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CHAPTER 1 

Introduction 

 It is well known that the varying levels of metabolic requirements during exercise must 

be followed by changes in cardiovascular dynamics in order to meet the metabolic needs of the 

active skeletal muscle tissue.  The cardiovascular system copes with an increase in metabolic 

need by increasing blood flow to the working skeletal muscle through either increasing the 

cardiac output of the heart, vascular resistance to the less metabolically demanding organs, or 

varying levels of both.  There are several mechanisms that control these changes and are seen as 

feed forward and feed back in nature; though there are three main neural mechanisms known for 

cardiovascular homeostasis during exercise.  One is central command (32), which is a feed 

forward mechanism; as well as the feedback mechanisms of the baroreceptor reflex (aka. 

baroreflex) (66), and the skeletal muscle afferents, composed of both the mechano- and 

metaboreflex (91; 109).  For the purpose of this dissertation, the focus will be on the muscle 

metaboreflex. 

 The muscle metaboreflex is a negative feedback blood flow and blood pressure raising 

reflex.  When blood flow to working muscles does not provide adequate oxygen and nutrients to 

maintain the metabolic level for the activity, the working muscles create metabolic by-products, 

also called metabolites.  These metabolites stimulate group III and IV afferent nerve fibers (2; 6; 

65; for review see 69).  Activation of these afferent fibers elicits an increase in sympathetic tone.  

Increased sympathetic tone to the heart and vasculature brings forth an increase in cardiac 

output – known as the muscle metaboreflex.   

 Alam and Smirk (2) discovered the muscle metaboreflex serendipitously.  They 

stumbled into this discovery after arresting circulation into and out of working muscles during a 

bout of static exercise (multiple sets of experiments were done: seated calf raises, and hand grip 
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exercises).  They observed that during exercise, with the arrest of blood flow, there was a 

significant increase in blood pressure.  Moreover, instead of blood pressure returning to near 

resting levels after the end of the exercise, blood pressure remained elevated while blood flow 

to the formerly working muscles was still under arrest.  This increase in blood pressure was 

markedly greater than what was observed in similar experiments that did not include circulatory 

arrest.   

 Since their discovery, the idea disappeared until 1964 when Asmussen and Nielsen (6) 

used cycle ergometry and suggested that the reflexive nervous activity involved may be due to 

activation of mechanical and/or chemical receptors in the working skeletal muscle.  Coote et al 

(19), furthered this idea by showing that, in cats, stimulation of skeletal muscle contraction 

along with occlusion of the iliac artery produced a much greater pressor response as opposed to 

stimulation alone.  In this study it was also discussed that the afferent signals sent from 

metabolic receptors are likely transmitted through Group III and/or IV afferent fibers.  

McCloskey et al, (65) confirmed that Group III and IV afferent nerves are involved with the 

reflex; using two forms of nerve blockade to differentiate between large myelinated fibers 

(group III) versus small unmyelinated fibers (group IV).  Since then, it has been shown that 

group IV afferent fibers are primarily chemo-sensitive, though possess some mechano-sensitive 

properties (1), and that group III afferent fibers are primarily mechano-sensitive, but possess 

some chemo-sensitive properties (1; 54).  Following this, it has been determined that among the 

stimuli that activate these afferents are: lack of oxygen delivery (98), lactate (101), hydrogen 

ion concentration (H+), pH (99; 106), arachidonic acid (87), diprotonated phosphate (100), and 

adenosine (63).   

 Normal mild exercise does not elicit a muscle metaboreflex pressor response.  As 

mentioned previously, the muscle metaboreflex is activated by accumulation of metabolites in 
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skeletal muscle (for review see 89).  That is to say, one must either produce high levels of 

metabolites, as during higher intensity exercise, or produce a reduction of flow to the working 

muscles.  When activated, the muscle metaboreflex causes, by increasing sympathetic activity, 

an increase in cardiac output through an increase in both heart rate and cardiac contractility (79; 

95).  Depending on the intensity of the exercise, there is also a degree of vasoconstriction to 

maintain proper blood pressure levels and thus an increase in central blood mobilization (97).  It 

appears these processes all occur in order to increase blood pressure and flow to ischemic 

muscles.  A study by Joyner (45) done in humans, and another by Mittelstadt et al. (70) have 

shown that even the vasculature of the working skeletal muscle is under vasoconstriction during 

exercise and muscle metaboreflex activation.  These are the typical components of muscle 

metaboreflex activation, in mild to moderate exercise, but the manifestation of muscle 

metaboreflex activation can change in different circumstances.  

 What is observed during muscle metaboreflex activation in mild and moderate intensity 

exercise is somewhat different than what is seen during severe exercise.  Augustyniak et al (8), 

performed a study using conscious dogs, and activated the muscle metaboreflex via partial 

reduction of blood flow at the terminal aorta.   In that study they observed that while at mild and 

moderate levels of exercise, cardiac output increased significantly during muscle metaboreflex 

activation; yet there was no significant increase in cardiac output at severe exercise during 

muscle metaboreflex activation, though the pressor response still occurred.  This shows an 

alteration in the mechanism of muscle metaboreflex activation, shifting the main manifestation 

of the muscle metaboreflex to be vasoconstriction rather than cardiac output.  This allows for 

blood pressure to increase considerably, without a considerable increase in cardiac output.  

Joyner (45), suggests that this vasoconstriction may even impair flow to the muscles.   

 Heart failure is defined as a condition resulting from a myocardial dysfunction.  This 
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abnormality causes a decrease in cardiac output, resulting in the inability of the heart to 

circulate enough oxygen rich blood throughout the body, to supply its metabolic needs.  

Therefore, one of the typical signs is a decreased cardiac output.  Another sign is increased level 

of sympathetic activity (epinephrine and norepinephrine) in resting and exercise conditions.  

The increased sympathetic activity also results in high tachycardia, and a reduced tolerance to 

exercise (29; reviewed in 84).   

 A study conducted by Hammond et al (39), found that when dogs were in heart failure, 

muscle metaboreflex activation during exercise could not elicit a significant increase in cardiac 

output, leaving the pressor response entirely due to vasoconstriction.  This effect of heart failure 

on muscle metaboreflex during exercise is very similar to what is observed during severe levels 

of exercise intensity, in normal conditions.  Also found in heart failure dogs were increased 

levels of: vasopressin, norepinephrine, and renin.  A study by O’Leary et al (81), found similar 

results, and also showed that the reason for a lack of a cardiac output increase was due to a 

significant decrease in stroke volume, (heart rate was higher in heart failure when compared to 

normal conditions).  Ansorge et al (3), found similar results, as well as a decrease in the rate of 

ventricular contraction, measured with dL/dt (change in myocardial segment length with respect 

to time).  It was also suggested that the increased sympathetic activity to the heart causes 

significant vasoconstriction of the coronary arteries, which may limit the heart’s work capacity.  

Sala-Mercado et al (94), used the pressure volume relationship to illustrate a reduced ventricular 

contractility in dogs with heart failure while in exercise and muscle metaboreflex activation, as 

compared to when they were normal.  More specifically, they showed that during heart failure, 

activation of the muscle metaboreflex did not further increase ventricular contractility when 

compared to exercise without activation of the muscle metaboreflex. 

Examples of previously conventional measures of cardiac performance are: stroke 
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volume, ejection fraction, and maximal change of pressure (dP/dtmax), as well as maximal 

myocardial segment length shortening (dL/dtmax), with respect to time. While these measures 

are sensitive to contractile state, they are also influenced by changes in preload or afterload (48; 

58), this is a major limitation in such techniques in measuring contractility.  In order to take 

changes in preload and afterload into account, indexes using the pressure-volume relationship 

are used, preload recruitable stroke work (PRSW).  The concept of preload recruitable stroke 

work is a modification of the Frank-Starling relationship, with the use of end diastolic volume 

instead of end diastolic pressure (30).  Preload recruitable stroke work is a relationship of the 

stroke work with respect to the end diastolic volume.  Stroke work is a product of stroke volume 

and the pressure change in the left ventricle throughout a cardiac cycle, i.e. the integral of the 

pressure-volume relationship during one cardiac cycle.  When stroke work is plotted as a 

function of end diastolic volume, the slope of the resultant linear relationship is preload 

recruitable stroke work, which is measured in the mmHg.ml/ml also measured as erg.103/cm3 

(30).  Preload recruitable stroke work however, is both insensitive to changes in loading 

conditions, and is not influenced by changes in ventricular size and structure (47).   

Normally the muscle metaboreflex elicits an increase in cardiac performance (79).  This 

in itself would increase cardiac output; and if there were no changes in the vascular dynamics, 

this would lead to a decrease in venous pressure, and subsequently a decrease in cardiac output.  

In order to maintain preload the muscle metaboreflex also elicits vaso and venocostriction to 

maintain right atrial pressure, coupled with the increase in cardiac output (97).  But, this 

vasoconstriction may include vasoconstriction of the coronary vasculature.  Gwirtz et al. (37) 

found that the increased -adrenergic activation, from increased sympathetic tone, as a result of 

exercise, caused vasoconstriction in the coronary arteries.  As well, it was suggested that this 

coronary vasoconstriction might modulate cardiac function.  This was shown by a significant 
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vasodilation in the coronary vasculature, during exercise, following -receptor blockade.  

Gwirtz, et al., not only showed an increase in blood flow, but also showed an increase in 

cardiovascular performance with -blockade.  O’Leary and Augustyniak (79) showed that 

increased sympathetic activation elicited by the muscle metaboreflex served to maintain or even 

increase stroke volume during tachycardia in exercise.  The question remained as to whether the 

muscle metaboreflex would affect coronary blood flow.  Following this, Ansorge et al. (4), 

discovered that during severe exercise, activation of the muscle metaboreflex significantly 

reduced the coronary vascular conductance.  Furthermore, with dogs in heart failure, Ansorge et 

al. (3), found that this reduction in coronary vascular conductance was not only seen in 

moderate levels of exercise, but also mild levels of exercise, with activation of muscle 

metaboreflex.  Sala-Mercado et al. (94), used the pressure-volume relationship to illustrate a 

reduced ventricular contractility in dogs with heart failure while in exercise and muscle 

metaboreflex activation, when compared to the control condition.  During heart failure, it is 

known that there is a markedly high level of sympathetic activity; however no significant 

increases in cardiac output are observed during rest, mild, moderate or severe exercise 

conditions when compared to normal conditions with their corresponding intensities (39; 40).  

In fact, cardiac output is lower. 

It is possible that one reason for this inability to increase cardiac output would be 

coronary vasoconstriction.  O’Leary et al. (82) illustrated a significant increase in coronary 

vascular conductance after muscle metaboreflex activation in normal dogs during -adrenergic 

blockade.  In this study, a higher increase in cardiac output during muscle metaboreflex 

activation while under -adrenergic blockade was also observed.  Cardiac myocytes are able to 

increase their oxygen uptake up to five times during exercise.  However, as depicted in Figure 

1.1, even when the body is at rest the heart muscle extracts ~75% of the oxygen in arterial blood, 
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while the rest of the body (mostly skeletal muscle) extracts ~25%.  As workload intensity 

increases, skeletal muscle is able to extract more oxygen from the blood. Since the heart muscle 

already extracts a large amount of oxygen when the body is at rest, it is unable to extract 

substantially more oxygen when workload increases.  This leaves increasing coronary blood 

flow as the primary mechanism of delivering more oxygen to the cardiac myocytes (reviewed in 

10; 105).  In normal conditions, metabolic vasodilation facilitates an increase in coronary blood 

flow during heavy cardiac oxygen demand or ischemic situations.  Factors that stimulate 

coronary vasodilation are adenosine, potassium channels, nitric oxide (reviewed in 105), low 

myocardial oxygen tension, or high myocardial carbon dioxide tension (11).  The reduction in 

coronary vascular conductance during muscle metaboreflex activation suggests that the 

vasoconstriction caused by increased sympathetic tone, elicited by the muscle metaboreflex, is 

more powerful than the vasodilatory effects of the metabolic factors released with increase in 

cardiac work (eg. increased cardiac output).  This vasoconstriction may limit coronary 

metabolic vasodilation, and could suppress increases in left ventricular performance: though this 

phenomenon has yet to be determined. 

Myocardial vs. Skeletal Muscle O2 Extraction
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Figure 1.1.  Illustration of cardiac muscle and somatic oxygen extraction, from arterial blood.  
The descending aorta contains oxygen rich blood.  The pulmonary artery blood contains 
deoxygenated blood from throughout the body, while the coronary sinus contains deoxygenated 
blood specifically from the heart.  (Adapted from 47; 75) 
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 The purpose of this study was to determine if, during mild, dynamic exercise  (2mph 

10% grade), the 1-adrenergic mediated vasoconstriction that occurs with muscle metaboreflex 

activation, results in a suppressed left ventricular contractility in normal and heart failure 

conditions.  I hypothesized that: 

1 – The muscle metaboreflex- induced increases in cardiac sympathetic activity functionally 

vasoconstricts the coronary vasculature and this limitation in raising coronary blood flow 

acts to limit the ability to raise ventricular contractility and therefore cardiac output in the 

normal animal. 

2 – In animals with heart failure, the inability to raise ventricular contractility and cardiac output 

with metaboreflex activation is not simply due to the ventricular dysfunction, but is also 

attributable to this coronary vasoconstriction. 
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CHAPTER 2 

Muscle Metaboreflex-Induced Coronary Vasoconstriction Functionally Limits Increases 

in Ventricular Contractility 

Abstract 

Muscle metaboreflex activation during dynamic exercise induces a substantial increase 

in cardiac work and oxygen demand via a significant increase in heart rate, ventricular 

contractility and afterload.  This increase in cardiac work should cause coronary metabolic 

vasodilation.  However, little if any coronary vasodilation is observed due to concomitant 

sympathetically induced coronary vasoconstriction.  The purpose of the present study is to 

determine whether the restraint of coronary vasodilation functionally limits increases in left 

ventricular (LV) contractility.  Using chronically instrumented, conscious dogs (n=9) we 

measured arterial pressure (MAP), cardiac output (CO), circumflex blood flow (CBF), and 

calculated coronary vascular conductance (CVC), maximal derivative of ventricular pressure 

(dp/dt), and preload recruitable stroke work (PRSW) at rest and during mild exercise (2mph) 

before and during activation of the muscle metaboreflex.  Experiments were repeated after 

systemic alpha-1 adrenergic blockade (prazosin ~50 g/kg).  During prazosin we observed 

significantly greater increases in CVC (0.64 ±0.06 vs. 0.46 ±0.03 ml/min/mmHg, p<0.05), CBF 

(77.9 ±6.6 mL/min vs. 63.0 ±4.5 mL/min, p<0.05), CO (7.38 ±0.52 L/min vs. 6.02 ±0.42 L/min, 

p<0.05), dP/dtmax (5449 ±339 mmHg/s vs 3888 ±243 mmHg/s, p<0.05), and PRSW (160.1 

±10.3 erg·103/mL vs. 183.8 ±9.2 erg·103/mL, p<0.05), with metaboreflex activation vs. those 

seen in control experiments.  We conclude that the sympathetic restraint of coronary 

vasodilation functionally limits further reflex increases in LV contractility.  

Introduction 

During exercise when oxygen demand by the active skeletal muscle is greater than 
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oxygen supply, metabolites accumulate stimulating chemosensitive afferents (62; 87; 98-100; 

106) eliciting a pressor response termed the muscle metaboreflex (2; 6; 98).  In contrast to other 

cardiovascular reflexes which raise arterial pressure primarily via peripheral vasoconstriction 

(e.g. the arterial and cardiopulmonary baroreflexes (17; 44; 85)), during submaximal exercise 

involving a large muscle mass the muscle metaboreflex-induced pressor response occurs 

virtually solely via increases in cardiac output (8; 39; 109).   Raising the total flow available for 

perfusion is the only effective strategy to substantively increase skeletal muscle blood flow 

during exercise because the vast majority of cardiac output is already directed to this vascular 

bed (90).  Vasoconstriction of inactive vascular beds has little potential to improve skeletal 

muscle blood flow in this setting (78).  Thus, this reflex has been described as a flow-sensitive, 

flow-raising reflex (8; 88; 98).  Muscle metaboreflex activation increases cardiac output (CO) 

by raising heart rate (HR) and ventricular contractility (22; 95).  Left ventricular preload is 

sustained via substantial central blood volume mobilization (97) thereby allowing the 

chronotropic and inotropic responses to maintain steady-state increases in cardiac output.  This 

substantial increase in cardiac work (large increases in cardiac output pumped against a much 

higher arterial pressure) would be expected to elicit marked metabolic coronary vasodilation 

(27; 49).  Furthermore, the large increase in sympathetic activity could elicit significant  

mediated feed-forward vasodilation (33; 34).  However, the reflex rise in sympathetic activity to 

the heart may also activate vascular  adrenergic receptors (37).  Previous studies from our 

laboratory showed that despite the marked increase in cardiac work, no coronary vasodilation 

occurred when the reflex was activated during submaximal dynamic exercise (4).  The potent 

vasoconstrictor impetus of this reflex was revealed when the marked increase in cardiac work 

did not or could not occur.  In these settings actual coronary vasoconstriction was observed with 

metaboreflex activation (as seen in normal animals during severe exercise when cardiac output 



 

 

11

is already maximal (4; 8), also during mild exercise after beta adrenergic blockade with acute 

ventricular pacing which causes acute ventricular dysfunction (4), as well as after induction of 

chronic heart failure (3)).  In contrast, when the metaboreflex was activated after blockade of 

coronary vascular  adrenergic receptors, substantial coronary vasodilation occurred with the 

large increases in cardiac work (82).  Taken together, these studies support the concept that 

increases in cardiac sympathetic nerve activity simultaneously engender both coronary 

vasodilation (due to the substantial increase in cardiac work and possible  mediated feed-

forward vasodilation) as well as neurogenic vasoconstriction (via activation of coronary  

adrenergic receptors) with the resulting level of coronary vasomotor tone dependant on the level 

of activation of each mechanism.   

To what extent this functional metaboreflex-induced coronary vasoconstriction limits 

the ability to improve ventricular function and therefore ultimately limits the ability to increase 

cardiac output and improve oxygen delivery to the active muscle is unknown.  Gwirtz et al, (37) 

have shown that  adrenegic blockade accentuates the increase in coronary blood flow and left 

ventricular performance (dP/dt and myocardial segment dL/dt) observed during moderate 

exercise.  These data indicate that even during moderate dynamic exercise the vasoconstrictor 

effects of increases in cardiac sympathetic nerve activity limits increases in myocardial 

performance.  To what extent this change in segment performance translates into increases in 

global cardiac function is unclear.  Previous to this, Heyndrickx et al, (42) showed no increase 

in left ventricular dP/dt during exercise after systemic infusion of prazosin.  Notably Gwirtz et 

al, (37) used intracoronary infusion of prazosin resulting in unaltered loading conditions which 

may explain the different findings in dP/dt.  O’Leary et al, (82) have shown that metaboreflex 

activation after systemic  adrenergic blockade resulted in larger increases in CO.  Whether the 

higher CO was due to an increased cardiac contractility brought about by the greater coronary 
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vasodilation vs. the lower left ventricular afterload caused by systemic vasodilation caused by 

the  adrenergic blockade is unknown.  

In the present study we tested whether this restraint of coronary vasodilation by the 

metaboreflex-induced increase in cardiac sympathetic nerve activity functionally limits the 

ability to increase left ventricular contractility.  We assessed left ventricular contractility via 

analysis of changes in the pressure-volume relationship.  We hypothesized that blockade of  

adrenergic receptors would now allow coronary vasodilation during metaboreflex activation and 

that the increase in coronary blood flow would further the reflex increase in left ventricular 

contractility. 

Methods 

All of the methods and procedures were reviewed and approved by the Wayne State 

University Institutional Animal Care and Use Committee.  The experiments were conducted on 

mongrel dogs (n=9), weighing 22.7 (± 2.02) kg.  The dogs were selected for their willingness to 

exercise on a motor-driven treadmill.  Although no selection was made for gender, by random 

availability of laboratory dogs, all animals were female.  We have previously shown that gender 

has little or no effect on metaboreflex responses in dogs (55).  

The medications and surgical preparations used have been described in detail previously 

(3; 4; 95).  Briefly, a 20mm flow transducer was placed around the aortic root to assess cardiac 

output.  Hydraulic vascular occluders were placed on the superior and inferior vena cavae to 

manipulate preload.  Two pairs of sonomicrometry crystals were implanted in the endocardium 

of the left ventricle, to measure the long axis and the short axis which were used to estimate 

ventricular volume.  A catheter was placed in the left ventricle and its telemeter-pressure 

transducer was implanted subcutaneously for left ventricular pressure.  A 3 mm flow transducer 

was placed on the circumflex artery to assess coronary flow.  Arterial and central venous 
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catheters were placed to measure systemic blood pressures.  In a retroperitoneal abdominal 

approach, a vascular occluder was placed about the terminal aorta.  Just proximal to this 

occluder, a 10mm flow transducer was placed about the aorta to measure hindlimb blood flow 

(HLBF).  The animals were allowed at least 7 days for recovery prior to the experiments. 

Experimental Protocol 

Each dog was directed to stand on the treadmill for 10-15 minutes while all equipment 

was connected and adequacy of the signals verified.  All data were recorded on digital recording 

systems.   

 We obtained 1 minute of steady-state resting data with the dog standing on the treadmill.  

Steady-state data and data during transient vena caval occlusions (for variably loaded pressure-

volume loops) were recorded during the conditions of: rest, mild exercise (3.2 km/h), and mild 

exercise with muscle metaboreflex activation.  The reflex was activated by partially inflating the 

vascular occluder on the terminal aorta to reduce hindlimb blood flow to approximately 50% of 

the normal value during mild exercise.  The experiments were performed with and without  

blockade (prazosin; 20-50 g/kg, i.v. 30 minutes prior to exercise). In each experiment, the dose 

of prazosin was sufficient to abolish any pressor response to 4 g/kg of phenylephrine for the 

duration of the experiment.   

Data Analysis 

We calculated left ventricular volume using a modified ellipsoid equation:  LVV = 

(π/6)×(SA)2×(LA): where LVV is the left ventricle volume, SA (short axis) represents the 

distance between the anterior and posterior crystals, and LA (long axis) represents the distance 

between the crystals placed on the base and apex of the left ventricle (58).  The pressure-volume 

loops were plotted for each condition.  Preload recruitable stroke work (PRSW), and ± dP/dt 

were calculated.  PRSW is the slope of the relationship between stroke work and the LV end 
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diastolic volume (illustrated in figure 2.1).  An increased slope reflects an increased contractility, 

as a decreased slope reflects a decrease in contractility (30; 47; 59).  Cardiac power was 

calculated as the product of stroke work and heart rate.  The integral of the cardiac output wave 

was calculated to give stroke volume.  Coronary vascular conductance (CVC) was calculated as 

CBF/(MAP-CVP): where CBF is coronary blood flow, MAP is mean arterial pressure, and CVP 

is central venous pressure.  Systemic vascular conductance to all non-ischemic areas (e.g. all 

areas except the hindlimbs) is termed non-ischemic vascular conductance (NIVC) and was 

calculated as (CO-HLBF)/ (MAP-CVP).  A repeated measures factorial ANOVA, was used for 

the main effects analyses, and a pair-wise comparison was used for post-hoc analyses using the 

Test for Simple Effects.  Statistical significance was defined as P < 0.05.  Regression analyses 

were conducted with CVC with respect to cardiac power for each animal, and the slopes were 

compared between control and  blockade by repeated measures one way ANOVA. 

Results 

 Table 2.1 shows the levels of HLBF at rest, during exercise and during metaboreflex 

activation before and after  adrenergic blockade.  Prazosin caused a small, but significant 

increase in HLBF over control values during exercise.  HLBF was reduced to the same values in 

both conditions for activation of the muscle metaboreflex. 

Figure 2.2 shows the mean steady state values of MAP, HR, left ventricular end diastolic 

and end systolic volumes, CO, and NIVC, at rest, mild exercise, and during exercise with 

metaboreflex activation in control and after 1 blockade.  In control there was no change in 

MAP or stroke volume (SV) from rest to mild exercise, however HR, CO, and NIVC were 

increased.  Imposed reductions in HLBF caused muscle metaboreflex-induced increases in 

MAP, HR, SV and CO.  No significant change in NIVC occurred with metaboreflex activation.  

At rest, 1 blockade caused a significant decrease in MAP, marked tachycardia and reduced SV, 
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due to a reduced end diastolic volume.  Responses to mild exercise were similar to control with 

the exception that now SV slightly increased.  Metaboreflex activation caused a significant 

though lesser increase in MAP, and a significant increase in SV.  End diastolic volume was still 

reduced compared to control, however end systolic volume was also reduced, resulting with a 

comparable SV between control and 1 blockade.  A greater reflex increase in HR and CO as 

compared to control and a significant increase in NIVC occurred.  LV end systolic volume was 

significantly different across workloads, but had no significant difference between conditions 

(control vs. 1 blockade) and no significant interaction, so a pairwise comparison could not be 

calculated.

 Figure 2.3 shows left ventricular hemodynamic and inotropic responses to mild exercise 

and metaboreflex activation before and after 1 blockade.  In control there was a significant 

increase from rest to mild exercise in CBF, CVC, dP/dtmax, and PRSW.  Metaboreflex activation 

increased coronary blood flow and left ventricular contractility, however no vasodilation 

occurred in the coronary circulation as there was no significant increase in CVC, thus all of the 

increase in CBF was due to the increase in perfusion pressure.  Under 1 blockade there was 

also a significant increase in all illustrated parameters from rest to mild exercise, which were 

statistically greater in CVC and dP/dtmax compared to control.  After 1 blockade, activation of 

the muscle metaboreflex now elicited significantly greater increases in CBF.  Although the rise 

in perfusion pressure was smaller, substantial coronary vasodilation occurred.  Metaboreflex 

activation in this setting caused significantly greater increases in both indices of myocardial 

contractility. 

 After  blockade the slope of the relationship between CVC and cardiac power (used as 

an index of myocardial O2 consumption) was significantly increased.  Further, this relationship 

was extended over a significantly greater range as both CVC and cardiac power were 
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significantly greater during muscle metaboreflex stimulation after  blockade (Figure 2.4). 

 Figure 2.5 shows the relationship between PRSW and CBF.  There was no difference 

between the slope of the relationship between control and after  blockade therefore the data 

were combined into one regression.  After  blockade, greater increases in CBF occurred with 

metaboreflex activation which also elicited substantially greater increases in ventricular 

contractility. 

Table 2.1.  Hind-limb blood flow at rest, during exercise and during metaboreflex activation 
before and after α1 adrenergic blockade 

HLBF (L/min) Rest Ex. Ex.+MMA 

Control 0.58±0.05 1.00±0.09 † 0.52±0.04 

α1 blockade 0.61±0.06 1.07±0.09 * † 0.55±0.04 
Levels of hindlimb blood flow at rest, during exercise (Ex) and during exercise with metaboreflex 
activation (Ex+MMA) before and after  adrenergic blockade.  During Ex+MMA, hindlimb blood 
flow was mechanically reduced to the same values in both conditions.  An * above a specific setting 
signifies a significant pairwise comparison (P < 0.05).  A † above a column signifies a significant 
increase from rest to mild exercise (P < 0.05). 

 

A.       B. 

 

Figure 2.1: Example of pressure-volume loop during preload reduction (A), illustrating stroke 
work of a single loop (shaded) and the end diastolic volume point (●) for each loop.  (B) 
Example of how the end diastolic points and corresponding stroke work for weach loop is used 
to illustrate preload recruitable stroke work and how it can be used to assess contractility. 
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Figure 2.2: Hemodynamic 
responses: Mean arterial pressure 
(MAP), heart rate (HR), Left 
Ventricular Volumes (Left VVs), 
cardiac output (CO), and non-
ischemic vascular conductance 
(NIVC); during rest, mild exercise 
(Ex), and mild exercise with 
MMA (Ex+MMA); in control 
(black bars) and 1 blockade 
conditions (striped bars). All 
parameters showed a significance 
across workload settings, as well 
as significance between control 
and prazosin conditions (P < 
0.05); with the exception of stroke 
volume and LV end systolic 
volume (which were only 
significant across workload 
settings). All parameters had a 
significant interaction between the 
two independent variables, with 
the exception of LV end systolic 
volume. * (between two bars) 
signifies a significant pairwise 
comparison (P < 0.05).  † above a 
column signifies a significant 
increase from the previous 
workload. A ♣ above a specific 
setting signifies a significant 
pairwise comparison in left 
ventricle stroke volume (P < 0.05).  
A ‡ above a column signifies a 
significant increase in LV end 
diastolic volume from the previous 
workload while a # above a 
column indicates a significant 
increase in stoke volume from the 
previous workload (P < 0.05). An 
* next to the bracket indicates a 
significance between LV end 
systolic volume across workloads 
but not between control and 1 
blockade conditions.   
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Figure 2.3: Left ventricular 
hemodynamic and function 
responses: Coronary blood flow 
(CBF), coronary vascular 
conductance (CVC), maximal rate 
of left ventricular pressure change 
(dP/dtmax), and preload recruitable 
stroke work (PRSW); during rest, 
mild exercise (Ex), and mild 
exercise with MMA (Ex+MMA); in 
control (black bars) and 1 blockade 
conditions (striped bars).  All 
parameters showed a significance 
across workload settings, as well as 
significance between control and 
prazosin conditions (P < 0.05).  All 
parameters had a significant 
interaction between the two 
independent variables.  An * above 
a specific setting signifies a 
significant pairwise comparison (P 
< 0.05). A † above a column 
signifies a significant increase from 
the previous workload (P < 0.05). 
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Figure 2.4:  Coronary 
vascular conductance (CVC) 
plotted as a function of 
cardiac power.  The broken 
regression line represents the 
average relationship between 
CVC and cardiac power in 
control while the solid 
regression line represents the 
corresponding average 
relationship during 1 
blockade.  The averaged 
values in control are 
represented with black 
diamonds (♦) while averaged 
values during 1 blockade 
are shown as open diamonds 
(◊).  The bracket shown to 
the right with the * signifies 
the significant difference 
between the two slopes (P < 
0.05). 

 

 

Figure 2.5:  Contractility 
indicated by preload 
recruitable stroke work 
(PRSW) with respect to 
coronary blood flow (CBF).  
As no significant difference 
between control and 1 
blockade was found (P > 
0.05), a single relationship is 
represented by a single line.  
The averaged values in 
control are represented with 
black circles (●) while 
averaged values during 1 
blockade are shown as open 
circles (○). 
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Discussion 

This is the first study to show that during dynamic exercise the sympathetically-induced 

restraint of coronary vasodilation during muscle metaboreflex activation impairs increases in 

left ventricular contractility.  During metaboreflex activation a “push-pull” situation likely 

exists as a result of the increase in sympathetic activity to the heart.  The increase in metabolic 

vasodilation coupled with possible vascular β-mediated feed forward vasodilation is opposed by 

direct α-mediated vasoconstriction.  The direct vasoconstrictor drive limits vasodilation and the 

restrained increase in blood flow limits increases in ventricular performance.  Suppressing the 

increase in ventricular contractility likely limits the ability to raise cardiac output and thereby 

functionally limits the ability of the muscle metaboreflex to improve blood flow to the active 

skeletal muscles. 

Coronary perfusion/dilation and ventricular performance: cause and effect: 

The complex relationship between coronary perfusion and ventricular performance can 

make it difficult to discern the difference between cause and effect.  Changes in flow can elicit 

changes in function and changes in function can elicit metabolic coronary vasodilation.  Since 

flow will vary with changes in both vessel caliber and perfusion pressure, vasodilation can only 

be assessed via changes in conductance (or resistance, we prefer conductance (78)).  Ventricular 

function is likely limited by blood flow (or O2 delivery (77)) rather than vasodilation per se (e.g. 

flow can change solely due to changes in perfusion pressure (3; 4)).   We addressed this in two 

distinct ways.  Figure 2.4 shows that the relationship between cardiac power and coronary 

vascular conductance was shifted upwards with a significantly steeper slope after 1 adrenergic 

blockade.  This shows that with metaboreflex activation greater vasodilation occurs after 1 

adrenergic blockade at any level of metabolic stimuli for vasodilation (as indexed by cardiac 

power).  We based this analysis on that done by Huang and Feigl (43), who showed that the 
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relationship between coronary blood flow and myocardial O2 consumption is linear but that the 

slope of the relationship during exercise increases after regional 1 receptor blockade.  In that 

study (43), perfusion pressure was not different with coronary  receptor blockade therefore 

changes in blood flow will be proportionally equivalent to changes in conductance and therefore 

flow is a valid index of vasodilation/vasoconstriction.  In our study, perfusion pressure was 

different both before and after 1 receptor blockade and markedly so between exercise and 

metaboreflex activation therefore differences in vasomotor tone must be addressed via changes 

in conductance (78).  For example, in the control experiments large increases in coronary blood 

flow occurred with metaboreflex activation yet this was not due to vasodilation inasmuch as 

conductance remained unchanged.  All of the increase in flow was due to an increase in 

perfusion pressure. 

Whether due to increased perfusion pressure or vasodilation, increases in blood flow 

may allow increases in ventricular function by providing more O2 delivery (77).  O2 extraction 

in the coronary circulation is already near maximal under basal conditions, therefore increases 

in myocardial O2 consumption with exercise occur predominately via increases in coronary 

blood flow (49).  In addition, mild exercise and metaboreflex activation in this model elicit 

minimal increases in arterial O2 content (~ 5%) (80) therefore increases in O2 delivery occur via 

increases in blood flow.  We found that the relationship between ventricular contractility 

(PRSW) and blood flow was exceedingly linear.  1 adrenergic blockade only extended the 

range of this relationship and did not affect the slope.  With metaboreflex activation in the 

control experiments, all of the increase in coronary blood flow and therefore O2 delivery 

occurred via the increase in perfusion pressure, no vasodilation occurred (no significant increase 

in conductance) as we have previously observed (4; 82).  In contrast, after prazosin much larger 

increases coronary blood flow occurred due to the combined effect of substantial vasodilation 
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coupled with increased perfusion pressure and the increases in PRSW were much greater.  

Collectively, we interpret these data as indicating that during metaboreflex activation, the 

increases in sympathetic activity prevents coronary vasodilation and therefore restrains 

increases in coronary blood flow to only that which occurs via increases in perfusion pressure 

(4; 82).  1 adrenergic blockade revealed substantial coronary vasodilation during metaboreflex 

activation which now coupled with the rise in perfusion pressure provided for much greater 

increases in coronary blood flow.  The increased blood flow and O2 delivery thereby elicited a 

greater increase in ventricular contractility.  Gwirtz and colleagues (36; 37; 52) showed that 

blockade of coronary 1 adrenergic receptors increased coronary blood flow during moderate 

exercise in dogs.  This was also accompanied by higher myocardial O2 consumption and 

regional ventricular dynamics (increased maximal velocity of segment shortening).  Thus the 

rise in sympathetic activity that normally occurs with moderate exercise likely functionally 

restrains coronary vasodilation and ventricular function.  One possible beneficial effect of this 

vasoconstriction may be to preserve endocardial blood flow (43), inasmuch as the epicardium is 

vasoconstricted to a greater extent than the endocardium, which would act to redistribute 

coronary blood flow towards the inner layers of the ventricle.  This greater vasodilation with 1 

blockade could be revealing both metabolic vasodilation as well as  mediated feed-forward 

vasodilation (34).    

Muscle metaboreflex activation either during exercise or during post-exercise circulatory 

occlusion causes marked increases in cardiac work, yet, little if any coronary vasodilation is 

observed (4; 72; 82).  Similar results are observed with strong static muscle contractions (61; 

73).  Previous studies from our laboratory have shown that metaboreflex activation during sub-

maximal dynamic exercise caused no coronary vasodilation despite marked increases in heart 

rate and ventricular contractility.  Cardiac output increased substantially and was pumped 
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against a much higher afterload, yet all of the increase in coronary blood flow occurred via 

increases in perfusion pressure rather than vasodilation (4).  These results indicated that a 

“push-pull” situation exists between the vasodilatory drives and the vasoconstrictor effects of 

the increased sympathetic activity.  If the increase in cardiac work during metaboreflex 

activation is reduced, actual coronary vasoconstriction is seen (4).  Similarly, during maximal 

exercise when heart rate and cardiac output are already at maximal levels and little further 

steady-state increase in ventricular work occurs, metaboreflex activation causes coronary 

vasoconstriction (4).  Finally, in heart failure little or no metaboreflex increases in contractility 

occur and the reflex increase in cardiac sympathetic activity causes frank coronary 

vasoconstriction (3).  To what extent this actual coronary vasoconstriction contributes to the 

inability to raise ventricular contractility and cardiac output during metaboreflex activation in 

heart failure is unknown. 

Baroreflex vs. Metaboreflex 

We used systemic α adrenergic blockade rather than injection into a coronary artery 

because we wanted to assess the effects on total ventricular function rather than only an 

individual ventricular segment which is more susceptible to changes in loading conditions (48; 

58).  After prazosin, MAP was lower due to the peripheral vasodilation which raises the 

question as to what extent the enhanced increases in CO and ventricular contractility reflect 

baroreflex responses.  We feel this is unlikely for several reasons.  Heyndrickx et al. (42) 

previously showed that during exercise after systemic infusion of prazosin, whereas arterial 

plasma levels of norepinephrine were increased, there was no increase in norepinephrine release 

at the heart itself despite a large decrease in MAP.  After prazosin in the present study, neither 

at rest, nor during mild exercise were cardiac output or preload recruitable stroke work higher 

than control levels (a small rise in dP/dt did occur which may reflect changes in preload and/or 
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afterload, (48)).  In addition coronary blood flow was unchanged; the small increase in coronary 

conductance was offset by the small reduction in perfusion pressure.  Thus, whereas MAP was 

lower after α1 blockade which would elicit a baroreflex response (tachycardia), this resulted in 

no significant increase in cardiac output or ventricular contractility as stroke volume fell with 

the rise in heart rate.  The fall in stroke volume with this rise in rate is very similar to that 

observed with merely increasing pacing rate within this range which also elicits little if any 

increase in CO (107).  We have recently shown that this increase in rate by itself would have 

very little direct effects on ventricular contractility (Treppe effect) in this model (15).  In 

contrast, a similar tachycardia induced by activation of the muscle metaboreflex causes large 

increases in CO and ventricular contractility (95).  Further, in both dogs (17) and humans (85), 

carotid baroreceptor unloading during exercise causes little steady state increase in CO.  The 

baroreflex pressor response is mediated via increases in peripheral resistance (17; 85).  After 1 

adrenergic blockade, only when the metaboreflex was activated did cardiac output, ventricular 

contractility, coronary vascular conductance and coronary blood flow all rise above levels 

observed during the control experiments whereas the difference in MAP was similar to that at 

rest and during mild exercise.  We feel this is compelling evidence that the response was indeed 

metaboreflex in nature as the major effects on CO and PRSW were only observed when the 

metaboreflex was activated and not at rest or during exercise when pressure was similarly 

lowered with 1 blockade. 

The arterial baroreflex normally acts to buffer the metaboreflex (51).  Whether the rise 

in sympathetic activity which occurred with metaboreflex activation was greater after 1 

blockade because MAP did not rise to the same extent cannot be discounted.  However, we 

recently showed that after removal of the buffering effects of the arterial baroreflex (sino-aortic 

arterial baroreflex denervation), the much larger metaboreflex pressor response occurs via 
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increased peripheral vasoconstriction.  Indeed, the rise in CO is if anything slightly smaller after 

baroreceptor denervation (50).  Further, the higher slope of the relationship between coronary 

conductance and cardiac power indicates that greater vasodilation occurs with 1 blockade as 

power increases during metaboreflex activation.  Thus, even at the same cardiac power, larger 

coronary vasodilation occurs.  Similarly, the overlap of the data relating PRSW to coronary 

blood flow indicates that if the rise in coronary blood flow was the same after 1 blockade, then 

ventricular contractility would have risen to the same extent. 

Limitations: 

 Cardiac power is a relatively novel measure of cardiac function (28; 67), and in the 

present study was used as an index of myocardial oxygen consumption.  Previous studies 

performed in humans used cardiac power calculated as product of cardiac output and mean 

arterial pressure.  Khouri et al. (49) previously used a similar calculation and they referred to it 

as cardiac work or left ventricular work.  However, power is work performed over time so we 

feel cardiac power is the correct term, especially so as we calculated cardiac power as stroke 

work (work/beat) times heart rate (beats/minute), therefore resulting in work/minute.  Khouri et 

al. (49) showed an excellent correlation between this and myocardial O2 consumption.  Cardiac 

power has been shown to be a strong indicator of prognosis in chronic heart failure (108), and a 

strong predictor of mortality due to cardiogenic shock (28).  Most recently there has been 

evidence to suggest that cardiac power can be a very useful prognostic tool in across a broad 

spectrum of acute cardiac diseases (67).   

PRSW has been shown to be a very robust index of cardiac contractility (47).  However 

our technique used to estimate left ventricular volume has limitations.  On average, the left 

ventricular volume values calculated from the sonomicrometry crystals underestimated the SV 

obtained by integrating the signal from cardiac output flow probe placed on the ascending aorta.  
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We showed previously that this underestimation is highly linear within each animal (95).  

Similarly low SV values for dogs of this size were reported by others using sonomicrometery 

(58; 94; 95).  To our knowledge, our studies are the only in which SV was measured 

simultaneously via these two techniques.  This discrepancy between the SV values calculated 

using sonomicrometry vs. CO likely occurred due to the number of crystals used and their 

placement on the left ventricle.  In our study, only two pairs of crystals were used, in order to 

limit any damage made to the myocardium.   In two animals we simultaneously measured left 

ventricular volumes via sonomicrometry as well as echocardiography while also monitoring CO 

via the implanted blood flow transducer.  As we suspected, values for end diastolic volume for 

echocardiography and sonomicrometry were very similar whereas the values for stroke volume 

were very similar between echocardiography and that calculated from the ascending aortic flow 

probe.  Therefore, we believe that the error in the sonomicrometry value for stroke volume 

resides in over estimating end systolic volume.  Therefore, for the volume data shown in figure 

2.2 we used the end diastolic volume obtained from sonomicrometry and stroke volume from 

the aortic flow signal.  These calculations yield reasonable estimates of other parameters such as 

ejection fraction. 

In the present study, systemic vascular conductance to all areas except the hindlimbs 

(NIVC) also increased with metaboreflex activation after α1 receptor blockade.  In a limited 

number of previous experiments, this systemic vasodilation was abolished by propranolol (82).  

NIVC reflects mostly skeletal muscle (51).  Thus, this vasodilation likely is within skeletal 

muscle and may occur via epinephrine release from the adrenal glands (53).  This may explain 

why with metaboreflex activation vasoconstriction is seen in select vascular beds, but no global 

change in NIVC is observed (7; 8; 39; 70; 71).  It is possible that a portion of the coronary 

vasodilation seen after 1 adrenergic blockade was due to 2 adrenergic receptor stimulation via 
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an increase in circulating epinephrine in addition to the marked increase in ventricular work(41).   

In summary, muscle metaboreflex activation increases sympathetic tone to 1 adrenergic 

receptors, and functionally restricts coronary vasodilation.  This impedes blood flow to the 

myocardium and limits the increase in left ventricular performance.  This likely limits the 

ability of the reflex to raise cardiac output and therefore restore blood flow to the ischemic 

muscles.   
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CHAPTER 3 

Muscle Metaboreflex-Induced Coronary Vasoconstriction Limits Ventricular 

Contractility during Dynamic Exercise in Heart Failure 

Abstract 

Muscle metaboreflex activation (MMA) during dynamic exercise increases cardiac work 

and O2 demand via increases in heart rate, ventricular contractility and afterload.  This increase 

in cardiac work should lead to metabolic coronary vasodilation.  However, no change in 

coronary vascular conductance is seen, indicating that the increased sympathetic activity which 

increased contractility also caused vasoconstriction.  In heart failure, cardiac output does not 

increase with MMA presumably due to impaired left ventricular contractility, and large 

decreases in coronary vascular conductance are observed.  We tested whether this coronary 

vasoconstriction could explain in part, the reduced ability to increase cardiac performance 

during MMA.  In conscious, chronically instrumented dogs after pacing induced heart failure, 

MMA responses during mild exercise were observed before and after 1 adrenergic blockade 

(prazosin 50-100g/kg).  During MMA, the increases in coronary blood flow, coronary vascular 

conductance, cardiac output, and +dP/dtmax were significantly greater after 1 adrenergic 

blockade.  We conclude that during heart failure the coronary vasoconstriction limits the ability 

of muscle metaboreflex to increase left ventricular contractility.   

Introduction 

During exercise, metabolite sensitive afferent neurons within the skeletal muscle may be 

stimulated and evoke a reflex increase in sympathetic nerve activity to the heart and vasculature, 

known as the muscle metaboreflex (3; 8; 39; 62; 70; 87; 98-101; 106).  In normal subjects 

during submaximal exercise the metaboreflex elicits an increase in blood pressure mainly via a 

marked increase in cardiac output (CO) (2; 6; 8; 22; 39; 98; 109).  This increase in flow serves 
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to partially restore blood flow and oxygen delivery to the ischemic muscle (80; 83).   

However, in heart failure, this reflex increase in blood pressure occurs mainly due to 

peripheral vasoconstriction, as little or no increase in CO occurs (3; 39; 81; 93).  Despite 

tachycardia, the metaboreflex does not increase CO, due to a marked drop in stroke volume 

(SV) (21; 39; 93).  This is likely due to an inability to increase left ventricular contractility 

which is an important component of the cardiac response allowing SV to be maintained or even 

increased slightly in the face of increased afterload (79; 81; 95).  The inability to increase 

contractility in heart failure can be attributed to several factors.  Structurally, the ventricle is 

enlarged with no increase in wall thickness, leading to elongated myocytes (reviewed in 29; 35), 

disorganization of myofilaments (96; 102; 103), transverse tubule and mitochondrial swelling, 

as well as mitochondrial rupture and consequently decreased mitochondrial density (96; 103).     

Another factor that may play a role in the reduced cardiac function during exercise and 

metaboreflex activation is a limited oxygen supply to the myocardium.  In humans (23; 74) and 

animals (76), heart failure has been shown to increase myocardial oxygen consumption.  

Coronary blood flow also increases during heart failure (74).  However coronary flow reserve is 

impaired during heart failure, indicating a possible restraint of coronary blood flow during high 

oxygen demand situations such as exercise.  This restraint may occur via sympathetic 

vasoconstriction of the coronary vasculature.  Even in normal subjects during exercise the left 

ventricle is functionally vasoconstricted inasmuch as coronary vasodilation increases with  

adrenergic blockade (20; 37; 43) and with the increase in blood flow, significant increases in 

left ventricular contractility occur (20; 37).   

In normal subjects, muscle metaboreflex activation markedly increases ventricular work, 

and while coronary blood flow rises with the substantial increase in arterial pressure, little or no 

coronary vasodilation is seen (4; 20; 72; 82).  With metaboreflex activation in heart failure, 
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frank coronary vasoconstriction occurs (3).   To what extent this functional metaboreflex-

induced coronary vasoconstriction in heart failure limits the ability to improve ventricular 

function and therefore ultimately limits the ability to increase cardiac output and improve 

oxygen delivery to the active muscle is unknown.   

Methods 

All of the methods and procedures were reviewed and approved by the Wayne State 

University Institutional Animal Care and Use Committee.  The experiments were conducted on 

mongrel dogs (N=7), weighing 22.7 (+/- 2.02) kg.  The dogs were selected for their willingness 

to walk/run on a motor-driven treadmill.  There was no intended selection was made for gender, 

however by random all animals were female.  No dogs were in the proestrus phase of the 

menstrual cycle during the experiments.  Previously this laboratory has shown that gender has 

little or no effect on metaboreflex responses in dogs (55).  

The medications and surgical preparations used have been described in detail previously 

(95), (3; 4; 84).  Briefly, a 20mm flow transducer was placed around the aortic root to measure 

cardiac output.  Hydraulic vascular occluders were placed on the superior and inferior vena 

cavae to manipulate preload.  Two pairs of sonomicrometry crystals were implanted in the 

endocardium of the left ventricle on the short axis and long axis to estimate ventricular volume.  

A catheter was placed in the left ventricle for left ventricular pressure and its telemeter-pressure 

transducer was implanted subcutaneously.  A 3 mm flow transducer was placed on the 

circumflex artery to assess coronary blood flow (CBF).  Three ventricular pacing wires (0-

Flexon) were sutured to the free wall of the right ventricle for subsequent ventricular pacing to 

induce HF.  Arterial and central venous catheters were placed to measure systemic blood 

pressures.  In the retroperitoneal region, a vascular occluder was placed about the terminal aorta.  

Just proximal to this occluder, a 10mm flow transducer was placed about the aorta to measure 
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hind-limb blood flow (HLBF).   

Experimental Protocol 

Each dog was directed to stand on the treadmill for 10-15 minutes while all equipment 

was connected and adequacy of the signals verified.  All data were recorded on digital recording 

systems (Windaq, and Sonometrics).   

 We obtained 1 minute of steady-state resting data with the dog standing on the treadmill.  

Steady-state data and data during transient vena caval occlusions (for variably loaded pressure-

volume (PV) loops) were recorded during the conditions of: rest, mild exercise (3.2 km/h), and 

mild exercise with muscle metaborelex activation.  The reflex was activated by partially 

inflating the vascular occluder on the terminal aorta to reduce hindlimb blood flow to 

approximately 50% of the normal value during mild exercise.  The experiments were performed 

with and without -blockade (prazosin; 20-50 g/kg, i.v. 30 minutes prior to exercise). In each 

experiment, the dose of prazosin was sufficient to abolish any pressor response to 4 μg/kg of 

phenylephrine for the duration of the experiment.  After completion of the control and -

blockade experiments, congestive heart failure was induced via rapid ventricular pacing. This 

technique has been widely accepted to create chronic model of left ventricular failure (39; 40). 

Briefly, the right ventricular pacing electrodes were connected to a pacemaker set at 200 - 220 

beats/minute for ~ 30 days.  When signs of congestive heart failure appear, such as: anorexia, 

decreased cardiac output, stroke volume reduction > 30%, increased left ventricular end 

diastolic pressure, and increased heart rate; the experiments were repeated.  The pacemaker was 

disconnected during the experiments.  

Data Analysis 

We calculated left ventricular volume using a modified ellipsoid equation.  [LVV = 

(π/6)x(SA)2x(LA)].  Where LVV is the left ventricle volume, SA (short axis) represents the 
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distance between the anterior and posterior crystals, and LA (long axis) represents the distance 

between the crystals placed on the base and apex of the left ventricle.  The pressure-volume 

loops were plotted for each condition.  Preload recruitable stroke work (PRSW), and +/- dP/dt 

were calculated.  PRSW is the slope of the relationship between stroke work and the LVV.  An 

increased slope reflects an increased contractility and vice-versa (30; 47; 60).  Cardiac power 

was calculated as the product of stroke work and heart rate.  The integral of the cardiac output 

wave was calculated to give stroke volume.  Left ventricular volume data were corrected using 

the end diastolic volume obtained from sonomicrometry and stroke volume from the aortic flow 

signal, as discussed in a previous study (20).  Coronary vascular conductance (CVC) was 

calculated as CBF/(MAP-CVP).  Systemic vascular conductance to all non-ischemic areas (e.g. 

all areas except the hindlimbs) is termed non-ischemic vascular conductance (NIVC) and was 

calculated as (CO-HLBF)/ (MAP-CVP).  A repeated measures factorial ANOVA, was used for 

the main effects analyses, and a pair-wise comparison was used for post-hoc analyses using the 

Test for Simple Effects.  Statistical significance was defined as P < 0.05.   

Results 

 The expected hemodynamic changes due to heart failure, such as attenuated arterial 

pressure, stroke volume, cardiac output, and elevated heart rate were observed (Table 3.1)..   

 

Table 3.1.  Haemodynamics (MAP, HR, SV, CO) observed in normal animals and after 
induction of heart failure. 

  Normal Heart Failure 
   

MAP (mmHg) 97 ± 4.4 76 ± 1.4 † 
HR (bpm) 88 ± 5.7 117 ± 5.2 † 
SV (mL) 40 ± 3.0 25 ± 2.1 † 
CO (L/min) 3.5 ± 0.2 2.8 ± 0.2 † 

      

Hemodynamic parameters during normal and heart failure 
conditions, † signifies a difference between the two conditions 
(P < 0.05). 
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In heart failure, prazosin caused a small, but significant increase in HLBF over the heart 

failure values at rest and during exercise without prazosin.  In all conditions:  control, control  

blockade, heart failure, and heart failure  blockade, HLBF rose from rest to mild exercise.  

HLBF was reduced to the same values for activation of the muscle metaboreflex in all 

conditions (Table 3.2). 

Figure 3.1 shows the mean steady state values of MAP, HR, left ventricular end diastolic 

and end systolic volumes, CO, and NIVC, at rest, mild exercise, and during exercise with 

metaboreflex activation in control and after 1 blockade (panel A).  In control there was no 

change in MAP from rest to mild exercise, however SV, CO, and NIVC were increased.  

Imposed reductions in HLBF caused muscle metaboreflex-induced increases in MAP, SV and 

CO.  No significant change in NIVC occurred with metaboreflex activation.  At rest, 1 

blockade caused a significant decrease in MAP, marked tachycardia and reduced SV, due to a 

reduced end diastolic volume.  Responses to mild exercise were similar to control.  

Metaboreflex activation caused a significant though lesser increase in MAP, and a significant 

increase in SV.  End diastolic volume was still reduced compared to control, however end 

systolic volume was also reduced, resulting with a comparable SV between control and 1 

blockade.  A greater reflex increase in CO as compared to control and a significant increase in 

NIVC occurred.  HR was significantly different across workloads, and significantly different 

between conditions (control vs. 1 blockade) but no significant interaction, so a pairwise 

comparison could not be calculated. 

After induction of heart failure (panel B) there was no change in MAP or SV from rest 

to mild exercise, however HR, CO, and NIVC were increased.  Imposed reductions in HLBF 

caused muscle metaboreflex-induced increases in MAP and HR, but a decrease in SV and 

NIVC. There was no change in CO with metaboreflex activation.  Thus, the mechanisms of the 
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reflex shifted from increased CO in the normal animal to increased peripheral vasoconstriction 

in HF.  At rest, 1 blockade did not affect MAP, or HR.  SV increased, due to an increased end 

diastolic volume.  During mild exercise LV end systolic volume decreased, which resulted in an 

increased stroke volume.  CO and NIVC also increased greater than observed prior to 1 

blockade.  Metaboreflex activation caused a similar increase in MAP as that without 1 

blockade, however the mechanisms of the pressor response were markedly different.  End 

systolic volume decreased, resulting in an increase in SV with 1 blockade in HF.  End diastolic 

volume was not significantly different across workloads, or between conditions (control vs. 1 

blockade), so a pairwise comparison could not be calculated. The rise in SV coupled with the 

tachycardia now caused a significant increase in CO.  Rather than a decrease in NIVC, a small 

increase was observed as was also seen in the normal animal during meatboreflex activation 

after 1 blockade.  Thus, after 1 blockade in HF the metaboreflex pressor response returned to 

a cardiac output based response as seen prior to induction of HF.   

 Figure 3.2 shows left ventricular hemodynamic and performance responses to mild 

exercise and metaboreflex activation in control and after 1 blockade (panel A) as well as heart 

failure, and heart failure with 1 blockade (panel B).  In control there were significant increases 

from rest to mild exercise in CBF, CVC, dP/dtmax, and PRSW.  Metaboreflex activation 

increased coronary blood flow and left ventricular contractility, however no vasodilation 

occurred in the coronary circulation as there was no significant increase in CVC, thus all of the 

increase in CBF was due to the increase in perfusion pressure.  Under 1 blockade there was 

also a significant increase in all parameters from rest to mild exercise, which were statistically 

greater in CVC and dP/dtmax compared to control.  After 1 blockade, activation of the muscle 

metaboreflex now elicited significantly greater increases in CBF.  Although the rise in perfusion 
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pressure was smaller, substantial coronary vasodilation occurred.  Metaboreflex activation in 

this setting caused significantly greater increases in both indices of myocardial contractility. 

CBF and CVC were higher at rest in heart failure compared to control, while dP/dtmax 

and PRSW were reduced.   CBF, CVC, and dP/dtmax all increased from rest to mild exercise.  

Metaboreflex activation increased coronary blood flow and dP/dtmax, however vasoconstriction 

occurred in the coronary circulation as CVC decreased significantly.  Under 1 blockade there 

was also a significant increase in all illustrated parameters from rest to mild exercise, which 

were statistically greater in CBF, CVC and dP/dtmax compared to control.  After 1 blockade, 

activation of the muscle metaboreflex now elicited significantly greater increases in CBF, CVC 

and dP/dtmax.  In this case PRSW was assessed in a smaller sample (N=3).  PRSW was 

significantly different across workloads, and significantly different between conditions (control 

vs. 1 blockade) however no significant interaction occurred, so a pairwise comparison could 

not be calculated. 

Figure 3.3 illustrates the relationship between coronary vascular conductance and 

cardiac power following heart failure (A), as well as the changes in CVC with respect to the 

changes in cardiac power (CVC:CP ratio), from rest to mild exercise, and from mild exercise 

to MMA in control (B) and after the induction of HF (C).  From rest to mild exercise there is a 

positive relationship both with and without  blockade.  That is, as cardiac power increased, 

coronary vasodilation occurred and this relationship was unaffected by  blockade.  With 

metaboreflex activation whereas cardiac power increased, little vasodilation occurred and this 

ratio fell.  With  blockade, increases in both cardiac power and CVC occurred with 

metaboreflex activation and this ratio increased significantly.  After the induction of HF, 

whereas with the transition from rest to exercise both CVC and cardiac power rose (therefore 

positive value for this ratio), with metaboreflex activation since CVC decreased despite a very 
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small increased cardiac power this ratio became markedly negative.   blockade reversed this 

ratio back to a positive value as now vasodilation did occur with increased cardiac power.   

Figure 3.4 shows the relationship between dP/dtmax and CBF (panel A, R2 = 0.98) and 

between PRSW and CBF (panel B, R2 = 0.97, N=3).  In both panels all 6 points in control (with 

and without  blockade) were combined into one regression, as were all six points in heart 

failure.  After  blockade, greater increases in CBF occurred with metaboreflex activation 

which also elicited substantially greater increases in ventricular contractility.  A similar linear 

response was observed in heart failure; however the slope of the relationship is much lower. 

 

Table 3.2.  Hind limb blood flow (L/min ± SE) at rest, during mild exercise, and metaboreflex 
activation, in control and heart failure conditions, before and after 1 adrenergic blockade. 

 Rest Ex. Ex.+MMA 
Control 0.58±0.05 1.00±0.09 † 0.52±0.04 
α1-blockade 0.61±0.06 1.07±0.09 † 0.55±0.04 
    

Heart Failure 0.46±0.05 0.86±0.11 † 0.51±0.06 
α1-blockade 0.57±0.07 * 1.16±0.119 *† 0.51±0.06 

Levels of hindlimb blood flow before and after  adrenergic blockade, shown with control, heart failure & 
their corresponding 1 blockade conditions. During Ex+MMA, hindlimb blood flow was mechanically 
reduced to the same values in both conditions. * signifies a significant pairwise comparison (P < 0.05). † 
signifies a significant increase from rest to mild exercise (P < 0.05)). 
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A     B 
Figure 3.1: Hemodynamic 
responses: Mean arterial 
pressure (MAP), heart rate 
(HR), Left Ventricular 
Volumes (Left VVs), 
cardiac output (CO), and 
non-ischemic vascular 
conductance (NIVC);  
during rest, mild exercise 
(Ex), and mild exercise 
with MMA (Ex+MMA); in 
control (Panel A) and heart 
failure (panel B) (black 
bars) and the corresponding 
1 blockade conditions 
(striped bars). All 
parameters showed 
significance across 
workload settings, as well 
as significance between 
control and prazosin 
conditions (P < 0.05). All 
parameters had a significant 
interaction between the two 
independent variables, with 
the exception of hear rate in 
control and control after 1 
blockade. *(column) 
signifies a significant 
pairwise comparison 
(P<0.05). †signifies a 
significant increase from 
the previous workload. 
♣signifies a significant 
pairwise comparison in left 
ventricle stroke volume (P 
< 0.05). ‡ signifies a 
significant increase in LV 
end diastolic volume while 
# indicates a significant 
increase in stoke volume 
from the previous workload 
(P < 0.05). *(bracket) 

indicates a significance between LV end systolic volume across workloads but not between 
control and 1 blockade conditions.   
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A     B 
Figure 3.2: Left 

ventricular 
hemodynamic and 
function responses: 
Coronary blood flow 
(CBF), coronary 
vascular conductance 
(CVC), maximal rate of 
left ventricular pressure 
change (dP/dtmax), and 
preload recruitable 
stroke work (PRSW); 
during rest, mild 
exercise (Ex), and mild 
exercise with MMA 
(Ex+MMA); in control 
(Panel A) and heart 
failure (panel B) (black 
bars) and the 
corresponding 1 
blockade conditions 
(striped bars).  All 
parameters showed a 
significance across 
workload settings, as 
well as significance 
between control and 
prazosin conditions (P 
< 0.05).  All parameters 
had a significant 
interaction between the 
two independent 
variables, with the 
exception of PRSW in 
panel B, (N=3).  An * 
above a specific setting 
signifies a significant 
pairwise comparison (P 
< 0.05).  A † above a 
column signifies a 
significant increase 
from the previous 
workload (P < 0.05). 
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Figure 3.3:  Coronary vascular 
conductance (CVC) plotted as a function 
of cardiac power (A).  Ratio between 
change in coronary vascular conductance 
(CVC) change in cardiac power (CP) 
in control (B) and heart failure (C).  The 
black bars represent control while the 
striped bars represent the corresponding 
1 blockade.  Both are compared across 
rest to mild exercise (Rest to Ex.) and 
mild exercise to muscle metaboreflex 
activation (Ex. to MMA). An * above a 
specific setting signifies a significant 
pairwise comparison (P < 0.05).  A † 
above a column signifies a significant 
increase from the previous setting (P < 
0.05). 
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Figure 3.4:  Contractility indicated by dP/dtmax (A) and preload recruitable stroke work 
(PRSW) (B) with respect to coronary blood flow (CBF).  As no significant difference between 
control and 1 blockade was found (P > 0.05), a single relationship is represented by a single 
line.  The averaged values in heart failure are represented with black triangles (▲) while 
averaged values during 1 blockade are shown as open triangles (∆).  In panels B and C, control 
and heart failure are combined with their corresponding 1 blockade conditions. The averaged 
values in control are represented with black circles (●) and control with 1 blockade with open 
circles (○), while averaged values during heart failure are shown with triangles as previously 
described. 
 

Discussion 

 Our major finding is that the inability to raise ventricular contractility during 
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vasoconstriction and the resultant limitation in the ability to raise coronary blood flow and O2 

delivery.  Thus, ventricular dysfunction during exercise in heart failure stems both from the 

impaired contractile function as well as restrained ability to raise coronary blood flow due to  

mediated coronary vasoconstriction.  

Previously we have shown in normal subjects that the muscle metabreflex-restrained 

coronary vasodilation functionally limited left ventricular contractility (20).  Even during 

moderate to heavy exercise in normal subjects there is a constant push/pull situation between 

the vasodilatory stimuli of metabolic as well as possible β2-mediated feed forward vasodilation 

(34), vs. the vasoconstricting effects of coronary vascular  adrenergic receptor stimulation 

(37; 38; 72; 82).  In heart failure, sympathetic activity is chronically elevated (25; 56) as are 

circulating catecholamine levels (25; 40).  During muscle metaboreflex activation in heart 

failure, sympathetic activity is markedly increased (39).  This increased sympathetic drive 

coupled with a limited ability to increase metabolic rate likely shifts the push/pull balance 

towards vasoconstriction, thereby limiting the increase in coronary blood flow and therefore 

oxygen supply to the heart. (3; 20).  This reduced ability to increase O2 delivery contributes 

significantly to the inability to raise ventricular contractility. The suppressed increases in left 

ventricular contractility likely limits the ability to increase cardiac output and therefore impedes 

the main function of the reflex which is to restore blood flow to ischemic working skeletal 

muscle. 

Effect of heart failure 

Several structural and functional impairments occur during heart failure including 

ventricular remodeling as well as extensive cellular damage.  The reduced cardiac function 

results from a myriad of complications including abnormal myosin cross-bridge activity (102; 

103), prolonged calcium transients due to dysfunctional calcium channels on the sarcoplasmic 
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reticulum (35), reduced myocyte 1 adrenergic receptor density as well as a greatly reduced 

adenylate cyclase activity, indicating that myocardial 1 receptor function is also attenuated (13).  

This reduced number and function of myocardial 1 receptors helps explain the reduced calcium 

handling capacity as sympathetic activity is increased during heart failure (25; 56).  The 

ventricular structural remodeling further attenuates cardiac function (46; 102; 103). 

In the present study we hypothesized that limited oxygen delivery to the myocardium 

may be another important factor contributing to the reduced cardiac performance during 

metaboreflex activation in heart failure.  We showed that muscle metaboreflex activation during 

heart failure elicited coronary vasoconstriction, which in turn suppressed increases in blood 

flow to the myocardium which would have occurred with the pressor response.  With the 

coronary vasodilation and larger increases in coronary blood flow after a receptor blockade, 

increases in contractility and cardiac power were seen with metaboreflex activation in heart 

failure.    Canetti et al showed that the maximal capacity for coronary arteries to dilate is 

impaired during heart failure (14), indicating a possible restraint of coronary blood flow during 

high oxygen demand situations such as exercise and metaboreflex activation.   

Coronary Hemodynamics and Ventricular performance 

We showed that the CVC-Cardiac Power relationship is normally markedly suppressed 

with heart failure compared to normal subjects (Figure 4).  In a recent study from this laboratory 

(20) we used an analysis based on that done by Huang and Feigl (43).  This relates the vascular 

response as a function of the O2 consumption.  The vascular response may be blood flow if 

pressure is constant, but since pressure changes we used vascular conductance since changes in 

pressure will change flow directly independent of any change in the vasculature.  We used 

cardiac power (stroke work times heart rate) as an index of the steady-state O2 demands of the 

heart (28; 49; 67).  We showed that in the normal heart there is a linear relationship between 
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CVC and Cardiac Power and that the slope of this releationship is shifted upwards after 1 

receptor blockade.  This indicates that after blockade of the coronary vasoconstrictor effects of 

the rise in cardiac sympathetic activity during metaboreflex activation, a given increase in 

myocardial workload would give rise to a greater vasodilation.  However this linear model is 

lost in heart failure.  Metaboreflex activation caused trivial increases in cardiac power and frank 

coronary vasoconstriction occurred.  Therefore, to analyze this relationship, the ratio of CVC 

to CP was calculated separately for the transitions from rest to exercise, and from exercise to 

metaboreflex activation.  With metaboreflex activation in normal subjects, this ratio is reduced 

from that with the transition from rest to mild exercise; however during metaboreflex activation 

after 1 receptor blockade a higher ratio was observed.  This indicates that a larger vasodilation 

will occur for a given increase in cardiac power after removal of the vasoconstricting effects of 

the rise in cardiac sympathetic activity.  In contrast, after induction of heart failure, with 

metaboreflex activation this ratio actually becomes quite negative meaning that coronary 

vasoconstriction occurred with the increase in ventricular work.  This ratio was reversed to a 

positive value with 1 blockade.  This marked change in the vasodilation/function relationship 

with 1 blockade underscores the severe consequences of coronary vasoconstriction in heart 

failure.    

In both normal subjects and after induction of heart failure, there was a single linear 

relationship whether with or without 1 blockade conditions, heart failure substantially lowered 

the slope of this relationship.  Blockade of coronary vasoconstriction extended this relationship 

to higher levels of flow and contractility.  The lower slope seen in heart failure shows that 

whereas ventricular function is dependent on flow, this dependency is less than in the normal 

heart.  However, in heart failure ventricular function is already so depressed that relatively small 

increases in contractile strength may make significant differences in overall cardiovascular 
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function.   

 In the present study prazosin was used as an 1 – adrenergic blocker.  The clinical 

efficacy of systemic 1 – adrenergic blockade to improve performance of the failing heart has 

been tested clinically.  Short-term results showed that prazosin therapy provides favorable 

hemodynamic responses (5; 9; 16; 18; 26; 31; 64; 68; 92), such as: reduced pulmonary venous 

congestion, improved end diastolic and systolic volumes, increased coronary flow, cardiac 

output, and improved NYHA functional class.  However, studies found that such responses 

were attenuated in the long-term (18; 26) and that there was no improvement in mortality (16).  

Another concern with the long-term clinical use of prazosin is the possible attenuation of 

ventricular preload below that of optimal filling pressure (9).  The lack of efficacy of prazosin 

as a treatment for heart failure may indicate there are still other factors involved in heart failure 

and also be a compensatory affect of the body.  The systemic effects of prazosin may also 

complicate its clinical usefulness.  If alpha receptor blockade could be targeted to the coronary 

vasculature, a different outcome of treatment may be possible.   

Limitations 

 In our previous study (20) a concern was discussed regarding the possibility of a larger 

increase in cardiac output induced by a baroreflex response to the reduced arterial pressure 

during 1 blockade.  In this study however 1 blockade did not have a significant influence on 

arterial pressure making any baroreflex effect similar with or without 1 blockade. 

 We observed systemic vasodilation (with exception of the hindlimbs) with muscle 

metaboreflex after 1 blockade.  A large portion of this change likely occurs in skeletal muscle 

(51).  In previous experiments from this laboratory, after infusion of propranolol this systemic 

vasodilation no longer occurred (82), indicating a likely 2 mediated adrenergic vasodilation.  It 

is possible that some of the coronary vasodilation observed is also 2 mediated vasodilation.  
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However any 2 vasodilation would likely be modest (33). 

 Due to difficulties in attaining PRSW during heart failure, we were limited to a small 

sample size (N=3).  However a clear trend is visible to supplement the results observed with 

dP/dtmax.  Although, dP/dtmax is considered sensitive to changes in loading conditions (48; 60), it 

is still considered a widely used index of contractility.  

In summary, muscle metaboreflex activation during heart failure further increases 

sympathetic tone to 1 adrenergic receptors and functionally restricts coronary vasodilation.  

This limits increases in blood flow to the myocardium which thereby limits the increase in left 

ventricular performance.  This is likely one factor limiting the ability of the reflex to raise 

cardiac output during heart failure.  Thus, the inability to effectively raise cardiac output during 

metaboreflex activation in heart failure is not only due to the ventricular dysfunction, but also is 

in part a result of coronary vasoconstriction. 
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Muscle metaboreflex activation during dynamic exercise induces a substantial increase 

in cardiac work and oxygen demand via a significant increase in heart rate, ventricular 

contractility and afterload.  This increase in cardiac work should cause coronary metabolic 

vasodilation.  However, little if any coronary vasodilation is observed due to concomitant 

sympathetically induced coronary vasoconstriction.  In heart failure, cardiac output does not 

increase with MMA presumably due to impaired left ventricular contractility, and large 

decreases in coronary vascular conductance are observed.  The purpose of this dissertation is to 

determine whether the muscle metaboreflex-induced restraint of coronary vasodilation 

functionally limits coronary blood flow and suppresses increases in left ventricular (LV) 

contractility in normal dogs and whether this coronary vasoconstriction could explain in part, 

the reduced ability to increase cardiac performance during heart failure conditions.  We used 

chronically instrumented dogs (n=9, control and n=7, heart failure) and measured arterial 

pressure (MAP), cardiac output (CO), circumflex blood flow (CBF), and calculated coronary 

vascular conductance (CVC), maximal derivative of ventricular pressure (dp/dt), and preload 

recruitable stroke work (PRSW) at rest and during mild exercise (2mph) before and during 
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activation of the muscle metaboreflex.  Experiments were repeated after systemic alpha-1 

adrenergic blockade (prazosin 50-100g/kg).  In control studies during 1 blockade we 

observed significantly greater increases in CVC, CBF and PRSW, as well as CO and dP/dtmax, 

with metaboreflex activation vs. those seen without 1 blockade.  In heart failure experiments 

during MMA, the increases in CBF, CVC, CO, and +dP/dtmax were significantly greater after 1 

adrenergic blockade.  We conclude that the coronary vasoconstriction elicited by MMA limits 

the ability of muscle metaboreflex to increase left ventricular contractility in normal and heart 

failure conditions. 
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