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CHAPTER 1: INTRODUCTION 

Nearfield Acoustical Holography (NAH) has become an important tool in the diagnosis 

and evaluation of noise and vibration in many industries and fields.  Since its introduction by 

Maynard and Williams
1-3

 in the early 1980s, NAH’s ability to determine the propagation and 

reconstruction of sound radiation has helped engineers understand the fundamental acoustical 

properties of NVH (noise, vibration and harshness) problems.  Particular interest has been paid to 

NAH due to its ability to determine source locations and the accompanying sound field’s 

acoustical quantities by pressure measurements alone.  The essence of NAH is the requirement to 

capture pressure waves in the nearfield.  By doing so, information regarding evanescent waves is 

captured, and a better understanding of the energy transfer of the source plane to the environment 

can be determined.  

Most, if not all of the NAH research done is with source surfaces which are significantly 

larger than the measurement devices (microphones).  However, as technology advances, 

components are becoming smaller, and localization of vibration and acoustical properties are 

becoming more difficult without high resolution scanning of the surface.  Industries ranging from 

computers to hydraulic control systems could use NAH to determine defects in motherboards or 

resonant acoustical noises within hydraulic subsystems.  Unfortunately, application of NAH to 

these fields is somewhat limited by the resolution restrictions inherent of current methods. 

All NAH methods are based on relating surface pressures or velocities to pressures 

measured in the radiated field.  In a prediction problem, these relationships are well-posed and 

solutions are stable
4
.  However, in NAH the inverse problem is solved, i.e. the measured field 

pressure is used to reconstruct the surface pressure or velocity.  Inverse problems usually result 

in ill-posed problems that produce unstable solutions.  Over the years, three factions of inverse 
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Fourier Acoustics have been of significant development:  Fourier Acoustics, Helmholtz Integral 

Equation (HIE) methods and Least Squares Approximation Methods (LSAM).   

Fourier Acoustics is the first generation of NAH developed by Williams and Maynard
1-3

.  

This method is based on relating acoustic pressure or velocity of two parallel surfaces by the 

Rayleigh integral formulas.  Unfortunately, the use of the Fourier Transform restricts Fourier 

Acoustics to separable coordinate systems, limiting real-world application of the method.  Also, 

spatial discretization of the Fourier Transform and the parallel surfaces can require a high density 

of measurements to provide high resolution reconstruction.   

HIE was developed from the need to reconstruct non-separable geometries and is based 

on solving the discrete Helmholtz Integral Equation
5
.  The most popular method of solving the 

Helmholtz Integral Equation is by the Inverse Boundary Element Method (IBEM), first 

introduced by Gardner and Bernhard
6
.  The major drawback of HIE is calculation time due to 

measurement requirements.  HIE typically requires a minimum of 2 or 6 nodes per structural 

wavelength.  For complex structures with high orders of modes, the number of discrete nodes, 

and consequently number of measurement points, can be quite high. 

In the case of LSAM, the Helmholtz equation is directly solved by relating measured and 

reconstructed quantities through a matrix of basis functions, similar to the Rayleigh-Ritz method 

used in vibration of structures
7
.  The basis functions are series expansions of eigenfunction 

solutions of the Helmholtz equation.  LSAM holds significant advantages over Fourier Acoustics 

and HIE in terms of measurement and calculation time due to minimum measurement 

requirements.  The major disadvantages of LSAM are that no single coordinate system is best for 

all surface geometries and the method is an approximate solution to the Helmholtz equation.  

Therefore, high resolution reconstruction with HIE or Fourier Acoustics provides a better 



3 

 

solution than LSAM with ideal test conditions.  More detailed pros and cons of each 

methodology have been summarized by Wu
8
 as well as Magalhães and Tenenbaum

9
. 

In practical applications, the resolution requirement must take into account noise in the 

measurement data.  As stand-off distance increases, energy due to high frequency evanescent 

waves may become masked by noise.  Williams formulated resolution requirements based on the 

effects of noise and stand-off distance for Fourier Acoustics
5
 

)10ln(

)(20

D

zz
R sh 



     (1.1)

 

Where zh-zs is the stand-off distance between the measurement surface and the 

reconstruction surface and D is the dynamic range (encompasses SNR).  Note that equation 1.1 is 

not dependent on the wavelength of the reconstructed excitation frequency.  Therefore, as noise 

or stand-off distance decreases, finer spatial resolution results as long as spatial aliasing does not 

occur due to under-sampling.  Though equation 1.1 was formulated from Fourier Acoustics, the 

guideline is usually applied to all NAH methods. 

In cases such as a computer motherboard, the guidelines set by the spatial resolution 

equation may prove difficult to adhere to due to potential dense areas of coherent sources.  Such 

requirements impose significant hardware and calculation requirements when reconstruction of 

high resolution and high frequency excitations are required.  In the case of LSAM, significant 

advantages in reconstruction and prediction of the acoustic field are obtained through the 

representation of the field as an expansion of basis functions.  By approximating the field in this 

way, it is possible to synthesize any point in the field provided that the basis functions are 

solutions to the Helmholtz equation and are good approximation of the acoustic radiation of the 

sources.  Even in cases where the basis functions are not ideal fits to the sound radiation pattern, 

least-squares minimizes the L2-norm error to provide the best possible solution for the functions 
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used and input data.  In effect, least-squares modifies the basis functions to match the field 

radiation pattern produced at the measurement positions. The approximation methodology of 

LSAM significantly reduces measurement and computation requirements over other methods. 

The synthesis of field locations’ acoustic properties leads to an interesting question.  

Since any field point can be reconstructed or predicted from a more coarse measurement array 

than the requested surface, do NAH’s spatial resolution guidelines apply to LSAM methods?  

The objective of this thesis is to investigate this question in terms of the LSAM method, 

Helmholtz Equation Least Squares (HELS), developed by Wu
10

.  A modified variant of HELS 

specifically suited for point sources is also presented.  Planar Fourier Acoustics will be used for 

comparison of resolution and accuracy. 

The dissertation will be organized as follows: 

 Ch. 2 presents a literature review of NAH methods and an alternative approach to 

sampling of measurement data.   

 Ch.3 provides theoretical background of Fourier Acoustics, HELS and sampling 

theory.  A brief overview of regularization techniques is also given.   

 Ch. 4 defines the problem statement in terms of a numerical model of two 

coherent point sources with varying parameters.  Simulation results are presented 

and analyzed.   

 Ch. 5 discusses results from experimental testing of approximate coherent sources 

in a lab environment.   

 Ch. 6 draws conclusion from the numerical and experimental data.  Future areas 

of work are also presented. 
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CHAPTER 2: LITERATURE REVIEW 

The literature review focuses on the development of Fourier Acoustics (in particular 

Planar NAH), Helmholtz Integral Equations based methods and Helmholtz Equations Least 

Squares.  In particular the pros and cons of each method with regards to reconstruction resolution 

are reviewed.  In addition, a brief overview of Compressed Sensing is given based on its ability 

to violate the Nyquist sampling rate.  Though compressed sensing is not an NAH method, it is 

being investigated in a number of imaging fields.  HELS’ ability to violate the Nyquist sampling 

rate by synthesizing field data points makes Compressed Sensing a pertinent discussion point. 

Fourier Acoustics 

Fourier Acoustics was introduced in 1980 by Williams and Maynard
1
 as the first method 

of NAH.  In this groundbreaking paper, Fourier Acoustics is developed based on extending 

reconstruction limitations that traditional holography encountered in optical imaging.  In the case 

of optical holography, the spatial reconstruction resolution is limited to the emitted wavelength 

of the source.  The paper explains that the limitation is not intrinsic to the problem, but rather a 

result of the hardware not being fast enough to detect the wave in real time.  As a result, 

measurements are always a number of wavelengths away from the source and high frequency 

energy is lost prior to reaching the detector.  The high frequency energy that does not reach the 

farfield encompasses the fine details of the wave.  If the entire frequency spectrum is known, 

reconstruction resolution is only limited based on noise and the amount of the high frequency 

energy captured.   

Applying this theory to acoustical imaging has significant advantages.  Acoustic waves 

produce much larger wavelengths than optical waves, and can easily be detected.  Therefore, if 

measurements are made very close to the source surface, high wavenumber energy that decays 
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prior to the farfield (evanescent waves) can be captured.  The information contained within the 

evanescent waves removes the wavelength resolution limit of optical holography. 

The method is based on Rayleigh’s first and second integrals, which are a special case of 

the Helmholtz integral equation
2,11

.  Discussions of Fourier Acoustics normally start with 

Rayleigh’s second integral relating pressure between two parallel surfaces.  Applying Euler’s 

equation
12

 to Rayleigh’s second integral equation produces Rayleigh’s first integral equation 

relating velocity on one surface to the pressure on a parallel surface. Together, Rayleigh’s first 

and second integrals provide information required in calculating the average normal acoustic 

intensity,      .  Acoustic intensity provides information about the energy flow from a surface 

and is used in calculating acoustic power,     .  Acoustic power is the standard metric in 

evaluating NVH levels in practice
13-14

.  The average normal acoustic intensity and acoustic 

power equations are shown below  

      
 

 
                   (2.1) 

                    (2.2) 

Where 
*
 indicates, the complex conjugate, Re the real part, and    the outward normal vector of 

the surface. 

Tables 1-3 summarize Fourier Acoustics for planar, cylindrical and spherical coordinate 

systems relating the surface and hologram surfaces (measurement surfaces, denoted by s and h 

subscripts, respectively):  
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Table 2.2: Cylindrical Fourier Acoustics coordinate system equations 

Table 2.1: Planar Fourier Acoustics coordinate system equations
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Fourier Acoustics has been studied extensively since its introduction
2, 15-18

.  However, the 

range of study is limited to separable geometries.  Sources closely approximating a plate under 

forced vibration
19

, or sound radiation from a vibrating cylinder
20

, can be characterized well by 

Fourier Acoustics.  If Fourier Acoustics is applied to surfaces that do not align with separable 

geometries, errors in reconstruction will increase due to increased stand-off-distances at low 

surface height regions.  Also, reconstruction is only valid to the surface variant of the applied 

Fourier Acoustics method. 

 
Figure 0.1: Schematic of Planar Fourier Acoustics used on source with non-separable geometry 

Varying stand-off distance 

Source 

Valid 

reconstruction 

planes 

Table 2.3: Spherical Fourier Acoustics coordinate system equations 

Measurement plane 
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One of the major drawbacks of Fourier Acoustics results from the use of the Discrete 

Fourier Transform (DFT).  Discretization of the hologram (measurement) and source surface, 

along with the discretization of the Fourier Transform, may cause spatial aliasing, edge effects 

and replicated sources.  Spatial aliasing can only be remedied by increased measurement 

resolution, which in turn increases the maximum k-space wavenumber (frequency).  In cases 

where high reconstruction resolution is required, patch methodologies
21

 have been developed to 

minimize the difficulties in taking measurements in close proximity to one another or over large 

areas of measurements
22-23

.  Edge effects and source replication can be remedied by wavenumber 

filters such as the Tukey filter
24

, as well as methods to extend the measurement plane without 

taking additional data
25

.  These methods limit the steep fall-off of spatial wavenumbers that 

cause source replication. 

Helmholtz Integral Equation 

Helmholtz Integral theory
12

 transforms the Helmholtz equation from a differential 

equation to an integral equation by applying Green’s theorem
26

.  The resulting integral equation 

is termed Helmholtz Integral Equation (HIE) and is defined as follows
27

 

                  
   

 

  
 

   
  

      

   
  

 

  
  

  
      (2.3) 

Where r0 is the surface pressure and          is the distance from the field point r 

and the surface point r0.  G is the free-space Green’s function 

  
 

  
  

     

 
      (2.4) 

                                                 

*
 Patch methodologies are not solely attributed to Fourier Acoustics, therefore the reader will notice that some of the 

referenced papers are pertaining to other NAH methods 
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The most popular method of solving the HIE for the inverse problem is by Inverse 

Boundary Element Methods (IBEM).  In IBEM, the HIE is represented by a set of matrix 

functions, 

                  
                       

  (2.5, 2.6) 

Where      and      are dipole and monopole matrices on the source surface, and      and 

     are the corresponding matrices of the field pressures.  Accordingly, {p}f represents the field 

pressures, whereas {p}s and {vn}f represent the surface pressure and normal surface velocity, 

respectively. 

IBEM was first introduced by Gardner and Bernhard
6
 through numerical simulations.  

Formal derivations were later provided by Maynard and Veronesi
28

 along with the 

implementation of Singular Value Decomposition
29

 (SVD) to solve the acoustic pressure and 

normal velocity.  IBEM’s significant advantage over Fourier Acoustics stems from the ability to 

analyze arbitrary surfaces by using measurements which conform to the surface
30

.  

IBEM in conjunction with the SVD has been applied in a number of applications
31-38

.  

However, due to the discretization of the source surface and Helmholtz Integral Equation, 

measurement requirements are often high to ensure satisfactory spatial resolution in 

reconstruction.  Though the literature did not specify requirements for measurement spacing 

requirements, the rule of thumb is usually 6 or 2 nodes per wavelength
8
. 
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Helmholtz Equation Least Squares 

Helmholtz Equation Least Squares (HELS) was first introduced by Wang and Wu
10

 to 

reconstruct surface pressure in exterior problems.  HELS directly solves the Helmholtz equation 

by approximating the solution with an expansion of admissible basis functions   

);(ˆ)|();(ˆ  mmmrrr xpxxGxp



    (2.7) 

Where the transfer function,            is defined as 

†)|( mrmr xxG 


     (2.8)
 

and the measurement and reconstruction surfaces are represented by m and r subscripts, 

respectively. The basis functions, , are usually localized spherical expansion functions.  The 

expansion coefficients are solved for by matching the assumed form solution to the pressures 

measured in the nearfield.  Approximations of the coefficients are minimized through least- 

squares.  The corresponding velocity equation is calculated by applying Euler’s equation to the 

field pressure 

  nxpxxG
i

xp mmmrrr


 );(ˆ)|(

1
);(ˆ

0






  (2.9)

 

Measurement Plane Minimized stand-off 

distance 

Source 

Figure 0.2: Schematic of conformal surface measurement possible with IBEM 
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Application of pressure reconstruction from the exterior domain has been shown for a 

structure similar to a vehicle front end
39

 and a vibrating bowling ball
 40

.  The method was further 

extended to vibroacoustic analysis by Lu and Wu for a vibrating plate
41-42

.   In terms of the 

interior domain, Yu and Wu formulated the corresponding equations and provided numerical 

examples
43

.   

The significant advantage of HELS over other methods is the reduction of measurements 

required due to the synthesis of field points.  Similar to HIE methods, HELS is capable of 

conformal measurement surfaces, thus non-separable geometries can be reconstructed.  

However, the method is not as accurate as HIE methods since it is an approximation to the 

solution based on expansion functions.  In practical applications, truncation of the expansion 

functions is required and the exact solution cannot be calculated.  However, in many cases, the 

error in reconstruction is acceptable in exchange for significant reduction in measurement and 

calculation time. 

Sub-Nyquist sampling theory 

Nyquist’s definition of minimum sampling in time or space is defined as 

   
    

 
      (2.10) 

Where fs is the sampling rate and fmax is the maximum frequency of the signal.  Violation or ―sub-

Nyquist‖ research has increased in popularity over the last decade with a technique called 

―Compressed Sensing‖
44-48

.  Compressed Sensing advantageously uses signal sparseness
49

 and 

random sampling of a signal to reconstruct at sub-Nyquist sampling rates.  Surprisingly, sparse, 

or at least compressible
50

, data is evident in much of the real world.  Images that do not contain a 

significant amount of Fourier content, i.e. images that do not contain many changes from pixel to 

pixel, are likely sparse.  Fields where Compressed Sensing is being investigated are 
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telecommunications, magnetic resonance imagery, seismology, digital photography and other 

applications where data sizes are large. 

Compressed Sensing is a method of solving a sparse linear eigenvalue problem 

          (2.11) 

where A represents the transfer matrix from the given NAH method.  In the case of an inverse 

problem, x is solved for by the least-squares method.  Unlike classical methods, Compressed 

Sensing solves the problem based on random sampling of data points, and using the L1-norm 

instead of the L2-norm in reconstruction
51

.  Random sampling of data points results in random 

sampling of the Fourier coefficients (or in the case of NAH, wavenumbers).  The random 

sampling leads to the possibility of missing the highest amplitude coefficients.  However, since 

compressed sensing is used on large sample sizes of data, the frequency resolution of the 

spectrum is high and some component of the major peaks is captured. 

Cases such as MRIs and seismology normally require hundreds of thousands, if not 

millions of data points.  Even after the random selection of measurement points, the selected data 

is normally in the range of 10% of the original set
52

.  In NAH, and in particular the examples to 

be presented, the number of measurements and frequency resolution are much lower.  Even if the 

data is sparse, the number of available Fourier coefficients is quite small.  Therefore, random 

selection of Fourier coefficients that produce satisfactory reconstruction may not be feasible.  
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CHAPTER 3: THEORETICAL BACKGROUND 

Chapter 3 provides theoretical background and formulations of the methodologies used to 

investigate the resolution guidelines of NAH.  Pressure formulations of Planar Fourier Acoustic 

and examination of the corresponding spatial resolution guidelines are discussed, followed by 

pressure formulations of HELS and Modified HELS.  The chapter concludes with a brief 

overview of regularization theory. 

Planar Fourier Acoustics method 

Fourier Acoustics was first introduced by Maynard and Williams
1
 and is based on 

Rayleigh’s integral formulas for planar, cylindrical and spherical coordinates.  Rayleigh’s first 

and second integral formulas define relationships between the spatial pressure at one plane and 

the spatial velocity or pressure at a parallel plane, respectively.  In the present thesis, the planar 

variant of Fourier Acoustics was used due to the ease of application in real-world scenarios.   

Rayleigh’s second integral formula for a planar coordinate system is defined as 

  yxhhh

zzik

sss dkdkdxdyzyxpezyxp hsx   


 ),,(ˆ
4

1
),,(ˆ )(

2  
(3.1) 

222

yxz kkkk   is the z-component of the spatial wavenumber,    , describing the direction of 

the radiating pressure.      is based on the acoustic angular frequency,    the speed of the acoustic 

wave, c; and the outward normal direction of the propagating wave    . 

    
 

 
           (3.2) 

In equation (3.1), zs is the location of the pressure plane to be calculated and zh is the 

location of the measurement plane.  

 



15 

 

Also of significant importance in equation (3.1) is the integral 

dxdyzyxpkkP hhhyx   ),,(ˆ),(
   

(3.3) 

defined as the angular spectrum of the surface.  The angular spectrum is the k-space 

representation of the surface pressure (or velocity) and provides an understanding of the in-plane 

frequency content of the surface.  For example, in the case of a vibrating plate, the angular 

spectrum would illustrate the structural vibration frequency content of the plate.  The angular 

spectrum also provides a role in the definition of NAH resolution guidelines. 

In practical applications, measurement and reconstruction surfaces are discrete.  

Consequently, a matrix representation of equation (3.1) is formulated.  The matrix representation 

of Rayleigh’s second integral is defined as 

 
'

1,,1 p̂GFFp̂ mxnm

H

nmmx       (3.4) 

Where G is a diagonal matrix containing the transfer functions of the discrete set of zk  

)(G
)( hsz zzik

ediag



     (3.5) 

and  

N

nmi

nm e
N

)1)(1(2

,

1
F







, m, n=1…N   (3.6) 

is the discrete Fourier Transform and 
H

nm,F  is its conjugate.  The pressures at the measurement 

and reconstruction surfaces are represented as column vectors '

1p̂mx  and 1p̂mx , respectively.  The 

analogous discrete angular spectrum is 

'

1,1
ˆFˆ

mxnmmx pP 
     (3.7) 

In a reconstruction problem, zs-zh is a positive value, which leads (equation 3.4) to an 

exponentially increasing function.  Though an exponential increase in pressure intuitively 
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matches expectations with decreasing distance, error or noise in the measurement plane also 

increases exponentially.  Noise is of particular importance since it is associated with high 

frequency wavenumber content.  Since Fourier Acoustics and NAH methods both generally use 

the entire wavenumber spectrum to increase resolution, even a small amount of measurement 

error or noise in the measurement plane can lead to significant error in the reconstruction plane.  

In order to minimize the effects error in reconstruction, regularization techniques must be 

employed. 

Williams and Maynard provide reconstruction resolution guidelines for Fourier 

Acoustics
1
.  The principals of the formulation are based on the exponential decay of evanescent 

waves as the acoustic wave propagates from the source surface.  The reconstruction resolution 

limits are based on dynamic range (D) and stand-off distance (zh-zs) 

)10ln(

)(20

D

zz
R sh 



     (1.1)

 

The dynamic range of the systems is the range of input levels that can be usefully 

transmitted in the system.  Dynamic range can be affected by background noise, electrical 

resistance and the acoustical characteristics of the test environment
53

.  The dynamic range can be 

thought of as the difference between the ideal and non-ideal measurement due to measurement 

error and noise.   

Usually, background noise corresponds to high wavenumber content based on the 

randomness of the error, and leads to non-smooth distortion of the measurement field.  As stand-

off distance increases, less evanescent wave energy reaches the measurement array.  

Consequently, less information regarding high wavenumber content is captured.  If the noise of 

the system produces a low Signal to Noise Ratio (SNR), the evanescent wave energy cannot be 

distinguished and resolution in reconstruction is reduced. 
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Williams and Maynard formulated equation (1.1) based on a two dimensional radiator.  

Williams later summarized the formulation of the resolution requirement as follows
5
: 

Using equations (3.1) and (3.2), the relationship between the angular spectrum at the 

measurement and source surfaces is 

                      
             (3.8) 

For supersonic wave (non-evanescent waves) kz, is real and the magnitude of the energy 

radiation is constant with increasing distance from the source.  When the wave is evanescent, the 

wavenumber, kz, is imaginary and the radiation of acoustic energy decreases with increasing 

distance from the source, producing a well-posed problem
4
.  However, in reconstruction, the 

evanescent energy increases.  Thus any errors in measurement increase exponentially with 

increasing stand-off distance, and may cause the problem to become ill-posed. 

Williams attempts to limit the effects of noise on reconstruction by calculating the stand-

off distance required to ensure that non-evanescent waves are not masked by the exponential 

increasing magnitude of the evanescent waves noise.  In order to do so, the dynamic range (or 

SNR), D, must be greater than           .  Where the D is in decibels and kc is the wavenumber 

cutoff which is usually greater than the highest wavenumber of interest. 

                      (3.9) 

Defining    as  
  

  
 and setting the resolution to be half the Nyquist rate of the 

corresponding cutoff wavelength, c, the resolution limit becomes 

)10ln(

)(20

D

zz
R hs

x





      (3.10) 

Note that the resolution limit does not take into account phase angle, excitation frequency 

and sampling resolution.  Williams formulates equation (3.10) assuming spatial sampling rates of 
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the measurement plane do not violate the Nyquist rate.  Since the Nyquist rate requirement is 

met, spatial aliasing does not occur.  Williams states that reconstruction spatial resolution is not 

based on the source excitation wavelength, which in itself is quite surprising if one does not 

examine the formulation of equation (3.10). 

NAH resolution limits and spatial sampling theory 

At this point, an important distinction must be emphasized in spatial resolution 

limitations.  Spatial resolution can be limited by insufficient knowledge of the wavenumber 

spectrum and spatial aliasing.  Since the DFT is used in Fourier Acoustics, the spatial Nyquist 

rate must be met to ensure sources of high wavelengths and significant energy are not distorted.  

In contrast, HELS methodologies do not use the DFT and are not limited by the Nyquist rate 

during measurement.  Thus, the question posed concerning the validity of equation (3.10) with 

regards to HELS is produced.  Before exploring HELS, a brief review of spatial sampling is 

provided. 

Uniform discrete sampling can be mathematically described by Shannon’s sampling 

theorem (also known as the Whittaker-Shannon-Kotel’nikov sampling theorem, or the acronym 

WSK sampling theorem)
54

 

“If a function of time is limited to the band from 0 to W cycles per second, it is completely 

determined by giving its ordinate at a series of discrete points space 1/2W seconds apart in the 

manner indicated by the following result:  If f(t) has no frequencies over W cycles per second, 

then 

        
 

  
 
            

        
 
    ‖ 

Though the theorem was initially stated for time based systems, application of the theorem is 

valid for any equidistantly spaced coordinate system. 

Use of the DFT invokes the use of the WSK theorem, and consequently Shannon’s 

requirement of discrete points spaced 1/2W seconds apart, which is historically known as the 
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Nyquist rate. Violation of the Nyquist rate leads to aliasing, which distorts frequencies above the 

Nyquist sampling rate to appear as lower frequencies.  The DFT, and discrete sampling in 

general, also may lead to discrete ill-posed problems.  Discrete ill-posed problems are ill-

conditioned and may cause inverse problem solutions to be unstable during reconstruction. 

Applying equation (3.10) and Nyquist spatial sampling requirements incur significant 

restrictions on the measurement array.  For example, if two coherent sources separated by 10 mm 

are required to be reconstructed with an SNR of 20 dB, the maximum stand-off distance would 

be 7.33 mm with a corresponding minimum measurement spacing of 5 mm.  The minimum 

measurement spacing requirement is not necessarily a sufficient in real-world applications. 

Depending on the proximity of the sources to the microphone locations, relative error of 

up to 50% can be realized with respect to the spacing of the sources when the minimum 

measurement spacing is used.  To improve reconstructed source localization, a more refined 

measurement surface must be taken.  However, with typical free-field microphone dimensions of 

6.35 mm
55

, multiple measurement patches would be required leading to more measurement and 

computation time. 
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Kim and Nelson investigated Williams NAH spatial resolution guidelines numerically 

based on a plate with a single point source‖
56, 57

.  The paper discusses ill-conditioning of the 

transfer matrix and how the condition number of the matrix relates to the spatial resolution in 

reconstruction. Kim and Nelson concluded that the ―super-resolution‖ provided by NAH is 

feasible in theory, but resolution significantly beyond the half wavelength limit may be difficult 

to reproduce in practice.  In particular, as the number of measurement points and/or sources 

increase, the transfer matrix becomes more ill-conditioned.   

Helmholtz Equation Least Squares (HELS) method 

The HELS formulation solves the Helmholtz equation with the Sommerfield radiation 

condition as the boundary condition directly by applying LSAM.  LSAM was first introduced by 

Meecham
58

 as a variational method of determining the Fourier coefficients for the Rayleigh 

expansion approximation of scattered waves on a periodic surface in prediction.  LSAM was 

Figure 0.1: Feasible source reconstruction locations with 6.35 mm microphones spaced at 

minimal measurement spacing 

Microphones 

Actual source 

locations 

Possible best-case 

reconstruction of  

left hand side source 

Sources reconstruct 

to same point 

Possible best-case 

reconstruction of  

right hand side source 
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proven in back-propagation by Isakov and Wu
59

, and HELS was proven as a special case of 

LSAM by Semenova and Wu
60

. 

HELS defines the pressure distribution );(ˆ xp


as 

)();();(ˆ  jj Cxxp


     (3.11) 

Where );(ˆ xp


 is the pressure distribution of the field defined by a j term expansion of the 

admissible basis functions, );(  x


; and )(C are weighting coefficients (HELS coefficients). 

);(  x


 are a combination of spherical Hankel and spherical harmonic functions that are 

solutions to the Helmholtz equation.  The basis functions are of the form 

),()();,,();( )1(  l

nnnl Ykrhrx 


  (3.12) 

The HELS expansion level is defined as j = lnn 2 , with n varying from 0 to N and l varying 

from –n to n. 

HELS coefficients are determined by solving an overdetermined linear system of 

equations produced from equating the assumed form solutions to the measured pressures and 

then using least squares to minimize the errors.  The HELS method can be summarized as 

follows: 

1. Define the measured and reconstructed pressures );(ˆ mm xp


 and );(ˆ rr xp


, respectively 

)();();(ˆ  Cxxp mmmm


    (3.13)

 

)();();(ˆ  Cxxp rrrr


     (3.14)

 

2. Solve for the expansion coefficients from equation (3.13), i.e. HELS coefficients 

)();(ˆ);(  Cxpx mmm

H

m 


   (3.15) 

3. Calculate the desired pressure field points 

);(ˆ)|();(ˆ  mmmrrr xpxxGxp



   (3.16) 
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Where †)|( mrmr xxG 


is a transfer function relating the pressures at any point in the field to 

the measured pressures. 

Relationships between stand-off distance and frequency content are given by Wu
61

 based 

on the characteristic radius of the source object, the wave number to be reconstructed and the 

stand-off distance of the measurement plane.  The given relationships essentially describe the 

nearfield of the surface as the valid region of HELS when applied to an inverse problem 

2

/

2

max

maxmin

ak
d

fcd

ad







    (3.17, 3.18, 3.19) 

Wu also states that spatial resolution is not based on measurement spacing, but rather on 

the synthesis of wave patterns through the expansion of the spherical Hankel functions and 

harmonics.  As is the case with all NAH methods, issues may occur at higher frequency 

reconstruction due to the ill-conditioning of the system of equations.  Regularization must be 

implemented to reduce such effects. 

Comparison of the spherical variant of Fourier Acoustics and HELS shows that both 

methods rely on truncation of spherical harmonics and Hankel functions 

 

Spherical Fourier 

Acoustics 

reconstruction 

equation 

HELS 

reconstruction  

field equation 

HELS  

measurement  

field equation 
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However, HELS calculates a ―fit‖ to the problem by calculating the HELS coefficients using 

least-squares.  The HELS coefficients characterize the pressure radiation at the measurement 

field based on the locations of the measurement points with respect to the origin of the object.  

HELS relies on the fact that the field radiation pattern (not amplitude) should not change 

appreciably with distance, and the coefficients should hold at both the measurement and 

reconstruction surface.  Error resulting from the use of spherical expansion functions at the 

measurement and reconstruction planes is minimized by altering the HELS coefficients to match 

the measured pressures.  In the case of spherical Fourier Acoustics, significant error may result 

from using spherical harmonics for a planar surface since the pressure radiation is assumed to be 

from a spherical surface and no flexibility is provided otherwise.  The flexibility of the HELS 

coefficients allows reconstruction of non-separable source geometries and reduced stand-off 

distances of measurement planes through conformal measurements
62

. 

Modified HELS 

At face value, the requirements required for HELS in equations (3.17-3.19) limit the 

spatial resolution of HELS to be the similar to other NAH methods, but with less measurements 

and calculation time required.  However, Dziklinski and Wu indicate improved reconstruction is 

feasible through a modified HELS method
63

 provided that the sources are monopoles (point 

sources).  Dziklinski and Wu emphasize that Modified HELS is not likely applicable to 

distributed sources due to the weighting procedure. 

Modified HELS incorporates a weighting multiplier to the measured pressures prior to 

application of the HELS algorithm.  Where the weighted or ―modified‖ pressure is defined as 
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(3.20, 3.21, 3.22) 

In effect, the most significant contributions of the measured pressures are amplified.  The 

reduction in lower pressure level contributions provides reasoning for not applying Modified 

HELS with distributed sources.  In the case of a distributed source, the wave pattern at the source 

is approximately continuous and the peaks and valleys are smoother than in the case of point 

sources.  The smoothness of distributed sources reduces the effectiveness in the weighting 

procedure since amplitude differences point to point are much less than with point sources.   

Regularization methods 

Due to the ill-posed nature of inverse problems, regularization is required to yield a well-

posed problem that will produce satisfactory reconstruction results.  Williams provides a 

summary of NAH regularization techniques applicable for Fourier Acoustics, HIE and LSAM 

methods
64

.  Semenova and Wu similarly summarize a number of regularization techniques 

applied to HELS
65

.  Maybe the most referenced summary of regularization techniques was done 

by Hansen’
66

.  In his book, regularization techniques along, with their relation to rank-deficiency 

and discrete ill-posed problems, are discussed.  However, a prevailing theme in most publication 

is no perfect regularization scheme exists for all problems.  In fact, even when a regularization 

procedure works well, optimization of the regularization parameters for all cases is not 

necessarily feasible. 
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Regularization of inverse problems in practice usually depends on investigation and 

modification of the SVD of the transfer matrix.  The SVD of any real or complex matrix A is 

defined as 

              
  

       (3.23) 

where U and V form a basis of orthogonal vectors (termed right and left singular vectors) and S is 

a diagonal matrix of singular values.  The orthogonal vectors follow a pattern of oscillating sign, 

while the singular values are normally ordered in decreasing value.  The decreasing singular 

values correlate to increasing wavenumbers similar to eigenvalues in the eigenvalue problem
67

.  

The use of SVD for eigenvalue problems and similarities in their solutions in relation to NAH 

are summarized by the Williams paper mentioned above. 

From the singular values, the condition number of the transfer function can be determined 

   
    

    
     (3.24) 

The condition number of a matrix is the quantity that controls the amount of error propagating 

from the data to the solution
4
.  A high condition number relates to an ill-conditioned problem and 

is an effect of fine discretization of the measurement surface (discrete ill-posed) or significant 

noise in the measurement data (rank ill-posed).  If a problem is ill-conditioned, a small 

perturbation in the measurement data can create a significant change in the reconstructed values.  

The objective of regularization is to minimize the condition number by modifying the singular 

value matrix of A by a filter f 

                
  

        (3.25) 

SVD is often applied to invert rank deficient or nearly rank deficient matrices (i.e. the 

pseudo-inverse).  As mentioned previously, inversion of the transfer matrices of both Fourier 

Acoustics and HELS methodologies may lead to unstable solutions due to discretization of the 
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measurement surface and measurement error.  Discretization leads to discrete ill-posed problems 

characterized by a gradual decay in singular values.  As the number of measurements increase, 

the number of singular values increase and more singular values approach zero.  Singular values 

close to zero cause asymptotic solutions following inversion.  On the other hand, measurement or 

round-off errors are represented by high frequency content and may cause A to be 

underdetermined.  The lack of linear dependence is characterized by large gaps in the singular 

values.  Well defined gaps represent conditions where one or more columns of the matrix A are 

nearly linearly combinations of other columns.  If inversion is done without regularization, the 

gaps will cause instability in the solution. 

Two typical types of regularization used in NAH are Truncation Singular Value 

Decomposition (TSVD) and Tikhonov Regularization (TR).  TSVD is categorized as a sharp low 

pass filter with the filter f defined as 

   
           
            

     (3.26) 

Whereas, TR is a smooth low pass filter with f defined as 

   
  
 

  
   

       (3.27) 

where  is the filter parameter. 

Essentially, TSVD truncates the singular value matrix by replacing a given number of 

values with zero, based on a threshold.  On the other hand, TR increases attenuation with smaller 

singular values, thus allowing for increased wavenumber content to be reconstructed with respect 

to TSVD.   

Both methods have pros and cons.  TSVD does well in minimizing noise effects in 

reconstruction.  However, undershooting the threshold of useable wavenumber content reduces 
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reconstruction resolution.  Cutoff selection for high wavenumber content is often difficult since 

the singular values are small and vary little with increasing singular value number.  TR allows 

for some level of the wavenumber energy neglected in TSVD to be used in reconstruction.  

Unfortunately, some level of unwanted wavenumber energy will also be reconstructed.  Though 

the level of unwanted wavenumber content can be reduced by optimizing , the possibility of 

over-smoothing lower wavenumber content exists. 

One method of determining the cutoff or  value is Generalized Cross-Validation 

(GCV)
68

.  GCV seeks to optimize the regularization parameter a priori by removing data points 

one by one and computing each point from the remaining data set with the regularized transfer 

function.  The regularization parameter is varied until the error of the computed data is 

minimized on average.  Mathematically, GCV is represented as 

     
         

 

             
     (3.28) 

Where Im is an m by m identity matrix and the numerator and denominator can be expressed as: 
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      (3.30) 

CHAPTER 4: NUMERICAL SIMULATIONS 

In chapter four, the question of whether HELS is capable of performing more accurate 

reconstructions than expected by NAH resolution guidelines is explored through simulation.  For 

the remainder of this dissertation, the term NAH resolution guidelines refers to both equation 

(3.10) and the spatial Nyquist sampling rate unless otherwise specified.  The problem is 

formulated as two coherent point sources varying in separation distance, location, phase angle 

and frequency (note that for the remainder of the paper, acoustic frequency will be regarded as 
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frequency).  Stand-off distance is tested at 5 and 15 mm.  At 5 mm, NAH resolution guidelines 

are met and validation of the model and NAH algorithms are verified.  Following validation of 

the model, the stand-off distance is increased to 15 mm and source parameters are varied.  Planar 

Fourier Acoustics, HELS and Modified HELS are applied in the simulations.  Justification for 

the choice of regularization and a method differentiating between ghost and real sources is given, 

followed by possible reasoning for improved reconstruction performance with Modified HELS. 

The choice of point sources is based on the fact that many real world sources can be 

estimated as point sources.  If the size of the source is relatively small with respect to the size of 

other sources in the system, point source approximation is valid.  Examples of point sources are 

resistors or capacitors on computer motherboards, squeaking of control valves in automobile 

hydraulic systems, and mechanical relays located in many major home appliances.  A few 

examples are shown in figure 4.1. 
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Mathematical model 

Our main focus is to demonstrate reconstruction of small components or subsystems, 

which normally produce acoustic radiation patterns that can be approximated by point sources. 

The pressure radiation of a point source in the absence of scattering objects can be described by 

Helmholtz’s equation with boundary conditions specified by the Sommerfield radiation condition 

arpkp  ,0ˆˆ2

     (4.1) 
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Figure 0.1: Real-world point-like source examples – a) hydraulic check valve common in 

hydraulic systems
69

; b) refrigerator compressor relay
70

; c) computer motherboard 
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where a is the characteristic radius of a radiating source defined as the smallest sphere enclosing 

the source
42, 71

. 

The pressure radiation of point sources satisfies equations (4.1) and (4.2) everywhere 

except at the location of the source.  As the distance from the source to the enclosing surface 

approaches zero, the idea of a point source is realized by the inhomogeneous equation 

  )()()(ˆ4ˆ22

sss zzyyxxSpk       (4.3) 

where the  is the Dirac delta function and the →0 represents the limiting case at the source 

location.  The described conditions provide the following solution to equation (4.1) 
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where mp̂  is the noise-less data measured on the measurement hologram at distances Rm,,    is the 

monopole amplitude and  is the phase angle. 

In practice, background noise plays a significant role in reconstruction amplitude, 

resolution and location accuracy based on equation (3.10).  Uniformly distributed, zero mean 

noise was introduced to Ŝ , by using the Mersenne Twister algorithm
72

. 
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Test setup 

To test the resolution requirements of each method, two coherent point sources of various 

phase difference and separation distance  are simulated.  Source spacing and stand-off 

distances are selected to adhere and violate the NAH resolution guidelines to determine the 

validity of the requirements with respect to Planar Fourier Acoustics, HELS and Modified 
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HELS.   is varied between 5 and 15 mm to simulate significant sources of acoustic radiation on 

surfaces similar to the examples given previously, while the phase is varied between 0 and .  

Excitation frequencies are selected over a wide range to understand the relationship between 

excitation frequency reconstruction accuracy.  Figure 4.2 illustrates the simulated problem 

 

 

Measurement and reconstruction surface size is based on .  In Fourier Acoustics typical 

measurement aperture sizing has been prescribed by Williams to be at least four times the size of 

the actual source to limit edge effects during reconstruction
5
.  On the other hand, HELS has 

shown to provide satisfactory results with much smaller aperture to reconstruction surface 

ratios
42

.  To ensure a fair comparison between the two methods, the measurement aperture is 

chosen to be a 50x50 mm plane to satisfy the more conservative measurement requirements of 

Fourier Acoustics.  A 5x5 measurement array is chosen to allow for testing across nodal lines of 

the surface while also ensuring a minimum of two measurement points between the source and 

the surface edge.  The buffer of measurement points reduces edge effects in reconstruction. 

Measurement 

plane, zh 

Source plane, zs 

Point sources 



Figure 0.2: Measurement and source planes 
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The environment is simulated to be a free-field, thus acoustic intensity and pressure are 

proportional.  In terms of HELS, pressure formulations are computationally easier than the 

velocity equation, since no spatial derivatives of the spherical harmonics are required.  

Therefore, pressure reconstruction is used instead of acoustic intensity in all solution methods.   

In order to apply the HELS methods in reconstruction, a characteristic radius must be 

calculated.  The characteristic radius is the smallest sphere enclosing an object.  However, a 

point source has no physical dimensions and the typical definition of characteristic radius cannot 

be used.  Instead, the characteristic radius of a plate is used, where the plate is defined as the 

measurement surface shown in figure 4.2. 

   

Figure 0.3: Theoretical plane characteristic dimension and reconstruction plane 

 

The characteristic radius is defined as 

  
      

 
      (4.6) 

where l and w are the length and width of the measurement plane, and the characteristic radius a 

is the distance from the theoretical origin to the center point of the reconstruction plane.  rR  are 

the distances between the reconstruction points of interest and the theoretical origin deduced 
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from a.  The measurement plane is defined by mR  at the standoff distance from the 

reconstruction plane. 

dRR rm


  

Source locations are selected to take advantage of the symmetry of the surfaces.  All 

source locations are selected between measurement points except in the cases where the origin of 

the surfaces was selected.  Figure 4.4 illustrates the locations scenarios for =10 mm.  Each 

scenario is identified by a number in the left hand corner of the surface, and sources are 

identified by black dots surrounded by white circles.  The left and right sources are called the 

left-hand source (LHS) and right-hand source (RHS), respectively, throughout the paper. 

 



 

 

 

3
4
 

 

Figure 0.4: Source locations reconstructed in simulation for =10 mm.  Reconstruction scenarios are indicated by the number in left 

hand corner.  Source locations are indicated by black dots surrounded by white circles. 
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Table 4.1 below summarizes the ranges used in simulation for each reconstruction scenario. 

Table 4.1: Simulation parameter ranges 

Parameter Value 

Source strength (Pa) 1 

 (mm) 5, 10, 15 

d (mm) 5, 15 

Acoustic excitation frequency (Hz) 100; 1,000; 5,000; 10,000; 12,000-20,000 in 

1,000 Hz increments 

Relative phase between sources,  (radians) 0, 
 

 
, 

SNR (dB) 10 

Simulation results 

The following section summarizes the simulation results of HELS and Planar Fourier 

Acoustics in reconstruction of two coherent point sources when NAH resolution guidelines are 

met and violated.  Tables 4.2 and 4.3 summarize the required Nyquist sampling rate and NAH 

spatial resolution guideline (based on equation (3.10) only) for the test combinations outlined in 

table 4.1.  For example, at an SNR of 10 dB and stand-off distance of 5 mm, Planar Fourier 

Acoustics should be able to distinguish sources separated by 13.64 mm or more if the 

measurement spacing meets the Nyquist sampling requirement. 

Table 4.2: Spatial Nyquist sampling rate 

     

 

 

 

Table 4.3: NAH spatial resolution 

guideline based on equation 3.10 only 
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As stated in Ch. 3.3, HELS has the advantage of synthesizing points in between the 

measurement points.  Therefore, the Nyquist sampling rate does not have to be satisfied to 

accurately reconstruct source locations properly.  On the other hand, Fourier Acoustics is based 

on the DFT which requires sampling at the Nyquist rate as a minimum.   Due to the constraints 

of the DFT, Fourier Acoustics measurement and reconstruction planes are sampled at 12.5 and 

2.5 mm resolution.  12.5 mm matches the measurement spacing used with HELS, while 2.5 mm 

was chosen to satisfy the minimum Nyquist rate when =5 mm. 

Analysis starts with validation of the model and NAH algorithms.  Validation is done by 

simulating scenarios that are expected to reconstruct correctly with respect to the NAH 

resolution guidelines.  Following validation, parameters are varied to compare the reconstruction 

accuracy of Fourier Acoustics and HELS while in violation of the Nyquist NAH resolution 

guidelines.  

Validation of model and algorithms 

Based on the parameter values used in simulation, reconstruction should be feasible if the 

two sources are out of phase by  radians, with an SNR of 10 dB, a stand-off distance of 5 mm 

and =15 mm.  Justification for the stated stand-off distance and SNR are based on equation 

(3.10).  Since the expectation is that reconstruction should be possible in this scenario, only 

source location 1 and min/max acoustic frequencies are analyzed for brevity.  Source location 1 

is used based purely on symmetry of the problem. 

The reconstructed pressure is presented in linear scale with the pressures normalized by 

the peak reconstructed pressure to better visualize the peak reconstructed locations.  The color 

scale of each surface may differ to aid in visualization of the peaks.  Actual source locations are 
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indicated by large dots on the surface, while reconstruction locations are represented by surface 

nodal points.  In the case of the HELS methods, the measurement locations are represented by 

X’s.  Fourier Acoustic measurement points match the nodal points of the surfaces. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

  

 
g) 

 
h) 

 
i) 

 
i) 

 
j) 

 
k) 

  

Figure 0.5: a) Measurement plane with 12.5 mm spacing, =15 mm, d=5 mm, = radians, 

f=100Hz; b) Fourier Acoustics reconstruction surface with 12.5 mm measurement spacing; 

c)Standard HELS reconstruction surface; d) Modified HELS reconstruction surface; 

e)Measurement surface plane with 2.5 mm spacing; f) Fourier Acoustics reconstruction surface 

with 2.5 mm measurement spacing; g) Measurement plane with 12.5 mm spacing, =15 mm, 

d=5 mm, = radians, f=20kHz; h) Fourier Acoustics reconstruction surface with 12.5 mm 

measurement spacing; i) Standard HELS reconstruction surface; j) Modified HELS 

reconstruction surface; e) Measurement surface plane with 2.5 mm spacing; k) Fourier Acoustics 

reconstruction surface with 2.5 mm measurement spacing 
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Figures 4.5 shows that with a measurement spacing of 12.5 mm Fourier Acoustics is able 

to distinguish the two sources, however, the reconstructed locations are not accurate.  In fact, the 

reconstruction is not significantly better than the measurement surface image.  Though the 

Nyquist sampling rate is satisfied, possible reconstruction locations are limited by the 

measurement surface as discussed in Ch. 3.2.  Once the measurements spacing is refined, Fourier 

Acoustics reconstructs the source locations exactly.  On the other hand, HELS and Modified 

HELS are able to reconstruct the sources accurately with measurement spacing of 12.5 mm as a 

consequence of HELS ability to synthesize field locations.  More accurate reconstruction is 

possible if the number of measurement points is increased. 

Based on the results above, simulations are conducted with phase angles of  
 

 
 and 0 

radians.  Since Fourier Acoustics with 12.5 mm spacing did not produce satisfactory results 

previously, results are omitted from the remaining summaries.  At   
 

 
 (figure 4.6), both HELS 

methods and Fourier Acoustics are able to reconstruct the sources accurately.  Similarly to , 

Fourier Acoustics provides more accurate reconstruction locations.  When  is reduced to 0 

(figure 4.7), all methods are able to reconstruct at 20 kHz.  However, at 100 Hz, only Fourier 

Acoustics reconstructs the sources accurately.    
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b) 

 
c) 

 
d) 

 
e) 

 

 
f) 

 
g) 

 
h) 

 
i) 

 
j) 

 

Figure 0.6: a) Measurement plane with 12.5 mm spacing, =15 mm, d=5 mm, =
 

 
 radians, 

f=100Hz; b) Standard HELS reconstruction surface; c) Modified HELS reconstruction surface; 

d) Measurement surface plane with 2.5 mm spacing; e) Fourier Acoustics reconstruction surface 

with 2.5 mm measurement spacing; f) Measurement plane with 15 mm spacing, =10 mm, d=5 

mm, =
 

 
 radians, f=20kHz; g) Standard HELS reconstruction surface; h) Modified HELS 

reconstruction surface; i) Measurement surface plane with 2.5 mm spacing; j) Fourier Acoustics 

reconstruction surface with 2.5 mm measurement spacing 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

 
f) 

 
g) 

 
h) 

 
i) 

 
j) 

 

Figure 0.7: a) Measurement plane with 12.5 mm spacing, =15 mm, d=5 mm, = radians, 

f=100Hz; b) Standard HELS reconstruction surface; c) Modified HELS reconstruction surface; 

d) Measurement surface plane with 2.5 mm spacing; e) Fourier Acoustics reconstruction surface 

with 2.5 mm measurement spacing; f) Measurement plane with 12.5 mm spacing, =15 mm, d=5 

mm, =0 radians, f=20kHz; g) Standard HELS reconstruction surface; h) Modified HELS 

reconstruction surface; i) Measurement surface plane with 2.5 mm spacing; j) Fourier Acoustics 

reconstruction surface with 2.5 mm measurement spacing 

 

The HELS methods presented use significantly coarser surfaces than with Fourier 

Acoustics.  If the measurement resolution is refined, reconstruction is possible with HELS.  

Figure 4.8 shows that at a measurement spacing of 5 mm, the HELS methods are able to 

reconstruct with similar accuracy to Fourier Acoustics with 2.5 mm spacing.  Further 

improvement in reconstruction resolution is expected if the measurement resolution was 

increased to that of the Fourier Acoustic measurements.  However, the objective of this 
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investigation is not to match the resolution of Fourier Acoustics.  Instead, it is to determine if 

HELS is able to reconstruct sources in violation of the NAH guidelines outlined by Williams.  

Therefore, HELS simulations will return to the 5x5 measurement array when simulating sources 

in violation of the NAH resolution guidelines. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

 
i) 

   

Figure 0.8: a) Measurement plane with 5 mm spacing, =15 mm, d=5 mm, =  radians, f=100 

Hz; b) Standard HELS reconstruction surface; c) Modified HELS reconstruction surface; d) 

Measurement plane with 5 mm spacing, =15 mm, d=5 mm, =
 

 
 radians, f=100 Hz; e) Standard 

HELS reconstruction surface; f) Modified HELS reconstruction surface; g) Measurement plane 

with 5 mm spacing, =15 mm, d=5 mm, =
 

 
 radians, f=100 Hz; h) Standard HELS 

reconstruction surface; i) Modified HELS reconstruction surface; 

 

Based on the above results, proper reconstruction of each method is feasible when the 

NAH guidelines are met.  However, inaccurate reconstructions were produced with the HELS 

methods at low frequency, a phase angle of zero, and coarse measurement spacing.  The 

inaccurate reconstruction is not a consequence of violating the NAH resolution guidelines or the 

HELS method itself.  Since the accuracy improved greatly when the measurement resolution was 
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reduced to twice that of the Fourier Acoustic surfaces, it is likely that the results are due to the 

problem being significantly underdetermined, and consequently ill-conditioned
73

. 

Reconstruction accuracy when violating NAH resolution guidelines 

Due to the number of combinations created from the range of parameters, the following 

section begins by summarizing the results of each set of parameters simulated.  Following the 

summaries, relative error plots are provided for each set of parameters at each location scenario.  

At the beginning of each summary, the correlating figure numbers are listed for reference.  

Where appropriate, reconstruction surfaces that add value to the investigation are provided.   

The relative error is based on the distance between the source location and the 

reconstructed location compared to the spacing of the 12.5 mm measurement array.  The 12.5 

mm microphone spacing is chosen since it gives a sense of HELS’ ability to refine spatial 

resolution from coarse measurements.  Though the Fourier Acoustics’ measurement spacing is at 

finer resolution, the choice of HELS measurement spacing indicates the advantages of using the 

HELS method in reconstruction.  If two sources are not distinguishable in reconstruction or 

accurate source locations are not recognizable, the relative error is listed as 100% since no 

advantage is gained over taking a measurement surface at very close stand-off distances.  In 

some cases, reconstruction may be worse. 

   
%100*

0125.0
%

22
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In order to meet the spatial sampling requirement and mitigate aliasing effects, the 10 and 

5 mm source separation simulations require finer resolution in reconstruction.  In the case of 

HELS, the measurement spacing is kept at 12.5 mm and the reconstruction resolution is reduced 

from 2.5 mm to 1.25 mm.  Since HELS is able to synthesize any field point, the choice of 

reconstruction surface is refined by reconstructing the inner 50% of the surface with the same 

number of reconstruction points.  Given that the same number of reconstruction points is used, 

the reconstruction resolution is refined while not increasing measurement and computation time.  

To provide an equivalent resolution, Fourier Acoustics’ reconstructions are provided at 1.25 mm 

spacing, in addition to the previous reconstruction resolution of 2.5 mm.  Error analysis of 

Fourier Acoustics surfaces are done only on the ―zoomed-in‖ area used with HELS.  =15 mm 

analysis was done at reconstruction resolution of 2.5 mm, with the original reconstruction 

surface, since LHS sources of locations two and three are located close to the edge of the 50% 

surface. 

Figure 0.9: Illustration of location error calculation 

xactual-xreconstructed 

yactual-yreconstructed 
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In order to have a sense of the relative error calculation, HELS, Modified HELS and the 

2.5 mm Fourier Acoustic reconstructions, are shown for source location four with =10 mm, 

=
 

 
, and frequencies of 12 kHz (figure 4.10).  The top 50% of the peak amplitude is shown to 

better understand the error between the actual and reconstructed sources.  Stars are located on the 

surfaces to indicate peak reconstruction locations.  Note that in the case of Standard HELS and 

Fourier Acoustics, two sources are not distinguishable on the reconstruction surface.  Therefore, 

their relative error in reconstruction was deemed as 100%.  The relative error level for Modified 

HELS reconstruction is 21% in the case of both sources. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 0.10: a) Measurement surface with 12.5 mm spacing, =10 mm, d=15 mm, =
 

 
 radians, 

f=12 kHz; b) Standard HELS reconstruction surface with 1.25 mm spacing; c) Modified HELS 

reconstruction surface with 1.25 mm spacing; d) Measurement surface with 2.5 mm spacing, 

=10 mm, d=15 mm, =
 

 
 radians, f=12 kHz; e) Fourier Acoustics reconstruction surface with 

2.5 mm spacing; f) Fourier Acoustics reconstruction surface with 2.5 mm measurement spacing 

(inner 50% of surface) 
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1.1.1.1 Reconstruction with =15 mm, d=15 mm, =  radians (Figures 4.15, 4.16) 

At a stand-off of 5 mm and at location scenario four, HELS and Fourier Acoustic 

reconstructions were excellent.  Based on the NAH resolution guidelines, we expect 

reconstruction accuracy to decrease significantly with the stand-off distance increased to 15 mm.  

According to the NAH resolution guidelines, the spatial resolution at 15 mm with an SNR of 10 

dB should not be finer than 40.93 mm.   

Figures 4.15 and 4.16 indicate that the NAH resolution guidelines do not match well with 

simulation results, particularly at high frequency.  Both HELS (Standard and Modified) and 

Fourier Acoustics reconstructed the source locations accurately for frequencies of 10 kHz and 

above.  At 5 kHz and below, Fourier Acoustics had difficulties reconstructing source locations 

accurately in some of the cases.  Both HELS methods are able to accurately reconstruct the 

source locations in each of the location scenarios and at all tested frequencies.  No significant 

difference between HELS methods is identifiable. 

Possible root causes for accurate reconstruction may be the type of source modeled and 

phase angle considerations.  The resolution guidelines are based on the angular spectrum, which 

is essentially a two dimensional Fourier Transform of the measured pressures.  In the case of 

Planar Fourier Acoustics, the guidelines assume that the shape of the plate will composed of 

sinusoidal functions.  In the case of point sources, the shape of the wave still contains oscillatory 

characteristics.  However, the shape of the waveform is concentrated rather than distributed 

across the surface.  Though the SNR may be low point to point, the overall SNR can be quite 

high since the areas surrounding the sources have relatively low energy (pressure) concentration.  

Consequently, the angular spectrum is not significantly affected by the added noise and the 
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sources can be reconstructed accurately in most cases (figure 4.11).  The use of a point source 

may also justify the reduction in accuracy with decreasing frequency, due to more significant 

spherical spreading with decreasing frequency.  Further comments on spherical spreading are 

discussed in chapter 4.6.  The provided reasoning applies to all remaining simulations since all 

parameters provide scenarios in violation of the NAH resolution guidelines. 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 0.11: a) Measurement surface with 12.5 mm spacing, =10 mm, d=15 mm, = radians, 

f=20 kHz, SNR=  dB; b) Measurement surface with 12.5 mm spacing, =10 mm, d=15 mm, 

= radians, f=20 kHz, SNR=10 dB; c) Angular spectrum at SNR=  dB; d) Angular spectrum 

at SNR=      

 

The phase of the point sources also plays a role in reconstruction accuracy.  As stated, the 

angular spectrum is a two dimensional Fourier Transform of the measurement surface, where the 

wavenumbers are related to the wavelength of the in-plane oscillation by 22

yx kkk  .  Two 
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sources separated by 15 mm, with a relative phase of  equates to a wavelength of 30 mm in 

terms of a sinusoidal wave.  Even when considering the distance between sources based on 

―sinusoidal wavelength‖, the source separation remains smaller than the resolution provided by 

the NAH resolution guidelines.  In combination with the increased SNR due to the use of point 

sources, the increased resolution capability seems reasonable.  However, based on results at 

lower frequencies, there may be possibility of improved resolution with HELS methodologies 

worth considering with respect to Fourier Acoustics. 

1.1.1.2 Reconstruction with =15 mm, d=15 mm, =
 

 
 radians (Figures 4.17, 4.18) 

Decreasing the phase to =
 

 
 significantly reduced accuracy at acoustic frequencies below 

10 kHz.  Above 10 kHz, no significant difference in accuracy was noted between HELS, 

Modified HELS and Fourier Acoustics. 

1.1.1.3 Reconstruction with =15 mm, d=15 mm, =  radians (Figures 4.19, 4.20) 

Similar to =
 

 
 , results below 10 kHz are poor and are omitted from the results.  Above 

10 kHz, results vary based on location scenario.  For example, Modified HELS is not able to 

accurately reconstruct two sources in the case of location scenario two.  On the other hand, at 

location scenario four, Modified HELS shows a significant increase in capable frequency range.  

Similar statements can be made for both Standard HELS and Fourier Acoustics at other 

combinations of locations and frequencies.  Based on the inconsistencies, none of the methods 

are considered reliable at the given parameters. 
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1.1.1.4 Reconstruction with =10 mm, d=15 mm, =  radians (Figures 4.21, 4.22) 

As was the case at =15 mm, reconstruction with the HELS methods are more accurate 

than Fourier Acoustics, particularly below 12 kHz (no significant difference between HELS 

methods).  However, the relationship of decreased accuracy with decreasing frequency appears 

in both HELS methods as well as Fourier Acoustics.  Since the only parameter held constant 

between the two variants of tests at =  thus far is stand-off distance, one may hypothesize that 

the stand-off distance plays a role in the decreasing accuracy. 

Fourier Acoustics at 1.25 mm did not show increased resolution over the 2.5 mm variant. 

In many cases, reconstruction accuracy is worse.  The unsatisfactory reconstruction accuracy is a 

result of increased ill-conditioning due to the increased number of measurement points.  In many 

cases, an optimal  value could not be determined which produced high resolution reconstruction 

without over-smoothing the surface to the point where the two sources were indistinguishable.  

Discussion of regularization issues with Fourier Acoustics are discussed in chapter 4.5. 

1.1.1.5 Reconstruction with =10 mm, d=15 mm, =
 

 
 radians (Figures 4.23, 4.24) 

The trend of decreasing reconstruction accuracy with decreasing frequency is more 

prominent at =
 

 
 radians and =10 mm.  Reduction in reconstruction accuracy is due to 

additional interference between the two source wavefronts in comparison to =  and =15 mm.  

Similar to the previous cases, reconstruction accuracy of both HELS methods decreased 

significantly for frequencies below 12 kHz.  Fourier Acoustics saw an increase in the minimum 

capable frequency to approximately 14 kHz.   Therefore, all plots are limited to frequencies 

greater than or equal to 10 kHz. 
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Analysis of the 1.25 mm Fourier Acoustic reconstructions shows inconsistent 

reconstruction accuracy, similar to the =  case.  Comparison of 2.5 mm Fourier Acoustic 

reconstructions with HELS and Modified HELS also showed similar trends to the =  case.  

Specifically, as frequency decreases, the two HELS methodologies tend to produce more 

accurate reconstruction locations than Fourier Acoustics.  However, both HELS and Modified 

HELS have issues at particular frequencies depending on the source locations.  Table 4.4 

summarizes the poor reconstruction scenarios.  Fourier Acoustics reconstruction with 1.25 mm 

spacing was not included due to inconsistencies in reconstruction. 

Table 4.4: Frequencies of poor reconstruction for HELS, Modified HELS, Fourier Acoustics at 

2.5 mm spacing for =10 mm, d=15 mm, =
 

 
 radians. 

Source location 

scenario 

HELS Modified HELS Fourier Acoustics 

2.5 mm spacing 

1 <10 ,12-14 kHz <12 kHz ≤14 kHz 

2 ≤12 kHz <12, 17 kHz ≤15 kHz 

3 <12 kHz <12 kHz ≤17 kHz 

4 ≤17 kHz <12 kHz ≤14 kHz 

5 <10 kHz <10, 16 kHz ≤14 kHz 

 

The cases shown in figure 4.12 are indicative of the issues seen following reconstruction.  

Unlike the difficulties in reconstruction seen with Fourier Acoustics at 1.25 mm, even when the 

two sources are not identified properly, a sense of their location can be seen by the other three 

methods.  Note that the examples in figure 4.12 are listed as 100% error because two 

distinguishable sources cannot be identified. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 0.12: Examples of reconstructions not producing two distinguishable sources with =10 

mm, d=15 mm, =
 

 
 radians: a) Standard HELS, location 1 at 14 kHz; b) Modified HELS, 

location 2 at 17 kHz; c) Fourier Acoustics reconstruction at 2.5 mm spacing, location 2 at 13 

kHz; d) Fourier Acoustics reconstruction at 2.5 mm spacing, location 2 at 13 kHz (zoomed-in); 

e) Fourier Acoustics reconstruction at 1.25 mm spacing, location 2 at 13 kHz; f) Fourier 

Acoustics reconstruction at 1.25 mm spacing, location 2 at 13 kHz (zoomed-in); 
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Comparison of the HELS methodologies indicates Modified HELS shows significant 

improvement in reconstruction accuracy below 15 kHz.  In particular, the advantage is apparent 

in source location scenarios two and three.  The root cause of the decrease in accuracy for 

Standard HELS is likely due to the LHS source being lower in pressure magnitude than the RHS 

source.  The reduced magnitude is a result of relative phase angle.  Though the measurement 

surfaces in Modified HELS are identical to those of standard HELS, Modified HELS weights the 

input to the HELS algorithm based on the highest pressure peak.  Thus, the measurement point 

magnitudes closest to the LHS source will be amplified as long as the magnitudes are relatively 

higher than the measurements surrounding the local points.  Further insight into the justification 

is given in chapter 4.6. 

1.1.1.6 Reconstruction with =10 mm, d=15 mm, =  radians 

None of the methods reconstruct the sources accurately.  As the phase angle is decreased 

to zero, two sources cannot be distinguished at the stand-off distance tested.  Figure 4.13 

provides plots of the both HELS methods and Fourier Acoustics at 2.5 mm spacing for source 

location scenario four at 19 kHz.  Fourier Acoustics at 1.25 mm spacing is not shown based on 

poor reconstruction results at =
 

 
 .  19 kHz was chosen as an example based on the satisfactory 

accuracy of each method at the given location with =
 

 
. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

Figure 0.13: Reconstruction at 19 kHz with =10 mm, d=15 mm, =0 radians - a)12.5 mm 

spacing measurement surface b) Standard HELS; c) Modified HELS; d) 2.5 mm spacing 

measurement surface  e) Fourier Acoustics at 2.5 mm spacing 

1.1.1.7 Reconstruction with =5 mm, d=15 mm, =  radians (Figures 4.25, 4.26) 

Results are similar to =10 mm, d=15 mm, =  radians, but with a reduction in accuracy 

due to the reduction in source spacing.  Both HELS methods produced more accurate results than 

Fourier Acoustics.  Fourier Acoustics reconstructions at 1.25 mm are omitted duet to inconsistent 

and poor reconstruction accuracy.  Overall, no significant differences between the HELS 

methods occur. 

1.1.1.8 Reconstruction with =5 mm, d=15 mm, =
 

 
 radians 

No accurate reconstructions consistently occurred in any of the methods.  The term 

―consistency‖ refers to shifting the measurement surface and reconstructing to the original 

reconstruction locations.  Shifting the surface is used to determine the difference between actual 
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sources and ghost sources.  A discussion of the procedure is provided in chapter 4.4.  An 

example of false reconstruction is shown in figure 4.14. 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 0.14: Determination of false sources – a) original measurement surface; b) original 

reconstructions surface with reconstructed sources near actual locations and an assumed false 

source at origin; c) shifted measurement surface; d) reconstruction of shifted measurement 

surface illustrating source reconstruction was not consistent following measurement shift 

1.1.1.9 Reconstruction with =5 mm, d=15 mm, =0 radians 

Similar to the case at =10 mm, none of the methods reconstructed the sources 

accurately.    
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1.1.1.10 Relative error plots 

Reconstruction with =15 mm, d=15 mm, =  radians 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

Figure 0.15: Relative error analysis of LHS source for =15 mm, d=15 mm, = radians – a) location 1; b) location 2; c) location 3; d) 

location 4; e) location 5 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

Figure 0.16: Relative error analysis of RHS source for =15 mm, d=15 mm, = radians – a) location 1; b) location 2; c) location 3; d) 

location 4; e) location 5 
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Reconstruction with =15 mm, d=15 mm, =
 

 
 radians 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

Figure 0.17: Relative error analysis of LHS source for =15 mm, d=15 mm, =
 

 
 radians – a) location 1; b) location 2; c) location 3; d) 

location 4; e) location 5 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

Figure 0.18: Relative error analysis of RHS source for =15 mm, d=15 mm, =
 

 
 radians – a) location 1; b) location 2; c) location 3; d) 

location 4; e) location 5 
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Reconstruction with =15 mm, d=15 mm, =  radians 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

Figure 0.19: Relative error analysis of LHS source for =15 mm, d=15 mm, =  radians – a) location 1; b) location 2; c) location 3; d) 

location 4; e) location 5
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

Figure 0.20: Relative error analysis of RHS source for =15 mm, d=15 mm, =  radians – a) location 1; b) location 2; c) location 3; d) 

location 4; e) location 5
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Reconstruction with =10 mm, d=15 mm, =  radians 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

Figure 0.21: Relative error analysis of LHS source for =10 mm, d=15 mm, = radians – a) location 1; b) location 2; c) location 3; d) 

location 4; e) location 5 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

 

 

 

  

Figure 0.22: Relative error analysis of RHS source for =10 mm, d=15 mm, = radians – a) location 1; b) location 2; c) location 3; d) 

location 4; e) location 5 
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Reconstruction with =10 mm, d=15 mm, =
 

 
 radians 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

Figure 0.23: Relative error analysis of LHS source for =10 mm, d=15 mm, =
 

 
 radians – a) location 1; b) location 2; c) location 3; d) 

location 4; e) location 5 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

Figure 0.24: Relative error analysis of RHS source for =10 mm, d=15 mm, =
 

 
radians – a) location 1; b) location 2; c) location 3; d) 

location 4; e) location 5
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Reconstruction with =10 mm, d=15 mm, =    radians 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

Figure 0.25: Relative error analysis of LHS source for =5 mm, d=15 mm, =  radians – a) location 1; b) location 2; c) location 3; d) 

location 4; e) location 5 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 

Figure 0.26: Relative error analysis of RHS source for =5 mm, d=15 mm, =  radians – a) location 1; b) location 2; c) location 3; d) 

location 4; e) location 5 



66 

 

 

Ghost source identification 

Results show that all methods are susceptible to ghost images when reconstructing 

sources out of phase by 
 

 
 radians or less.  Ghost images occur when any portion of the acoustic 

radiation pattern of multiple sources are in phaseIn the case of a phase difference of 
 

 
 and 0 

radians, a significant portion of the radiated wave patterns are in phase.  Therefore, a method was 

required to ensure that the assumptions regarding source reconstruction location in the simulation 

results are valid. 

Ghost images can be identified by shifting the measurement surface with respect to the 

source surface.  Shifting the measurement surface changes the relative phase between the ghost 

and real sources.  Figure 4.27 illustrates ghost imaging identification for =10 mm, d=15 mm, 

=
 

 
 at 14 kHz using Modified HELS.  Applying a measurement shift to the numerical 

simulations significantly reduced the amplitude of the ghost image and shifted it towards the 

center of the reconstruction surface (lower right hand corner of surface).  Therefore, the reduced 

and shifted source is deemed a ghost image and is disregarded.  Though identifying ghost images 

requires another set of measurements and analysis, such a methodology is required regardless of 

the NAH methodology used. 
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a) 

 
b) 

 
c) 

 
d) 

Figure 0.27: Reconstruction from a shifted measurement location to identify ghost sources – a) 

original measurement surface; b) original reconstruction surface with ghost sources located in 

lower right hand corner; c) shifted measurement surface; d) shifted reconstruction surface with 

shifted ghost source and reduced amplitude. 

Regularization justification 

TSVD and TR with GCV were both used to determine which method provided the most 

accurate reconstructions over the spectrum of parameters tested.  In many cases both methods 

showed similar results.  Unfortunately, because of a lack of a gap in the singular values, no 

significant inflection points and relatively small values at high frequency caused TSVD to be 

ineffective in some cases.  In most cases where TSVD was ineffective, TR was able to 

reconstruct accurately.  Figure 4.29 shows a case where TR produces significantly improved 

reconstruction over TSVD.  
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a) 

 
b) 

Figure 0.28: Comparison of singular values at 100 Hz and 13 kHz.  The 100 Hz case is 

characterized by a group of large and small singular values, whereas the 13 kHz case only has 

small singular values 

 

 
a) 

 
b) 

Figure 0.29: a) Reconstruction of location scenario 4 at 13 kHz, mm and 
 

 
 with TSVD; 

b) Reconstruction of location scenario 4 at 13 kHz, mm and 
 

 
 with TR 

  

GCV with HELS and Modified HELS showed success in finding an optimal value for 

TR
74

.  However, Fourier Acoustics did not show similar correlations.   values produced by 

GCV in the case of HELS were 4-5 times the order of magnitude of that of Fourier Acoustics.  

The difference in  values is due to the increased number of measurement points required in 

Fourier Acoustics to create an equivalent reconstruction surface.  Increasing the number of 
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measurement points increases the number of singular values and the discrete ill-posedness of the 

problem. 

Difficulties with minimum GCV values near zero were investigated by Wahba and 

Wang
75

.  They show as the number of data points increases, the likelihood of  approaching zero 

increases exponentially.  Therefore,  values were chosen manually for Fourier Acoustics in an 

attempt to find a parameter that would produce a well-conditioned problem while also not over-

smoothing the surface.  An example of Fourier Acoustics with  determined by GCV and 

manually is shown in figure 4.30. 

 
a) 

 
b) 

Figure 0.30: a) Reconstruction of location scenario 4 at 12 kHz, mm and  with  chosen 

via GCV; b) Reconstruction of location scenario 4 at 13 kHz, mm and    chosen 

manually 

Modified HELS and the relationship of frequency and reconstructed source 

accuracy 

The field pressure radiation from a point source is dependent on the acoustic 

wavenumber (i.e. frequency) and the radial distance between the source and the field point. 

m

ikR

m
R

e
Sp

m

ˆˆ        (4.4) 
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Frequency, and consequently, spherical spreading plays a role in reconstruction accuracy.  The 

role of frequency and spherical spreading can be shown by taking the gradient of a single 

monopole source.  If the pressure gradient of a source is high, the spherical spreading of the 

source will be small since the point-to-point pressure difference will be large.   Sources in close 

proximity to each other with high spatial gradient consequently result in less interference than 

cases with smaller gradients, since pressure amplitude reduces significantly with increasing in-

plane distance from the center of the source.   

       
    

  
     

     

  
    (4.5) 

Equation (4.5) shows the gradient is proportional to the acoustic wavenumber.  Therefore, with 

increasing frequency, the gradient increases and less spherical spreading occurs.  To illustrate, 

two point sources separated by 10 mm are located on a line extending from -25 to 25 mm, and 

measurements are taken at a stand-off distance of 15 mm (figure 4.31).  The radiated pressure is 

shown for phase differences of 0, 
 

 
, and  for frequencies of 100 Hz and 20 kHz.  The source 

locations are located at -5 and 5 mm from the origin. 
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a) 

 
d) 

 
b) 

 
e) 

 
c) 

 
f) 

Figure 0.31: Wavefronts of two coherent sources on a line demonstrating the relationship 

between spherical spreading and interference at the measurement plane – a) f=100 Hz,  b) 

f=100 Hz, 
 

 
c) f=100 Hz, d) f=20 kHz,  e) f=20 kHz, 

 

 
f) f=20 kHz, 

 
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Magnitudes of the 100 Hz sources show no significant difference exists between the 

amplitudes of the 0 and 
 

 
 phase angle cases.  Therefore, the inability to reconstruct at low 

frequencies with a phase angle of  
 

 
 is similar to attempting to reconstruct two sources 

completely in phase (i.e. =0).  Once the sources are out of phase by , two sources are visible in 

the measurement plane, and one would expect accurate reconstruction at the source surface. 

Increasing the frequency of the point sources to 20 kHz shows a dramatic shift in the 

imaginary component and magnitude of the radiation when the two sources are out of phase by 

 
 

 
.  Significant destructive interference occurs to the LHS source, which is illustrated in the 

imaginary component of the field.  The differences at higher frequencies produce characteristics 

of two separate sources not seen at lower frequencies. 

Extending the observations to Modified HELS, the weighted measured pressure is shown 

for 14 and 20 kHz frequencies and phase differences of 0, 
 

 
, and  for the same source locations.  

14 kHz matches a frequency at which Standard HELS has difficulty reconstructing in the three 

dimensional version of the system given (source location four), whereas Modified HELS was 

capable of accurate reconstruction.  Both methods were able to reconstruct sources accurately at 

20 kHz. 
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a) 

 
d) 

 
b) 

 
e) 

 
c) 

 
f) 

Figure 0.32: Comparison of non-weighted and weighted wavefronts of two coherent sources on a 

line demonstrating the effects on interference at the measurement plane – a) f=14 kHz,  b) 

f=14 kHz, 
 

 
c) f=14 kHz, d) f=20 kHz,  e) f=20 kHz, 

 

 
f) f=20 kHz, 
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Of particular interest are the cases at   
 

 
.  Comparing the weighted and non-weighted 

amplitudes in subfigure (b) shows characteristics of a peak in pressure left of the LHS source 

with weighted measurement pressures.  On the other hand, the non-weighted pressure shows no 

significant change in pressure.  To be fair, the overlaid plots are not at the same scale.  Therefore, 

magnitude plots are shown in figure 4.33 with equal scaling for the   
 

 
 cases. 

 
a) 

 
b) 

Figure 0.33: Comparison of non-weighted and weighted wavefront magnitudes of two coherent 

sources on a line demonstrating the effects on interference at the measurement plane – a) f=14 

kHz, 
 

 
b) f=20 kHz, 

 

 


 

Figure 4.33 shows a definitive peak left of the LHS source in the weighted case at 14 

kHz, whereas the non-weighted case does not.  In the case of 20 kHz, a significant rise in 

magnitude can be seen in both variants of the measurement pressures.  As stated earlier, both 

Standard and Modified HELS were capable of accurate reconstruction at 20 kHz, whereas at 14 

kHz only Modified HELS produced accurate reconstruction locations.  Further review of 

equations (3.20-3.22), show that Modified HELS effectively increases the pressure gradient at 

the measured surface by amplifying the highest pressure levels of the measurement plane.  In 

effect, weighting the measured pressure reduces the interference due to spherical spreading. 
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(3.20, 3.21, 3.22) 

Similar characteristics do not produce accurate reconstruction locations in the case of 

=0.  The root cause may be the symmetry of the measured pressures, which produces the largest 

amount of constructive interference.  At small  , this leads to minimal pressure difference 

between the radiated sources with increasing stand-off distance.  Based on the above, guidelines 

for determining the feasibility of source reconstruction in relation to acoustic wavenumber, 

stand-off distance, source separation and relative phase angle are needed before the methods can 

be applied in practice. 

Conclusions 

Testing of the NAH resolution guidelines with respect to HELS, Modified HELS and 

Fourier Acoustics were done by numerical simulations.  Acoustic frequency, stand-off distance, 

phase angle, source separation and source locations were varied to provide a general 

understanding of the capabilities of the three methods with respect to coherent point source 

reconstruction. 

Simulations show that the NAH resolution guidelines do not apply to coherent point 

sources.  The guidelines are based on the angular spectrum which assumes sinusoidal motion 

across the entire plane, whereas the oscillations of point sources are locally concentrated.  

However, the relationship of decreased resolution with increased stand-off distance still holds 

based on the physics of the problem. 



76 

 

 

The NAH guidelines do not correlate exactly for point sources.  On the other hand, 

simulations show that HELS significantly increases the reconstruction location accuracy as 

frequency decreases and stand-off distance increases.  However, accurate reconstruction is 

limited above some low frequency limit.  The low frequency limit is likely based on the amount 

of spherical spreading produced, which was shown to be dependent on stand-off distance, 

relative phase angle between sources, source separation and frequency. 

Furthermore, Modified HELS was able to produce more accurate reconstructions than 

Standard HELS at lower frequencies.  In particular, as the source separation and phase angle 

decreased, Modified HELS showed significant advantages.  However, a few frequencies showed 

poor reconstruction accuracy. 

Overall, both HELS methods were shown to be more accurate in reconstruction of 

coherent point sources than Fourier Acoustics with significantly fewer measurements.  In our 

simulations, the HELS methods required 25 measurements, whereas Fourier Acoustics used 441 

measurements.  Also, further refinement of the reconstruction surface of the HELS method was 

feasible by reconstructing to the area of interest, which does not increase calculation or 

measurement time in practical applications.  In our simulations, the reconstruction surface was 

reduced to 1.25 mm spacing.  The corresponding Fourier Acoustics model required 1681 

measurement points and did not provide consistently accurate reconstructions due to the extreme 

discrete ill-posedness of the problem.  By having fewer required measurements, the level of 

discrete ill-posedness of HELS is significantly less and regularization is feasible. 
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CHAPTER 5: EXPERIMENTAL VALIDATIONS 

The objective of chapter 5 is to validate the simulations experimentally.  Though one 

could choose objects from everyday life as test subjects, the presence of coherent sources and the 

uncertainty of source frequencies, makes it difficult to determine if the methods provide accurate 

reconstructions.  Therefore, a direct comparison of the numerical simulations is made by 

approximating two point sources in a lab setting.  Due to the significant number of measurements 

required for Fourier Acoustics, only Standard and Modified HELS are used to validate the 

numerical simulations.  

Test setup 

Two monopole sources are created by placing a speaker within two six inch rubber cones 

separated by approximately 0.5 m.  The cones are heavily insulated to limit transmission loss 

through the open end of the cone and its walls.  At the apex of the cone, a nylon tube (0.5 m long 

9 mm OD/3 mm ID) is inserted into the cone to approximate a plane wave.  The objective of 

approximating a plane wave is to limit the energy loss over distance from the source location (a 

theoretical plane wave’s energy does not vary with distance from the source).  At the end of the 

nylon tubes, 1.5 mm orifices are inserted to create two point sources.  Testing was done at 

Wayne State University’s Acoustic Noise Vibration Controls (AVNC) laboratory in an anechoic 

chamber to approximate the free-field conditions used in simulation. 

Source location scenario three with a phase angle of   
 

 
 was chosen to validate 

experimentally, since the location scenario can be setup visually without much difficulty.  



78 

 

 

Microphone array spacing was set to 12.5 mm to match simulation spacing.  was set at 

approximately 10 mm with a standoff distance of 15 mm.   

Setting the phase angle of the two sources is difficult in practice.  The phase and 

frequency of the individual sources are set using the ―waveplay‖ function in Matlab©.  The 

waveplay function allows control over individual speakers and produces sound based on user 

defined data.  Sin waves were created for each speaker with adjustable frequencies and phase. 

                
                  

    (5.1) 

Where p1 and p2 represent the source amplitude, f is the source frequency and  is the 

phase difference between the two sources.  Unfortunately, controlling the phase angle is also 

dependent on the path of the wave.  Phase differences can be created by differences in tube 

length, restrictions within the tubes and errors within the computer soundcard.  Therefore, to 

ensure that a phase angle of 
 

 
 radians was tested, the phase angle was varied between 0 and  in 

increments of 
 

 
.  Source frequencies were tested at 14 and 15 kHz to focus on frequencies 

showing improved reconstruction accuracy with Modified HELS in comparison to Standard 

HELS with   
 

 
 in simulation. 
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a) 

 
b) 

 
c) 

 

Figure 0.1: a) Test setup; b) 12.5 mm spacing microphone array; c) point source approximated 

by orifices separated by approximately 10 mm  



80 

 

 

Experimental results 

Error analysis in the presented simulations was based on the relative distance between the 

actual and reconstructed source locations with respect to measurement spacing.  In experimental 

application, the use of the relative error percentage is difficult, due to measurement accuracy of 

the source locations with respect to the measurement array.  For example, with measurement 

spacing of 12.5 mm, 1 mm of error in the measurement location results in 8% relative error.  

Therefore, any error in measurement, human or otherwise, can lead to significant error when 

comparing to the experimental results.  Instead, validation is based on observation of the 

reconstructed surfaces. 

Without quantitative measurements, a baseline to compare the results was created by 

testing two incoherent sources at the same location as the coherent tests.  Incoherent sources are 

significantly easier to reconstruct since relatively less interference occurs when the source sound 

waves have a large enough difference in frequency.  Figures 5.2-5.8 summarize the results of 

incoherent and coherent tests.  Note that incoherent results are in the upper left hand corner of 

each figure for comparison. 

 

The order of results is as follows: 

 Incoherent sources measurement and reconstruction surfaces (baseline) 

 Coherent source measurement surface at 14 kHz 

 Coherent source reconstruction surface at 14 kHz (Standard HELS) 

 Coherent source reconstruction at 14 kHz (Modified HELS) 

 Coherent source measurement surface at 15 kHz 

 Coherent source reconstruction at 15 kHz (Standard HELS) 

 Coherent source reconstruction at 15 kHz (Modified HELS) 
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Results show correlation between the commanded and actual phase angles is not good.  

Table 5.1 attempts to correlate the commanded phase angle to the actual phase angle based on 

observation of measurement surfaces. 

Table 5.1: Correlation of commanded and actual phase angle of experimental data. 

        Corresponding subfigure letters for each commanded frequency are in parenthesis. 
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Based on table 5.1 at 14 kHz, Standard HELS should be capable of reconstruction at all 

cases with possible exception of (e) and (f), since the phase angles are less than or equal to 
 

 
.  

Modified HELS is expected to show improved reconstruction in these cases.  At 15 kHz, 

Standard HELS is expected to produce accurate reconstructions at (f) only.  Possible 

reconstruction may be feasible for cases (d) and (e) with Modified HELS in addition to case (f). 

Results show good correlation with the hypotheses mentioned above, with slight 

differences in reconstructed source location with respect to the incoherent sources.  14 kHz 

simulations matched the hypotheses except in the case of Standard HELS at case (e), where good 

reconstruction was possible at an estimated phase angle of less than or equal to 
 

 
.  At case (f), 

poor reconstruction resulted with Standard HELS, while Modified HELS was able to reconstruct 

the sources accurately.   



 

 

 

8
2
 

15 kHz results also performed as expected.  At phase angles near or below 
 

 
, Standard HELS did not provide good 

reconstruction.  Modified HELS did show distinguishable sources in case (e), whereas Standard HELS did not.  Also, an argument can 

be made that HELS was able to reconstruct two distinguishable sources in the correct location for case (d).  Both methods showed 

good reconstruction for case (f) with a an estimated phase angle between  
 

 
     

  

 
. 

Overall, experimental results match simulation results for the frequencies and stand-off distances tested.  In both frequency 

cases, Modified HELS produced more accurate reconstructions with decreasing phase angle as shown in simulations.  Based on the 

experimental results, Standard and Modified HELS show promise as methods of reconstructing coherent sources with relative phase 

angles greater than or equal to  
 

 
. 

 
a) 

 
b) 

 
c) 

Figure 0.2: Experimental results of baseline test at =10 mm, d=15 mm at source location scenario 3 (incoherent sources) – a) 15 kHz 

measurement surface; b) 16 kHz measurement surface c) reconstructed surfaces at 15 and 16 kHz overlaid
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 0.3: Measurement surfaces with =10 mm, d=15 mm, f=14 kHz  and varying phase angle at source location scenario 3 – a) 

reconstruction surface of incoherent sources (baseline); b) measurement surface with    ; c) measurement surface with   
 

 
; d) 

measurement surface with   
 

 
; e) measurement surface with   

  

 
; f) measurement surface with    
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 0.4: Reconstruction surfaces with =10 mm, d=15 mm, f=14 kHz  and varying phase angle at source location scenario 3 – a) 

reconstruction surface of incoherent sources (baseline); b) Standard HELS reconstruction surface with    ; c) Standard HELS 

reconstruction surface with   
 

 
; d) Standard HELS reconstruction surface with   

 

 
; e) Standard HELS reconstruction surface 

with   
  

 
; f) Standard HELS reconstruction surface with    
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 0.5: Reconstruction surfaces with =10 mm, d=15 mm, f=14 kHz  and varying phase angle at source location scenario 3 – a) 

reconstruction surface of incoherent sources (baseline); b) Modified HELS reconstruction surface with    ; c) Modified HELS 

reconstruction surface with   
 

 
; d) Modified HELS reconstruction surface with   

 

 
; e) Modified HELS reconstruction surface 

with   
  

 
; f) Modified HELS reconstruction surface with     
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a) 

 
b) 

 
c) 

 
c) 

 
d) 

 
e) 

Figure 0.6: Measurement surfaces with =10 mm, d=15 mm, f=15 kHz  and varying phase angle at source location scenario 3 – a) 

reconstruction surface of incoherent sources (baseline); b) measurement surface with    ; c) measurement surface with   
 

 
; d) 

measurement surface with   
 

 
; e) measurement surface with   

  

 
; f) measurement surface with    
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 0.7: Reconstruction surfaces with =10 mm, d=15 mm, f=15 kHz  and varying phase angle at source location scenario 3 – a) 

reconstruction surface of incoherent sources (baseline); b) Standard HELS reconstruction surface with    ; c) Standard HELS 

reconstruction surface with   
 

 
; d) Standard HELS reconstruction surface with   

 

 
; e) Standard HELS reconstruction surface 

with   
  

 
; f) Standard HELS reconstruction surface with    
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 0.8: Reconstruction surfaces with =10 mm, d=15 mm, f=15 kHz  and varying phase angle at source location scenario 3 – a) 

reconstruction surface of incoherent sources (baseline); b) Modified HELS reconstruction surface with    ; c) Modified HELS 

reconstruction surface with   
 

 
; d) Modified HELS reconstruction surface with   

 

 
; e) Modified HELS reconstruction surface 

with   
  

 
; f) Modified HELS reconstruction surface with     
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

The objective of the presented dissertation was to determine if HELS can provide better 

spatial resolution than NAH resolution guidelines in reconstruction of coherent point sources.  

HELS’ ability to synthesize the entire acoustic field with less number of measurement points 

than other NAH methods is well documented.  However, the extent of this advantage has not 

been applied to point-like sources in violation of the NAH resolution guidelines.  Numerical 

simulations and experimental analysis were done to determine the feasibility of HELS violating 

these guidelines. 

Numerical simulations were conducted with varying parameters using HELS and a new 

weighted variant termed, ―Modified HELS‖.  As a baseline, Fourier Acoustics was used during 

simulations.  In simulations, we have shown that the NAH resolution guidelines provided by 

Williams are not applicable to coherent point sources.  The concentrated energy of a point source 

causes the overall SNR of the surface to be much higher than the point-to-point SNR.  

Consequently, finer resolution reconstruction is feasible with coherent point sources.  However, 

though both HELS and Fourier Acoustics provided better resolution than the NAH guidelines 

suggested, factors affecting reconstruction resolution of point sources were characterized.   

Besides stand-off distance, the resolution capabilities of HELS and Fourier Acoustics 

were proven related to the relative phase angle, source separation and acoustic frequency.  With 

decreasing frequency and relative phase angle, both methodologies showed reduced accuracy in 

reconstruction.  The relationship was shown to be due to the effects of spherical spreading to the 

measurement plane.  However, HELS and in particular Modified HELS, showed significant 

increases in accuracy relative to Fourier Acoustics.  Increased accuracy was in spite of requiring 
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98% less measurement points than Fourier Acoustics (Fourier Acoustics –1681 measurement 

points, HELS – 25 measurement points).   

Furthermore, refinement of the Fourier Acoustics measurement and reconstruction 

surfaces by increasing the number of measurement points proved unreliable due to an increase in 

discrete ill-posedness.  On the other hand, the HELS methods were able to refine reconstruction 

resolution by a ―zoom-in‖ approach, where a subset of the reconstruction surface was 

reconstructed with the same number of measurement and reconstruction points without added 

calculation or measurement cost.  In the case of HELS, the problem does not see significant 

increase in ill-posedness since the measurements, and consequently, the singular values of the 

problem do not change. 

Experimental validations of the simulations were done by approximating two point 

sources in a lab with a measurement system approximating the simulation model.  Due to the 

difficulties in creating accurate phase angles in practice, phase angles were swept between 0 and 

 in an attempt to cover the range used in simulation.  We show that when the measured 

pressures match the expected pressures for a given phase angle, experimental and simulation 

results correlate.  Evidence was also provided showing Modified HELS’ ability to provide more 

accurate reconstruction locations as phase angle decreases.  Testing with Fourier Acoustics was 

not done due to the number of measurements required to produce the same resolution of 

reconstruction as HELS. 
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Though HELS and Modified HELS show promise in fine resolution point source 

reconstruction, a number of areas remain open for future research: 

1) Guidelines defining feasible point source reconstruction – guidelines defining feasible 

reconstruction based on phase angle, stand-off distance, source separation and 

frequency is required before general application of the methods can be implemented. 

2) Justification for poor reconstruction at unexpected frequencies with =10 mm, d=15 

mm at   
 

 
 – The predictability of why and when these scenarios occur is important 

prior to use in practical applications. 

3) Mathematical justification for Modified HELS – Mathematical proof would help 

understand the limitations of the method.  For example, is the intuitive restriction of 

only applying the method to point sources true?  Also, can further resolution be 

gained in poor SNR environments by amplifying the weighting term by squaring or 

another method? 

4) Define the relationship between the number of measurements taken and measurement 

resolution with the HELS methods – In Fourier Acoustics, measurement spacing is 

based on meeting the spatial Nyquist rate.  However, the spatial Nyquist rate does not 

apply to HELS due to its ability to synthesize points.  In the presented studies, adding 

one row and column of measurements at small stand-off distances significantly 

improved results.  Would an increase in the number of measurement points increase 

reconstruction accuracy with HELS at farther stand-off distances, particularly at cases 

of 
 

 
 or less?  Assuming an increase in accuracy occurs, is there an optimum 
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number of measurement points before the level of discrete ill-posedness reduces 

reconstruction accuracy? 

Our focus was to determine if HELS was capable of better reconstruction resolution of 

coherent point sources than traditional guidelines and methods.  We found in almost all cases, 

that both HELS methods met or exceeded the baseline methodology in which the guidelines were 

based on.  Though the above areas must be investigated before application of the method can be 

used in general applications, Standard and Modified HELS show promise in tackling current and 

future acoustic problems.   
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ABSTRACT 

RECONSTRUCTION RESOLUTION OF COHERENT POINT SOURCES WITH 

HELMHOLTZ EQUATION LEAST SQUARES 

 

by 

RICHARD E. DZIKLINSKI III 

MAY 2011 

Advisor: Dr. Sean F. Wu 

Major: Mechanical Engineering 

Degree: Doctor of Philosophy 

 

The dissertation investigates the reconstruction of coherent point sources using 

Helmholtz Equation Least Squares (HELS) method based on measurements in violation of 

Nearfield Acoustical Holography (NAH) resolution guidelines.  In HELS, the Helmholtz 

equation is solved by matching a series of localized spherical expansion functions to the 

measured pressures in the field.  Expansion coefficients are solved for by least squares and used 

to reconstruct pressures at the source surface.  By approximating the pressure radiation with 

expansion functions, field and surface pressures can be synthesized, resulting in the possibility of 

higher spatial resolution than previous generation NAH methods such as Fourier Acoustics and 

Inverse Boundary Element Methods.  The NAH guidelines dictate that spatial resolution 

decreases with increasing stand-off distance and decreasing Signal to Noise Ratio (SNR).  Also, 

in methods other than HELS, measurement spacing must exceed the spacing derived from the 

Nyquist rate to mitigate the risk of aliasing.  HELS is not limited by the Nyquist rate due to its 

ability to synthesize field and surface points. 
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The resolution capability of HELS is tested through numerical simulation and 

experimental testing.  Besides HELS, a weighted variant of HELS, termed ―Modified HELS‖ is 

tested.  For comparison, Fourier Acoustics is used as a baseline with measurement spacing equal 

to and finer than the measurement spacing used in the HELS simulations.  Results show that both 

HELS and Fourier Acoustics reconstruct point sources at finer resolution than the NAH 

guidelines predict.  The increased resolution is likely due to the use of point sources and its affect 

on the definition of SNR and the angular spectrum.  However, HELS, and in particular Modified 

HELS, show a significant increase in accuracy in comparison to Fourier Acoustics for the 

parameters tested.   

The main conclusion of this dissertation is that Standard and Modified HELS are better 

tools than traditional NAH methods when reconstructing coherent point sources in violation of 

the NAH spatial resolution guidelines. 
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	Near-field Acoustical Holography (NAH) has become an important tool in the diagnosis and evaluation of noise and vibration in

