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A Comparison of Risk Classification Methods for  
Claim Severity Data 

 
Noriszura Ismail Abdul Aziz Jemain 

Universiti Kebangsaan Malaysia 
 
 
The objective of this article is to compare several risk classification methods for claim severity data by 
using weighted equation which is written as a weighted difference between the observed and fitted values. 
The weighted equation will be applied to estimate claim severities which is equivalent to the total claim 
costs divided by the number of claims.  
 
Key words: Risk classification, claim severity, claim cost. 
 

 
Introduction 

 
The process of establishing premium rates for 
insuring uncertain events requires estimates 
which were made of two important elements; the 
probabilities or frequencies associated with the 
occurrence of such event, and the magnitude or 
severities of such event. The process of grouping 
risks of similar risk characteristics for the 
frequencies or severities is also known as risk 
classification. The risks may be categorized 
according to risk or rating factors. In motor 
insurance for instance, the driver’s gender and 
claim experience, or the vehicle’s make and 
capacity, may be considered as rating factors. 
 In the last forty years, researchers 
suggested various statistical procedures for risk 
classification.   For   example, Bailey and Simon 
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(1960) suggested the minimum chi-squares, 
Bailey (1963) proposed the zero bias, Jung 
(1968) produced a heuristic method for 
minimum modified chi-squares, Ajne (1975) 
applied the method of moments also for 
minimum modified chi-squares, Chamberlain 
(1980)  used  the  weighted  least squares, Coutts 
(1984) produced the method of orthogonal 
weighted least squares with logit transformation, 
Harrington (1986) suggested the maximum 
likelihood procedure for models with functional 
form, and Brown (1988) proposed the bias and 
likelihood functions. 

In the recent actuarial literature, 
research on risk classification methods is still 
continuing and developing. For example, 
Mildenhall (1999) studied the relationship 
between minimum bias and Generalized Linear 
Models (GLMs), Feldblum and Brosius (2003) 
provided minimum bias procedures for 
practicing actuary, Anderson et al. (2004) 
provided practical insights for GLMs analysis 
also for practicing actuary, Fu and Wu (2005) 
developed and generalized the minimum bias 
models, Ismail and Jemain (2005a) bridged the 
minimum bias and maximum likelihood 
methods for claim frequency data, and Ismail 
and Jemain (2005b) proposed the Negative 
Binomial and Generalized Poisson regressions 
as alternatives for the Poisson to handle over-
dispersion. 

In addition to statistical procedures, 
research on multiplicative and additive models 
has also been carried out. Bailey and Simon 
(1960) compared systematic bias and found that 
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the multiplicative model overestimates the high 
risk classes, Jung (1968) and Ajne (1975) also 
found that the estimates for multiplicative model 
are positively biased, Bailey (1963) compared 
the models by producing two statistical criteria, 
i.e., minimum chi-squares and average absolute 
difference, Freifelder (1986) predicted the 
pattern of over and under estimation of the 
models if they were misspecified, Brown (1988) 
discussed the additive and multiplicative models 
which were derived from the maximum 
likelihood and minimum bias approaches, Jee 
(1989) compared the predictive accuracy of the 
models, Holler et al. (1999) compared their 
initial values sensitivity, and Mildenhall (1999) 
identified the GLMs with the additive and 
multiplicative models.  
  Based on the actuarial literature, studies 
for risk classification were centered on two main 
areas; risk classification methods, and 
multiplicative vs. additive models. The objective 
of this study is to compare several risk 
classification methods for multiplicative and 
additive models by using weighted equation 
which is written as a weighted difference 
between the observed and fitted values. In 
addition, the parameter solution for 
multiplicative and additive models will also be 
compared by using weighted solution. The 
weighted solution for multiplicative model is in 
the form of a weighted proportion of observed 
over fitted values, whereas for additive model, it 
is in the form of a weighted difference between 
observed and fitted values. 
  Although the weighted equation was 
previously suggested by Ismail and Abdul Aziz 
(2005a), the application was implemented on 
claim frequency data. Therefore, this study 
differs such that the weighted equation will be 
applied to estimate claim severity or average 
claim cost which is also equivalent to the total 
claim costs divided by the number of claims. 
Because the nature of claim frequency and 
severity data is different, the approach taken is 
also slightly modified.  
  It is well established that the claim cost 
distributions generally have positive support and 
are positively skewed. Because of these desired 
properties, the Gamma and Lognormal 
distributions have been widely used by the 
practitioners for modeling claim severities. As a 

comparison, several actuarial studies also 
reported severity results from Normal 
distribution. For example, Baxter et al. (1980) fit 
the U.K. own damage costs for privately owned 
and comprehensively insured vehicles to the 
weighted linear (additive) regression model by 
assuming that the variance is constant across the 
classes, McCullagh and Nelder (1989) 
reanalyzed the same data by fitting the costs to 
the Gamma by assuming that the coefficient of 
variation is constant across the classes and the 
mean is linear on reciprocal scale, Brockman 
and Wright (1992) fit the U.K. own damage 
costs for comprehensive policies also to the 
Gamma by using a log-linear (multiplicative) 
regression model, and Renshaw (1994) fit the 
U.K. motor insurance claim severity also to the 
Gamma log-linear regression model.  
  The fitting procedure for this study will 
be carried out by using two different approaches; 
classical and regression. The advantage of using 
the regression fitting procedure is that it can also 
be extended to other regression models, as long 
as the function of the fitted value is written in a 
specified linear form. In addition, the 
computation of the regression fitting procedure 
provides a faster convergence compared to the 
classical. 
  In this study, the risk classification 
methods will be compared on three types of 
severity data; Malaysian data, U.K. data 
(McCullagh & Nelder, 1989), and Canadian data 
(Bailey & Simon, 1960). 
 

Methodology 
 

The related data sets for claim severity are 
),( ii yc , ni ,...,2,1= , where ic  and iy  denotes 

the average claim cost adjusted for inflation and 
the claim count for the i th rating class. 
Therefore, the total claim cost is equal to the 
product of the claim count and the average claim 
cost, ii cy . 
  Let ix  be the vector of explanatory 
variables for the i th rating class, β  the 1×p  
vector of regression parameters, and f  the 
vector of fitted values. 
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  If the model is assumed to be 
multiplicative, the fitted value is )exp( βxT

i=if , 
which can also be written as, 
 
                      )exp()( ijjjii xff β−= ,         (1) 
 
where )( jif −  is the multiplicative fitted value 
without the j th effect.  
  For an additive model, the fitted value is 

βxT
i=if , so that it can be written as, 

     
                        ijjjii xff β+= − )( ,         (2) 
 
where )( jif −  is the additive fitted value without 
the j th effect.  
 
Minimum Bias Models 

The parameters for zero bias model are 
solved by equating (Bailey 1963), 
                       
 
        pjxfyxcy

i
ijii

i
ijii ,...2,1, ==∑∑          

                                                                         (3) 
                 
Therefore, Eq.(3) can also be written as a 
weighted difference between observed and fitted 
values, 
            
          pjfcw

i
iii ,...,2,1,0)( ==−∑ ,    

                                                                    (4) 
 
where the weight, iw , is equal to iji xy . 
  Substituting Eq.(1) for multiplicative 
model, Eq.(4) can be rewritten as, 
         

pjxxfyxcy
i

ijijjjii
i

ijii ,...,2,1,)exp()( ==∑∑ − β

                                                                         (5)  
          
 The solution, )exp( jβ , may be calculated from 
Eq.(5) because the value for ijx  is either one or 
zero. The solution may be written as a weighted 
proportion, 
 

      pj
f
c

v
i ji

i
ij ,...,2,1,)exp(

)(
==∑

−
β ,       

                                                             (6)       
  
 
where the weight, iv , is equal to, 
                         

                             
∑

=

i
i

i
i z

z
v ,          (7) 

 
and iz  is ijjii xfy )(− . 
  If Eq.(2) is substituted for additive 
model, Eq.(4) can be rewritten as,  
 

pjxxyxfcy
i

ijijji
i

ijjiii ,...,2,1 ,)( )( ==− ∑∑ − β  

 
Again, because the value for ijx  is either one or 
zero, the solution, jβ , is obtainable and it is in 
the form of a weighted difference,  
                      
     pjfcv

i
jiiij ,...,2,1,,)( )( =−=∑ −β , 

                                                                   (8)             
        
where the weight, iv , is also equal to Eq.(7). 
However, the equation for iz  is iji xy . 

The parameters for minimum chi-
squares model are solved by minimizing the chi-
squares (Bailey & Simon 1960),  

 

       ∑ −
=

i i

iii

f
fcy 2

2 )(χ ,  

 
or by equating, 
                      

  pjfcw
i

iii
j

,...,2,1,0)(
2

==−=
∂
∂ ∑β
χ ,                           

                                                                         (9) 
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where the weight, iw , is  
 

j

i

i

iii f
f

fcy
β∂

∂+
2

)(
. 

 
The first derivative of the fitted value is 

equal to, 
                         

                                iji
j

i xf
f

=
∂
∂
β

,       (10) 

 
for multiplicative model and, 
                          

                                 ij
j

i x
f

=
∂
∂
β

,                    (11) 

                       
for additive model. 
  Substituting Eq.(1) and Eq.(10) into 
Eq.(9) for multiplicative model, )exp( jβ  is 

equal to Eq.(6), where the weight, iv , is equal to 
Eq.(7). However, the value for iz  is 

ijiii xfcy )( + . If Eq.(2) and Eq.(11) are 
substituted into Eq.(9) for additive model, jβ  is 
equal to Eq.(8), where the weight, iv , is also 
equal to Eq.(7). The value for iz  is  
 

ij
i

iii x
f

fcy
2

)( + . 

 
Maximum Likelihood Models 

Let iii CyT =  be the random variable for 
total claim costs. If iT  is assumed to follow 
Normal distribution with mean iii fyTE =)(  and 
variance 2)( σ=iTVar  (Brown 1988), the 
parameters are solved by using the likelihood 
equations, 
                    

   pjfcw
i

iii
j

,...,2,1,0)( ==−=
∂
∂ ∑β

, 

                                                                  (12) 
 

where iw  is 
j

i
i

fy
β∂

∂2 . Substituting Eq.(1) and 

Eq.(10) into Eq.(12) for multiplicative model, 
)exp( jβ  is equal to Eq.(6), where iv  is equal to 

Eq.(7). However, the value for iz  is ijjii xfy 2
)(

2
− . 

If Eq.(2) and Eq.(11) are substituted into Eq.(12) 
for additive model, jβ  is equal to Eq.(8), where 

iv  is equal to Eq.(7). The value for iz  is iji xy 2 . 
  Let iT  be Poisson distributed with mean 

ii fy . The likelihood equations can also be 
written as Eq.(12), but the value for iw  is 

j

i

i

i f
f
y

β∂
∂ . Following the same procedure as the 

Normal distribution, the parameters for 
multiplicative model, )exp( jβ , are equal to 
Eq.(6), where iv  is equal to Eq.(7). However, 
the value for iz  is ijjii xfy )(− . Therefore, the 
parameters for Poisson multiplicative are shown 
to be equivalent to the zero bias multiplicative. 
For additive model, jβ  is equal to Eq.(8), where 

iv  is equal to Eq.(7). The value for iz  is ij
i

i x
f
y . 

  If iT  is exponentially distributed with 
mean ii fy , the likelihood equations can also be 
written as Eq.(12). However, the value for iw  is 

j

i

i

f
f β∂

∂
2

1 . The parameters for multiplicative 

model, )exp( jβ , are equal to Eq.(6), where iv  
is equal to Eq.(7). However, the value for iz  is 

ijx . For additive model, jβ  is equal to Eq.(8), 
where iv  is equal to Eq.(7). The value for iz  is 

ij
i

x
f 2
1 . 

  Let iT  be Gamma distributed with mean 

ii fy  and variance 22
ii fyσ . The likelihood 

equations can also be written as Eq.(12), but the 

value for iw  is 
j

i

i

i f
f
y

β∂
∂

2 . The parameters for 

multiplicative model, )exp( jβ , are equal to 
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Eq.(6), where iv  is equal to Eq.(7). However, 
the value for iz  is iji xy . For additive model, jβ  
is equal to Eq.(8), where iv  is equal to Eq.(7). 

The value for iz  is ij
i

i x
f
y

2 . 

 
Other Models  

The weighted equations shown by 
Eq.(4), Eq.(9) and Eq.(12) may also be extended 
to other error functions. For example, if the sum 
squares error is defined as (Brown 1988), 

∑ −=
i

iii fcyS 2)( , the parameters are solved 

by using the least squares equations,        
                

   pjfcwS

i
iii

j
,...,2,1,0)( ==−=

∂
∂ ∑β

,                     

                                                                       (13) 
 

where iw  is 
j

i
i

fy
β∂

∂ . The parameters for 

multiplicative model, )exp( jβ , are equal to 
Eq.(6), where iv  is equal to Eq.(7). However, 
the value for iz  is ijjii xfy 2

)(− . For additive 

model, jβ  is equal to Eq.(8), where iv  is equal 
to Eq.(7). The value for iz  is iji xy . Therefore, 
the parameters for least squares additive are 
shown to be equivalent to the zero bias additive. 

If the function of errors is a modified 
chi-squares which is defined as,  

 

∑ −=
i

ii
i

i fc
c
y 22

mod )(χ , 

 
the weighted equation is equal to, 
              

pjfcw
i

iii
j

,...,2,1,0)(
2
mod ==−=

∂
∂ ∑β
χ

 

                                                 (14) 
 
 
 
 
 

where iw  is  

j

i

i

i f
c
y

β∂
∂ . 

 
The    parameters    for    multiplicative    model, 

)exp( jβ , are equal to Eq.(6) where iv  is equal 
to Eq.(7). However, the value for iz  is 

ij
i

jii x
c
fy 2

)(− . For additive model, jβ  is equal to 

Eq.(8), where iv  is equal to Eq.(7). The value 

for iz  is ij
i

i x
c
y . 

Table 1 summarizes the weighted 
equations and parameter solutions for all of the 
models discussed above. Based on the weighted 
equations and parameter solutions, the following 
conclusions can be made regarding the 
comparison of several risk classification 
methods which were discussed above: 
 

• The parameter estimates for zero bias 
and Poisson multiplicative are equal. 
The parameter estimates for zero bias 
and least squares additive are also equal. 

• The weighted equations and parameter 
solutions indicate that all models are 
similar. Each model is distinguished 
only by its weight. 

 
Classical Fitting Procedure 

In this study, the multiplicative and 
additive models will be fitted by using two 
different procedures; classical and regression. 
The classical fitting procedure was introduced 
by Bailey and Simon (1960). The procedure 
involves sequential iterations where each 
parameter, jβ , pj ,...,2,1= , is calculated 
individually in each sequence. In the first 
sequence, the value for )1(

1β  is calculated by 
using the initial values, (0)β . The sequence is 
then repeated until the p th sequence, where 

)1(
pβ  is calculated and vector (1)β  is produced. 

The sequential iteration is then repeated until the 
values for β  converged. 
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Table 1. Weighted equations and parameter solutions 

 
Models iw  for 

weighted equation, 
0)( =−∑

i
iii fcw  

iz   for multiplicative 
parameter solution, 

exp( )jβ ∑
−

=
i ji

i
i f

c
v

)(
, 

where i
i

i
i

zv
z

=
∑

 

iz  for additive 
parameter solution, 

jβ ∑ −−=
i

jiii fcv )( )( , 

where i
i

i
i

zv
z

=
∑

 

 
Zero bias 
 
                                           
Poisson 
 
 
 
Least squares 
 
 
Minimum 2χ                    
 
 
 
Normal  
 
 
Exponential 
 
 
 
Gamma                              
 
 
 
Minimum modified 2χ      

 

 
ijii xyw =  

 

j

i

i

i
i

f
f
y

w
β∂

∂
=  

 

j

i
ii

f
yw

β∂
∂

=  

 

j

i

i

iii
i

f
f

fcy
w

β∂
∂+

=
2

)(
 

 

j

i
ii

f
yw

β∂
∂

= 2  

 

j

i

i
i

f
f

w
β∂

∂
=

2
1  

 

j

i

i

i
i

f
f
y

w
β∂

∂
=

2
 

 

j

i

i

i
i

f
c
y

w
β∂

∂
=  

 

 
ijjiii xfyz )(−=  

 
ijjiii xfyz )(−=  

 
 

ijjiii xfyz 2
)(−=  

 
 

ijiiii xfcyz )( +=  
 
 
 

ijjiii xfyz 2
)(

2
−=  

 
 

iji xz =  
 
 

ijii xyz =  
 

ij
i

jii
i x

c
fy

z
2

)(−=  

 

 
ijii xyz =  

 

ij
i

i
i x

f
y
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ijii xyz =  

 
 

ij
i

iii
i x

f
fcy

z
2

)( +
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ijii xyz 2=  
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i
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f

z
2
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i

i
i x

f
y

z
2
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i

i
i x

c
y
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As an example, the programming for 
zero bias multiplicative will be discussed here. 
The parameter solution is  
 

∑
−

=
i ji

i
ij f

c
v

)(
)exp(β , 

 
where  
 

∑
=

i
i

i
i z

z
v  

 
and  
 

ijjiii xfyz )(−= . 
   

Let )( jif −  be the i th row of vector j)(f − . 
For multiplicative model, 

)exp( j)(j)(j)( βXf −−− = , where j)(X −  is the 
matrix of explanatory variables without the j th 
column and j)(β −  the vector of regression 
parameters without the j th row. Let jx  be the 
vector which is equivalent to the j th column of 
matrix X . Therefore, ijx  is equal to the i th row 
of vector jx . For each j , let ijjiii xfyz )(−= . 
Therefore, the weight, iv , is equal to iz  divided 
by sum of iz  for all i . Finally, the parameter 
solution, )exp( jβ , is equal to the sum of 

)( ji

i
i f

c
v

−
 for all i . 

An example of S-PLUS programming 
for zero bias multiplicative is given in Appendix 
A. Similar programming can also be used for all 
of the multiplicative and additive models which 
were discussed in this study. Each model should 
be differentiated only by three elements: 

 
• The fitted values for multiplicative 
model are )exp(Xβf =  and 

)exp( j)(j)(j)( βXf −−− = . For additive model, the 
fitted values are Xβf =  and j)(j)(j)( βXf −−− = . 

• The parameter solution is 

∑
−

=
i ji

i
ij f

c
v

)(
)exp(β  for multiplicative model, 

and ∑ −−=
i

jiiij fcv )( )(β  for additive model. 

 
• Each model has its own equation for iz . 
 
Regression Fitting Procedure 

The regression fitting procedure 
involves standard iterations where all of the 
parameters, jβ , pj ,...,2,1= ,  are calculated 
simultaneously in each iteration. Because the 
parameters are solved simultaneously, the 
regression procedure provides a faster 
convergence compared to the classical 
procedure. In the first iteration, (1)β  are 
calculated by using initial values of (0)β . The 
iteration is then repeated until the values for β  
converged. 

The parameters, jβ , pj ,...,2,1= , for 
regression fitting procedure are solved by 
minimizing ∑ −

i
iii fcw 2)(  or by equating, 

               

     pj
f

fcw
i j

i
iii ,...,2,1,,0)( ==

∂
∂

−∑ β
.                     

                                                                       (15) 
 
Therefore, the weighted equations for risk 
classification models shown by Eq.(4), Eq.(9), 
Eq.(12), Eq.(13) and Eq.(14) are also equivalent 
to Eq.(15). By using Taylor series 
approximation, the values for β  in the r th 
iteration is equal to, 
          

)()( 1 1)(r1)(r1)T(r1)(r1)(r1)T(r(r) scWZZWZβ −−−−−−− −=
                                                                       (16) 
  
where (r)β  and 1)(rβ −  are the values for β  in the 
r th and 1−r th iterations, 1)(rZ −  the pn ×  

matrix whose ij th element is 
1)(rββ

β

−=
∂

∂

j

if
β

)(
, 

1)(rW −  the diagonal weight matrix evaluated at 



COMPARISON OF RISK CLASSIFICATION METHODS 520 

1)(rβ − , and 1)(rs −  the vector whose i th row is 
equal to  
 

∑
=

−−− −
p

j

r
ij

r
ji zf

1

)1()1()( β1)(rβ . 

 
As an example, the programming for 

additive least squares will be discussed here. 
The weighted equation is  

 

pj
f

fcy
i j

i
iii ,...,2,1,0)( ==

∂
∂

−∑ β
. 

 
Therefore, the i th diagonal element of the 
weight matrix is equal to iy ,  which is free of 

1)(rβ − . For an additive model, the ij th element 

of matrix 1)(rZ −  is equal to ij
j

i x
f

=
∂

∂

−= 1)(rββ

β
β

)(
, 

which is also free of 1)(rβ − . Because ijx  is the 
ij th element of matrix X  and the dimensions 
for 1)(rZ −  and X  are equal, XZ 1)(r =−  and 

0)( =−= −−− 1)(r1)(r1)(r Xββfs . Therefore, 
Eq.(16) for additive least squares is simplified 
into, 
 

WcXWXXββ TT(r) 1)( −== , 
                                                                       (17) 
 
which is also equal to the Normal equation in the 
standard linear regression model. Eq.(17) also 
indicates that the parameters for additive least 
squares can be solved without any iteration. 
 For multiplicative model, the ij th 
element of matrix 1)(rZ −  is equal to, 

iji
j

i xf
f

)(
)( 1)(r

ββ

β
β

1)(r

−

=

=
∂

∂

−β
. Therefore, the 

equation for 1)(rZ −  may be written as, 
 

XFZ 1)(r1)(r −− = , 
                                                                       (18) 
 

where 1)(rF −  is the diagonal matrix whose i th 
diagonal elements is )( 1)(rβ −

if . The vector for 
1)(rs −  may be written as  

 
1)(r1)(r1)(r1)(r XβFβs −−−− −= )(f . 

 
The advantage of using the regression 

fitting procedure is that besides multiplicative 
and additive models, the fitting can also be 
extended to other regression models as well. 
Therefore, the regression fitting procedure 
allows a variety of regression model to be 
created and applied, as long as the function of 
the fitted value is written as  

 

10   ,01 ,
1

≤<<≤−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

=

bbxf
bp

j
ijji β . 

 
For example, if the fitted value is assumed to 
follow an inverse function, i.e., 1−=b , the ij th 
element of matrix 1)(rZ −  is equal to 

2( ) { ( )}
(r 1)

(r 1)

β β

β βi
i ij

j

f f x
β −

−

=

∂ = −
∂

. Therefore, the 

equation for 1)(rZ −  may also be written as 
Eq.(18). However, the i th diagonal element of 
matrix 1)(rF −  is equal to 2{ ( )}(r 1)βif

−− . 
An example of S-PLUS programming 

for least squares multiplicative is given in 
Appendix B. Similar programming can also be 
used for either of the multiplicative, additive or 
inverse models. Each programming should be 
differentiated only by three elements: 

 
• The vector for the fitted values is equal 
to )exp(Xβf =  for multiplicative model, 

Xβf =  for additive model, and 1)( −= Xβf  for 
inverse model. 
 
• XZ 1)(r =−  for additive model, and 

XFZ 1)(r1)(r −− =  for multiplicative and inverse 
models. However, the i th diagonal element of 
matrix 1)(rF −  is equal to )( 1)(rβ −

if  for 
multiplicative model, and 2)}({ −−− 1)(rβif  for 
inverse model. 
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• Each model has its own weight matrix. 
 
 

Results 
 
Malaysian Data 

The risk classification methods will be 
compared on the Malaysian private car Third 
Party Property Damage (TPPD) average claim 
costs data. Specifically, the TPPD claim covers 
the legal liability for third party property loss or 
damage caused by or arising out of the use of an 
insured motor vehicle. The data, which was 
obtained from an insurance company in 
Malaysia and was supplied by the General 
Insurance Association of Malaysia (PIAM), was 
based on 170,000 private car policies in a three-
year period of 1998-2000. The data consists of 
claim counts and average claim costs which 
were already paid as well as outstanding. The 
average claim costs, which were already 
adjusted for inflation, were given in Ringgit 
Malaysia (RM). The risks for the claims were 
associated   with   five   rating   factors; coverage  

 
 

type, vehicle make, vehicle use and driver’s 
gender, vehicle year, and location. Altogether, 
there were 24054322 =××××  cross-classified 
rating classes of claim severities to be estimated. 
The complete data is available by contacting the 
author. 

The claim severities were fitted to all of 
the multiplicative and additive models which 
were discussed in this study. However, the 
fitting involves only 108 data points because 132 
of the rating classes have zero claim count. In 
addition, the models will be evaluated by using 
two different tests; chi-squares and average 
absolute difference. The average absolute 
difference is equal to (Bailey and Simon 1960)  
 

∑
∑ −

i
ii

i
iii

cy

fcy
. 

   
Table 2 and Table 3 give the parameter 

estimates, chi-squares and average absolute 
difference for multiplicative and additive models 
of the Malaysian data. 

 

Table 2: Multiplicative models for Malaysian data 

Parameters Zero bias 
/Poisson 

Least 
squares 

Minimum 
2χ  

Normal Exponential Gamma Minimum 

modified 2χ  

)exp( 1β  Intercept 
 

)exp( 2β  Non-comp 
 

)exp( 3β  Foreign 
 

)exp( 4β  Female 
)exp( 5β  Business 

 
)exp( 6β  2-3 years 

)exp( 7β  4-5 years 

)exp( 8β  6+ years 
 

)exp( 9β   North 

)exp( 10β  East 

)exp( 11β  South 
)exp( 12β  East M’sia 

7,467.43 
 
 

1.15 
 

1.08 
 
 

0.90 
0.20 

 
 

0.78 
0.69 
0.73 

 
 
 

0.94 
0.86 
0.93 
0.94 

 

7,459.97 
 
 

1.15 
 

1.07 
 
 

0.90 
0.20 

 
 

0.78 
0.70 
0.73 

 
 
 

0.94 
0.85 
0.93 
0.95 

7,460.65 
 
 

1.17 
 

1.08 
 
 

0.90 
0.20 

 
 

0.78 
0.70 
0.73 

 
 
 

0.94 
0.87 
0.94 
0.97 

7,493.35 
 
 

1.13 
 

1.07 
 
 

0.93 
0.20 

 
 

0.79 
0.69 
0.72 

 
 
 

0.93 
0.84 
0.94 
0.94 

 

7,229.48 
 
 

1.16 
 

1.20 
 
 

0.80 
0.21 

 
 

0.74 
0.66 
0.72 

 
 
 

0.92 
0.88 
1.04 
1.06 

7,480.11 
 
 

1.15 
 

1.08 
 
 

0.89 
0.20 

 
 

0.78 
0.69 
0.73 

 
 
 

0.94 
0.87 
0.93 
0.94 

7,486.69 
 
 

1.10 
 

1.08 
 
 

0.88 
0.20 

 
 

0.78 
0.69 
0.73 

 
 
 

0.93 
0.83 
0.93 
0.89 

2χ  (10-5) 
Absolute difference 

3.76 
0.07 

3.77 
0.06 

3.73 
0.07 

3.89 
0.07 

6.69 
0.11 

3.77 
0.07 

4.08 
0.07 
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The classical and regression fitting 

procedures give equal values for parameter 
estimates. However, the regression procedure 
provides a faster convergence. 

The multiplicative and additive models 
give similar parameter estimates. The smallest 
chi-squares is given by the minimum chi-squares 
model. Except for the exponential model, all 
models provide similar values for absolute 
difference. 

 
U.K. Data 

The U.K. data provides information on 
the Own Damage claim counts and average 
claim costs for privately owned and 
comprehensively insured vehicles (McCullagh 
& Nelder 1989). The average claim costs, which 
were already adjusted for inflation, were given 
in Pound Sterling. The risks for the claims were  

 

 
 

 
 

associated with three rating factors; 
policyholder’s age, car group and vehicle age. 
Altogether, there were 128448 =××  cross-
classified rating classes of claim severities to be 
estimated.  
  The claim severities were fitted to all of 
the multiplicative and additive models which 
were discussed in this study. In addition, the 
severities were also fitted to the inverse models 
because McCullagh and Nelder (1989) also fit 
the severities to the Gamma regression model by 
assuming that the regression effects were linear 
on the reciprocal scale. The fitting involves only 
123 data points because five of the rating classes 
have zero claim count.  
  Table 4, Table 5 and Table 6 give the 
parameter estimates, chi-squares and average 
absolute difference for multiplicative, additive 
and inverse models of the U.K. data. 

 

 
Table 3: Additive models for Malaysian data 

Parameters (10-2) Zero bias 
/Least 

squares 

Poisson Minimum 
2χ  

Normal Exponential Gamma Minimum 

modified 2χ  

)exp( 1β  Intercept 
 

)exp( 2β  Non-comp 
 

)exp( 3β  Foreign 
 

)exp( 4β  Female 
)exp( 5β  Business 

 
)exp( 6β  2-3 years 

)exp( 7β  4-5 years 

)exp( 8β  6+ years 
 

)exp( 9β   North 

)exp( 10β  East 

)exp( 11β  South 
)exp( 12β  East M’sia 

74.08 
 
 

8.06 
 

4.36 
 
 

-6.18 
-40.79 

 
 

-15.51 
-21.90 
-19.53 

 
 
 

-3.76 
-8.53 
-3.92 
-3.36 

74.07 
 
 

8.03 
 

4.55 
 
 

-6.51 
-40.83 

 
 

-15.60 
-22.03 
-19.54 

 
 
 

-3.70 
-7.77 
-3.83 
-3.53 

74.07 
 
 

9.31 
 

4.67 
 
 

-6.26 
-40.75 

 
 

-15.56 
-21.90 
-19.72 

 
 
 

-3.60 
-6.88 
-3.72 
-1.97 

74.74 
 
 

7.23 
 

4.10 
 
 

-4.77 
-40.13 

 
 

-15.42 
-22.64 
-20.38 

 
 
 

-4.23 
-8.78 
-3.87 
-3.45 

72.82 
 
 

5.37 
 

10.16 
 
 

-12.32 
-39.69 

 
 

-18.34 
-23.23 
-19.15 

 
 
 

-3.99 
-6.44 
2.42 
2.27 

74.09 
 
 

8.01 
 

4.72 
 
 

-6.77 
-40.88 

 
 

-15.70 
-22.19 
-19.56 

 
 
 

-3.64 
-7.18 
-3.75 
-3.72 

74.10 
 
 

5.26 
 

4.34 
 
 

-7.16 
-41.09 

 
 

-15.78 
-22.34 
-19.15 

 
 
 

-3.86 
-9.69 
-4.03 
-6.46 

2χ  (10-5) 
Absolute difference 

3.71 
0.06 

3.70 
0.06 

3.66 
0.06 

3.81 
0.07 

6.21 
0.11 

3.70 
0.06 

4.01 
0.07 
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Table 4: Multiplicative models for U.K. data 
 

Parameter Zero bias 
/Poisson 

Least 
squares 

Minimum 
2χ  

Normal Exponential Gamma Minimum 

modified 2χ  

)exp( 1β  Intercept 
 

)exp( 2β  21-24 yrs 

)exp( 3β  25-29 yrs 

)exp( 4β  30-34 yrs 
)exp( 5β  35-39 yrs 

)exp( 6β  40-49 yrs 

)exp( 7β  50-59 yrs 

)exp( 8β  60+  yrs 
 

)exp( 9β   B 

)exp( 10β  C 

)exp( 11β  D 
 

)exp( 12β  4-7 yrs 
)exp( 13β  8-9 yrs 

)exp( 14β  10+ yrs 

297.57 
 
 

0.98 
0.91 
0.88 
0.70 
0.77 
0.78 
0.78 

 
 
 
 

0.99 
1.16 
1.48 

 
 
 

0.91 
0.70 
0.49 

309.81 
 
 

0.94 
0.88 
0.86 
0.67 
0.75 
0.76 
0.77 

 
 
 
 

0.98 
1.15 
1.48 

 
 
 

0.90 
0.69 
0.48 

313.59 
 
 

0.95 
0.87 
0.84 
0.67 
0.73 
0.75 
0.74 

 
 
 
 

0.99 
1.16 
1.50

 
 
 

0.91 
0.70 
0.51 

279.34 
 
 

1.05 
0.97 
0.96 
0.75 
0.81 
0.83 
0.82 

 
 
 
 

0.96 
1.14 
1.53 

 
 
 

0.95 
0.74 
0.50 

302.38 
 
 

0.90 
1.01 
0.75 
0.72 
0.76 
0.79 
0.75 

 
 
 
 

1.06 
1.17 
1.60 

 
 
 

0.89 
0.66 
0.48 

 

286.75 
 
 

1.00 
0.94 
0.89 
0.73 
0.79 
0.80 
0.80 

 
 
 
 

1.00 
1.17 
1.49 

 
 
 

0.92 
0.71 
0.50 

257.91 
 
 

1.08 
1.04 
1.01 
0.79 
0.89 
0.89 
0.90 

 
 
 
 

0.99 
1.16 
1.45 

 
 
 

0.91 
0.69 
0.46 

2χ  (10-4) 
Absolute difference 

3.10 
0.08 

3.13 
0.08 

3.07 
0.08 

 

3.27 
0.08 

4.50 
0.11 

 

3.12 
0.08 

 

3.40 
0.08 

  
Table 5: Additive models for U.K. data 

 
Parameter Zero bias 

/Least 
squares 

Poisson Minimum 
2χ  

Normal Exponential Gamma Minimum 

modified 2χ  

)exp( 1β  Intercept 
 

)exp( 2β  21-24 yrs 
)exp( 3β  25-29 yrs 

)exp( 4β  30-34 yrs 
)exp( 5β  35-39 yrs 

)exp( 6β  40-49 yrs 

)exp( 7β  50-59 yrs 

)exp( 8β  60+  yrs 
 

)exp( 9β   B 

)exp( 10β  C 

)exp( 11β  D 
 

)exp( 12β  4-7 yrs 
)exp( 13β  8-9 yrs 

)exp( 14β  10+ yrs 

298.67 
 
 

-5.60 
-24.64 
-33.22 
-87.89 
-66.99 
-63.35 
-63.15 

 
 
 

 
-2.46 
34.18 

108.66 
 
 
 

-24.21 
-76.75 

-126.63 

288.34 
 
 

0.31 
-16.95 
-29.34 
-75.74 
-60.27 
-55.64 
-56.91 

 
 
 

 
-0.21 
35.45 

108.76 
 
 
 

-21.54 
-72.26 

-121.21 

303.94 
 
 

-7.53 
-30.52 
-43.39 
-89.26 
-75.55 
-70.12 
-72.15 

 

 
 

-0.50 
35.05 

113.74 
 
 
 

-21.98 
-71.63 

-118.78 

273.49 
 
 

17.58 
-2.01 
-7.76 

-64.78 
-50.51 
-45.49 
-47.39 

 
 
 

 
-7.03 
33.89 

123.07 
 
 
 

-10.57 
-59.08 

-111.15 

291.89 
 
 

-10.84 
15.31 

-47.35 
-44.23 
-45.84 
-36.19 
-44.32 

 
 
 

 
8.19 

25.86 
97.83 

 
 
 

-30.60 
-96.51 

-147.85 

278.98 
 
 

4.96 
-9.91 

-26.59 
-64.82 
-54.15 
-48.60 
-51.10 

 
 
 

 
2.04 

36.41 
108.90 

 
 

 
-19.62 
-69.12 

-117.94 

241.88 
 
 

34.01 
26.37 
14.17 

-33.45 
-13.68 
-10.87 
-10.32 

 
 

 
 

-0.30 
35.84 
96.09 

 
 
 

-20.39 
-74.38 

-128.54 

2χ  (10-4) 
Absolute difference 

3.41 
0.09 

3.35 
0.09 

3.32 
0.09 

3.55 
0.09 

 

4.88 
0.11 

3.40 
0.09 

3.77 
0.09 
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As expected, the parameter estimates for 

classical and regression fitting procedures are 
equal and the regression fitting procedure 
provides a faster convergence. 
  The parameter estimates for 
multiplicative, additive and inverse models are 
similar. In particular, the parameter estimates for 
Gamma inverse model are equal to the 
parameter estimates produced by McCullagh and 
Nelder (1989). The smallest chi-squares is also 
given by the minimum chi-squares model. 
Except for the exponential model, all models 
provide equal values for absolute difference. 
 
Canadian Data 

The Canadian data, which was obtained 
from Bailey and Simon (1960), provides 
information    on    liability   claim   counts   and  

 
 

 

 
 

average claim costs for private passenger 
automobile insurance. The data involves two 
rating factors; merit and class. Altogether, there 
were 2054 =×  cross-classified rating classes of 
claim severities to be estimated. 
  The claim severities were fitted to all of 
the multiplicative and additive models which 
were discussed in this study. Table 7 and Table 
8 give the parameter estimates, chi-squares and 
average absolute difference for multiplicative 
and additive models of the Canadian data.  
  As expected, the multiplicative and 
additive models give similar parameter 
estimates. The smallest chi-square is also given 
by the minimum chi-squares model. Except for 
the exponential model, all models provide equal 
values for absolute difference. 

 
 
 

 
Table 6: Inverse models for U.K. data 

 
Parameter (104) Poisson Least 

squares 
Minimum 

2χ  

Normal Exponential Gamma Minimum 

modified 2χ  

)exp( 1β  Intercept 
 

)exp( 2β  21-24 yrs 

)exp( 3β  25-29 yrs 

)exp( 4β  30-34 yrs 

)exp( 5β  35-39 yrs 

)exp( 6β  40-49 yrs 

)exp( 7β  50-59 yrs 

)exp( 8β  60+  yrs 
 

)exp( 9β   B 

)exp( 10β  C 

)exp( 11β  D 
 

)exp( 12β  4-7 yrs 
)exp( 13β  8-9 yrs 

)exp( 14β  10+ yrs 

32.79 
 
 

2.41 
4.75 
5.30 

14.97 
10.28 

9.96 
9.75 

 
 
 

 
0.70 

-5.68 
-13.77 

 
 
 

3.95 
16.83 
41.74 

31.30 
 
 

4.16 
6.26 
6.39 

16.61 
11.12 
10.98 
10.58 

 
 
 

 
0.93 

-5.29 
-13.55 

 
 
 

4.21 
17.14 
41.97 

31.23 
 
 

3.12 
6.11 
6.81 

16.11 
11.73 
11.30 
11.26 

 
 
 

 
0.68 

-5.60 
-13.90 

 
 
 

3.99 
16.33 
38.52 

 

35.10 
 
 

-0.28 
2.25 
2.50 

12.41 
8.41 
7.78 
7.88 

 
 

 
 

2.06 
-5.11 

-14.27 
 
 
 

2.65 
15.45 
43.50 

37.44 
 
 

-0.74 
0.46 
0.83 

11.36 
5.97 
5.89 
5.32 

 
 
 

 
0.65 

-5.95 
-13.60 

 
 
 

3.88 
17.95 
47.09 

34.11 
 
 

1.01 
3.50 
4.62 

13.70 
9.69 
9.16 
9.20 

 
 

 
 

0.38 
-6.14 

-14.21 
 
 
 

3.66 
16.51 
41.54 

37.44 
 
 

-0.74 
0.46 
0.83 

11.36 
5.97 
5.89 
5.32 

 
 

 
 

0.65 
-5.95 

-13.60 
 
 
 

3.88 
17.95 
47.09 

2χ  (10-4) 
Absolute difference 

3.10 
0.08 

3.13 
0.08 

3.07 
0.08 

 

3.27 
0.08 

 

3.37 
0.08 

 

3.12 
0.08 

 

3.37 
0.08 
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Table 7: Multiplicative models for Canadian data 

 
Parameter Zero bias 

/Poisson 
Least 

squares 
Minimum 

2χ  

Normal Exponential Gamma Minimum 

modified 2χ  
 

)exp( 1β  Intercept 
 

)exp( 2β Merit  X 

)exp( 3β  Merit Y 

)exp( 4β  Merit B 
 

)exp( 5β  Class 2 

)exp( 6β  Class 3 

)exp( 7β  Class 4 

)exp( 8β  Class 5 
 

 
292.00 

 
 

0.99 
0.99 
1.06 

 
 
 

1.09 
1.02 
1.17 
0.92 

 
292.10 

 
 

0.99 
0.99 
1.05 

 
 
 

1.08 
1.02 
1.17 
0.92 

 
291.97 

 
 

0.99 
0.99 
1.06 

 
 
 

1.09 
1.02 
1.17 
0.92 

 
291.08 

 
 

1.00 
0.99 
1.07 

 
 
 

1.09 
1.03 
1.18 
0.92 

 
294.57 

 
 

0.97 
1.00 
1.05 

 
 
 

1.12 
0.98 
1.16 
0.92 

 

 
291.92 

 
 

0.99 
0.99 
1.06 

 
 
 

1.09 
1.02 
1.17 
0.92 

 
292.07 

 
 

0.98 
0.99 
1.06 

 
 
 

1.08 
1.02 
1.17 
0.92 

 
2χ  (10-4) 

Absolute difference 
 

 
4.95 
0.01 

 
4.96 
0.01 

 

 
4.95 
0.01 

 

 
5.45 
0.01 

 
8.03 
0.02 

 

 
4.95 
0.01 

 

 
4.99 
0.01 

 

  
 

 
Table 8: Additive models for Canadian data 

 
Parameter Zero bias 

/Least 
squares 

Poisson Minimum 
2χ  

Normal Exponential Gamma Minimum 

modified 2χ  

 
)exp( 1β  Intercept 

 
)exp( 2β  Merit X 
)exp( 3β  Merit Y 

)exp( 4β  Merit B 
 

)exp( 5β  Class 2 

)exp( 6β  Class 3 

)exp( 7β  Class 4 

)exp( 8β  Class 5 
 

 
291.95 

 
 

-4.24 
-3.45 
17.11 

 
 
 

25.16 
4.71 

51.08 
-22.92 

 

 
291.87 

 
 

-4.05 
-3.58 
17.53 

 
 

 
25.35 

4.68 
51.18 

-22.99 

 
291.83 

 
 

-3.38 
-3.51 
17.58 

 
 

 
25.75 

4.80 
51.28 

-22.79 

 
291.06 

 
 

0.59 
-3.95 
20.28 

 
 

 
25.13 

8.26 
53.30 

-23.62 

 
294.77 

 
 

-10.11 
1.00 

15.49 
 

 
 

35.64 
-6.92 
47.12 

-25.33 

 
291.80 

 
 

-3.92 
-3.68 
17.92 

 
 

 
25.54 

4.65 
51.30 

-23.05 

 
291.94 

 
 

-5.37 
-3.71 
17.44 

 
 

 
24.63 

4.43 
51.01 

-23.38 

 
2χ  (10-4) 

Absolute difference 
 

 
4.68 
0.01 

 
4.67 
0.01 

 

 
4.67 
0.01 

 

 
5.10 
0.01 

 

 
8.20 
0.02 

 

 
4.67 
0.01 

 

 
4.71 
0.01 
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Conclusion 
 

This study compared several risk classification 
methods for multiplicative and additive models 
by using weighted equation which is written as a 
weighted difference between the observed and 
fitted values. In addition, the parameter solutions 
for multiplicative and additive models were also 
compared by using weighted solution. The 
weighted solution for multiplicative model is in 
the form of a weighted proportion of observed 
over fitted values, whereas the weighted solution 
for additive model is in the form of a weighted 
difference between observed and fitted values. 
  In this study, the weighted equation was 
applied to estimate claim severity or average 
claim cost which is also equivalent to the total 
claim costs divided by the number of claims. 
The risk classification methods were compared 
on three types of severity data; Malaysian 
private motor third party property damage data, 
U.K. private vehicles own damage data from 
McCullagh and Nelder (1989), and data from 
Bailey and Simon (1960) on Canadian private 
automobile liability.  
  The fitting procedure were carried out 
by using two different approaches; classical and 
regression. The advantage of using the 
regression fitting procedure is that besides 
multiplicative and additive models, the fitting 
can also be extended to other regression models, 
as long as the function of the fitted value is 
written in a specified linear form. The inverse 
models were also fitted to the U.K. data because 
McCullagh and Nelder (1989) also fit the same 
data to the Gamma regression model by 
assuming that the regression effects were linear 
on the reciprocal scale. 

As expected, the multiplicative and 
additive models give similar parameter 
estimates. The smallest chi-squares for 
multiplicative, additive and inverse models is 
given by the minimum chi-squares model. 
Except for the exponential model, all models 
provide similar values for absolute difference. 
 

References 
 

Ajne, B. (1975). A Note on the 
Multiplicative Ratemaking Model. ASTIN 
Bulletin, 8(2), 144-153. 

Anderson, D., Feldblum, S., Modlin, C., 
Schirmacher, D., Schirmacher, E. & Thandi, N. 
(2004). A practitioner’s guide to generalized 
linear models. Casualty Actuarial Society 
Discussion Paper Program, 1-115. 

Bailey, R. A. & Simon, L. J. (1960). 
Two studies in automobile insurance 
ratemaking, ASTIN Bulletin, 4(1), 192-217. 

Bailey, R. A. (1963). Insurance rates 
with minimum bias. Proceedings of the Casualty 
Actuarial Society, 50(93), 4-14. 

Baxter, L. A., Coutts, S. M., & Ross, G. 
A. F. (1980). Applications of linear models in 
motor insurance. Proceedings of the 21st 
International Congress of Actuaries, Zurich. 11-
29. 

Brockmann, M. J. & Wright, T. S. 
(1992). Statistical motor rating: Making 
effective use of your data. Journal of the 
Institute of Actuaries, 119(3), 457-543. 

Brown, R. L. (1988). Minimum bias 
with generalized linear models. Proceedings of 
the Casualty Actuarial Society, 75(143), 187-
217. 

Chamberlain, C. (1980). Relativity 
pricing through analysis of variance. Casualty 
Actuarial Society Discussion Paper Program, 4-
24. 

Coutts, S. M. (1984). Motor insurance 
rating: An actuarial approach. Journal of the 
Institute of Actuaries, 111, 87-148. 

Feldblum, S. & Brosius, J. E. (2003). 
The minimum bias procedure: A practitioner’s 
guide. Proceedings of the Casualty Actuarial 
Society, 90(172), 196-273. 

Freifelder, L. (1986). Estimation of 
classification factor relativities: A modeling 
approach. Journal of Risk and Insurance, 53, 
135-143. 

Fu, L. & Wu, C. P. (2005). Generalized 
minimum bias models. Casualty Actuarial 
Society Forum, Winter, 72-121. 

Harrington, S. E. (1986). Estimation and 
testing for functional form in pure premium 
regression models. ASTIN Bulletin, 16, 31-43. 

Holler, K. D., Sommer, D. & Trahair, G. 
(1999). Something old, something new in 
classification ratemaking with a novel use of 
GLMs for credit insurance. Casualty Actuarial 
Society Forum, Winter, 31-84. 

 



ISMAIL & JEMAIN 527

Jee, B. (1989). A comparative analysis 
of alternative pure premium models in the 
automobile risk classification system. Journal of 
Risk and Insurance, 56, 434-459. 

Jung, J. (1968). On automobile 
insurance ratemaking. ASTIN Bulletin. 5(1), 41-
48. 

McCullagh, P. & Nelder, J. A. (1989). 
Generalized linear models (2nd Ed.). London: 
Chapman and Hall. 

Mildenhall, S. J. (1999). A systematic 
relationship between minimum bias and 
generalized linear models. Proceedings of the 
Casualty Actuarial Society, 86(164), 93-487. 

 
 
 
 

Ismail, N. & Jemain, A. A. (2005a). 
Bridging minimum bias and maximum 
likelihood methods through weighted equation. 
Casualty Actuarial Society Forum, Spring, 367-
394. 

Ismail, N. & Jemain, A. A. (2005b). 
Handling overdispersion with negative binomial 
and generalized poisson regression models. 
Proposal for the Casualty Actuarial Society 
Forum 2007. Sub-committee members: 
Lewandowski, J.J., Holler, K.D. & White, J. 

Renshaw, A. E. (1994). Modelling the 
claims process in the presence of covariates. 
ASTIN Bulletin, 24(2), 265-285. 

 
 
 
 

 
APPENDIX A 

S-PLUS programming for classical fitting procedure (Zero Bias Multiplicative) 

ZeroBias.multi <- function(data) 
{ 
# To identify matrix X, vector cost, and vector count from the data 
 X <- as.matrix(data[,-(1:2)]) 
 cost <- as.vector(data[,1]) 
 count <- as.vector(data[,2]) 
# To set initial values for vector beta 
 new.expbeta <- rep(c(1), dim(X)[2]) 
# To start the iteration 
 for (i in 1:50) 
 { 
# To start the sequence 
  for (j in 1:dim(X)[2]) 
  { 
   expbeta <- new.expbeta 
   fitted <- as.vector(exp(X%*%log(expbeta))) 
   fitted.noj <- as.vector(exp(X[,-j]%*%log(expbeta[-j]))) 
   z <- as.vector(count*fitted.noj*X[,j]) 
   v <- as.vector(z/sum(z)) 
   new.expbeta[j] <- as.vector(sum(v*(cost/fitted.noj))) 
  } 
 } 
# To calculate fitted values, chi-squares, and absolute difference 
 fitted <- as.vector(exp(X%*%log(expbeta))) 
 chi.square <- sum((count*(cost-fitted)^2)/fitted) 
 abs.difference <- sum(count*abs(cost-fitted))/sum(count*cost) 
# To list programming output 
 list (expbeta=expbeta, chi.square=chi.square, 
 abs.difference=abs.difference) 
} 
 
 



COMPARISON OF RISK CLASSIFICATION METHODS 528 

 

 
 

 
APPENDIX B 

S-PLUS programming for regression fitting procedure (Least Squares Multiplicative) 

LeastSquares.Reg <- function(data) 
{ 
# To identify matrix X, vector cost, and vector count 
 X <- as.matrix(data[,-(1:2)]) 
 cost <- as.vector(data[,1]) 
 count <- as.vector(data[,2]) 
# To set initial values for vector beta 
 new.beta <- c(5, rep(c(1), dim(X)[2]-1)) 
# To start the iteration 
 for (i in 1:20) 
 { 
  beta <- new.beta 
  fitted <- as.vector(exp(X%*%beta)) 
  Z <- diag(fitted)%*%X 
  W <- diag(count) 
  r.s <- cost-fitted+as.vector(Z%*%beta) 
  new.beta <- as.vector(solve(t(Z)%*%W%*%Z)%*%t(Z)%*%W%*%r.s) 
 } 
# To calculate fitted values, chi-squares, and absolute difference 
 fitted <- as.vector(exp(X%*%new.beta)) 
 chi.square <- sum((count*(cost-fitted)^2)/fitted) 
 abs.difference <- sum(count*abs(cost-fitted))/sum(count*cost) 
# To list programming output 
 list  (expbeta=exp(new.beta), chi.square=chi.square, 

abs.difference=abs.difference) 
} 
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