel 1994; Boison, Bussow et al. 1995). 

The PLP1 gene is alternatively spliced and, in addition to PLP1, also encodes the internally 

truncated DM20 protein, which lacks 35 amino acids from the intracellular loop (Nave, Bloom et 

al. 1987). These proteins are targeted to the oligodendrocyte cell membrane. Although the 

precise molecular and cellular functions of PLP1 and DM20 remain incompletely understood, 

they are thought to be important for maintaining compaction of the myelin sheath in the CNS 

(Boison, Bussow et al. 1995; Klugmann, Schwab et al. 1997). Since PLP1/DM20 are restricted 

to oligodendrocytes, the myelin forming cells of the CNS, PMD and its excellent animal models 

(Nave, Schneider et al. 1995; Yool, Edgar et al. 2000) provide highly specific systems with 

which to evaluate the effects of disturbance of a single cell type on the structural and functional 

integrity of the nervous system.  

A wide variety of PLP1 mutations, both naturally occurring and experimentally 

generated, have been reported in humans and a variety of other mammalian species (Yool et al, 

2000). Somewhat surprisingly, complete lack of PLP1 results in a relatively mild phenotype, 

both in rodents and in humans. Targeted inactivation of the murine PLP1 gene results in little 

neurologic abnormality until adulthood, and morphologically is characterized by a subtle 

increased spacing between adjacent lamellae of myelin membranes (Boison and Stoffel 1994; 

Klugmann, Schwab et al. 1997; Rosenbluth, Nave et al. 2006), presumably due to loss of 

interlamellar adhesion mediated by PLP1/DM20. PLP1-null human patients, have a surprisingly 

mild phenotype characterized by relatively good early neurologic development which is followed 

by progressive neurologic deterioration during adulthood (Klugmann, 1997; Garbern, 1997; 

Garbern, 2002). In both mice and humans lacking PLP1, the late deterioration is characterized 

most strikingly by axonal degeneration rather than by loss of myelin.  
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The most common mutation that causes PMD is complete duplications of the PLP1 gene, 

which is presumed to cause overexpression of PLP1 and DM20. In experimental systems, PLP1 

overexpression results in aberrant PLP1 processing, with ectopic compartmentalization of Plp1 

with cholesterol and disturbed assembly of myelin membrane (Simons, Kramer et al. 2002; 

Karim, Barrie et al. 2007).  PLP1 missense mutations, in contrast, span the full clinical range of 

syndromes, from very mild „pure‟ spastic paraparesis to fatal „connatal‟ PMD. Severity of the 

missense mutations is thought to arise in part from accumulation of unfolded PLP1/DM20 that 

leads to varying degrees of oligodendrocyte apoptosis that is triggered by activation of the so-

called unfolded protein response pathway (UPR) (Gow, Friedrich et al. 1994; Gow and Lazzarini 

1996; Gow and Lazzarini 1996; Southwood, Garbern et al. 2002). Although there are currently 

no disease-specific therapies for PMD, there are several strategies that are hoped to lead to 

effective treatment of this severe disorder (Garbern 2007), and evaluation of future clinical trials 

will require robust clinical and laboratory tools with which to evaluate patients.  

 In most cases, conventional MRI shows an arrest of myelination. T2-weighted images 

present a high signal intensity of unmyelinated white matter structures, whereas these structures 

have low signal intensity on T1-weighted images. In „severe‟ connatal PMD due to missense 

mutations, the brain is severely hypomyelinated which suggests thin to complete absence of 

myelin.  Classical PMD cases exhibit a less pronounced myelin deficiency. There is a patchy 

absence of myelin with preservation of myelin islets giving the white matter the classical 'tigroid 

pattern'.  Mild PMD involves patients with a null mutation, where relatively a normal amount of 

myelin develops with the abnormalities involving the intraperiod line.  

The objective of this study was to perform DT-MRI and to quantify separately the 

parallel and perpendicular diffusivities of major white-matter tracts and to compare these values 
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to those of age-matched normal control subjects. We hypothesize that patients with PMD 

experience severe dysmyelination of white-matter structures without significant axonal damage 

at least initially and the severity of this disease correlates positively with degree of 

dysmyelination.  

Furthermore, to supplement our study, we categorized the 12 PMD patients into three 

groups [i.e. null (3), mild (5) and severe mutations (4)] representing the degree of mutation 

severity affecting the PLP1 gene. This supplemental investigation is on-going and the analysis of 

additional patients with genetically confirmed PMD will strengthen the principle that correlating 

the known PLP1 gene mutation, which dictates the onset and severity of PMD, with the 

diffusivity markers are instrumental in our understanding of the pathogenic mechanism of the 

disease. The objective is to use DT-MRI and quantify the parameters or indices (i.e. parallel and 

radial diffusivities) to examine the six white matter structures and to correlate the quantified 

results to the pathogenic pattern observed in PLP1 mutations.  

 

Methods and Materials 

Subjects and clinical evaluation 

 

Twelve male patients with PMD, aged 2 to 45 years of age, were compared to a group of 

twelve age-matched healthy subjects free of neurological disease. Genetic analysis of their PLP1 

genes revealed: #1: Y206H; #2: IVS6-1G>T (causing exon 7 skipping); #3: L84R; #4: P173S; 

#5: G245W; #6: L80R; #7: Deletion; #8: del 403-419 (causes frame shift at residue 135); #9: 

P.226S>P; #10: X278C; #11: X278C; #12: P.226C.  
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Image Acquisition 

 

 MRI studies were performed on a GE 1.5 Tesla Sigma Excite (GE Healthcare, 

Milwaukee, Wisconsin) and standard head coil. The MRI exam includes (1) volumetric T1-

weighted images utilizing a 3D magnetization preparation spoiled gradient echo (SPGR) 

sequence, (2) Coronal fluid attenuation inversion recovery (FLAIR) images, (3) high resolution 

morphologic axial T2W fast spin echo series, and 4) diffusion weighted spin-echo echo planar 

images. The DT-MRI sequence consists initially of an image volume with no diffusion weighting 

(b = 0 [s/mm
2
]) followed by the acquisition of image volumes in 6 gradient in non-collinear 

directions with a b-value of 1000 [s/mm
2
]. For each b-value and gradient direction, 6 images 

were acquired and magnitude averaging was used to reduce artifacts and to increase signal to 

noise ratio. The total imaging time for the entire DT-MRI sequence is 9 minutes.  

 

Diffusion tensor image data processing and analysis 

 

 Six brain white matter structures were chosen for analysis: anterior-limb of internal 

capsule (ALIC), posterior-limb of internal capsule (PLIC), genu of corpus callosum (GCC), 

splenium of corpus callosum (SCC), base of the pons (PO), and cerebral peduncle (CP). The 

PLIC, PO and CP represent proximal to distal components of the major motor pathway, the 

corticospinal tract. This approach of parallel and perpendicular diffusivity components have been 

used to evaluate myelin loss and axonal injury (Song, 2002; Song, 2003; Budde, 2007). Regions 

of interest (ROI) were manually drawn on directionally color-encoded (DCE) maps at the edge 

of each structure to minimize partial voluming effect (Fig 3). Subsequently, these ROIs were 

automatically copied on the three axial views of main, middle and minor eigenvalues maps 

because approaches that exploit the ADC or FA have not resulted in improved specificity for the 

underlying pathology in WM disorders (Budde, 2007). After identifying the structures, areas of 
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interest were selected over at least 3 adjacent slices and averaged to obtain mean and standard 

deviation (SD) values of all eigenvalues 1 2 and 3. Values of parallel diffusion ( 1 = ), 

radial diffusion (  = ( 2 + 3)/2), ADC and FA were then calculated on each ROI for the 

patients and normal controls and averaged to obtain a mean value for each group.  

 In these selected white matter structures, the diffusion parallel to the neural tracts and the 

mean of the two other eigenvalues that is related to the diffusion perpendicular to the tracts, 

which reflects the water movement across the fibers were recorded. Maps of 1, 2, 3, ADC and 

FA were obtained after tensor diagonalization using DTI studio software (H. Jiang and S. Mori; 

Department of Radiology, Johns Hopkins University, Baltimore, MD) ROI based measurements 

of these were analyzed separately to provide a more direct assessment of the directional diffusion 

changes associated with white matter of PMD patients. Based on previous DT-MRI evidence 

demonstrating that derived parallel and perpendicular diffusivities can detect and separate axonal 

from myelin damage (Song, Sun et al. 2002; Harsan, Poulet et al. 2006; Harsan, Poulet et al. 

2007), we measured separately the three eigenvalues.  

 For the ALIC, PLIC and CP since the side-to-side differences were not significant at p < 

0.05 using a simple Pearson correlation test, the left and right sides were combined.  

 The between-two-groups statistical comparison was carried out separately for each 

structure with a post-hoc repeated measures with multiple analysis of covariance (MANCOVA) 

using age as covariate, and Boneferroni correction. Group differences with p < 0.002 were 

considered significant. Age of the subjects was included as a covariate, because previous studies 

have reported age-related increases in FA and decreases in ADC (Schmithorst, Wilke et al. 2002; 

Snook, Paulson et al. 2005; Bonekamp, Nagae et al. 2007).   
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Results 
 

In this study of twelve patients with genetically confirmed PMD, the quantitative 

difference among the six white matter structures between the two groups (PMD vs. NC subjects) 

validates the supportive and sensitive role of DTI-MRI to probe and characterize the 

microstructural changes that accompany the pathogenic process found in PMD.  Detailed 

measurements of diffusion tensor characteristics demonstrated that the most sensitive parameter 

to measure myelin pathology is radial diffusion and to a much lesser extent axial diffusion (Table 

3; Fig 3.1). The percentage increase (Table 3) demonstrated that the most sensitive DT-MRI 

parameter to measure microstructural abnormalities was the radial diffusion that showed an 

increase in values (  = 76%, 109%, 25%, 43%, 36%, and 17% respectively) and were higher 

than those in the axial direction ( // = 8%, 13%, 8%, 6%, 11%, and 6% respectively). As 

expected from the ROI-based analysis the increase freedom of radial diffusion due to the 

dys/demyelinated axonal fibers was proven to be significantly higher (P=<0.001) in the studied 

white matter structures in PMD. Axial diffusion is the descriptive parameter in describing the 

architectural integrity of CNS tissue, particularly the myelin component which is the most 

discriminating parameter for identifying myelin pathology.  

The magnitude of water axial parallel to the axonal fibers in PMD patients showed a 

relative mild to small significant difference when compared to normal control subjects (Fig 3.1). 

This relatively insignificant change could be accounted for by the influence of the PMD subjects 

who express a milder phenotype. Despite the overall non-significant change in parallel 

diffusivity of water diffusion in the WM structures studied we noticed a significant increase in 

the overall ADC values (Fig 3.2) in the patient group compared to control subjects. This 

observation demonstrates the overwhelming increase of the radial component in water diffusivity 
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and highlights the structural role of the myelin sheath as a sensitive marker to monitor the 

progression of myelin pathology.  

The tissue microstructure and architecture expressed by FA was significantly lower in the 

ALIC, PLIC, GCC and SCC (p < 0.002) (Fig 3.2). Decreased FA was most marked in the SCC 

and mildly significant in the ALIC, GCC and CP of PLP1 null mutations (Fig 3.4). These 

observations suggest that abnormalities lie within the myelin, but do not exclude the proliferative 

influences of the astroglial processes that become activated. Furthermore, the reduction in FA is 

also driven by the significant increase in radial diffusion rather than axial diffusion where mild to 

no significance was observed.  

 

Deletion of the PLP1 gene causes a ‘mild’ form of PMD. 

 

To further examine the overall impact myelin has on the diffusion markers, patients with 

null mutations (Table 3.1) share an increase in radial diffusion (Fig. 3.3) in the studied WM 

structures (  = 33%, 55%, 98%, 207%, 1.8%, and 58% respectively) and were higher than those 

in the axial direction ( // = 11%, .31%, 13%, 20%, -4%, and .68% respectively). This finding 

provides a supportive explanation into the known pathogenesis suggesting that these types of 

mutations which include either a compete deletion of the PLP1 gene or by frameshift mutation 

causing a truncated PLP disrupt the ultrastructural integrity of the myelin sheath. Although 

myelin is relatively spared early in the disease pathogenesis, the ultrastructural abnormalities are 

due to the relaxed diffusional barriers imposed by the adjacent myelin leaflets creating a barrier 

free extracellular space. This „pathologic space‟ resulting in a „radial component‟ allows the 

aqueous fluid to flow where imposed barriers are relaxed and the myelin sheath is unable to 

provide a unidirectional aqueous environment, consistent with compact myelinated fibers.   
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The overall ADC was markedly increased (Fig 3.4) in the ALIC, PLIC, SCC (P=<0.01) 

and is driven by the overwhelming increase in radial diffusion. The reduction in the FA was also 

significant (Fig 3.4) in the ALIC, GCC, SCC and CP (P=<.05).  The relaxed diffusion barriers 

that exist between the adjacent myelin leaflets in null or functionally null mutations may also 

explain the decrease in FA. PMD patients expressing mild mutations expressed little difference 

in FA, indicating that myelin thickness is not a major contributor, but may involve minor 

influences to anisotropy.  

PLP1 missense mutations causes a ‘severe’ form of PMD 

Patients with „severe‟ missense mutations share an increase in radial diffusion in the 

studied WM structures (Table 3.2; Fig 3.6). The percentage increase demonstrates that the most 

sensitive DT-MRI parameter to interpret myelin architecture is radial diffusion, which showed an 

increase in values (  = 35%, 55%, 78%, 139%, 44%, and 74% respectively) and were 

substantially higher than those in the axial direction ( // = 15%, 16%, 25%, 25%, 24%, and 27% 

respectively) (Fig 3.7). As expected from the ROI-based analysis the increase freedom of radial 

diffusion is due to the thinning to absence of myelin and was proven to be significantly higher 

(P=<0.001) in the studied white matter structures in PMD (Fig 3.5; Fig 3.6). Furthermore, 

consistent with the findings of those with a null mutation ADC also increased particularly in the 

ALIC, PLIC, Po (P=<.01) SCC and CP (P=<.05), whereas FA decreased markedly in the ALIC 

(P=<0.01) and more mildly within the PLIC and CP (P=<0.05) (Fig 3.7).   
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Discussion 

A number of neurological disorders involve white matter pathology leading to myelin and 

axonal dysfunction.
 
Determining whether a particular disease is a result from myelin pathology 

alone or involves axonal changes that encompass degeneration and/or spheroid abnormalities 

cannot be depicted from a neurological examination alone. The advent of magnetic resonance 

imaging has become the principle imaging modality in patients with inherited neurodegenerative 

disorders and is instrumental in the identification, localization and characterization of white 

matter abnormalities. A particular MR imaging technique that demonstrates an elevated 

sensitivity towards monitoring the natural progression of various leukodystrophies is DTI. 

Diffusion imaging has been found to be superior to conventional anatomical MRI in 

differentiating dysmyelinating disorders, such as Pelizaeus- Merzbacher disease from 

demyelinating disorders, such as globoid cell leukodystrophy and Alexander‟s disease (Ono, 

Harada et al. 1995; Ono, Harada et al. 1997) and provides a unique insight into tissue structure 

and organization, potentially providing information about the size, orientation and tortuosity of 

both the intra and extracellular spaces. Due to its inherent sensitivity to the disruption of 

microstructural architecture, DTI complements conventional MRI methods in the evaluation, 

progression and monitoring of therapeutic intervention of neurological disorders regardless of 

etiology.  

The present DTI investigation is the first in-vivo study, to our knowledge performed on 

twelve PMD subjects that have PLP1 mutations ranging in clinical severity, providing a direct 

characterization and assessment of myelin loss of brain white matter tracts. The cylindrical 

packed axons and associated myelin affects diffusion anisotropy of water molecules; therefore, 

we monitored its effect on brain axons using DTI to correlate the complexity of the effects of 
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structural modifications in the white matter that cannot be obtained from conventional 

relaxation-based T1-weighted, T2-weighted or FLAIR MRI. Our study examined the DTI 

sensitive markers // and , as well as ADC and FA parameters to assess the integrity of white 

matter in this patient population. 

In the developing brain, water molecules in the cerebral cortex move more radially than 

horizontally (McKinstry, Mathur et al. 2002). This anisotropy disappears with maturation and 

increases as the axons myelinate. Measurements assessing the radial component of ADC are 

instrumental in assessing normal brain maturation and the early manifestations if an inborn error 

is disrupting the normal pattern of myelination. Our analysis revealed findings that involved a 

significant increase in water diffusivity perpendicular to the axon of six selected white matter 

structures (ALIC, PLIC, CP, GSS, SCC, and Po) as measured by ( ). This result yielded a 

significant increase in the overall mean diffusivity quantified by ADC along with a significant 

decrease in the fractional anisotropy expressed by FA index.  The radial diffusion index in this 

study corroborates with previous reported literature exhibiting the inverse correlation with the 

amount of CNS myelin (Song, Sun et al. 2002; Song, Sun et al. 2003; Song, Yoshino et al. 2005; 

Harsan, Poulet et al. 2006). Our results of increased  in PLIC (43%), ALIC (25%), CP (36%), 

GCC (76%), SCC (109%) and Po (17%), are in agreement with the increased  observed in 

other white-matter diseases such as the early phase of MS (Henry, Oh et al. 2003), white-matter 

lesions (Budde, Kim et al. 2007), dysmyelinated animals (Song, Sun et al. 2002; Harsan, Poulet 

et al. 2006), and ex vivo study on demyelinated cuprizone-treated mice (Song, Yoshino et al. 

2005).   
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Perpendicular (radial) diffusivity 

Reduction of radial diffusivity during maturation is suggested to be attributed to 

myelination as this modulates the diffusion anisotropy originating from cell membranes by 

creating an additional barrier (Beaulieu 2002). Furthermore, the lack/disruption of myelin sheath 

has been found to increase radial diffusivity without affecting axial diffusivity. These findings, 

along with the histological observation of continuing white matter myelination into adulthood 

support the fact that decrease in radial diffusivity reflects the myelination process (Bonekamp, 

Nagae et al. 2007). 

Radial diffusion contributes to two-thirds of the overall ADC value, and the remaining 

1/3 is attributed to the parallel diffusion. Although there was a relatively small increase in 

parallel diffusion in the white matter structures analyzed a significantly higher mean diffusion 

(ADC) values in these structure was observed and this is a consistent finding within across the 

PLP1 mutation subtypes. This means that despite a reduction of  by a factor of two-thirds, the 

overall diffusion increased significantly, suggesting the severe dysmyelinated white matter in 

PMD overcomes the small change observed in parallel diffusion. Radial diffusion increased in 

patients with deletion of the PLP1 gene due to the relaxed barriers. Studies involving PLP1 null 

mice and the addition of ferricyanide (FCN), an aqueous extracellular tracer demonstrated that in 

thick myelin sheath, FCN filled the interlammelar spaces irregularly, whereas the thinly 

myelinated fibers the inter-lamellar spaces are filled across the full length of the sheaths, with no 

FCN present in normal myelin (Rosenbluth, Nave et al. 2006). The results of this study 

demonstrating the tendency of the extracellular fluid to leak into the interlammellar space 

demonstrating the existence of a “radial component” to myelin in the rodent model expressing 

the null syndrome.  
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Of the white matter structures studied, the genu and splenium of the corpus callosum 

which serves as the major conduit of the white matter connecting the homologous cortical areas 

exhibited an even greater increase in radial diffusivity compared to the other significant white 

matter structures. Our study shows radial diffusion to be mildly reduced in patients with PLP1 

null mutations, but still overwhelmingly significant compared to PLP1 missense mutations. This 

finding may indicate that PLP null mutations retained an appreciable amount of myelin forming 

a resistant barrier to the properties of radial diffusivity, whereas the marked loss to complete 

absence of myelin PLP1 missense mutations allows the water molecules to cross the fibers 

perpendicularly with more freedom, resulting in an increase in  values.  

Modifications of the intracellular or extracellular spaces, as well as the abnormalities 

contributed by astrocytic activation and may influence the radial component of water diffusivity. 

The increase in radial diffusivity in the white matter and cerebellum in experimentally 

demyelinated mice and in MS supports the correlation of  with of myelin pathology 

(Ciccarelli, Werring et al. 2001; Filippi, Cercignani et al. 2001; Cassol, Ranjeva et al. 2004). 

 

Parallel (axial) diffusivity 

 

Our study showed a mild increase in parallel diffusion ( ). The destruction of 

neurofibrils has been found to increase parallel diffusivity (Kinoshita, Ohnishi et al. 1999). Other 

factors which have been proposed to affect parallel diffusivity include fiber coherence (Dubois, 

Dehaene-Lambertz et al. 2008), and axonal injury, which in animal studies is associated with 

reduction in axial diffusivity(Kim, Budde et al. 2006). Therefore, it is likely that changes in axial 

diffusivity reflect complex interactions of multiple biological factors that drive it in different 

directions. 
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The increase in parallel diffusivity was observed in the ALIC, GCC, SCC in patients with 

deletion of the PLP1 gene and the ALIC, PLIC, GCC and CP in severe mutations and maybe 

related in principal to the relaxed diffusion barriers imposed by PLP and the dysmyelinating 

pattern that is found in connatal PMD due to PLP1 missense mutations. The thinning to absence 

of myelin modeled in connatal PMD most likely involves the progressive axonal pathology that 

contributes to the neurological severity in PMD (Fig 3.5).  These findings also are consistent 

with the results of (Harsan, Poulet et al. 2007), showing an increase in parallel diffusion in the 

corpus callosum and anterior commissure in the white matter in jimpy mice brains compared to 

dysmyelinated oligo-TTK transgenic mice. These findings and those of this study reflect the 

contribution of astrocytic hypertrophy to the elevation of these diffusion coefficients.  Axon 

fibers are relatively preserved during the initial phases of the pathogenesis for patients with 

classical and connatal forms of PMD, but will eventually undergo late-onset changes similar to 

patients that lack PLP1 as oppose to those that lack a functional PLP1. The majority of the PMD 

population accounting for the „mild‟ classical form and „severe‟ connatal form in that order, the 

complex structural three-dimensional cytoskeleton make-up of axons is intact and composed of 

longitudinal arrays of oriented neurofibrils (i.e. microtubules and neurofilaments) that 

presumably account for the anisotropic diffusion and presents a sufficient barrier to hinder the 

radial component of water diffusion. It should not go without mention that the late-onset axonal 

pathology is evident in duplications and point mutations and would intrinsically impose stress 

and disrupt the arrays of neurofibrils.  In cases that involve patients with deletion of the PLP1 

gene, axonal pathology has been reported in patients and rodent models exhibiting focal axonal 

swellings causing impairment of the anterograde and retrograde transport mechanisms (Griffiths 

1998; Garbern, Griffiths et al. 2000; Garbern 2005) and may influence the parallel coefficient by 
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decreasing the flow of water due to an increase in the intra-axonal hindrance imposed by the 

enrichment of neurofilaments in swellings, accumulation of dense bodies, multivesicular bodies 

and mitochondria (Bjartmar, Yin et al. 1999).  

The respective contribution of the extracellular and intracellular compartments to the 

measured ADC remains unclear.  The cylindrical and parallel organization of the fibers explains 

the presence of anisotropy prior to myelination, but to a lesser degree following myelination.  

The diffusion coefficients have been shown to be influenced by several factors including the 

axonal morphology (Brady, Witt et al. 1999; Harsan, Poulet et al. 2006), myelin integrity (Song, 

Yoshino et al. 2005) as well as intra-axonal composition (Harsan, Poulet et al. 2006). An 

amplification of parallel diffusion coefficients was found in Jimpy mice brain and are thought to 

be contributed by hypertrophic astrocytes, because cytoplasm extensions of astrocytes follow the 

axonal pathway longitudinally (Skoff 1976), and also in axonal injury and normal appearing 

white matter of experimental autoimmune encephalomyelitis animal model (Budde, Kim et al. 

2007).  

 

Fractional Anisotropy 

 

Most patients with PMD lack signs of primary axonal changes, but axonal injury is a 

characteristic feature in a small number of cases and is suggestive to be specific to the nature of 

the PLP1 gene mutation. Axonal pathology has been demonstrated to exist in a length-dependent 

and late-onset pattern in PMD patients and animal models exhibiting the null mutation. The 

severity of axonal injury increases with disease progression contributing to the decline in 

neurological ability in PMD (Garbern, Cambi et al. 1999).  Our DTI results indicate that changes 

in axonal integrity are reflected by the decreased FA and are likely to be replaced by large 
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structures with a higher degree of isotropism, which may either be axonal spheroids or 

edematous spaces.   

Prior to myelination, cerebral white matter development consistently demonstrates an 

increase in isotropy followed by an increase in the degree of anisotropy with white matter 

maturation as seen in neonates and infants. The diffusion changes are tightly linked to the degree 

of cohesiveness and cylindrical packing of axonal fibers and reduced extra-axonal space, due to 

the natural thickness of myelin as the white matter matures over time.  In white matter, any 

change in tissue orientation patterns inside the MRI voxel will result in a change in degree of 

anisotropy (Le Bihan, Mangin et al. 2001). The FA estimated by the DT-MRI method provides 

information about the arrangement of local tissue cytoarchitecture. The ability to evaluate the 

separate contribution of the directional diffusivities to the assessed anisotropy gives information 

about the factors that contribute to the abnormal fiber development or myelination abnormalities.   

Furthermore, the decrease in FA reflects the nature of an intact CNS from a microstructural view 

that describes the health and viability of the cytoarchitecture.   

Our study found a disruption in WM microstructural organization as reflected by the 

lower FA index (Table 3) in the anterior limb internal capsule (-14%), posterior limb internal 

capsule (-19%), pons (-13%), cerebral peduncle (-16%), genu (-26%) and splenium (-32%) of 

corpus callosum in the PMD group when compared to the healthy control group (Table 3). The 

low FA observed in the white matter and cerebellum in dysmyelinated mice confirms the FA 

sensitivity of myelin pathology (Filippi, Cercignani et al. 2001; Ciccarelli, Werring et al. 2003; 

Cassol, Ranjeva et al. 2004).  Detectable changes in FA of these structures indicate a disturbance 

of developing fibers that project through these white matter areas (Huppi 2001; Drobyshevsky, 

Song et al. 2005). The amplified decrease in FA may arise from the severe astrocyte hypertrophy 
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detected in the brains of PMD patients. Astrocyte hypertrophy and oligodendrocyte death 

accompanying the myelin deficit was shown to play a role in the amplification of water diffusion 

coefficients in jimpy brains because cytoplasm extensions of astrocytes follow the axonal 

pathway longitudinally (Skoff 1976). The degree of anisotropy that has been reported in previous 

literature has shown how FA progressively increases with remyelinatioin after experimental 

demyelination (Harsan, Poulet et al. 2006) and in remyelinated MS lesions (Tievsky, Ptak et al. 

1999). 

 

Conclusion 

 

Inherited leukodystrophies represent a heterogeneous group of disease with a wide 

spectrum of distinctive causes and the underlying genetic involvement is not fully understood 

due to the variable phenotypic expression that one gene may express. Together, this adds a 

considerable challenge in the diagnosis of leukodystrophies and is associated with substantial 

morbidity and mortality in children. Significant advances and the understanding of inherited 

leukodystrophies such as PMD have propelled the importance of neuroimaging techniques in 

monitoring disease progression. The role of neuroimaging modalities in probing into the 

microstructural substrate is not limited to DTI-MR alone, but also includes MRS which is 

instrumental in deciphering the biochemical composition of the tissue. Neuroimaging 

applications complement each other by highlighting the direct insight into the physical properties 

and architectural organization of the CNS tissue. Diffusion imaging can make reasonable 

assessments into the integrity of white matter connectivity and the associated pathological 

conditions that perturb the higher organization of the CNS by monitoring the changes in 

diffusion of water over the course of disease progression.  
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Diffusion tensor imaging is particular adapted for analyzing white matter structures and 

changes in water content associated with maturation or perturbed maturation as evident in 

leukodystrophies. In the severe „connatal‟ form of PMD, the maturation process is perturbed as a 

result of cytotoxic insults of misfolded PLP causing premature cell death of oligodendrocytes 

resulting in their inability to myelinate axons. Our results provide supporting evidence that axon 

fibers lack or have a thin layer of myelin creating a barrier free environment amplifying the 

diffusion in a radial direction, due to a reduction in myelinating cells. In the mild form of PMD, 

null mutations demonstrated a similar result, concluding that abnormalities involve the myelin 

sheath, but the pathologic disturbances are found between the myelin leaflets marked by 

increased distance between intraperiod lines that should be adhered together forming compact 

myelin by PLP. This interlamellar space created as a result of a lack of PLP enables diffusion to 

proceed in a radial direction.  

Although elevated, axial diffusion was not a diffusion parameter that provided direct 

insight into a particular subtype of pathology, but it did exhibit a strong correlation with the 

observed astrogliosis and the enlarged extracellular space as a result of hypomyelination 

(reviewed in Chapter 4). The results also provide concluding evidence that the density of axon 

fibers is reduced resulting, thus amplifying axial diffusivity. 

The decrease in FA which is a measure of white matter organization that commonly asses 

the connectivity of the rich fiber bundles in PMD among other forms of leukodystrophies 

demonstrated that the fibers were disintegrated. The results obtained from all the white matter 

structures analyzed excluding the Pons demonstrated the accuracy of FA as a measure of the 

multidimensional diffusion profile, but the regions of complex fiber-crossing may have a lower 

FA than those areas of a predominant unidirectional white matter structure as in the corpus 
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callosum. With this knowledge, interpretation must be carefully analyzed to reflect the complex 

nature of the white matter structure of interest.         

The interpretation of DTI must incorporate the specific PLP1 genetic mutation, which is 

a definitive component that alters the pathologic characterization of the individual PMD 

subtypes. Early detection of subtle changes in brain microstructure and the accurate assessment 

of dys/demyelination of the CNS tissue using DTI have an important contribution towards the 

diagnosis, monitoring and therapeutic treatment of PMD.  
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mm
2
/s] mm

2
/s] mm

2
/s]

ADC 

mm
2
/s] 

FA 

GCC  

C 1.533 ± 0.153  0.482 ± 0.110 0.260 ± 0.062 0.758 ± 0.077 0.722 ± 0.060 

P 1.616 ± 0.157  0.754 ±0.215  0.550 ± 0.150  0.974 ± 0.150  0.533 ± 0.111  

SCC  

C 1.533 ± 0.178  0.450 ± 0.132  0.258 ± 0.080 0.747 ± 0.110 0.738 ± 0.052  

P 1.713 ± 0.226  0.836 ± 0.264 0.630 ± 0.244 1.059 ± 0.206 0.495 ± 0.149  

ALIC  

C 1.072 ± 0.078  0.531 ± 0.062 0.330 ± 0.061 0.644 ± 0.055 0.608 ± 0.073 

P 1.166 ± 0.073  0.644 ± 0.062 0.460 ± 0.081 0.757 ± 0.058 0.514 ± 0.078 

PLI  

C 1.156 ± 0.128 0.436 ± 0.098 0.227 ± 0.075 0.607 ± 0.068 0.770 ± 0.145 

P 1.241 ± 0.123  0.617 ± 0.053 0.416 ± 0.096 0.758 ± 0.070 0.588 ± 0.086 

Po  

C 1.008 ± 0.060  0.620 ± 0.063 0.332 ± 0.088 0.653 ± 0.057 0.481 ± 0.078 

P 1.079 ± 0.132  0.712 ± 0.102 0.441 ± 0.112 0.744 ± 0.107 0.410 ± 0.072 

CP      

C 1.246 ± 0.104  0.594 ± 0.074 0.394 ± 0.074 0394 ± 0.081 0.745 ± 0.061 

P 1.377 ± 0.140  0.794 ± 0.183 0.547 ± 0.180 0.906 ± 0.158 0.502 ± 0.118 

 ADC FA 

 % P % P % P % P 

ALIC 8 0.004 25 <0.001 16 <0.001 -14 0.001 

PLIC 6 0.10 43 <0.001 20 <0.001 -19 <0.001 

GCC 8 0.04 76 <0.001 30 <0.001 -26 <0.001 

SCC 13 0.01 109 <0.001 43 <0.001 -32 <0.001 

Po 6 0.14 17 0.01 11 0.02 -13 0.03 

CP 11 0.01 36 0.001 22 0.001 -16 0.01 

 

 

 

 

 

 

 

  

Table 3. The top panel, represent the mean and standard deviation (SD) values of all 

eigenvalues 1 2 and 3. Values of parallel diffusion ( 1 = ), radial diffusion (  = ( 2 + 

3)/2), ADC and FA were then calculated on each ROI for the patients and normal controls 

The bottom panel, exhibits the percentage change and P-value between the patients and 

normal control for each of the selected white matter ROI.  Anterior limb of the internal 

capsule (ALIC), Posterior limb of the internal capsule (PLIC), Genu of corpus callosum 

(GCC), Splenium of corpus callosum  (SCC), Pons (Po), Cerebral peduncles (CP). 
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Figure 3.1 Left: Perpendicular (radial) diffusion 10

-3
mm

2
/s. The patients demonstrate a 

significant increase (<0.05) compared to the normal control subjects.  Right: Parallel 

(axial) diffusion 10
-3

mm
2
/s. Parallel diffusion exhibited a mild increase compared to 

normal controls subjects.  
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Figure 3.2 Left: Fractional aniostropy 10
-3

mm
2
/s. The patients demonstrate a significant 

decrease (<0.05) compared to the normal control subjects.  Right: Apparent diffusion 

coefficient 10
-3

mm
2
/s.  
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mm
2
/s] mm

2
/s] mm

2
/s]

ADC 

mm
2
/s] 

FA 

ALIC  

C 1.035 ± 0.083 0.513 ± 0.120 0.339 ± 0.124 0.629 ± 0.102 0.604 ± 0.141 

P 1.147± 0.061 0.664 ± 0.020 0.503 ± 0.043 0.772 ± 0.08 0.467 ± 0.018 

PLIC  

C 1.170 ± 0.100 0.367 ± 0.144 0.212 ± 0.130 0.583 ± 0.124 0.853 ± 0.153 

P 1.173± 0.081 0.628 ± 0.051 0.449 ± 0.049 0.750 ± 0.032 0.531 ± 0.085 

GCC  

C 1.578 ± 0.180 0.458 ± 0.063 0.249 ± 0.053 0.762 ± 0.033 0.739 ± 0.066 

P 1.508± 0.034 0.779 ± 0.099 0.563 ± 0.079 0.950 ± 0.056 0.481 ± 0.069 

SCC  

C 1.494 ± 0.085 0.369 ± 0.036 0.280 ± 0.120 0.714 ± 0.053 0.749 ± 0.061 

p 1.703 ± 0.070 0.968 ± 0.216 0.763 ± 0.221 1.145± 0.164 0.415  ±0.131 

Po  

C 0.981 ± 0.051 0.615 ± 0.103 0.369 ± 0.158 0.655 ± 0.095 0.447 ± 0.143 

P 1.037 ± 0.052 0.680 ± 0.040 0.433 ± 0.033 0.717 ± 0.036 0.400 ± 0.026 

CP  

C 1.250 ± 0.064 0.584 ± 0.116 0.401 ± 0.118 0.745 ± 0.061 0.627 ± 0.159 

P 1.282± 0.061 0.761 ± 0.053 0.542 ± 0.074 0.862 ± 0.057 0.466 ± 0.043 

 ADC FA 

 % P % P % P % P 

ALIC 11 <0.01 33 <0.001 22 <0.001 -16 0.04 

PLIC .31 0.9 55 0.01 21 <0.01 -28 0.1 

GCC 13 0.04 98 0.04 35 0.04 -35 0.04 

SCC 20 0.01 207 <0.01 77 <0.01 -53 <0.01 

Po -4 0.6 1.8 0.8 -1.1 0.8 -10 0.2 

CP .68 0.9 58 0.01 -22 0.01 -31 0.01 

Table 3.1: Null mutations. The top panel, represent the mean and standard deviation (SD) 

values of all eigenvalues 1 2 and 3. Values of parallel diffusion ( 1 = ), radial diffusion 

(  = ( 2 + 3)/2), ADC and FA were then calculated on each ROI for the patients and 

normal controls The bottom panel, exhibits the percentage change and P-value between the 

patients and normal control for each of the selected white matter ROI.  Anterior limb of the 

internal capsule (ALIC), Posterior limb of the internal capsule (PLIC), Genu of corpus 

callosum (GCC), Splenium of corpus callosum  (SCC), Pons (Po), Cerebral peduncles (CP). 
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Figure 3.3: Null mutations. Left: Parallel (axial) diffusion 10
-3

mm
2
/s. Parallel diffusion 

exhibited a mild increase (ALIC, GCC, SCC) and decrease (Po) compared to normal 

controls subjects. This finding may suggest the role of axonal pathology, particularly the 

presence of axonal swellings providing a diffusion barrier. Right: Perpendicular (radial) 

diffusion 10
-3

mm
2
/s is significantly increased (<0.05) excluding the Pons.  
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Figure 3.4: Null mutations. Left: Fractional Anisotropy (FA) 10
-3

mm
2
/s exhibited an 

increase compared to normal controls subjects. This finding supports the disruption of 

the cytoarchitecture and arrangement of fiber Right: Apparent diffusion coefficient 

(ADC) 10
-3

mm
2
/s. The patients demonstrate a significant increase (<0.05) compared to 

the normal control subjects.   
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Figure 3.5 Axial FA diffusion maps of PMD patients with „severe‟ PLP1 mutations. (a) 2 

year 1 month-old patient with a Y206H mutation and a FDS (30). (b) 3 year 7 month-old 

patient with a L84R mutation and a FDS (10). (c) 3 year 7 month-old patient with a L80R 

mutation and a FDS (4).  The FA maps in these three cases exhibit a high degree of 

anisotropy diffusion (a) as expressed by the hyperintense areas in the white matter of the 

corpus callosum, although a significant reduction in the thickness of the white matter 

fiber bundle was observed and paralleled the regression in FDS. The posterior and 

anterior limb of the internal capsule in case (b) and moderately in case (c) demonstrates a 

low signal intensity reflecting areas of isotropic diffusion. The reduction in FA is most 

likely related to disintegration of fibers, but a significant increase in water content 

(edema) without any effect on the fibers themselves can give the same FA reading.           
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mm
2
/s] mm

2
/s] mm

2
/s]

ADC 

mm
2
/s] 

FA 

ALIC  

C 1.032 ± 0.034 0.536 ± 0.020 0.359 ± 0.019 0.642 ± 0.018 0.564 ± 0.032 

P 1.192± 0.084 0.693 ± 0.023 0.519 ± 0.028 0.801 ± 0.030 0.467 ± 0.047 

PLIC  

C 1.186 ± 0.047 0.440 ± 0.009 0.279± 0.022 0.635 ± 0.017 0.759 ± 0.027 

P 1.379± 0.057 0.640 ± 0.062 0.475 ± 0.068 0.832 ± 0.056 0.614 ± 0.058 

GCC  

C 1.462 ± 0.036 0.481 ± 0.008 0.298 ± 0.010 0.747 ± 0.014 0.692 ± 0.011 

P 1.802± 0.062 0.740 ± 0.379 0.647 ± 0.267 1.063 ± 0.212 0.556 ± 0.187 

SCC  

C 1.448 ± 0.081 0.423 ± 0.061 0.248 ± 0.062 0.706 ± 0.031 0.734 ± 0.040 

p 1.822 ± 0.185 0.873 ± 0.327 0.731 ± 0.210 1.142± 0.127 0.487  ±0.184 

Po  

C 0.980 ± 0.020 0.617 ± 0.023 0.373 ± 0.053 0.657 ± 0.028 0.436 ± 0.037 

P 1.214 ± 0.175 0.844 ± 0.063 0.584 ± 0.031 0.880 ± 0.071 0.339 ± 0.070 

CP  

C 1.188 ± 0.054 0.600 ± 0.033 0.402 ± 0.034 0.730 ± 0.034 0.582 ± 0.033 

P 1.513± 0.095 0.993 ± 0.226 0.750 ± 0.187 1.085 ± 0.162 0.390 ± 0.122 

 ADC FA 

 % P % P % P % P 

ALIC 15 0.01 35 <0.001 25 <0.01 -17 <0.01 

PLIC 16 <0.001 55 <0.01 31 <0.01 -19 0.02 

GCC 25 <0.01 78 0.2 42 0.05 -19 0.3 

SCC 25 0.02 139 0.03 62 <0.01 -34 0.08 

Po 24 0.1 44 <0.001 34 <0.01 -22 0.1 

CP 27 0.02 74 0.02 48 0.02 -39 0.02 

 

  

Table 3.2: Severe mutations. The top panel, represent the mean and standard deviation (SD) 

values of all eigenvalues 1 2 and 3. Values of parallel diffusion ( 1 = ), radial diffusion 

(  = ( 2 + 3)/2), ADC and FA were then calculated on each ROI for the patients and normal 

controls The bottom panel, exhibits the percentage change and P-value between the patients 

and normal control for each of the selected white matter ROI.  Anterior limb of the internal 

capsule (ALIC), Posterior limb of the internal capsule (PLIC), Genu of corpus callosum 

(GCC), Splenium of corpus callosum  (SCC), Pons (Po), Cerebral peduncles (CP). 
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Figure 3.6: Severe mutations. Left: Parallel (axial) diffusion 10

-3
mm

2
/s. Parallel diffusion 

exhibited a mild increase (ALIC, GCC, SCC) and decrease (Po) compared to normal control 

subjects. This finding may suggest the role of axonal pathology, particularly the presence of 

axonal swellings providing a diffusion barrier. Right: Perpendicular (radial) diffusion 10
-

3
mm

2
/s is significantly increased (<0.05) excluding the Pons.  
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Figure 3.7: Severe mutations. Left: Fractional anisotropy 10
-3

mm
2
/s. FA, exhibited a 

mild increase (ALIC, GCC, SCC) and decrease (Po) compared to normal controls 

subjects. This finding may suggest the role of axonal pathology, particularly the presence 

of axonal swellings providing a diffusion barrier. Right: Apparent diffusion coefficient 

10
-3

mm
2
/s is significantly increased (<0.05) excluding the Pons.  
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CHAPTER 4 

 

NEUROPATHOLOGY INVESTIGATION IN PELIZAEUS-

MERZBACHER DISEASE IN VARIOUS MUTATIONS OF THE 

PLP1 GENE 

In 1885, Friedrich Pelizaeus first identified a genetic disorder causing spasticity and 

developmental delay (Pelizaeus 1885). Twenty-five years later in 1910, Ludwig Merzbacher 

further described the neuropathology of 12 affected individuals related to the proband 

(Merzbacher 1910). Together, Pelizaeus and Merzbacher identified the X-linked inheritance, the 

neonatal features, and the hypomyelination of the central nervous system that characterize the 

disease.  

Pelizaeus-Merzbacher disease (PMD; MIM 312080) is classified as a dysmyelinating 

disorder, in which normal myelination never occurs, as opposed to a demyelinating disorders that 

often are the basis of other forms of leukodystrophies, in which normal myelin is later destroyed. 

Over the years, comprehensive surveys of PMD and autopsy reports have provided valuable 

insights into the clinic-neuropathologic understandings that have led to a distinct classification 

(classical, connatal, transitional and variants) of PMD that is dependent upon the mutation in the 

PLP1 gene (Seitelberger 1954; Zeman, DeMyer et al. 1964; Seitelberger 1970; Seitelberger 

1995). At the present time, although valuable contributions have been made in describing the 

neuropathologic pattern and pathogenic mechanisms underlying the distinct PMD classification, 

nosological problems regarding PMD still remain. To minimize the problems and to continue 

moving forward with a greater understanding of the heterogeneity pattern of the PMD, the best 

diagnosis is accomplished by neuropathologic findings at autopsy in addition to a comprehensive 
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genetic analysis. As described by (Seitelberger 1984), leukodystrophies are caused by different 

morphological changes of the CNS. The pathological changes observed in PMD, consists of a 

diffuse reduction and alteration of CNS myelin. The extent of myelin deficiency differs among 

the individual subtypes or classifications highlighting the unknown influence imposed by diverse 

mutational mechanisms of PLP.  PMD is the most striking of the leukodystrophies particularly at 

early ages showing the reduction of developing myelin that is characteristic of  dysmyelinating 

disorders.   

The different PLP1 mutational mechanisms have different effects on oligodendrocyte 

viability causing the reduction and alteration to CNS myelin. The understanding of the exact 

mutational mechanism that is responsible for causing the underlying pathology of each PMD 

subtypes is evolving, but a full understanding still remains. PLP1 duplications result in 

overexpression of PLP1 and the excess protein and its assembled associates, cholesterol and 

lipids, accumulate in late endosomes and lysosomes reducing the viability of oligodendrocytes 

effecting myelination (Woodward and Malcolm 2001; Simons, Kramer et al. 2002). PLP1 point 

mutations are associated with the severe form of PMD that causes misfolding of PLP resulting in 

the failure to transport functional PLP to the oligodendrocyte cell membrane. The misfolded PLP 

accumulates in the rough endoplasmic reticulum (RER), and activates an unfolded protein 

response (UPR) which modulates the disease severity and includes the transcriptional activation 

of chaperone genes and apoptosis (Gow, Friedrich et al. 1994; Gow, Friedrich et al. 1994; Gow, 

Southwood et al. 2002). The ER stress is considered fatal for oligodendrocytes causing 

premature cell death exerting a downstream „severe‟ effect on the ability to myelinate internodal 

axonal segments (Gow and Lazzarini 1996).  PLP1 null mutations are a complete opposite to 

PLP1 duplications and many missense mutations, in which myelination proceeds as normal, 
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oligodendrocytes are preserved forming relatively normal amounts of myelin. Patients with a 

null mutation experience a relatively mild clinical phenotype during childhood that is classified 

as mild PMD or complicated SPG2 (Raskind, Williams et al. 1991; Garbern, Cambi et al. 1997; 

Inoue 2004). Mice with a functionally null PLP1 gene have functionally normal 

oligodendrocytes that develop and assemble relatively normal thick myelin, however  a late and 

rapid progression characterized by length-dependent axonal degeneration of motor and sensory 

tracts along with axonal spheroids are likely responsible for the rapid decline. Although the 

underlying mechanisms, as previously mentioned, are not fully understood,  evidence does 

support the structural role of PLP in maintaining axonal integrity and compaction of the adjacent 

myelin leaflets. Absence of PLP paradoxically does not affect myelination. The variability in 

disease severity is most likely the result of the difference in PLP processing, trafficking of 

mutant PLP and gain-of-function mechanisms. Examining the neuropathology in conjunction 

with the clinical history and genetic analysis will provide the infrastructure for piecing together 

the pathogenesis that is characteristic of a heterogeneous disease such as PMD.     

This chapter will focus on results obtained from brain autopsy cases of 4 male PMD 

patients with confirmed PLP1 mutations that include: (1) duplication (overexpression), (2) Null 

(complete deletion), (3) W144X (PLP-specific domain; mild clinical phenotype), (4) 

IVS6+3G>T (severe clinical phenotype).  

Material and Methods  

Case reports 

PLP1 duplication case  

Case 1 is from a family previously described clinically, and died at 47 years of age, 

respectively. He had classical PMD syndrome with understandable but dysarthric speech, spastic 
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quadriparaesis and never ambulated independently. Voluntary movements were slow with 

rigidity compromised by severe spasticity.   

PLP1 null mutation 

Case 2 had a complete deletion of the PLP1 gene and flanking genes on the X-

chromosome as described in (Raskind, Williams et al. 1991). He was wheelchair confined from 

late adolescence and developed progressive spasticity and dysarthria. He had severe spastic 

quadriplegia during the last 5 years of life and lost speech 2 years before be expired at age 47 

from aspiration pneumonia.  

PLP1 point mutations 

Case 3 was 50 years old male, respectively with a W144X mutation who had been 

previously been described (Osaka, Kawanishi et al. 1995) and is considered to have mild PMD 

or SPG2. This mutation resides in the later part of exon 3 (exon 3b), an internal splice donor site, 

which is alternatively spliced out of DM20 (Nave, Lai et al. 1987). 

Case 4 was a 25 year old male, respectively, who subsequently was discovered to have a 

PLP1 point mutation that disrupts splicing, causing in-frame exon 6 skipping, with loss of 22 

residues (Southwood, Garbern et al. 2002). 

 

Pathological analysis 

 

Histological staining and immunohistochemistry 

Corpus callosum (CC) tissue was extracted from each of the 4 male PMD patients brain 

tissue and a male control patients and tissue sections were embedded in paraffin blocks and the 

remaining tissue was stored in 4% fresh paraformaldehyde solution.  The paraffin-embedded 

tissue was sectioned at 4µ stainined with routine hematoxylin-eosin (H&E), Luxol-fast blue 

(LFB), Bielschowsky silver stain and glial fibrillary acidic protein (GFAP) 
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immunocytochemistry.  Tissue was also prepared for 1µ semi-thin sections for toludine blue 

staining (TB).  Immunocytochemistry was performed using immunoperoxidase staining 

techniques to detect myelin basic protein (MBP), proteolipid protein (PLP-AA3), GFAP, and 

non-phosphorylated neurofilament (NF-SM32).  

 

Immunoperoxidase staining 

The paraffin-embedded tissue was cut into 5µm thick sections and mounted on (+) 

charged slides and dried for 1hr at 60°C. The tissue was deparaffinized with Xylene (3 changes) 

and rehydrated through a series of graded ethanol (100, 95, 70 and 50%) to distilled water. The 

tissue was blocked with endogenous peroxidase activity with 3% H2O2 for 5 minutes at room 

temperature. Epitope antigen retrieval was required, so the tissue was treated with 0.1M citrate 

buffer and cooked in the microwave for 10 minutes on high power than cooled to room 

temperature for approximately 20 minutes. The tissue was rinsed briefly in distilled water then 

blocked with non-specific antibody binding by incubating in 5% serum/0.5% BSA in 1X PBS 

[(Goat for monoclonal GFAP and MBP and Horse for polyclonals PLP and NF]. The primary 

antibody [(PLP 1:200), (SMI32-NF 1:1000), (MBP 1:500) and (GFAP 1:1000)] was diluted to 

the optimal concentration in 1X PBS and incubated overnight at 4°C. The tissue was washed (3 

changes) over 5 minutes with distilled water.  Biotinylated secondary antibody (Vector Labs) 

was diluted in 1X PBS and applied [(1:200 for GFAP and SMI32-NF( Mouse)] and [(1:500 for 

MBP and PLP (Rat)]. Applied 500µl of AEC substrate (Vector labs) was applied and tissue was 

incubated for 30 minutes or until the tissue turned red which occurred at times after 15 minutes. 

The tissue was washed in distilled water (3 changes) and then counterstained in Mayer‟s 

Hematoxylin for 1 minute and washed in tap water. The tissue was then rinsed once in 0.2% 
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100% NH4OH and then briefly in tap water. The tissue was then coverslipped using a water-

based mounting media.    

 

Immunohistochemistry – Monoclonal Rat anti-AA3/PLP  

Specimens were fixed in 10% Neutral Buffered Formalin followed by processing, 

embedding in paraffin and sectioned on a rotary microtome at 5  thickness.  Sections were 

placed on slides coated with 2% 3-Aminopropyltriethoxysilane and dried at 56 C overnight.  The 

slides were subsequently deparaffinized in Xylene and hydrated through descending grades of 

ethyl alcohol to distilled water.  Slides were placed in Tris Buffered Saline pH 7.4 (Scytek Labs 

– Logan, UT) for 5 minutes for pH adjustment.  Epitope retrieval was performed using Citrate 

Plus Retrieval Solution pH 6.0 (Scytek) in a vegetable steamer for 30 minutes followed by a 10 

minute countertop incubation and rinsed in several changes of distilled water. Endogenous 

Peroxidase was blocked utilizing 3% Hydrogen Peroxide / Methanol bath for 30 minutes 

followed by running tap and distilled water rinses.  Following pretreatment, standard avidin-

biotin complex staining steps were performed at room temperature.  All staining steps were 

followed by rinses in Tris Buffered Saline + Tween 20 (Scytek).  After blocking for non specific 

protein with Normal Goat Serum (Vector Labs – Burlingame, CA) for 30 minutes; sections were 

incubated with Avidin / Biotin blocking system for 15 minutes each (Avidin D – Vector Labs / 

d-Biotin – St. Louis, MO).  Primary antibody slides were incubated for 60 minutes with the 

Monoclonal Rat anti-AA3/PLP diluted at 1:200 in Normal Antibody Diluent (NAD) (Scytek). 

Tissue was incubated in biotinylated Goat anti-Rat IgG (H + L) prepared at 11.0 g/ml in NAD 

incubated for 30 minutes; followed by R.T.U. Vectastain Elite ABC Reagent incubation for 30 

minutes.  Reaction development utilized Vector Nova Red peroxidase chromogen incubation of 

15 minutes followed by counterstain in Gill Hematoxylin (Thermo Fisher – Kalamazoo, MI) for 
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15 seconds, differentiation, and dehydration, clearing and mounting with synthetic mounting 

media. 

 

Immunohistochemistry – Polyclonal Rabbit anti-Glial Fibrillary Acidic Protein (GFAP) 

Specimens were fixed in 10% Neutral Buffered Formalin followed by processing, embedding in 

paraffin and sectioned on a rotary microtome at 4  thickness.  Sections were placed on slides 

coated with 2% 3-Aminopropyltriethoxysilane and dried at 56 C overnight.  The slides were 

subsequently deparaffinized in Xylene and hydrated through descending grades of ethyl alcohol 

to distilled water.  Slides were placed in Tris Buffered Saline pH 7.4 (Scytek Labs – Logan, UT) 

for 5 minutes for pH adjustment.  Endogenous Peroxidase was blocked utilizing 3% Hydrogen 

Peroxide / Methanol bath for 30 minutes followed by running tap and distilled water rinses.  

Following pretreatment standard avidin-biotin complex staining steps were performed at room 

temperature .  All staining steps are followed by rinses in Tris Buffered Saline + Tween 20 

(Scytek).  After blocking for non specific protein with Normal Goat Serum (Vector Labs – 

Burlingame, CA) for 30 minutes; sections were incubated with Avidin / Biotin blocking system 

for 15 minutes each (Avidin D – Vector Labs / d-Biotin – St. Louis, MO).  Primary antibody 

slides were incubated for 60 minutes with the Polyclonal Rabbit anti-GFAP diluted @ 1:300 

(Dako North America – Carpentaria, CA) in Normal Antibody Diluent (NAD) (Scytek). 

Biotinylated Goat anti-Rabbit IgG (H + L) prepared at 11.0 g/ml in NAD incubated for 30 

minutes; followed by R.T.U. Vectastain Elite ABC Reagent incubation for 30 minutes.  Reaction 

development utilized Vector Nova Red peroxidase chromogen incubation of 15 minutes 

followed by counterstain in Gill Hematoxylin (Thermo Fisher – Kalamazoo, MI) for 15 seconds, 

differentiation, and dehydration, clearing and mounting with synthetic mounting media. 
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Luxol Fast Blue-Hematoxylin & Eosin staining 

The 5µ paraffin sections of corpus callosum were deparaffinized in Xylene and 

rehydrated to 95% alcohol. The sections were placed in Luxol fast blue solution overnight in 

oven at 56°C. The Luxol fast blue, 0.1% solution was made using 5.0g of Luxol fast blue 

dissolved in 1L of distilled water and 10% Glacial acetic acid.  The tissue was then rinsed in 

95% alcohol to remove excess stain. The tissue was washed well in running tap water for 

approximately 2-3 minutes. Slides were immersed in lithium carbonate solution (0.05% solution) 

for approximately 20 seconds to begin differentiation. 0.25g of lithium carbonate was diluted in 

500ml of distilled water. The tissue continued in 70% alcohol solution until white matter could 

be distinguished. The tissue was then rinsed briefly in lithium carbonate solution and then put 

through several changes of 70% alcohol solution until the blue of the white matter appears 

sharply. Rinse thoroughly in distilled water followed by the immersion in Mayer‟s hematoxylin 

for 3 minutes. Slides were washed in tap water for 5 minutes and washed in .025% ammonia 

water for 1 minute for a blue nucleus. The tissue was washed will in running tap water for 5 

minutes and then in distilled water. The tissue was stained in Eosin solution for 8 minutes, 

following by dehydration in 2 changes of 95% alcohol and 3 changes of absolute alcohol.  

 

 

Luxol Fast Blue staining 

The 5µ paraffin sections of corpus callosum were deparaffinized in Xylene and 

rehydrated to 95% alcohol. The sections were placed in Luxol fast blue solution overnight in 

oven at 56°C. The sections were then rinsed in 95% alcohol to remove excess stain. The tissue 

was washed well in running tap water for approximately 2-3 minutes. The tissue was immersed 

in lithium carbonate solution for approximately 20 seconds to begin differentiation and continued 
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in 70% alcohol solution until white matter can be distinguished. The tissue was then rinsed 

briefly in lithium carbonate solution and then put through several changes of 70% alcohol 

solution until the blue of the white matter appears sharply. The tissue was dehydrated in 2 

changes of 95% alcohol and 3 changes of absolute alcohol.  

 

Hematoxylin and Eosin staining  

The 5µ paraffin sections of corpus callosum were deparaffinized in 2 changes in Xylene 

at 10 minutes each. The tissue was rehydrated in 2 changes of absolute alcohol at 5 minutes each, 

95% alcohol for 2 minutes and 70% alcohol for 2 minutes. The tissue was washed briefly in 

distilled water and then staining with Mayer‟s Hematoxyln solution for 3 minutes. The tissue 

was then washed in tap water and then place in .25% ammonia water until the slides turned blue. 

The tissue was then washed in tap water for approximately 1 minute following by a rinse in 

distilled water for 2 minutes. The tissue was rinsed in 70% alcohol and then counterstained in 

Eosin solution for approximately 1 minute and then dehydrated in 95% alcohol for 2 changes and 

then 3 changes for absolute alcohol for 1 minute each. The tissue was then cleared in 2 changes 

of xylene, 3 minutes each.  The slides were then cover slipped with mounting medium.  

 
Bielschowsky Silver stain 

The corpus callosum was fixed in 10% neutral buffered formalin. The paraffin embedded 

corpus callosum tissue was cut at 5µ sections. The slides were deparaffinized with xylene and 

hydrated to distilled water, following by 3 washings at 3 minutes each in distilled water. The 

sections were placed in 20% working silver nitrate solution for 15 minutes at 37C. The 

remaining silver nitrate was poured off at the end of the 15 minutes into a clean container and 

saved. The tissue was washed in several changes of distilled water for 10 minutes.  
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   To the silver nitrate that was saved from Step #4, ammonium hydroxide (concentrated 

58%) was added drop by drop while agitating the container continuously until the precipitate which 

forms is completely dissolved.  Since approximately 7.0 to 7.5 mls are required, 6.0 mls was added 

at once; thereafter, the ammonium hydroxide was added drop by drop until the end point is reached.   

 The tissue was placed in ammoniacal silver solution for 8 minutes at 37C, followed by 

placing the solution in to a clean container.  The slides were placed in the working 1% ammonium 

hydroxide solution for 3 minutes. To the ammoniacal silver, add 4 drops of developer followed by 

microwaving for 40 seconds + 20 seconds and agitate at 70°C in water bath for 2 - 3 minutes. 

Sections are to be agitated until they turn a golden brown color. The tissue was washed in 1% 

ammonium hydroxide solutions for 2 minutes and then washed in distilled water for 1 minute. The 

tissue was placed in 5% sodium thiosulfate for 3 minutes and then washed in 3 changes of distilled 

water at 5 minutes each. The tissue was dehydrates through graded ethyl alcohols and cleared in 

several changes of Xylene. The slides were then coversliped with permanent mounting media.  

 

Results  

Myelin and axonal pathology 

PLP1 duplication case (case 1) 

This case showed a similar appearance of dysmyelinated tissue to that found in other 

cases with PMD.  The corpus callosum was grossly thin, markedly dysmyelination reflecting a 

substantial reduction of myelin. The staining pattern for myelin basic protein (MBP) (Fig. 4.1b), 

proteolipid protein (PLP) (Fig. 4.1c) and toludine blue (Fig. 4.1d) showed a progressive decrease 

in myelin composition. The primary defect in PMD is the myelin abnormalities, referred as 

dysmyelinating, but the relatively thin myelin that has formed most likely breaks down 
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undergoing the process of demyelination. In this particular case, demyelination of preexisting 

myelin resulted in a characteristic pattern not reported in previous literature and is described here 

as discreet aggregates or clumps of degenerative myelin products (Fig. 4.1b-f). The deposits of 

myelin products appear to be concentrated within the extracellular space with a few found 

intracellular as marked by a solid membrane surrounding the content. Most of the degraded 

myelin products did not appear to be found within microglia or macrophages representing types 

of scavenger cells. Furthermore, it appears on H&E staining that no other cells are proliferating 

or congregating near the region of these aggregates (Fig 4.1f). This finding most likely marks the 

time period during the pathogenesis that precedes the invasion of scavenger cells to engulf the 

debris by phagocytosis.  Axonal spheroids were not observed, but should not be excluded as an 

occasional feature, as reported in Sima et al., (2009). Moderate to severe loss of 

oligodendrocytes and marked astrogliosis were observed.  Although axonal injury is not a 

consistent finding across the PMD spectrum, it is reported in patients and mice as previously 

discussed and may be influenced by the heterogeneity of PLP1 mutations. 
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Null mutation case (case 2) 

The case showed a similar pattern of myelin loss, but not due to disturbances in myelin 

formation caused by glial dysgenesis resulting in the classical dysmyelinating pattern. Thinning 

and density of the myelinated fibers were less pronounced than that of the duplication and 

missense mutations. The staining of myelin with HE-LFB (Fig. 4.2c) and toludine blue (Fig. 4 

.3c) was not severely reduced, although fiber density appeared to be reduced. Axons that did not 

have any appreciable amount of myelin sheaths most likely experienced late demyelination 

associated with axonal injury.  In contrast to the duplication patient, the products that reminisce 

that of the structural decomposition of myelin sheath was not observed.  The white matter 

displayed numerous spheroids (Fig. 4.2) and mild astrogliosis (Fig. 4.5e).  Activated microglia 

were occasionally observed as exemplified by their characteristic elongated cigar shape cell 

morphology, but the only definitive way to identifying the state of microglia is using specific 

antibodies to label such cells.   

 

Missense mutation cases (case 3 & 4) 

 

Both cases exhibited a severe loss to thinning of myelin consistent of a diffusely 

dysmyelinated tissue with reduced oligodendrocytes (Fig. 4.2d-e).  Both cases exhibited marked 

astrogliosis (Fig 4.5c-d), but case 4 demonstrated an extensive network of astroglial process 

acting as a space occupying lesion between the reduced dys/demyelinated axonal fibers (Fig 

4.5d). Both cases exhibited a mark reduction in axonal density with an occasional spheroid being 

found in case 4. Case 3 exhibited a diffuse pattern of numerous spheroids similar to the findings 

of the null mutation in case 2.  Microglia were occasionally observed suggestive of a mild 

inflammatory response associated with active demyelination particularly in case 3 were 

appreciable amounts of degenerative myelin sheaths were found clustered.       
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Discussion 

In the present study, results was examined in white matter pathology of the corpus 

callosum in brain autopsy cases of 4 male PMD patients with confirmed PLP1 mutations that 

include: (1) duplication (overexpression), (2) Null (complete deletion), (3) W144X (PLP-specific 

domain; mild clinical phenotype), (4) IVS6+3G>T (severe clinical phenotype). The observations 

collected from this neuropathology study supports previously reported findings of the 

progressive myelinopathy (Zeman, DeMyer et al. 1964; Seitelberger 1970; Seitelberger 1984; 

Seitelberger 1995) and axonopathy that is characteristic of PMD (Anderson, Schneider et al. 

1998; Griffiths 1998; Garbern, Yool et al. 2002; Deluca, Ebers et al. 2004; DeLuca, Ebers et al. 

2004).   

The classical form of PMD includes duplications of the entire gene accounting for 60-

70% of the patient base (Sistermans, de Wijs et al. 1996). Depending on the degree of PLP1 

overexpression, experimental evidence involving transgenic mice indicates that gene expression 

is dosage sensitive and can cause dysmyelination and a late-onset demyelination (Kagawa, 

Ikenaka et al. 1994; Readhead, Schneider et al. 1994). These findings translate to human patients 

with three or more copies of the PLP1 gene who exhibited a more severe form of PMD (Wolf, 

Sistermans et al. 2005).  The findings from these and other studies, implies that more than one 

pathogenic mechanism is responsible for the disease process and clinical severity.  

Seitelberger‟s seminal work that uncovered the neuropathologic characteristics of the 

PMD subtypes described the classic form of PMD as a patchy appearance of relatively 

conserved, but thinner than normal myelin with preservation of the axon structure (Seitelberger 

1970).  These findings are consistent in case 1 of a PMD patient with PLP1 gene duplication 

reported in this study. LFB, MBP and PLP immunostaining exhibited axons that were 

moderately myelinated with several fibers experiencing late-onset demyelination in the presence 
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of numerous „myelin balls‟ representing degraded myelin products. As a result of this diffuse 

pattern of „myelin balls,‟ robust microglia were observed discreetly as an enlarged elongated 

nucleus suggesting the onset of an inflammatory response to the structural changes resulting 

from the myelin pathology. These findings are also in concert with (Edgar, McCulloch et al. 

2010) of PLP1 transgenic mouse optic nerve that showed high level microglia activation in areas 

of demyelination and a low level of microglia activation in areas of dysmyelination, furthermore 

(Tatar, Appikatla et al. 2010) also demonstrated that a large influx of microglia reactivity in PLP 

transgenic mice. An occasional axonal spheroid and degenerative axons were observed, but was 

not a regular consistent finding which may suggest that the robust activation of microglia, as 

reported in inflammatory demyelinating lesion of MS, may influence the late-onset axonal 

pathology found in PMD (Trapp, Ransohoff et al. 1999).         

Early manifestations of pathologic changes begins at birth for the connatal form 

interfering with the process of myelin formation caused by premature oligodendrocyte cell death 

due to cytotoxic accumulation of misfolded PLP retained in the ER causing a reduced number of 

mature oligodendrocytes. LFB, toludine blue, MBP and PLP all showed a significant decrease in 

staining for myelin in PMD patients with a mild missense mutation (case 3) and severe missense 

mutation (case 4). Case 3 and case 4 exhibited a marked increase in GFAP-positive staining for 

reactive astrocytes as previously reported by (Ulrich, Kohler et al. 1983; Ulrich, Matthieu et al. 

1983; Koeppen, Barron et al. 1988) and is a marker of CNS white matter injury. An 

overwhelming proliferation of glial processes in case 4 appeared to occupy the vast extracellular 

space that maybe described as a space occupying lesion, due to the reduced density of the 

severely dysmyelinated axons. Myelin degradation products were more frequently identified in 

case 3 suggesting that the axons were moderately myelinated preceding the active process of 
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demyelination. Furthermore, the axons in case 4 were severely dysmyelinated with areas of no 

appreciable amount of myelin detected.  

Axonopathy was a common recurring observation found in case 3 that had a PLP-specific 

nonsense mutation in exon 3B (W144X) and classified as a mild form of PMD or SPG2 (Hodes, 

Blank et al. 1997; Cailloux, Gauthier-Barichard et al. 2000) and in case 2 of the patient with a 

deletion of the PLP1 gene that is also classified as having a mild form of PMD. Both cases 

exhibited numerous axonal spheroids and thinning of fibers. The axon abnormalities are not a 

cause of demyelination, since myelin is intact and oligodendrocytes are viable, but the defect lies 

in the oligodendrocyte-axonal interaction.  Consistent with this finding, Garbern and colleagues 

reported a significant reduction in NAA/Cr ratio in mice and patients using MRS and is 

indicative of neuronal integrity (Garbern, Moore et al. 2002). These findings echoes prior reports 

of axonopathy in PMD null mutations and in transgenic mice with low level increase in PLP1 

expression (Anderson, Schneider et al. 1998) and explains the late-onset and relative rapid 

decline in clinical disability compared to the early onset severe manifestation by PLP1 missense 

mutations and the severity of high levels of increase PLP1 expression.  

The inflammatory response imposed by the activated microglia found in case 3 may 

explain the thinning of axons and numerous spheroids as mentioned previously, whereas the 

complete absence of PLP1 has been reported not to cause CNS inflammation supporting the 

maintenance role of PLP in maintaining axon integrity.  Axonal injury is most likely a 

consequence of the inflammation around the axons in case 3, but the alternative view should be 

considered as well suggesting that that demyelination is also a variable responsible for axon 

pathology.    
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Activated microglia were occasionally observed by their characteristic elongated 

euchromatic nucleus in both PLP1 missense mutations marking the presence of an inflammatory 

reaction that has been well documented in EAE mice and MS patients with inflammatory 

demyelination (Bradl and Linington 1996; Bar-Or, Oliveira et al. 1999; Trapp, Bo et al. 1999; 

Bradl and Hohlfeld 2003). The Inflammatory response detected in MS has been well described 

as having a strong influence in controlling axonal pathology found in MS lesions and are 

responsible for the irreversible neurological disability (Trapp, Peterson et al. 1998; Bjartmar and 

Trapp 2001; Bjartmar, Wujek et al. 2003).  These findings may have strong implications in 

describing axonal pathology as it relates to neurologic impairment in PMD particularly in the 

mild cases of PMD that express an appreciable myelin thickness and density of axons that are 

now susceptible to demyelination marking the end-point in the pathologic progression.     

Conclusion 

 

Merzbacher originally described the absence of myelin sheaths specific to the CNS 

without axonal involvement and preserved myelin islets around blood vessels. These patchy 

areas of myelin islands give the tissue a "tigroid" appearance (Takanashi, Sugita et al. 1999). 

Gross sections of the PMD brain reveal atrophy, pallor, and sclerosis of white matter in the 

cerebrum, cerebellum, and brainstem (Gencic, Abuelo et al. 1989). The axons of the central 

nervous system lack the typical myelin sheath. In addition, there is a profound loss of 

oligodendrocytes, which produce myelin. The pathologic pattern of diffuse degraded myelin 

aggregates, found in duplications is not a new finding as (Seitelberger 1970) described a similar 

pathology in PMD called “myelin balls.” However, beyond the written description the exact 

pathologic appearance has not been observed to my knowledge.   
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Axonal damage is variable and found remarkable in particular cases of the PMD 

subtypes.  Axonal damage has been demonstrated, particularly in the null mutation and the mild 

point mutation found within the PLP1 specific domain cause aberrant trafficking of PLP and not 

DM20.  The presence of axonal spheroids was observed diffusely in both cases with an 

occasional spheroid found in the severe missense and duplication patients that is likely due to 

impaired axonal transport from altered proteolipid protein-mediated oligodendrocyte-axonal 

interactions. This finding follows the pathologic thinking that white matter volume is a clinical 

manifesting determinant, but axonal play an equal role that exhibits in a late-onset phenomenon. 

Furthermore, the presence of microglia in the duplication patient, but also found in the mild and 

severe point mutations suggest a causative role in regulating axonal viability as seen in MS 

inflammatory demyelination lesions. This was not a prominent finding in the null mutation, 

although should not be discounted as potential variable, but the late-onset axonal pathology 

exhibited by degeneration and spheroids are caused by the dosage sensitivity of the PLP1 gene. 

The results from this study, corroborates and supports the previous findings documented PMD 

pathology, but this study also brings new information providing insight into the pattern and 

progression of the disease pathogenesis.   
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Figure 4.1 Pathologic changes in PLP1 duplication patient (case 1). (a) 60 year-old 

control subject,  who exhibits a normal density of myelinated fibers and distribution of 

oligodendrocytes by immunoperoxidase-MBP staining. (b) Thinning of myelin and reduced 

axonal fiber density with an increase composition of  myelin degradation products using an 

immunoperoxidase staining for MBP. (c) immunoperoxidase stain for PLP exhibiting 

irregular non-uniform aggregates (arrows) of PLP a degradation product of myelin. (d) 

Luxol-fast blue, (e) HE-LFB and (f) H&E staining provide conclusive insight into a window 

a time of the pathologic product of demyelination (arrow) of the very thin pre-existing 

myelin that formed.  Scale 50 µm.  
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Figure 4.2 PLP1 gene deletion. Numerous axonal spheroids (arrows) could be detected by light 

microscopy under Bielschowsky silver stain (a, b) and H&E-LFB staining (black arrow) (c) and 

were diffusively observed in the corpus callosum. Plate (a): scale10µm. Plate (b, c): scale 50µm.  
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Figure 4.3 Toludine blue staining. (a) 60-year-old control subject with normal thickness and 

distribution of axonal fibers. (b) Duplication (case 1): Diffuse dysmyelinating and decrease 

in axon density. (c) Null mutation (case 2): Axons demonstrate relatively thick myelin 

sheaths with structural abnormalities reflected in the „unraveled‟ morphology (artifact) due 

to the absence of PLP and its innate ability to form compact myelin (black arrows). Axon 

diameter appears relatively large and may suggest that some of the axons are swollen and 

actively undergoing demyelination. (d) Severe missense mutation, IVS6+G>T (case 4) and 

(e) Mild missense mutation, W144X (case 3) exhibits a uniform reduction to absence of 

myelin and oligodendrocytes.  Activated microglia are observed in the 4 cases suggesting an 

ongoing inflammatory response to the pathologic changes of the white matter, particularly 

during the destruction of myelin. Scale 50µm. 

 

 



 98 

 

 

 

 

 

 

 

 

 

  

Figure 4.4. Axonal pathology. (a) Bielschowsky silver staining of a normal subject with normal 

distribution and density of axons. (b) Duplication (case 1). The density of axonal fibers is 

relatively normal although axonal degeneration is likely to contribute towards the disease 

pathogenesis. (c) Mild missense mutation, W144X (cases 3) and (d) severe IVS6+G>T (case 4) 

exhibited a moderate reduction in axon density. The mild mutation W144X (plate c; case 3), 

exhibited numerous swollen axons (arrows) with Bielschowsky silver stain, (e) 

immunoperoxidase-MBP staining and with (f) H&E-LFB staining (arrows). Scale 50µm.  
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Figure 4.5. GFAP stain. The characteristic and vigorous response of astrocytes to white 

matter injury is a prominent feature observed in the 4 cases as reflected in the GFAP staining. 

(a) 60 year-old normal control subject with non-reactive astrocytes. (b) Duplication (case 2) 

has moderate gliosis, whereas, (c) the mild W144X missense mutation and (d) severe 

IVS6+G>T missense mutation reflects an extensive array of gliosis occupying the space of 

the substantially hypomyelinated corpus callosum. (e) Null patient (case 2) exhibits a mild 

form of gliosis due to the presence of relatively normal thickness of myelin that was 

sustained through the course of the disease. Scale 50µm.  
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CHAPTER 5 

 

CONCLUSION 
 

Pelizaeus-Merzbacher disease is a dysmyelinating disorder, in which normal myelination 

never occurs. Mutations of the PLP1 gene result in a range of phenotypes that form a clinical 

spectrum, from the more severe PMD at one end, to the relatively mild X-linked spastic 

paraplegia 2 (SPG2) at the other. Most cases (60-70%) of PMD are caused by duplication of the 

PLP1 gene, which most likely causes overexpression of PLP, resulting in compromise of the 

myelin sheath structure. Protein misfolding caused by PLP1 missense mutations is a second 

likely pathogenic mechanism of PMD. A third mechanism involves null-mutations leading to a 

loss of function in which no protein is produced. These cause relatively mild disease. The major 

clinical features of PMD are nystagmus, spasticity, athetosis, tremor, and ataxia. The symptoms 

vary in onset and severity, thereby producing a clinical spectrum of disease. Various forms or 

phenotypes of PMD are distinguished by severity of disease and other clinical features.  

The results of this study demonstrates that reduced white matter volume is likely one 

determinant of neurological disability in PMD patients, while axonal dysfunction or loss is a late 

post-adolescent phenomenon that contributes to the clinical and pathologic progression. The 

clinical severity measurements and MRI volumetric finds are consistent with the speculation that 

white matter is inversely correlated with PMD severity. The correlation was moderate, although 

highly significant. Reduction in white matter volume may result not only from the 

hypomyelination but also axonal loss. The surrogate marked to measuring the distance between 

the caudate nucleus is a reliable method to implement when grey white matter segmentation is 

not possible to delineate.     
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Since the degree of myelination is relatively preserved in PLP1 null myelin, the increased 

radial diffusion found using diffusion imaging is not the result of thinner myelin sheaths per se, 

but the increased radial diffusion is more likely due to increased myelin water, due to decreased 

compaction, which described the existence of a “radial component” to myelin, described in Plp1 

null mice, created by aqueous channels that span the myelin sheath. Additional factors, such as 

astrocytosis, may also contribute to the increased radial diffusion. It should also be mentioned 

that a slight and insignificant increase in parallel diffusion may be accounted for by the parallel 

arraignment of the glial processes of astrocytes that occupying the vast extracellular space due to 

myelin loss. The results indicated that radial and parallel indices are sensitive markers of WM 

pathology and the parameters may be sensitive to abnormalities that are not apparent on the 

histological markers. The decrease in FA supports the pathologic findings that the architectural 

arraignment is completely disrupted due to thinning to degenerative axons. This loss 

compromised the density and sophisticated pattern that describes the trajectory of neural fibers 

throughout the white matter. With previous knowledge and current findings, it is not a surprise 

that an astounding decrease in FA was found across the heterogeneous nature of PMD. This data 

supports the use of MRI as a clinical tool to follow the natural history of PMD, and potentially 

for its application in evaluation of future therapies.  
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APPENDIX A 

                          ABBREVIATIONS INCLUDED IN THIS DISSERATIONS 

 

PMD  pelizaeus-merzbacher disease 

PLP  proteolipid protein 

CNS  central nervous system 

UPR  unfolded protein response 

MS  multiple sclerosis 

ER  endoplasmic reticulum 

ECM  extracellular matrix 

MBP  myelin basic protein 

IPL  intraperiod line 

MAG  myelin associated glycoprotein 

GFAP  glial fibrillary acidic protein 

NF  neurofilament 

GalC  galactocerebroside C 

FDS  functional disability score 

PNS  peripheral nervous system 

PMP22 peripheral myelin protein 

WM  white matter 

WMV  white matter volume 

ALIC  anterior limb internal capsule 

PLIC  posterior limb internal capsule 

Po  pons 

SCC  splenius corpus callosum 

GCC  genu corpus callosum 

CP  cerebral peduncles 

DCE  direction encoded map 

FLAIR  fluid attenuated inversion recovery 

MRI  magnetic resonance imaging 

DTI  diffusion tensor imaging 

MRS  magnetic resonance imaging 

DT-MRI diffusion tensor magnetic resonance imaging 

ADC  apparent diffusion coefficient 

FA  fractional anisotropy 

FCN  ferric cyanide 

OLG  oligodendrocyte 
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APPENDIX B 

Functional Disability Rating Scale Patient name: ____________________________________   

 

Age: ________________  Date of birth:  Date of exam: ____________________________________  

 

*Education  0  1  2  3  0 – no formal schooling; 1 – special school or special 

education classes; 2 – regular classes, but not at grade 
level; 3 – regular school, grade appropriate for age 

(within 2 years) 

* If beyond school age: 

Employment  0  1  2  3  0 – unable to work/homebound; 1 – sheltered 

workshop (i.e. works at institution dedicated to 

disable employees); 2 – special job (i.e. works at 

conventional workplace, but requires special 

supervision); 3 – regular job 

 

Speech   0  1  2  3  4 0 – no verbal communication; 1 – rare 

understandable words with nonverbal 

communication; 2 – speech understandable with 
difficulty; 3 – detectable speech disturbance but 

readily understood; 4 – normal speech 

 

Feeding  0  1  2  3  4 0 – tube feedings only; 1 – some oral feeding, with 

supplemental tube feedings; 2 – oral feedings with 

consistency changes to diet; 3 – normal diet with 

occasional choking; 4 – normal swallowing 

 

Dressing  0  1  2  3  0 – total dependence; 1 – Can assist with dressing but 

dependent on others 2 – independent, but with 

decreased efficiency; 3 – normal 
 

Toileting  0  1  2  3  0 – total dependence; 1 – needs assistance;  2 – 

independent, but with decreased efficiency; 3 – 

normal 

 

Writing  0  1  2  3  4  5 0 – cannot reach for and grasp writing utensil; 1 – can 

point to correct letters on computer screen with hand 

or mouse; 2 – can reach for and grasp writing utensil, 

but cannot scribble; 3 – can scribble, but cannot draw 

or write letters; 4 – can draw or write letters, but 

difficult to read; 5 – normal for age 
 

Sitting  0  2    0 – cannot sit without support; 2 – can sit without support  

 

Walking  0  1  2  3  4  5  

       0 – wheelchair or bedbound; 1 – can crawl/bunny 

hop; 2– can walk a few steps, but needs adaptive aids 

or other support; 3 – needs adaptive aids to walk 20 

feet; 4 – impaired gait, but uses no assistive 

devices; 5 – normal gait 
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Breathing  0  1  2  3  0 – ventilator or constant respiratory support; 1 – 

intermittent use of non-invasive respiratory support; 

2 – has respiratory symptoms but does not use 

ventilatory support; 3 – normal breathing 

 

 

Total Functional Disability Score:    

 

 

Percentile (of scorable items) scores:  
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Myelin is a multilamellar membrane structure surrounding axons in both the CNS and 

PNS that facilitates nerve conduction. In the CNS, myelin is synthesized by oligodendrocytes, 

while in the PNS; myelin is synthesized by Schwann cells. In the CNS, Proteolipid protein 1 

(PLP1), an integral membrane protein, is the major protein component of myelin, constituting 

~50% of myelin protein. Mutations of the PLP1 gene in man cause a spectrum of neurological 

disease, ranging from the severe Pelizaeus-Merzbacher disease (PMD), that typically begins 

during infancy with nystagmus, seizures and hypotonia and evolves into spastic quadriparesis, 

cognitive impairment and ataxia, to „pure‟ spastic paraparesis, that is characterized exclusively 

by leg spasticity and weakness. The predominant pathological abnormality in PMD consists of 

thinning to almost complete absence of myelin in the CNS. Gow and colleagues have proposed 

that the severity of mutations that alter the structure of PLP1 (typically missense mutations) 

correlates with the degree to which they cause protein misfolding, activate the unfolded protein 
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response, and cause oligodendrocyte apoptosis (Gow and Sharma, Neuromolecular Med 4:73, 

2003). Implicit in this mechanism is that the degree of myelination should inversely correlate 

with the degree to which oligodendrocyte apoptosis is activated. We speculated that the early 

PMD phenotype predominantly is dictated by the effect on oligodendrocyte viability. In contrast, 

we have found that complete absence of PLP1 in both mice and humans is characterized by well-

formed myelin, but late length-dependent pattern of axonal degeneration (Garbern et al. Brain 

125:551, 2002). We speculate that progression of disease correlates with the rate of axonal 

damage. The goal of this study was to investigate whether non-invasive MR techniques to assess 

extent of myelination and degree of axonal disruption correlated with measures of clinical 

capacity. Furthermore we wanted to differentiate between axonal and myelin pathology using 

diffusion tensor imaging as a reliable imaging modality to assess the effects of PLP1 mutations 

on water diffusion in central nervous system (CNS) white matter. The most dramatic difference 

between PMD patients and age-matched controls was increased λ , most marked in the corpus 

callosum. Moreover, this was most prominent in patients with PLP1 null mutations. Increased 

radial diffusion has been reported in dysmyelinating rodents, including the myelin synthesis 

deficient rat (md) that has a severe Plp1 missense mutation. Interestingly, λ// was also increased 

in the severely affected PMD patients, whereas in severely dysmyelinated rodents, the λ  is 

reported to be normal to decreased. λ// in patients with PLP1 null mutations was relatively 

unaffected relative to controls. Since the degree of myelination is relatively preserved in PLP1 

null myelin, the increased radial diffusion is not the result of thinner myelin sheaths. Therefore 

the increased radial diffusion is more likely due to increased myelin water, due to decreased 

compaction, and which may be in part due to the existence of a “radial component” to myelin, 
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described in Plp1 null mice, created by aqueous channels that span the myelin sheath. Additional 

factors, such as astrocytosis, may also contribute to the increased radial diffusion.  

 Genetic abnormalities affecting the PLP1 gene has been shown to cause axonal injury 

and significant early-onset dysmyelination and late-onset demyelination. The exact mutational 

mechanism remains to be described, although substantial progress had been made to make 

reasonable assessments that may provide a better understanding towards the disease 

pathogenesis. In the study involving autopsy tissue from genetically characterized patients has 

provided valuable information that describes the changes in the structural architecture of the 

tissue over time. These pathologic changes corroborate with the findings from the diffusion 

imaging making these two methods extremely reliable for describing the pathologic state as each 

patient experience a slightly different pathogenic course that is dependent on the exact PLP1 

mutation. 
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