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CHAPTER 1 

INTRODUCTION 

1.1 Epidermal Growth Factor Receptor (EGFR) 

A. Discovery and Structure 

In 1962 Stanley Cohen reported the isolation of the factor responsible for early 

development of the incisors and eyelids of mice.  He proposed that secretions from the 

salivary gland contained the growth promoting factor, which he termed epidermal growth 

factor (EGF) (Cohen, 1962; Schlessinger, 2000).  His work began the investigation of 

EGF and the search for its receptor.  Membranes prepared from A-431, human 

epidermoid carcinoma cells, incubated with 125I-EGF resulted in the binding of EGF to 

the 150 kDa epidermal growth factor receptor (EGFR).  It was later discovered that EGF 

binding to EGFR resulted in phosphorylation of the membranes (Carpenter, 1979).  

Because the EGF-dependent kinase activity and the substrates for phosphorylation co-

purified with EGFR Cohen noted that EGF-induced kinase activity could be an entity of 

the receptor (King et al., 1980).  EGFR was the first identified receptor tyrosine kinase 

(RTK). RTKs are a category of transmembrane proteins that undergo ligand-dependent 

conformational changes in the presence of extracellular ligands.  This results in the 

activation of an intracellular domain with the ability to catalyze the enzymatic transfer of 

a -phosphate from ATP to tyrosine residues in protein substrates.  EGFR is the model by 

which most RTK-induced cellular processes in eukaryotes are studied (Schlessinger, 

2000).   
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In 1984 Ullrich et. al. cloned and sequenced the complete human EGFR precursor 

from A-431 cells, which revealed direct homology to the avian erythroblastosis virus 

(AEV) v-erbB oncogene (Ullrich et al., 1984).  The v-erbB oncogene is located on 

chromosome 7p11-13 and spans 110kbp of DNA.  The gene contains 26 exons and 

transcribes a gene that translates into a 1210 amino acid (AA) precursor protein that 

undergoes cleavage resulting in a mature 1186 AA protein.  There are 12 possible N-

linked glycosylation sites accounting for 20% of the 170 kDa protein’s molecular weight 

(Jorissen et al., 2003). 

EGFR is one member of the ErbB family (ErbB2, ErbB3, ErbB4) of RTKs.  

Through structural analysis, EGFR, like each of its family members, was found to have 

four primary domains: a putative signal sequence (24AA), an extracellular domain (621 

AA), a transmembrane domain (23AA), and a cytoplasmic domain (542AA) (Ullrich et 

al., 1984).  The signal sequence directs the post-translational transport of EGFR to the 

cell surface, but is cleaved off resulting in the mature from of EGFR. The extracellular 

domain of EGFR, and each of the ErbB family members, contains four sub-domains (I, 

II, III, IV) (Garrett et al., 2002; Ogiso et al., 2002).  Activation of ErbB receptors is 

initiated by the binding of a ligand to the extracellular domain of the receptor. Ligand 

binding is associated with sub-domains I, at the amino-terminal, and III.  Sub-domains I 

and III are flanked by the Cysteine-rich sub-domains II and IV (Lax et al., 1989; Lax et 

al., 1988).  Sub-domains II and IV, in the presence of a ligand, are able to exhibit an auto-

inhibitory interaction modulating the angle and affinity of the ligand binding cleft (Cho 

and Leahy, 2002; Garrett et al., 2002; Ogiso et al., 2002; Schlessinger, 2000).  The 
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various binding affinities of EGFR ligands may be explained by the conformational 

change and change in orientation of the ligand binding domain (Cho and Leahy, 2002).  

Additionally, sub-domain II, with possible hinge-like action, creates an open 

conformation necessary for receptor dimerization, and sub-domain IV is necessary for 

EGFR localization to the caveolae/rafts in the plasma membrane (Garrett et al., 2002; 

Heldin, 1995; Ogiso et al., 2002; Yamabhai and Anderson, 2002).  Each receptor has a 

transmembrane domain, which plays a passive role in signal transduction, but may have a 

more important role in receptor dimerization (Heldin, 1995; Ullrich and Schlessinger, 

1990).  Just inside the plasma membrane the transmembrane domain is linked to the 

juxtamembrane region.  It is the juxtamembane portion of EGFR that anchors the 

transmembrane domain to the plasma membrane (Earp et al., 1995).  The cytoplasmic 

domain is comprised of the tyrosine kinase domain and the c-terminal tail containing 

numerous tyrosine phosphorylation sites (Ullrich and Schlessinger, 1990). In addition to 

tyrosine phosphorylation, EGFR is phosphorylated at serine (Ser) and threonine (Thr) 

residues. 

 

B. ErbB family members 

All ErbB family members in their inactive state exist as monomers on the plasma 

membrane.  Each family member is capable of undergoing homo- and hetero-

dimerization, a necessary step for activation and down-stream signaling.  

ErbB2 was discovered due to its homology to EGFR; in fact, EGFR and ErB2 

exhibit the highest homology among all family members (Coussens et al., 1985; King et 
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al., 1985).  ErbB2, which has no identified ligand, contains a constitutively exposed 

dimerization loop (Garrett et al., 2002; Ogiso et al., 2002).  In this regard, ErB2 is the 

predominant dimerization partner for each of the ErbB family members and is able to 

form dimers spontaneously resulting in cell transformation due to over expression alone 

(Graus-Porta et al., 1997; Klapper et al., 1999; Lemmon, 2009).  On the contrary, Erb3, 

discovered in 1989, has low intrinsic kinase activity (Dubois and Guyot, 1994).  This 

suggests that ErbB2 and ErbB3 require interactions with other family members, as 

compared to being able to contribute to linear signaling pathways (Yarden and 

Sliwkowski, 2001).  ErbB4, which has kinase activity, was the last family member to be 

discovered (Plowman et al., 1993) and has identifiable ligands, the nergulins (Stove and 

Bracke, 2004). 

 

C. EGFR Activation 

The majority of research on mechanisms involved with EGFR activation and 

signaling has utilized the A-431 cell model, from which the human receptor was 

originally identified.  EGFR activation is initiated by ligand binding to the extracellular 

domain of the receptor.  There are seven ligands (to be discussed) that bind to and 

activate EGFR: epidermal growth factor (EGF), transforming growth factor-alpha (TGF-

), amphiregulin (AREG), heparin binding-epidermal growth factor (HB-EGF), 

betacellulin (BTC), epiregulin (EREG), and epithelial mitogen (EPGN).  Upon ligand 

binding, EGFR homo-dimerizes (with another EGFR monomer) or hetero-dimerizes 

(with another ErbB family member) resulting in autophosphorylation of the intracellular 
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cytoplasmic domain thus increasing the enzymatic activity of the tyrosine kinase domain 

(Hubbard et al., 1998; Schlessinger, 2000).  EGFR bound with ligand undergoes a 

conformational change allowing for dimerization and exposing tyrosine residues, lying 

on an “activation loop” in the catalytic domain of the protein kinase domain, to ATP and 

protein substrates.  The activated EGFR tyrosine kinase domain catalyzes the transfer of 

the -phosphate of ATP to tyrosine residues in substrate proteins, including the C-

terminal and kinase domains of EGFRs dimerization partner (Fig. 1.1) (Hubbard et al., 

1998; Schlessinger, 2000; Ushiro and Cohen, 1980; Yarden and Schlessinger, 1987). 

Phosphorylation of EGFR occurs at six tyrosine sites (Y701, Y845, Y891, Y920, 

Y976) in the kinase domain and six tyrosine sites (Y992, Y1045, Y1068, Y1086, Y1101, 

Y1148, Y1173) in C-terminal domain, of which some are auto-phosphorylation sites 

(Jorissen et al., 2003).  These events may directly initiate signaling events or provide 

docking sites for adaptor molecules with Src-homology (SH2) or phosphotyrosine 

binding (PTB) domains (Pawson and Gish, 1992).  The docking sites allow for binding of 

a variety of adaptor molecules: growth-factor receptor bound 2 (Grb2) and phospholipase 

C (PLC)- gamma, phosphatases: SHP-1 and PTB-1B, and kinases: Src and Abl (Fig. 1.1) 

(Sebastian et al., 2006).  In one case, it was demonstrated that the C-terminal domain is 

not necessary for full activation of EGFR signaling pathways when EGF is the activating 

ligand.  However when AREG induces EGFR activation the c-terminal domain is 

required for mitogenic signaling.  The differences observed in ligand activation have 

been attributed to EGF/EGFR promotion of ErbB2 hetero-dimeriztion as compared to 

AREG/EGFR (Wong et al., 1999).  This would suggest that the tyrosine residues in the 
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kinase domain have more importance in EGFR signaling.  Although many of the tyrosine 

sites are autophosphorylated, non-tyrosine kinases (NTRK) such as c-src are able to 

phosphorylate EGFR by associating with phosphorylated EGFR, and subsequently 

phosphorylating EGFR at other sites.  However, NTRK phosphorylation does still require 

ligand binding and receptor dimerization (Lombardo et al., 1995; Stover et al., 1995).  
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Figure 1.1: EGFR Structure, Activation, Signaling Pathways 

A. In the basal state, EGFR exists as an inactive monomer (and possible as an inactive 
pre-dimer). Ligand binding results in a conformational change exposing tyrosine residues 
on the C-terminus to be phosphorylated. B. Tyrosine phosphorylation of the kinase and 
C-terminal domains allows for adaptor molecules to bind and initiate various signaling 

cascades. 
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Although it is generally accepted that EGFR kinase activity requires both ligand 

binding and dimerization, there are conflicting studies supporting the idea that ligand 

binding is required for receptor dimerization.  It has been reported that unligated EGFR 

exists as predimers on the cell membranes (Clayton et al., 2007; Gadella and Jovin, 1995; 

Sako et al., 2000; Teramura et al., 2006).  This provides evidence for the aggressive 

nature of cellular transformation and suggests EGFR activation and dimerization are 

independent events (Van de Vijver et al., 1991; Yu et al., 2002). 

 

D. EGFR signaling 

EGFR associates with numerous proteins, hence activates multiple signaling 

pathways. After ligand binding, tyrosine phosphorylation events occurring on the tyrosine 

kinase domain and the C-terminal tail provide binding sites for adaptor molecules 

containing SH2 and PTB domains (Pawson and Gish, 1992). Binding of a specific 

adaptor molecule promotes a distinct signaling pathway or pathways. 

The Ras/Raf/MEK/MAPK pathway is the most extensively studied EGFR 

signaling pathway. Signaling from this pathway results in a cascade of events 

predominantly correlated with mitogenisis. Following ligand binding, EGFR recruits 

adaptor molecule Grb2. Grb2 interacts directly with EGFR at Y1068 and Y1086 or 

indirectly by binding to Y1173-bound adaptor molecule; Shc. Grb2 then recruits a G-

protein activating protein (GAP), son of sevenless (SOS), to EGFR and activates H-, N-, 

or K- Ras proteins (Buday and Downward, 1993; Lowenstein et al., 1992; Sieh et al., 

1994). Activated membrane-associated Ras, in turn, activates, the protein kinase, Raf, 
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which then activates the MAPK pathway. Mitogen activated extracellular signal 

regulated kinase (MEK1/2) is activated via phosphorylation that then activates kinases 

ERK1/2 (MAPK). Activated MAPK ultimately results in the phosphorylation of nuclear 

transcription factors, such as c-Myc, c-fos, c-jun, Elk1, and ribosomal subunit kinase 

(RSK), involved in the regulation of cellular proliferation (Fig 1.1) (Marshall, 1994; 

Marshall, 1996; Pawson, 1995).  

In addition to the MAPK pathway, EGFR activates the pro-survival 

phosphatidylinositol 3-kinase Ia (PI3K Ia)/AKT signaling pathway. PI3K is composed of 

a regulatory and catalytic subunit that form heterodimers: p85 and p110, respectively 

(Carpenter et al., 1990).  Upon cellular stimulation, p85 is recruited to Y920 on the C-

terminal domain of EGFR.  P85 interacts with EGFR via an SH2 domain thus 

positioning p110 so that it can interact with its substrates and relieving the p85 

mediated inhibition of the p110 subunit.  p110 is then able to catalyze the production 

of phosphatidylinositol-3,4,5-triphosphate (PIP3).  PIP3 recruits Protein Kinase B (PKB), 

also known as AKT, to the cell membrane via its pleckstrin homology (PH) domain 

(Jones et al., 1991; Stover et al., 1995).  AKT becomes phosphorylated on Thr 308, in the 

kinase domain, by phosphatinositide-dependent kinase 1 (PDK1). In addition, for full 

AKT activation Ser 473, on the regulatory tail, needs to be phosphorylated. The 

mechanism, by which Ser 473 is modified is not clearly defined. Indeed it had been 

hypothesized that S473 may be autophosphorylated, or modified by PDK-2 or integrin-

linked kinase (ILK). Recently, it has been accepted that S473 modification is a result of 

mTORC2 (Delcommenne et al., 1998; Nicholson and Anderson, 2002; Sarbassov et al., 
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2006; Toker and Newton, 2000).  Activated AKT promotes cell survival through 

phosphorylation and inhibition of the pro-apoptotic proteins Bad and Caspase-9 (Fig. 1.1) 

(Cardone et al., 1998; Datta et al., 1997; Franke et al., 1997). 

Phospholipase C gamma (PLC-) is a member of a family of enzymes catalyzing 

the hydrolysis of PIP2 into secondary messengers: phosphatidic acid,1,2-diacylglycerol 

(DAG) and inositol 1,3,5-triphosphate (IP3), thereby contributing to cell migration and 

pro-proliferative signaling pathways (reviewed in (Rhee et al., 1989)).  PLC- interacts 

directly with EGFR at Y992, Y1173, and indirectly through binding with Grb2-

associated protein 1 (Gab1).  Gab1, in addition to interacting with PLC- is capable of 

interacting with PI3K subunit p85 (Holgado-Madruga et al., 1996). 

Moreover, EGFR is capable of activating signal transducers and activators of 

transcription (STAT) pathways (Darnell et al., 1994).   STAT activation, by cytokine 

signaling is mediated by Janus kinase (JAK) dependent pathways.  However, STAT 

activation by EGFR signaling is mediated by JAK independent pathways (Andl et al., 

2004; Kloth et al., 2003).  JAK, like Src, is a NRTK. In the JAK independent pathway, 

ligand-dependent EGFR activation induces phosphorylation of STAT1 at Y701 and 

STAT3 at Y705.  These events lead to STAT dimerization. The complex translocates to 

the nucleus activating transcription of genes associated with cell survival (Andl et al., 

2004; Leaman et al., 1996).  In some instances STATs can be constitutively associated 

with EGFR, however their activation is dependent on EGFR tyrosine kinase activity 

(David et al., 1996; Olayioye et al., 1999; Xia et al., 2002).  More recently, Yang et. al., 

in the JAK-independent pathway, found STAT5b to associate with Y845 on EGFR, 
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possibly down-stream or independent of Src kinase (Kloth et al., 2003; Yang et al., 

2008).  

Src is non-receptor tyrosine kinase that also plays a role in EGFR signaling.  Src 

phosphorylates EGFR at Y1101 and Y845 (Maa et al., 1995; Tice et al., 1999).  

Phosphorylation at EGFR-Y845 promotes EGFR-induced mitogenesis, and the response 

to phosphorylation of EGFR-Y1101, a residue not conserved in the ErbB family in vivo, 

remains unclear (Biscardi et al., 1999; Stover et al., 1995; Tice et al., 1999).  Still, the 

exact location where src binds is unknown; however, it is thought to bind in the kinase 

domain.  

 

E. EGFR trafficking, localization, and degradation  

EGFR in its basal state is predominantly localized to the plasma membrane in 

lipid rafts/caveolae (Yamabhai and Anderson, 2002).  Inactive receptors are 

constitutively internalized, transported to early endosomes (EE), and in most cases 

recycled back to the membrane.  The half-life of inactive EGFR is 10-14 hours in normal 

epithelial cells, while in transformed cells the half life is much longer (20-48 hours) 

(Wiley, 2003).  EGF activated EGFR, via ligand binding and receptor dimerization, 

enhances EGFR internalization (Sorkin and Goh, 2008; Wiley et al., 1991).  This 

acceleration is due to endocytosis of EGF/EGFR complexes through clathrin-coated pits. 

Clathrin-mediated endocytosis (CME) is a process whereby EGFR is internalized.  

Notably, EGFR was shown to undergo internalization via a slower, non-clathrin 

endocytosis (NCE) pathway as well.  The pathway by which EGFR endocytoses is 
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dependent on the concentration of EGF. In general, EGFR is internalized by the CME 

pathway when EGF concentrations are low and the NCE pathway when EGF 

concentrations are high (Sigismund et al., 2005).  

Upon EGFR activation, a Grb2/Cbl complex is recruited to phosphorylated 

Y1045.  Cbl proteins are E3 ubiquitin ligases containing a phosphotyrosine binding 

domain and a C3HC4 RING finger.  The Grb2/Cbl/EGFR interaction promotes the 

recruitment of ubiquitin conjugating enzymes in order to mono-ubiquitinate EGFR.  The 

ubiquitination is recognized by Esp15, Esp15R, and Epsin proteins associated with AP-2.  

The receptor and associated ligand are then internalized via clathrin coated pits and 

localized to EE.  In the case where EGFR is recycled, the ligand dissociates from the 

receptor promoting EGFR’s return to the plasma membrane via recycling endosomes.  

When the fate of EGFR is degradation, EGFR remains in the EE.  The EEs  mature into 

mutivesicular vesicular bodies (MVB) and late endosomes (LE) where EGFR interacts 

with a ternary complex composed of EPS15, signal transduction molecule (STAM), and 

hepatocyte-growth-factor regulated tyrosine-kinase substrate (HRS) (Katzmann et al., 

2003).  The associated EGFR complex is directed to tumor susceptibility gene-101 

(TSG1) and the endosomal sorting complex required for transport-I (ESCRT) complex 

and EGFR is incorporated into internal vesicles in the MVBs.  The MVB fuses with a 

lysosome, consisting of a highly acidic pH, where EGFR and its associated ligand are 

degraded (Fig. 1.2) (Sorkin et al., 1991).  In one study it has been shown that EGFR can 

be polyubiquitnated and degraded in the proteosome (Levkowitz et al., 1999). 
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Figure 1.2: EGFR Internalization, Trafficking, Localization 
Inactive EGFR is internalized and recycled back to the membrane. When EGFR is 

stimulated by EGF EGFR is ubiquitinated by cbl and transported to EE. The receptor 
associated with a complex and moves to the MVB and lastly to the lysosome for 

degradation. AREG stimulation of EGFR induces EGFR internalization and trafficking to 
the RE where EGFR is recycled back to the cell surface. 

 
 Most of the studies regarding EGFR trafficking have been done with EGF. Not as 

much is known about trafficking and EGFR localization when EGFR associates with its 
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other growth factors.  TGF- stimulation of EGFR is the second-most well understood 

mechanism of EGFR trafficking.  TGF- unlike EGFR, rapidly dissociates from EGFR 

in the EE due to the low pH (Ebner and Derynck, 1991).  At this time, EGFR is de-

ubiquitinated and recycled back to the cell surface (Decker, 1990; Longva et al., 2002).  

A recent paper by Roepstorff et. al. studied the differential effects of EGFR ligands on 

endocytic sorting.  In this study it was shown that EREG stimulates internalization 

followed by rapid EGFR recycling to the cell surface.  Coinciding with the recycling 

phenotype, Y1045 phosphorylation and ubiquitination levels were low.  In contrast, BTC 

stimulation resulted in persistent Y1045 phosphorylation, c-Cbl recruitment and EGFR 

ubiquitnation thus supporting EGFR degradation (Roepstorff et al., 2009).  

Studies done in the SUM-149 breast cancer cell line demonstrated AREG 

stimulation of EGFR resulted in low levels of Y1045 phosphorylation, internalization, 

and ubiqutination (Willmarth and Ethier, 2008).  Moreover, AREG promotes EGFR to be 

rapidly recycled to the plasma membrane (Baldys et al., 2009).  Interestingly, AREG is 

highly resistant to the acidic pH present in the EE, suggesting that relatively low binding 

affinity of AREG may cause the dissociation and recycling of EGFR (Roepstorff et al., 

2009). 

In addition to proteins having the capability of inducing EGFR endocytosis, some 

proteins such as Sprouty2 have been shown to negatively regulate EGFR internalization 

by interacting with c-Cbl. Sprouty2 associates with Grb2 and c-Cbl at the RING domain 

inhibiting E3 ligase function, thereby reducing EGFR ubiquitination and internalization 

(Hanafusa et al., 2002; Rubin et al., 2003).  Cool-1, Tbc1d3, GAPex5, intersectin, and 
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CIN85 are among other c-Cbl interacting proteins that interrupt EGFR endocytosis (Feng 

et al., 2006; Martin et al., 2006; Soubeyran et al., 2002; Su et al., 2007; Szymkiewicz et 

al., 2002; Wainszelbaum et al., 2008).  Other proteins that can either inhibit or promote 

EGFR internalization, aside from c-Cbl, include: Na+/H+ exchanger regulatory factor 1 

(NHERF1), Ymer, Spartin, and Cdc42-associated tyrosine kinase 1 (ACK1) (Bakowska 

et al., 2007; Lazar et al., 2004; Shen et al., 2007; Tashiro et al., 2006).  

 

F. EGFR and Cancer 

EGFR is a proto-oncogene.  Mice deficient in EGFR exhibit defects ranging from 

death at mid-gestation, to survival for up to three weeks, depending on the genetic 

background of the mutant mice.  Surviving mice had abnormalities in the liver, skin, 

lung, brain, and GI tract prior to early death (Miettinen et al., 1995; Sibilia et al., 1998).  

Characteristic of an oncogene, EGFR is essential to normal development and physiology 

in the cell, but when altered by mutations or over expression, EGFR induces cellular 

transformation.  The v-erbB viral oncogene, lacking most of the extracellular domain, has 

direct homology to human EGFR as seen after EGFR was cloned and sequenced (Ullrich 

et al., 1984).  It was this line of evidence that implicated EGFR in tumor progression 

(Downward et al., 1984).  

Classically, cancer transformation has been described by the ability of a 

transformed cell to acquire six “hallmarks” of cancer.  These hallmarks include: cell 

invasion and metastasis, sustained angiogeneisis, limitless replicative potential, evading 

apoptosis, self-sufficiency in growth signals, and insensitivity to anti-growth signals 
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(Hanahan and Weinberg, 2000).  Now, ten years later, cellular transformation is 

continually described by these hallmarks, but with the addition of six more defining 

characteristics: evading immune surveillance, metabolic stress, proteotoxic stress, mitotic 

stress, oxidative stress, and DNA damage stress (Luo et al., 2009).  EGFR regulates many 

of these characteristics in a variety of cancers.  

Aberrant EGFR activity can contribute to in vitro transformation and in vivo 

tumorgenisis.  This may be the consequence of one or more of the following: EGFR over 

expression and/or mutation, alterations in dimerization, increased ligand expression or 

release, disrupted trafficking and turnover of inactive receptors, or deficiency in 

inactivating phosphatases (Blume-Jensen and Hunter, 2001; Salomon et al., 1995a; 

Sebastian et al., 2006).  Over expression of EGFR occurs by amplification and/or 

increased transcription.  EGFR over expression without EGFR amplification is one of the 

most frequently observed mechanisms in EGFR mediated cancer progression (Athale and 

Deisboeck, 2006).  SUM-149 breast cancer cells are one example where this mechanism 

is observed along with the presence of an AREG/EGFR autocrine loop, thereby leading 

to EGFR stimulation by AREG and EGFR over expression (Willmarth and Ethier, 2006).  

Indeed another frequently observed mechanism of EGFR over expression is the presence 

of a TGF- autocrine loop (TGF- induces EGFR recycling) (El-Obeid et al., 2002).  
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i. EGFR in breast cancer 

EGFR expression is observed in head and neck, breast, renal, lung, colon, ovarian, 

prostate, pancreatic, bladder, and brain cancers.  For the purpose of this dissertation the 

focus will be on breast cancer.  In the 1980’s experiments carried out by Sainsbury and 

co-workers first identified an inverse relationship between EGFR and Estrogen Receptor 

(ER) status (Sainsbury et al., 1987).  More over, this group found a significant association 

between ER and EGFR expression and tumor size and differentiation; EGFR-positive 

breast cancers showed significantly worse overall and relapse-free survival (Sainsbury et 

al., 1987).  It became clear that the histological sub-type of breast cancer could indicate 

the prognosis of the disease (Sainsbury et al., 1988).  By 125I-labelling EGF, three sub-

types of breast cancer were identified; one, EGFR-positive and ER-negative, another 

EGFR-negative and ER-positive, and lastly a group that was EGFR-positive and ER-

positive. As seen in their previous studies, overall and relapse-free survival was nearly 2 

years shorter for the EGFR-positive tumors (Harris et al., 1989).  In 1992, Harris et. al. 

found the EGFR and ErbB2 had adverse additive effects and that ErbB2 was a marker of 

poor prognosis and lack of response to endocrine therapies (Harris et al., 1992).  

The work of Harris et al. led to the elucidation of breast cancer sub-types by the 

use of high-throughput molecular biology techniques.  Based on hierarchical clustering of 

65 breast cancers compared to normal breast tissue, breast cancer is categorized into four 

subtypes: normal-like, luminal (A and B), ErbB2 positive, and basal-like (Perou et al., 

2000).  These subtypes have been validated by Sorlie et al. in 2001 and 2003, further 
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characterizing the luminal type into two subtypes, types A and B (Sorlie et al., 2001; 

Sorlie et al., 2003). 

Normal-like breast tumors, as expected, have genetic expression similar to those 

of normal basal epithelial cells and adipose cells (Perou et al., 2000).  Luminal breast 

cancers are defined as two groups, A and B (Sorlie et al., 2003).  Luminal A cancers are 

96% positive for estrogen receptor (ER) alpha expression and contain high levels of 

luminal cell keratins 8/18 (Perou et al., 2000).  Luminal B cancers along with ER 

expression include the expression of ErbB2 (Sorlie et al., 2001).  While luminal A 

cancers have a better prognosis than luminal B cancers, both contribute to the significant 

decline in breast cancer mortalities observed since the 1990s.  The expression of ER in 

the luminal subtype and the introduction of targeted therapies with selective ER 

modulators (SERMs), such as tamoxifen, are likely the factors responsible for the better 

prognosis.  ErbB2 positive breast cancers are defined by the expression of ErbB2, Grb7 

and little, if any, ER (Perou et al., 2000).  These cancers tend to have a worse prognosis 

than luminal breast cancers (Sorlie et al., 2001).  However, due to ErbB2 targeted therapy 

with Trastuzumab, a monoclonal antibody, ErbB2-positive tumors have a better 

prognosis than the last subtype, the basal-type (Romond et al., 2005; Sorlie et al., 2003).  

Basal-type breast cancers represent approximately 15% of all breast cancers and 

continue to have the worst prognosis (Perou et al., 2000).  They are characterized by the 

expression of cytokeratin 5/6 and 17, fatty acid-binding protein 7, integrin 4 and 

laminin.  Typically, basal-type breast cancers lack the expression of ER, ErbB2, and 

progesterone (PR).  Therefore, as of today, patients are not able to undergo targeted 
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chemotherapies.  Many of the characteristics observed in triple negative, basal-type 

breast cancers are due to BRCA1 mutations, making a portion of the basal-type a 

hereditary disease (Sorlie et al., 2003).  

 

ii. Targeting EGFR in breast cancer 

 EGFR is expressed in 14-91% of breast cancers (Reviewed by (Grandis and Sok, 

2004)).   The large variance is likely due to the variety of techniques: autoradiography, 

immunoctyochemistry, immunoenzymatic assay, and gene transcript analysis, utilized in 

analyzing EGFR expression in breast cancer. By immunocytochemistry, EGFR has been 

observed to be over-expressed in 60% of basal-type breast cancers (Livasy et al., 2006).   

Beginning in the 1980s, EGFR was targeted in cancer therapeutics. In 1990, the first 

clinical trial of an anti-EGFR agent was initiated.  In lung cancer patients, monoclonal 

antibody 225 (Mab225/cetuximab) was found to inhibit EGFR activity. Anti-EGFR 

antibodies are designed to bind to the extracellular domain of EGFR, therefore preventing 

ligand binding and cell proliferation (Grunwald and Hidalgo, 2003).  Following the 

development of cetuximab, a number of other monoclonal antibodies entered the clinic: 

ABX-EGF, EMD7200, and h-R3 (Crombet-Ramos et al., 2002; Rowinsky et al., 2004; 

Vanhoefer et al., 2004).  After the development of monoclonal antibodies, a new class of 

chemicals, anilinoquinazolines, with similar effects were produced (Ward et al., 1994).  

These small molecule inhibitors, known as tyrosine kinase inhibitors (TKIs), block the 

activation of EGFR by interacting with the tyrosine kinase domain resulting in inhibition 

of EGFR autophosphorylation (Ciardiello et al., 2000).  It was not until the 21st century 
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when the EGFR TKI gefitinib (Iressa) was used in clinical trials and showed promising 

anti-tumor activity (Fukuoka et al., 2003; Kris et al., 2003).  Gefitinib was approved for 

treatment in non-small cell lung carcinoma (NSCLC) in Japan and one year later the FDA 

approved gefitinib in the United States.  However after clinical trial data demonstrated no 

significant survival benefit with the use of gefitinib, the drug lost FDA approval and was 

removed from the market.  Similar TKI’s such as erlotinib, which can inhibit wild-type 

EGFR at lower concentrations than gefitnib, are now currently used as they do 

significantly increase overall survival. 

When cancers have EGFR mutations (ie: in lung cancers) there is success in 

EGFR targeted therapies. In the instance of breast cancer, where EGFR is present in wild-

type form, cancers become resistant to the present targeted therapies. (Arteaga, 2003; 

Osborne et al., 2003).  EGFR activation, signaling, trafficking, and degradation 

mechanisms are complex.  A deeper understanding of these mechanisms will advance the 

field for treatment options in not only breast cancer, but a diverse amount of epithelial 

cancers.  

 

G. EGFR Ligands 

Currently there are six known ligands, aside from AREG, that bind to and activate 

EGFR.  All ligands are type I transmembrane proteins composed of common 

extracellular, transmembrane, and cytoplasmic domains.  The sequence homology 

between all ligands is approximately 25% (Harris et al., 2003).  These differences are 
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accounted for by the presence of N-terminal extensions, heparin binding domains, 

differential glycosylation sites, and other biochemical characteristics. 

 

i. Epidermal Growth Factor: EGF (1960) 

EGF was the first EGFR ligand discovered in the 1960s.  Cohen et. al. isolated 

EGF, which induced premature eyelid opening and tooth eruption, from the submaxillary 

gland of mice (Cohen, 1962).  EGF is unique compared to the other ligands in that it has 

nine EGF-like domains (David et al., 1996; Olayioye et al., 1999; Xia et al., 2002).  It is 

located on chromosome 4q25, spanning 99.4 kb of DNA.  After post-translational 

modifications, the mature EGF protein is composed of 53 residues with a molecular 

weight of about 6 kDa (Kajikawa et al., 1991; Taylor et al., 1970).  EGF is produced in a 

variety of human tissues and in human milk (Connolly and Rose, 1988).  Northern Blot 

and immunohistochemistry studies have demonstrated EGF mRNA and protein 

expression in adult epithelial cells and the gastrointestinal tract (Connolly and Rose, 

1988; Kajikawa et al., 1991).  Mice lacking EGF have developmental effects in prostatic 

epithelial bud formation (Abbott et al., 2003).   

 

ii. Transforming Growth Factor-alpha: TGF- (1978) 

TGF- was the second EGFR ligand to be found. Its discovery was the result of 

protein isolation from the conditioned medium of murine sarcoma virus transformed cells 

(de Larco and Todaro, 1978). TGF- is located on chromosome 2p11-13, spanning 70-

100 kb of DNA. Mature TGF- yields a 50 residue protein, ranging from 6-20 kDa in 
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size due to post-translational modifications (Teixido and Massague, 1988). Expression of 

TGF- has been demonstrated during embryogenesis and in numerous adult tissues, 

especially those involved in regeneration and epithelial stem cell populations (Kudlow 

and Bjorge, 1990). TGF- -/- mice are viable, but have lens and retinal abnormalities 

along with a noticeable phenotype change that is demonstrated by waviness of their coat 

and whiskers (Berkowitz et al., 1996; Mann et al., 1993). 

 

iii. Heparin Binding-Epidermal Growth Factor: HB-EGF (1991) 

Initially, HB-EGF was isolated from the conditioned medium of macrophage-like 

U-937 cells (Higashiyama et al., 1991). It is a unique family member in that membrane 

anchored HB-EGF acts as a specific receptor for the diphtheria toxin (Iwamoto et al., 

1994; Naglich et al., 1992). HB-EGF is located on chromosome 5q23 and spans 15.28 kb 

of DNA (Freeman et al., 1997; Nishi and Klagsbrun, 2004). The mature form of the 

protein comprises 68 to 87 residues and has a molecular weight of 4-22 kDa following 

post-translational modifications. Expression of HB-EGF has been observed in a variety of 

mammalian tissues, such as bladder, smooth muscle, skin, heart, and lung; however it is 

not expressed in endothelial cells (Abraham et al., 1993; Freeman et al., 1997). HB-EGF 

-/- mice form enlarged and malformed semilunar and atrioventricular heart valves and 

poorly differentiated lungs (Iwamoto et al., 2003; Mine et al., 2005).  

 

iv. Betacellulin: BTC (1993) 
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BTC was isolated from the conditioned medium of a mouse pancreatic  

insulinoma (Shing et al., 1993). A novel characteristic of BTC, along with HB-EGF, is its 

ability to bind both EGFR and ErbB4 (Dunbar and Goddard, 2000; Elenius et al., 1997; 

Riese et al., 1996). BTC not only activates two of the ErbB family members, but is 

capable of initiating all possible combinations of heterodimeric ErbB receptors (reviewed 

by (Dunbar and Goddard, 2000)). BTC is located on chromosome 4q13-q21 and spans 

48.4 kb of DNA (Harris et al., 2003).  BTC protein is 32 kDa in size after post-

translational modifications and is composed of 80 residues (Shing et al., 1993). BTC is 

expressed in most adult tissues, but is especially high in the pancreas, liver, kidney, and 

small intestine (Sasada et al., 1993; Seno et al., 1996). In addition, expression is found in 

bodily fluids including milk (Dunbar et al., 1999). Mice lacking BTC expression were 

viable and did not appear to have any growth abnormalities, even in the pancreas 

(Jackson et al., 2003).   

 

v. Epiregulin: EREG (1995) 

EREG was first isolated from the conditioned medium of the mouse tumor cell 

line NIH3T3/clone T7. EREG does not bind heparin (Toyoda et al., 1995b). EREG is 

located on chromosome 4q13.3 and spans 4.8 kb of DNA (Toyoda et al., 1997). The 

molecular weight of the mature protein, as seen by radiolabelling conditioned media, is 5 

kDa representing 46 AA residues (Toyoda et al., 1995a; Toyoda et al., 1997). Compared 

to the other EGFR ligands, EREG is unique in that it has relatively low levels of 

expression in normal adult tissue. However, EREG expression was found in peripheral 
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blood, macrophages, and the placenta (Toyoda et al., 1997). EREG -/- mice were viable 

and proved to have no abnormalities in growth or reproduction, but were more 

susceptible to transformation when intestinal damage was induced with dextran sulfate 

sodium (Lee et al., 2004).  

 

 

vi. Epithelial Mitogen: EPGN (2001) 

The epithelial mitogen, EPGN, was identified from a mouse keratinocyte cDNA 

library due to its homology to EREG (Strachan et al., 2001). It is the most recent EGFR 

ligand to be discovered. It is a unique growth factor in that it elicits high mitogenicity 

while having low affinity to EGFR (Kochupurakkal et al., 2005). EPGN’s transcript 

spans 5kb of DNA and is located on chromosome 4q13.3, only 25kbp away from 

EREG’s open reading frame (Kochupurakkal et al., 2005). The mature protein is 

processed to 86 residues and has a molecular weight of 8 kDa. EPGN is expressed in 

numerous mammalian tissues, most highly in tissues of the developing embryo such as 

tongue papillae, dorsal root ganglion, and in hair follicles (Kochupurakkal et al., 2005). 

The in vivo effects of EPGN have been observed through generation of transgenic mice 

over expressing EPGN (Dahlhoff et al., 2010). These mice expressed enlarged sebaceous 

glands. Knock-out mice remain to be studied. 
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1.2 Amphiregulin (AREG) 
 
A. Discovery and Structure 
 

AREG is a heparin-binding molecule that binds EGFR (Cook et al., 1991).   It 

was first isolated from the conditioned medium of MCF-7 breast cancer cells following 

treatment with a tumor promoter, phorbol 12-myristate 13-acetate (PMA), by Shoyab et. 

al. (Shoyab et al., 1988).   AREG was named for its ability to stimulate the proliferation 

of human fibroblasts and keratinocytes, as well as tumor cells, and its ability to inhibit the 

proliferation of some carcinoma cell lines in culture (Shoyab et al., 1988). 

Structurally AREG’s amino-terminus was characterized by cleavage of an Edman 

degradated, N-glycancase treated, reduced, and S-pyridylethylated AREG (NG-SPE-

AREG).  Two amino-terminal sequences emerged; one being six amino acids shorter 

(78AA) than the larger (84AA) sequence (Shoyab et al., 1989).   The 84AA sequence has 

a lower binding affinity to EGFR and is the higher yielding (20%) sequence, as compared 

to the 74AA sequence.  The carboxyl-terminal sequence was described by cleavage of 

NG-SPE-AREG with carboxypeptidase P. Both the 78 and 84 AA sequences have similar 

carboxyl-terminals, and both are biologically active (Shoyab et al., 1989).  Directly 

following Shoyab’s initial characterization of AREG, molecular cloning techniques were 

utilized to further define AREG. Total cellular RNA was isolated from MCF-7 cells and 

cDNA of AREG was transcribed and analyzed.  The 84 AA corresponded to the mature 

secreted form of AREG (Plowman et al., 1990). 

AREG was compared to other EGF-like growth factors and proteins, and like all 

family members, AREG’s bioactive domain is characterized by six essential cysteine 



 26

residues, spaced: CX7CX4CX10CX1CX8C, where C represents cystenines and X can be 

any AA (Fig. 1.3) (Shoyab et al., 1989).  Additionally, AREG has 38% homology with 

EGF and 32% homology with TGF- (Shoyab et al., 1989).  AREG was found to have 

six exons and five introns spanning 10.2 kb of genomic DNA (Plowman et al., 1990).  

Exon one contains a 210bp 5’UTR and signal peptide: exon two contains the amino-

terminal precursor: exon three contains a very basic and hydrophilic amino-terminal 

portion and the first two loops of the EGF-like region: exon four contains the third loop 

of the EGF-like motif and the transmembrane domain: exon five contains the cytoplasmic 

region: and lastly, exon six contains the 262bp 3’UTR (Plowman et al., 1990).  AREG is 

located on chromosome 4q13-4q21 in close proximity to genes BTC and EREG 

(Plowman et al., 1990; Sasada et al., 1993; Toyoda et al., 1997). This supports the 

hypothesis that EGFR ligands evolved through gene duplication events. 
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Figure 1.3: AREG Structure and Cell Processing 
 The structure of the 50 kDa pro-AREG, the location of the nuclear localization signals 

(NLS), Heparin binding domain, EGF-like domain, and the transmembrane (TM) 
domain. AREG is processed by ADAM17/TACE at various sites indicated by the orange 

arrows. 
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B. AREG isoforms 

AREG is synthesized as a 252 amino acid transmembrane precursor that requires 

proteolytic cleavage for secretion (Fig. 1.3). Proteolytic processing is an important step in 

EGFR activation by AREG.  Tumor necrosis factor alpha (TNF-) converting enzyme 

(TACE) has been implicated in the shedding of AREG, TGF- HB-EGF, and EPGN 

from the plasma membrane (Hinkle et al., 2004; Merlos-Suarez et al., 2001; Peschon et 

al., 1998; Sahin and Blobel, 2007).  TACE is a member of the integral membrane 

proteins and is a Disintegrin and Metalloproteinase (ADAM). It was discovered in the 

search for the protease responsible for ectodomain shedding of TNF- (Black et al., 

1997).  The development of TACE -/- mice demonstrated, in vivo, the proteinase’s 

essential role in ectodomain shedding of structurally and functionally diverse membrane-

bound proteins (Peschon et al., 1998). The TACE-/- mutation proved to be lethal prior to 

birth in most cases.  Fetuses were examined, and found to have severe epithelial structure 

developmental defects similar to EGFR-/- and TGF--/- mice (Peschon et al., 1998).  

Similar to defects observed in AREG-/- and HB-EGF-/- mice, TACE-/- mice showed 

defects in epithelial lung branching, ductal branching in the mammary gland, and heart 

valve development (Jackson et al., 2003; Luetteke et al., 1999). 

Due to proteolytic processing by TACE/ADAM17 and other post-translational 

modifications, there are several forms of AREG.  Cleavage results in two soluble forms 

of either 78 or 84 amino acids in length, which range from 19-21-kDa in molecular 

weight (Plowman et al., 1990; Shoyab et al., 1989).  Post-translational modifications of 
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pro-AREG produces a major soluble 43-kDa form, 28-, 26-, 16-kDa membrane anchored 

forms, and soluble 21-, 19-, and 9-kDa forms (Brown et al., 1998). 

AREG protein has four domains: a 43 AA N-terminal pro region, an EGF-like 

domain, a transmembrane domain, and a cytoplasmic domain. AREG’s N-terminal pro 

region includes the pro-domain, two putative nuclear localization signals (NLSs), and a 

heparin binding domain.  This pro region is rich in prolines, serines, and threonines, 

making this region highly hydrophilic.  Similar to other EGFR growth factors, the N-

terminal region has N-linked and O-linked glycosylation sites (Shoyab et al., 1989).  The 

status of AREG protein glycosylation is not important for the bioactivity of the protein, 

but may be important in the stability, solubility, resistance to proteolysis, or localization 

of AREG (Rademacher, 1998). 

The heparin binding domain (residues 26-44), located within the in pro-region, is 

necessary for proper folding and secretion of a bioactive AREG.  Deletion of the pro-

region prevents AREG secretion (Thorne and Plowman, 1994).  The heparin binding 

domain is unique to AREG and HB-EGF.  Heparin sulfate proteoglycans (HSPGs) are 

located on the plasma membrane.  The binding of AREG to HSPGs is essential to AREG-

triggered mitogenic signaling by EGFR (Johnson and Wong, 1994).  HSulf-1, responsible 

for desulfation of glycosaminoglycans, such as AREG and HB-EGF, is down-regulated 

in breast and ovarian cancers (Lai et al., 2003); this results in an increased affinity for 

heparin binding ligands adding to autocrine and paracrine proliferation signals (Narita et 

al., 2007). 
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Lastly, within the pro region there is a tetrapeptide sequence, ARG-LYS-LYS-

LYS, repeated two times at residues 26-29 and 40-43.  This sequence constitutes the 

NLSs (Shoyab et al., 1989); however the role of AREG in the nucleus continues to 

remain unclear. NLSs appear to be important in full signaling and co-translocating bound 

receptors to the nucleus to participate in gene regulation (Jans and Hassan, 1998).  This 

observation corroborates the hypothesis that EGFR functions as a transcription factor in 

the nucleus (Lin et al., 2001).  More recently, truncated pro-AREG has been shown to 

interact with A-type lamin at the inner nuclear membrane where it participates in 

chromatin organization and control of transcription (Isokane et al., 2008). 

The EGF-like domain is located within 25 residues of the transmembrane domain 

(Fig. 1.3). Cleavage occurs between the two domains, promoting autocrine and paracrine 

signaling.  The six-cysteine motif previously described is the central and functional 

feature of AREG and all EGF-like growth factors. It is this motif that associated with 

EGFR. 

The cytoplamsic domain is required for basolateral sorting, guaranteeing proper 

AREG signaling as seen in Madin-Darby Canine Kidney cells (MDCK).  When the 

cytoplasmic domain was mutated, 65% of the AREG proteins were sorted to the apical 

surface.  However, cleavage of the ligand was not altered by the mutation, suggesting that 

the C-terminus is not required for processing of the ligand (Brown et al., 2001). 
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C. AREG expression/regulation 

AREG acts as an autocrine growth factor in human urothelial cells, normal human 

keratinocytes, and human lung bronchial epithelial cells (Kansra et al., 2004; Tsao et al., 

1996; Varley et al., 2005).   During development in the mouse mammary gland, AREG 

has been shown to play an important role in terminal end bud (TEB) formation and ductal 

elongation (Ciarloni et al., 2007; Luetteke et al., 1999).   In addition, expression of 

AREG mRNA has been observed in a variety of cancers including: colon, breast, liver, 

prostate, pancreatic, lung, bladder, ovarian, skin, myeloma, and squamous cell carcinoma 

(D'Antonio et al., 2002; Ebert et al., 1994; Fontanini et al., 1998; Mahtouk et al., 2005; 

Salomon et al., 1995; Sehgal et al., 1994; Tsai et al., 2006). 

In the human AREG promoter, a cyclic adenosine monophosphate (cAMP)-

repsonsive element (CRE), a serum responsive element (SRE), a highly conserved 

specificity protein 1 element (SP1), WT1 responsive element (WRE), and TATA box 

have been identified (Du et al., 2005; Lee et al., 1999). 

Regulation of AREG expression by the CRE site (-267 to -274 nt) has been 

observed in a cell line, MSK-Leuk1, derived from a dysplastic leukoplakia lesion  when 

exposed to a saline extract containing tobacco smoke (Du et al., 2005).  In addition, 

AREG expression was induced in a CRE-dependent manner in mouse tissue exposed to 

whole animal hypoxia (O'Reilly et al., 2006).  In this pathway, cAMP, a second 

messenger, phosphorylates Protein Kinase A (PKA) and activates CRE-binding protein 

(CREB). CREB is a 43 kDa transcription factor which binds to the CRE sequence and, in 

the instances described here, induces AREG expression (Reviewed by (Mayr and 
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Montminy, 2001)).  Further evidence for cAMP’s induction of AREG expression has 

been demonstrated in response to Prostaglandin E2 (PGE2) in colon cancer, T 

lymphocytes, prostate cancer, breast cancer, and adrenal cells (Johansson et al., 2004; 

Shao et al., 2003).  Parathyroid hormone (PTH), promoter of bone metabolism, is yet 

another factor that has been shown to induce AREG expression via the 

cAMP/PKA/CREB pathway in UMR 106-01, osteoblastic cell line (Qin and Partridge, 

2005).  Lastly, Wilms Tumor Suppressor (WT1) induces the expression of AREG in 

U2OS, ostesarcoma cells, through an AREG transcriptional activator (Lee et al., 1999). 

Recent work in cells derived from cervical cancer, HeLa, demonstrated for the 

first time AREG expression to be suppressed in response to a transcription factor binding 

the AREG promoter.  Breast cancer-associated 1 (BRCA1), a breast and ovarian tumor 

suppressor, functions in: transcription, DNA damage repair, and cell cycle regulation 

(Mullan et al., 2006).  BRCA1 binds to the AREG promoter downstream of the TATA 

Box (-283 to -233nt) at -202 to -182 and +19 to +122, while depletion of BRCA1 resulted 

in an increase in AREG transcription (Lamber et al., 2010; Lheureux et al., 2010). 

Many other molecules have been shown to regulate AREG expression. These 

molecules include estrogen, androgen, vitamin D3, HOXB9, cytokines: IL-1 and TNF-

, other EGFR growth factors (EGF and TGF-), and EGFR itself (Akutsu et al., 2001; 

Hayashida et al., 2010; Kansra et al., 2004; Kitadai et al., 1993; Martinez-Lacaci et al., 

1995; Normanno et al., 1994; Sehgal et al., 1994; Streicher et al., 2007; Woodworth et 

al., 2005). The pathways by which each factor regulates AREG transcription requires 
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further elucidation; however it is apparent that a variety of signaling molecules can 

promote AREG expression in a numerous tissues. 

 

D. AREG/EGFR signaling mechanisms and pathways 

i. AREG signaling mechanisms 

AREG signals with EGFR via three general mechanisms: autocrine, paracrine, and 

juxtacrine.  Autocrine regulation is observed when a soluble ligand is produced by a cell 

and stimulates the receptor on the cell from which it was made.  On the contrary, 

paracrine signaling occurs when a soluble ligand is produced by a cell and stimulates its 

receptor on a different cell, independent of the type of cell from which it was shed.  

Lastly, juxtacrine signaling is defined by stimulation of a receptor on neighboring cells 

by a ligand that is bound to the cell surface of a neighboring cell.  

An AREG/EGFR autocrine loop was first observed in normal human keratinocytes. 

Heparan sulfate inhibited AREGs ability to compete for binding with EGF to EGFR and 

reduced EGFR activity and mitogenisis.  This led to the initial hypothesis that AREG 

regulates EGFR activity through an autocrine loop (Cook et al., 1991).  Autocrine 

regulation of AREG has been seen in normal bronchial epithelial cells and normal 

urothelial cells (Tsao et al., 1996; Varley et al., 2005).  In addition to normal cells, an 

AREG/EGFR autocrine loop has been observed in cancers, including: hepatocellular, 

colon, gastric, pancreatic, and breast (Akagi et al., 1995; Castillo et al., 2006; Culouscou 

et al., 1992; Funatomi et al., 1997; Johnson et al., 1992; Willmarth and Ethier, 2006).  
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Anklesaria et al. defined juxtacrine signaling in mouse bone marrow stromal cells 

when they found pro-TGF- expressed on the membranes of stromal cells was able to 

bind to and activate EGFR on neighboring hematopoeitic progenitor cells (Anklesaria et 

al., 1990).  These data suggest that membrane-anchored growth factors can stimulate 

adjacent cells, or signal in a juxtacrine manner. TGF-was confirmed to signal in a 

juxtacrine fashion in NRK cells when an uncleavable TGF- was co-cultured with a layer 

of EGFR expressing cells above them, inducing cell transformation (Brachmann et al., 

1989).  HB-EGF and AREG have also been shown to signal by this mechanism. HB-

EGF, fixed and unable to be shed, enhanced EGFR signaling. In addition to enhanced 

EGFR signaling in the presence of un-cleavable TGF- (Takemura et al., 1997; Yang et 

al., 2000), SUM-149 breast cancer cells, expressing high levels of AREG, were overlain 

on top of MCF10A cells deprived of EGF, which increased tyrosine phosphorylation of 

EGFR suggesting that pro-AREG could stimulate EGFR activity (Willmarth and Ethier, 

2006).  

Only certain EGF-like growth factors are able to signal in a juxtacrine manner.  In a 

study by Dong, et. al. the EGF binding domain of membrane-bound ligands were 

combined with other various domains of EGF and HB-EGF.  Ligands with the 

membrane-anchoring domain of EGF required proteolytic cleavage for activity.  

However, the membrane anchoring domain of HB-EGF was sufficient to induce 

biological activity (Dong et al., 2005).  Therefore, it is hypothesized that the juxtacrine 

mechanism occurs in vivo and may induce different signaling cascades upon activation.  
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ii. AREG signaling pathways 

AREG activates the Ras/Raf/MEK/ERK pathway in a variety of cells including: 

pancreatic duct cells, normal human keratinocytes, bronchial epithelial cells, and bone 

(Blanchet et al., 2004; Kansra et al., 2004; Qin and Partridge, 2005; Wagner et al., 2002).   

Upon AREG/EGFR activation and ERK signaling, Elk1, c-jun, and c-fos have been 

shown to be activated.  The C-terminal tail of EGFR is critical for the expression of these 

down-stream molecules (Wong et al., 1999).   

PI3K/Akt signaling can be activated by AREG/EGFR signaling.  This cascade 

promotes cell survival through the up regulation of active NF-B and IL-1 (Streicher et 

al., 2007).  Aside from AKT and ERK signaling, AREG has been shown to induce STAT 

1, 3, and 5 (Berasain et al., 2005; David et al., 1996).  AREG promotes STAT signaling 

in a JAK independent manner in Hela cells (Berasain et al., 2005).  However, the 

activation of STATs is dependent on EGFR kinase activity, as seen in fibroblasts 

expressing EGFR tyrosine kinase mutants (David et al., 1996).  

The by-products of PLC- hydrolysis of PIP2 is IP3 receptor and DAG. DAG can 

activate protein kinase C (PKC).  Activated PKC has been observed in NSCLC.  AREG 

and insulin-like growth factor were found to activate this pathway by increasing 

phosphorylation of p90rsk and Bad while inhibiting Bax (Hurbin et al., 2005).  In 

addition to EGFR interactions with PLC-, EGFR associates with c-src. C-src up 

regulates genes associated with cytosekeltal rearrangement of the cell including: focal 

adhesion kinase (FAK), RhoGAP, cortactin, and Eps-8 (Jorissen et al., 2003).  Due to the 
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observation that FAK activation increases in colon cancer cells AREG has been 

suggested to promote interactions between c-src/EGFR (Picihard et al., 2006). 

AREG has been proven to be involved in the expression of several genes involved 

in cell cycle progression and the inflammatory response.  Cyclin D1 expression is 

regulated by AREG in pancreatic duct cells and vascular smooth muscle cells (Shin et al., 

2003; Wagner et al., 2002).  IL-8, IL-6, and IL-1 expression has been demonstrated in 

human airway epithelial cells, multiple myeloma cells, and breast cancers cells, 

respectively (Blanchet et al., 2004; Chokki et al., 2006; Mahtouk et al., 2005; Streicher et 

al., 2007).  In two instances, in colon cancer cells and oral squamous carcinoma cells, 

AREG induced the expression of cycloxygenase-2 (COX-2) (Coffey et al., 1997; Tsai et 

al., 2006).  As discussed previously AREG also regulates the expression of MMPs, 

including: MMP-2, MMP-9, and other factors involved in matrix degradation: uPA, 

EMMPRIN, and PAI-1 (Giusti et al., 2003; Silvy et al., 2001). 

In addition to FAK and MMPs, genes involved with migration and invasion, 

AREG induces expression and alters localization of E-cadherin.  E-cadherin is an 

epithelial adhesion molecule and has been implicated in cell motility and invasion. In 

mouse keratinocytes over expressing AREG, E-cadherin was down-regulated via 

processing into an 80 kDa form in psoriatic lesions.  Localization alterations by AREG 

have been demonstrated in MDCK cells treated with neutrophils and AREG. AREG 

promoted the movement of MDCK cells and induced a spindle-like morphology as 

compared to TGF- (Chung et al., 2005a; Chung et al., 2005b).  SUM-149 breast cancer 



 37

cells, which over express AREG, on the contrary, express high levels of E-cadherin at the 

cell surface (Hoffmeyer et al., 2005). 

 

E. AREG expression in normal tissue 

AREG acts as an autocrine growth factor in human urothelial cells, normal human 

keratinocytes, and human lung bronchial epithelial cells (Kansra et al., 2004; Tsao et al., 

1996; Varley et al., 2005; Willmarth and Ethier, 2006).  In addition, AREG is widely 

expressed in human tissues including the placenta, ovary, testis, heart, pancreas, spleen, 

kidney, lung, ovary, colon, and breast (Plowman et al., 1990; Stern, 2003). 

Differentiation of the mammary gland is crucial for reproduction in mammals.  

Development of the mammary gland is unique in that most of its differentiation occurs 

post-partum.  In the developing breast there is a fundamental system of small ducts that 

grow slowly prior to puberty.  Ductal outgrowth begins during puberty in the virgin 

mouse, resulting in the formation of a ductal tree that penetrates the mammary fat pad.  

Extensive ductal branching and alveolar growth occurs once the mouse is pregnant.  At 

the end of pregnancy, the alveolar tissue terminally differentiates and the biological 

process of lactation begins (Stern, 2003). 

During puberty in virgin mice, AREG is highly expressed in the mammary gland.  

AREG expression is associated with the developing alveolar structure found in the 

epithelial cap cells and terminal end buds (TEBs) of 4-6 week old mice (Kenney et al., 

1995).  AREG -/- mice developed normal but fewer TEBs that fail to penetrate the 

mammary fat pad throughout the pregnancy and into lactation.  Interestingly, when 
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AREG, EGF, and TGF-were knocked-out in combination, the effects of AREG knock-

down alone were enhanced and lactogenesis was further compromised.  However, when 

EGF or TGF- were knocked out alone, ductal growth was normal (Luetteke et al., 

1999).  This suggests that EGF and TGF- play a significant role in lactation, while 

AREG is the ligand responsible for pubertal ductal morphogenesis (McBryan et al., 

2008).  Supporting these findings, mammary glands from EGFR knock-out (KO) mice 

were transplanted in the renal capsule of virgin athymic mice, which demonstrated a lack 

of ductal outgrowth (Wiesen et al., 1999).  TEB outgrowth was assessed in other ErbB 

family member KO models. KO of ErbB3 resulted in mice with lower ductal density and 

fewer TEBs and epithelial branches (Qu et al., 2006).  ErbB2 -/- mice had mammary 

glands characterized by structural defects in TEBs and a slowly advancing epithelial tree 

(Jackson-Fisher et al., 2004).  These data suggest that AREG promotes ductal 

morphogenesis through EGFR/ErbB2 and EGFR/ErbB3 heterodimers (Jackson-Fisher et 

al., 2004; Qu et al., 2006).  On the contrary, Ferguson et. al. suggested that ErbB 

receptors do not typically from hetero-dimers, but produce their ligand-induced homo-

dimerization (Ferguson et al., 2000).  In the case of AREG, this would suggest EGFR 

homo-dimers.  In another study, the mechanism by which EGFR and AREG are required 

for ductal elongation was investigated.   Using tissue recombination methods from 

EGFR-/-, AREG-/-, and ADAM17-/- mice it was demonstrated that EGFR is required in 

the stroma and AREG and ADAM17 are required in the epithelium for the development 

of the mammary gland. ADAM17-/- tissue inhibited ductal outgrowth, indicating 

ADAM17 is required for the proteolytic processing of AREG.  In addition, in order for 
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normal development of the ductal tree to occur, crosstalk between the stroma and 

epithelium is required (Sternlicht et al., 2005).  

Estrogen induced proliferation in the developing mammary glands has been 

shown to be mediated by paracrine AREG signaling.  In the mammary gland, ER positive 

cells are not highly proliferative (LaMarca and Rosen, 2007).  It is this population of cells 

that produce AREG, which mediates epithelial cell proliferation in a paracrine manner.  

Evidence for this was observed when AREG-/- tissue from mouse mammary glands was 

transplanted into cleared fat pads from mice with wild-type (WT) tissue.  The AREG -/- 

tissue was able to proliferate when grafted into the WT tissue suggesting paracrine 

signaling by AREG (Ciarloni et al., 2007).  

AREG is the primary regulator of EGFR in mammary gland development and 

promoter of ductal morphogenesis at puberty.  In addition to playing a role in the 

mammary gland, AREG has important signaling functions in other tissues.  In normal 

epithelial tissue, AREG is expressed during development of the embryonic lung (Schuger 

et al., 1996).  EGFR and AREG interactions occur in the stroma, thereby stimulating the 

proliferation of nearby epithelial cells in the ducts and TEBs.   Similarly, embryonic lung 

branching of the epithelial trees depends on the presence of AREG, as well as the 

presence of the extracellular matrix (ECM) (Schuger et al., 1996).   In addition, AREG 

stimulates epithelial branching and differentiation in embryonic mouse kidney cells (Lee 

et al., 1999).  Furthermore, a role for AREG has been implicated in nerve regeneration, 

bone formation, and blastocyst implantation (Nilsson and Kanje, 2005; Qin et al., 2005).  

The important role of AREG/EGFR interactions in tissue development and 
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morphogenesis is consistent with the pathological role of AREG in mediating motility 

and invasion when inappropriately expressed in cancer cells. 

 

F. AREG expression in cancer 

i. AREG/Breast Cancer 

Considering the functional role of AREG in the developing breast, it is of no 

surprise that AREG plays a role in breast cancer. AREG’s role in breast cancer was 

illuminated by the finding that expression of AREG protein was higher and more 

frequent in invasive breast carcinomas than in ductal carcinomas in situ and normal 

breast tissue (Salomon et al., 1995).  In a study by LeJeune et. al., 36% of 68 

inflammatory breast cancers (IBCs) expressed AREG mRNA and protein as seen by 

immunocytochemistry or northern and dot blot analysis.  Also, AREG expression was 

observed more frequently in lymph-node-positive samples than in those that were lymph-

node-negative.  These studies indicated that EGFR and AREG are co-expressed in 35% 

of EGFR positive tumors (LeJeune et al., 1993).  Of 68 infiltrating ductal carcinomas 

(IDCs) and infiltrating lobular carcinomas (ILCs), 77% expressed AREG.  In addition, 

p53 point mutations correlated inversely with AREG expression (Qi et al., 1994).  The 

large difference observed in the studies by LeJeune and Qi can be explained by the use of 

a monoclonal versus polyclonal AREG antibody, respectively.  Another study analyzing 

100 human infiltrating breast carcinomas determined AREG expression in 50% of the 

samples (Panico et al., 1996).  AREG protein secretion was measured in 193 primary 

breast cancers by enzyme-linked immunosorbent assays (ELISAs).   Through this method 
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of directly quantifying AREG protein expression, 92% of the primary breast cancers 

expressed AREG.  AREG expression correlated with uPA and VEGF in postmenopausal 

tissues and with PR in premenopausal samples, suggesting a role for AREG in 

vasculogenisis and metastasis (Desruisseau et al., 2004).  

Still, AREG expression has not been shown to correlate with survival.  However, 

AREG has been correlated with tumor grade. Lejeune et. al. and Qi et al. both determined 

that AREG correlated with lymph-node-positive cancers as compared to lymph-node-

negative cancers (LeJeune et al., 1993; Qi et al., 1994).  In another study, 63.3% of 84 

invasive ductal breast carcinomas were found to co-express AREG and EGFR.  The co-

expression of these two proteins correlated with large tumor size, node involvement, 

grade III, inflammatory carcinoma, and absence of ER (Ma et al., 2001).  AREG positive 

staining in peritumoral host cells correlated with clinical outcome. 85% of cases 

expressing AREG correlated with relapse, where as only 29% of AREG negative cases 

relapsed (Visscher et al., 1997). 

AREG plays a role in breast cancer leading to the progression of the disease by 

promoting cell proliferation, invasion, and metastasis of epithelial cells.  The 

aggressiveness of tumor cells expressing AREG was suppressed by inhibiting AREG via 

anti-sense cDNA in NS2T2A1 mouse mammary tumor cells, showing a reduction in 

tumor formation in vivo (Ma et al., 1998).   Mechanisms proposed for AREG/EGFR-

induced cellular invasion focus on the altered expression of matrix metalloproteases 

(MMPs).  These proteases play a role in embryonic development and growth, while in 

cancer they function in breaking down the basement membrane barrier.   In metastatic 
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breast cancer cells (SKBR-3), an increase in MMP-9 expression modulates AREG 

promotion of invasion (Kondapaka et al., 1997).  Additionally, expression of the 

extracellular matrix metalloproteinase inducer (EMMPRIN), activator of MMP1, 2, 3, 

and 9, is down-regulated in response to AREG anti-sense treatment of NS2T2A1 

(Menashi et al., 2003).  In a more recent study inhibition of AREG by anti-sense cDNA 

in NS2T2A1 inhibited MMP-9 expression (Ma et al., 2010).  Bissell and colleagues 

demonstrated the existence of an autocrine loop promoting a maliganant phenotype 

mediated by ADAM17.  Through the use of 3D culture models of breast epithelial cells, 

they targeted ADAM17/TACE via siRNA techniques.  Inhibiting ADAM17 blocked 

EGFR signaling induced by AREG and TGF-. (Kenny and Bissell, 2007).  DNA micro-

array studies comparing differences in gene expression in terminal duct lobular units 

(TDLUs) and hyperplastic enlarged lobular units (HELUs) showed a 10-fold up 

regulation of AREG expression in HELUs. HELUs are abnormally enlarged TDLUs and 

represent premalignant potential during hormone-dependent breast cancer progression 

(Lee et al., 2007).  These studies identify AREG and EGFR as regulators of 

metalloproteinases leading to cell invasion and metastasis. 

 

ii. AREG in other cancers/diseases 

Expression of AREG mRNA has been observed in a variety of cancers including 

colon, breast, liver, prostate, pancreatic, lung, bladder, ovarian, skin, myeloma, and 

squamous cell carcinoma (D'Antonio et al., 2002; Ebert et al., 1994; Fontanini et al., 

1998; Mahtouk et al., 2005; Salomon et al., 1995; Sehgal et al., 1994; Tsai et al., 2006; 
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Yamane et al., 2008).  Interestingly, AREG expression is also correlated with 

inflammatory disease: for example, rheumatoid arthritis, ulcerative colitis, and Chron’s 

disease (Nishimura et al., 2008; Yamane et al., 2008).  AREG expression in invasive 

tumors was correlated with locally advanced inflammatory carcinoma (Ma et al., 2001).  

 

iii. AREG and treatment of cancers 

EGFR and AREG are co-expressed in approximately 15% of invasive breast 

carcinomas (Ma et al., 2001).  In phase II clinical trials, the two main classes of EGFR 

inhibitors, small molecule EGFR TKIs and monoclonal antibodies, lead to tumor 

regression in 10-20% of NSCLC patients (Fukuoka et al., 2003; Kris et al., 2003).  In 

lung cancer cells expressing WT EGFR, gefitinib and cetuximab showed higher efficacy 

in cells producing high levels of AREG (>20 pmol/L) relative to cells producing low 

levels of AREG (<20pmol/L).  This effect is thought to occur by cell cycle arrest and 

inhibition of ERK1/2 signaling. This study suggests that in lung cancer patients 

expressing WT EGFR, AREG may be a predictor for the use of EGFR-targeted therapies 

to promote stable disease (Khambata-Ford et al., 2007; Yonesaka et al., 2008).  

Additionally, in metastatic colorectal cancers, high concentrations of AREG in serum has 

been correlated with longer progression-free survival as compared to patients with low 

serum levels of AREG in response to treatment with cetuximab (Khambata-Ford et al., 

2007).  On the contrary, in MCF7 breast cancer cells, AREG has been shown to be a 

factor in development of resistance to the platinum based chemotherapeutic drug, 

Cisplatin.  The correlation between Cisplatin resistance, examined by MTT assays, in a 
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panel of breast cancer and lung cancer cells lines demonstrated that the expression of 

AREG correlates with resistance only in breast cancer and not in lung cancer (Eckstein et 

al., 2008). 

 

1.3 Invasion 

A. EGFR and AREG 

Normal cells undergo physiological processes such as embryonic morphogenesis, 

wound healing, and immune cell trafficking which require mechanisms of cell migration 

and invasion.  Neoplastic cells use these mechanisms to promote cell entry into the 

lymphatic and blood vessels, thus promoting growth in distant organs (Reviewed by 

(Friedl and Wolf, 2003)).  Invasion is described as “penetration of tissue barriers, such as 

basement membrane and interstitial stroma, by cells” (Friedl and Wolf, 2003).  

There are four main activities that are associated with the invasive phenotype: 

cell-cell adhesion, cell-matrix interactions, migration, and proteolysis (Mareel and Leroy, 

2003).  During invasion, cell-cell adhesions can be weakened (Yamazaki et al., 2005). E-

cadherin is one such adhesion molecule that acts as a tumor suppressor. In some 

instances, loss of E-cadherin stimulates migration and cellular invasion (Bracke et al., 

1997; Handschuh et al., 1999).  The ECM provides a barrier, substrate, and signal for cell 

invasion by providing motility factors and regulating survival (Mareel and Leroy, 2003). 

Cell-matrix interactions occur through molecules such as: integrins; transducers of 

signals regulating anchorage independent growth, and FAK, a NRTK regulating actin 

cytoskeleton signaling (Parsons et al., 2000).  In order for the cells to invade the matrix, 
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cells must utilize locomotive factors and migrate (Mareel and Leroy, 2003).  Src and 

PI3K pathways have been demonstrated to be necessary for cell invasion (Empereur et 

al., 1997).  Lastly, proteolysis, a process involving the cleavage of proenzymes, promotes 

the breakdown of the ECM creating routes for invasive cells to migrate.  Invasive cells 

make MMPs, urokinase-type plasminogen activators, and cysteineproteinases to aid in 

proteolysis (Mareel and Leroy, 2003).  

EGFR over expression was suggested to play a role in tumor progression, 

however EGFR over expression did not correlate with proliferation; it correlated with 

progression to cellular invasion.  This has been observed in glioblastomas, bladder 

carcinomas, and gastric carcinomas.  Up-regulated EGFR is present in invading brain 

tumors as compared to non-invasive glimoas (Libermann et al., 1984; Schlegel et al., 

1994).  In bladder carcinomas, Neal et. al. found EGFR expression to correlate with 

tumor progression, poor differentiation, and invasion (Neal et al., 1985).  Additionally, in 

gastric tumors non-invading tumors did not express EGFR whereas nearly one third of 

invasive tumors over expressed EGFR (Kitadai et al., 2000).  

The mechanisms proposed for over expressed EGFR’s promotion of cell invasion 

are associated with cell-cell adhesion, cell-matrix interactions, migration, and proteolysis.  

AREG-induced EGFR has been reported to up-regulate MMP-2 and -9 (Kondapaka et al., 

1997; Ma et al., 2010; Menashi et al., 2003).  Expression of MMPs alters the ECM to 

allow the passage of cells to invade the stroma, intravasate a lymph or vascular channel 

where the cell can circulate and extravasate into tissues at distant sites (Stetler-Stevenson 

and Yu, 2001).  GPCR ligands, such as lysophosphatidic acid (LPA), promote the 
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proteolytic processing of ligands like AREG, via TACE, leading to EGFR 

phosphorylation in kidney and bladder cancer cells in vitro via ADAM 

metalloproteinases, more specifically by ADAM-10, -15, and -17 (Gschwind et al., 2003; 

Schafer et al., 2004).  EGFR transactivation by LPA stimulation promotes cell invasion 

(Schafer et al., 2004).  In addition to LPA, the GPCR ligand gastrin releasing peptide 

(GRP), induces EGFR phosphorylation followed by src activation of TACE and co-

translocation to the cell surface where TACE initiates the subsequent release of AREG, 

thus facilitating cell invasion in head and neck squamous cell carcinomas (Zhang et al., 

2004).  

EGF activation of EGFR can lead to cell motility and invasion in renal 

carcinomas, and squamous cell carcinomas (Price et al., 1996; Shibata et al., 1996).  In 

another study examining MDA-MB 468 breast cancer cells, DU-145 prostate cancer 

cells, KB oral carcinomas, and NIH3T3 cells over expressing EGFR, EGF-induced de-

phosphorylation and reduced kinase activity of FAK, ultimately inducing cancer 

phenotypes: cell motility, invasion, and metastasis (Lu et al., 2001).  Aside from EGFR 

signaling events inducing the expression of genes that promote invasion, it is 

hypothesized that EGFR can be activated by matrix components.  This was most clearly 

seen by the expression of decorin, a matrix component that binds to fibrillar collagen 

(Iozzo et al., 1999).   

Additional mechanisms relate to EGFR signaling observed during normal 

physiological activities.  Activated EGFR interacts with PLC-. PLC- promotes cell 

motility through the hydrolysis of PIP2 allowing for cytoskeletal rearrangement (Chen et 
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al., 1994).  Treatment with PLC- inhibitors prevented invasion of prostate tumor in 

mice, corroborating PLC-’s role in tumor invasion in the presence of EGFR over 

expression (Turner et al., 1997).  

In our lab’s recent work, an AREG/EGFR autocrine loop has been shown to 

stimulate cell motility and invasion (Willmarth and Ethier, 2006).  Whether AREG 

stimulation of EGFR or EGFR over expression itself are the causal effects of cellular 

invasion remains to be elucidated. 

 

B. Other factors promoting invasion 

i. RHOB 

Ras-homologous (Rho) small guanosine triphosphatases (GTPases) regulate a 

variety of cellular functions, such as: organization of the cytoskeleton, cell-cycle 

progression, cell-cell contact, cell polarity, migration, adhesion, cell morphology, gene-

transcription, and cell transformation (Bishop and Hall, 2000).  As a family member of 

small G proteins, Rho regulates these cellular processes by working as a molecular 

switch, rotating between GDP- and GTP-bound states (Boguski and McCormick, 1993). 

Rho-GTP can effectively interact with an effector molecule to initiate a signaling event 

specific to the target molecule (Bishop and Hall, 2000).  In an inactive state, Rho-GDP is 

associated with guanosine nucleotide dissociation inhibitor (RhoGDI), thereby inhibiting 

the spontaneous GDP to GTP exchange (Bishop and Hall, 2000). 

RhoB exhibits several characteristics that distinguishes it from its other family 

members.  For example, RhoB is localized to the early endosomes and nuclear membrane 
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(Michaelson et al., 2001), it promotes intracellular trafficking of cytokine receptors (i.e. 

EGFR) (Gample, A. 1999, Curr Bio), and it has a rapid response to growth factors (i.e. 

EGF, TGF-B) and genotoxic stress.  These qualities suggest RhoB involvement in cancer 

progression.  

While Rho protein expression has been correlated with disease progression, RhoB 

appears to function as a tumor suppressor.  Loss or reduction of RhoB expression has 

been observed in the progression of lung cancer, head and neck squamous cell carcinoma, 

and ovarian cancer (Adnane et al., 2002; Couderc et al., 2008; Mazieres et al., 2004).  On 

the contrary, Fritz et. al. demonstrated an over expression of RhoB protein in normal and 

tumorigenic tissues (Fritz et al., 2002).  In NIH3T3 cells, transfected with RhoB and a 

serum response element, cell transformation, invasion, and metastasis was suppressed. 

Experiments aimed to identify RhoB’s tumor suppressor activity suggest that RhoB 

negatively regulates the Ras/PI3K/Akt tumor survival pathway (Jiang et al., 2004).  

 

ii. DKK1 

Canonical Wnt signaling is occurs when a Wnt family member binds to a cell 

surface receptor Frizzled (FRZ).  FRZ interacts with a cell surface molecule lipoprotein-

receptor related protein (LRP) and axin.  Subsequently, disheveled (DSH) proteins are 

activated resulting in a Wnt/FRZ/DSH/LRP/axin complex. The Wnt/FRZ/DSH/LRP/axin 

complex inhibits the formation of an axin/GSK-3/APC complex responsible for inhibiting 

B-catenin degradation.  This signaling ultimately results in an increase in B-catenin 

levels.  
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Dickkopf-1 (dkk-1), one of four family members of Wnt inhibitors, is a secreted 

protein involved in embryogenesis and Wnt signaling (Glinka et al., 1998).  It was first 

isolated from Xenopus (amphibian) cDNAs that complemented in the formation of a 

secondary axis during embryogenesis (Glinka et al., 1998).  Dkk-1 is composed of 259 

AA and contains a signal sequence and two cystenine-rich domains.  In the search for 

Erb3 ligands, a 35 kDa band was identified by silver staining analysis representing the 

human dkk-1.  Northern blot analysis in fetal and adult tissues identified dkk-1 

expression in fetal, kidney, liver, and brain tissue, as well as in adult placenta and 

prostate tissue (Fedi et al., 1999).  In the amphibian embryos, dkk-1 was found to be 

required for head formation by antagonizing Wnt signaling (Glinka et al., 1998).  

Biochemical approaches determined that human dkk-1 disrupts Wnt signaling and acts 

up-stream of B-catenin stabilization, which is associated with the morphological effects 

of transforming Wnts (Fedi et al., 1999).  Mechanistically, Dkk-1 inhibits Wnt signaling 

by binding to the LRP5/6. Wnt/B-catenin signaling is blocked by LRP5/6 (Mao et al., 

2001).  

Knockout of Dkk-1 in mice resulted in mice lacking anterior heads and forelimb 

malformations (Mukhopadhyay et al., 2001).  In cancer, levels of secreted Dkk-1 are low, 

resulting in an accumulation of nuclear -catenin. Expression of recombinant dkk-1 in 

MCF-7 breast cancer cells down-regulated macrophage induced invasion in a dose-

dependent manner.  The decrease in the invasive phenotype was independent of cell 

proliferation and cellular metabolism (Pukrop et al., 2006). 
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IV. SUM-149 Breast Cancer Cells 

The SUM series of cell lines were developed from patients with breast cancer in 

our laboratory. SUM-149 cells were isolated from a patient with aggressive, pre-

menopausal, locally advanced inflammatory ductal carcinoma.  The patient failed all 

treatment with chemotherapy, radiation, and surgery.  The cells are ER- and PR- and 

express low levels of ErbB2 and ErbB3.  Additionally, SUM-149 cells have a BRCA1 

mutation, have increased levels of cyclin E, and are basal-type (Elstrodt et al., 2006).  

Cyclin E is a cyclin expressed during G1 phase and is essential for transitioning through 

the cell cycle to S phase. SUM-149 cells due to a mutation in hCdc4, a F-box protein, 

have stabilized expression of cyclin E (Willmarth et al., 2004). 

SUM-149 cells are used frequently as they are one of three inflammatory breast 

cancer cell lines in existence.  SUM-149 cells have been shown to be able to grow in soft 

agar and invade a matrigel matrix in vitro (Ignatoski and Ethier, 1999).  Moreover, SUM-

149 cells express high levels of RhoA and RhoC, E-cadherin, NF-B and caveolins-1 and 

-2 (Dong et al., 2007; Hoffmeyer et al., 2005; Pan et al., 2003; Pan et al., 2002; Van den 

Eynden et al., 2006; van Golen et al., 2002; van Golen et al., 2000). 

Our lab found that SUM-149 cells over express constitutively active EGFR 

without gene amplification.  They are EGF independent for growth; however, they 

require EGFR for proliferation.  This was based on the observation that after treatment of 

the cells with EGFR inhibitor CI-1033, cells no longer proliferated (Rao et al., 2000). 

AREG was detected in SUM-149 cells by molecular cloning techniques.  RNA 

was isolated, reverse transcribed into cDNA, and cloned into retroviral vectors that were 
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subsequently infected in MCF-10 cells growing in the absence of exogenous growth 

factors (Berquin et al., 2005).  MCF10A cells are normal human mammary epithelial 

cells that spontaneously immortalized (Soule et al., 1990).  cDNA was isolated from 

emerging colonies and analyzed by PCR.  Subsequent analysis demonstrated that the 

growth of SUM-149 cells is regulated predominately by AREG (Willmarth and Ethier, 

2006). 

SUM-149 cells express a self-sustaining AREG/EGFR autocrine loop and can 

activate EGFR in a juxtacrine fashion.  They over express AREG mRNA and protein and 

are more invasive and motile than MCF10A cells growing in the presence of EGF 

(Willmarth and Ethier, 2006).  In addition, SUM-149 cells show an increase in the steady 

state levels of EGFR that localizes to the plasma membrane (Willmarth and Ethier, 

2008).  Previously it was observed that SUM149 cells have constitutive NF-B activity 

(Pan et al., 2003).  The activation of EGFR by AREG then generates a positive feedback 

loop involving IL-1 and NF-B (Streicher et al., 2007). 

The over expression of AREG at the mRNA and protein level, and the presence of 

a functional AREG/EGFR autocrine loop that is maintaining EGFR activity and 

contributing to SUM-149 cellular invasion and motility makes these cells a useful model 

for testing the effect of AREG knock-down. We predicted that by knocking-down AREG 

we would stop or slow cell proliferation, motility, and invasion. By using SUM-149 and 

MCF10A cells as our cell models we aimed to examine the effect of AREG knock-down 

on the cancer-associated phenotypes in order to better understand the role of AREG in 

cancer progression. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

2.1 Reagents and Antibodies—The antibodies used were mouse monoclonal, anti-EGFR 

antibody MAB108 from a mouse hybridoma (gift from Julie Boerner, Karmanos Cancer 

Institute) for detecting EGFR in immunofluorescence experiments and, mouse 

monoclonal anti-EGFR antibody clone 31G7 (Zymed Laboratories, Inc., San Francisco, 

CA, USA) to detect EGFR, anti-EGFR human (mouse) antibody clone 225 (C225) (EMD 

Chemicals, Gibbstown, NJ, USA) to block ligand binding to EGFR, goat polyclonal anti-

AREG antibody (R&D Systems) to detect AREG and neutralize AREG, mouse 

monoclonal antibody PY-20 (EMD Chemicals, Gibbstown, NJ, USA) to detect EGFR 

tyrosine phosphorylation, B-Actin (Sigma-Aldrich, St. Louis, MS) was used as a loading 

control, rabbit polyclonal anti-RhoB antibody (Cell Signaling Technologies, Danvers, 

MA, USA) to detect RhoB, goat polyclonal anti-EGF and mouse monoclonal anti-EPGN 

antibodies (R&D systems, Minneapolis, MN, USA) to neutralize EGF and EPGN, 

Phospho-specific antibodies Y845, 992, 1068, 1086, and 1148 (Cell Signaling 

Technologies, Danvers, MA, USA) to detect EGFR tyrosine phosphorylation, IgG mouse 

and goat (R&D systems, Minneapolis, MN, USA) to detect non-specific effects on cell 

growth. 0.5 μmol/L Gefitinib/Iressa (AstraZeneca Pharmaceuticals, Wilmington, DE, 

USA). 

http://www.jbc.org/cgi/redirect-inline?ad=Zymed�
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2.2 Cell Culture—SUM149 cells were maintained in Ham's F-12 medium with 5% fetal 

bovine serum, 5 μg/ml insulin, 2 μg/ml hydrocortisone, 5 μg/ml gentamicin, and 2.5 

μg/ml fungizone (5%IH). SUM-149sh4, SUM-149shPld, and SUM-149shNS cells were 

maintained in 5%IH plus 1ug/ml puromycin.  The serum-free base medium for MCF10A 

and MCF10A+AREG cells was SFIH (Ham's F-12 with 1 μg/ml hydrocortisone, 1 mg/ml 

bovine serum albumin, 10 mm Hepes, 5 mm ethanolamine, 5 μg/ml transferrin, 10 nm 

triiodothyronine, 50 nm sodium selenate, 5 μg/ml gentamicin, 2.5 μg/ml fungizone, and 5 

μg/ml insulin), and MCF10A cells required 10 ng/ml EGF (SFIHE).  MCF10A + AREG 

cells were MCF10A cells grown in SFIH medium with 20 ng/ml exogenous AREG 

(SFIHA), which was found previously to be the biologically equivalent concentration to 

EGF for these cells (Berquin et al., 2005).  All cells were maintained in a humidified 

incubator at 37 °C and 10% CO2.  

2.3 Lenti-AREG shRNA infection—Knock-down of AREG expression was performed 

using Mission TRC human shRNA clone sets (OpenBiosystems, Huntsville, AL, USA). 

sh1:CCGGGAACCACAAATACCTGGCTATCTCGAGATAGCCAGGTATTTGTGGT

TCTTTTTG;sh2:CCGGGCCGACTATGACTACTCAGAACTCGAGTTCTGAGTAGT

CATAGTCGGCTTTTTG;sh3:CCGGCCTGGCTATATTGTCGATGATCTCGAGATC

ATCGACAATATAGCCAGGTTTTTG;sh4:CCGGGAACGAAAGAAACTTCGACAA

CTCGAGTTGTCGAAGTTTCTTTCGTTCTTTTTG;sh5:CCGGCACTGCCAAGTCAT

AGCCATACTCGAGTATGGCTATGACTTGGCAGTGTTTTTG.  Lentivirus was 

produced by transfecting human embryonic kidney (HEK293) cells at  80% confluence in 

10%DMEM without antibiotics and infecting HEK293 cells with packaging plasmids: 
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350ng mDLg/pRRE, 350ng pRSV-Rev, 250ng MD2.G, and 1ug of each pLKO.1 AREG 

shRNA plasmid using FuGENE (according to manufacture’s protocol).  Cells were 

incubated for 12-14 hrs at 37°C at which time media was changed to 10%DMEM with 

antibiotics. Virus was harvested 48 and 72 hrs post infection, centrifuged at 1500 rpm for 

5 min and filtered through a .45micron filter.  Recipient cells were seeded at 1x106 cells 

per 10 cm dish, treated with 8ug/ml polybrene and infected with 48 hr virus harvested 

from HEK293 cells.  Cells were incubated for 12 hrs and new media with 1ug/ml 

puromycin was added for 2 weeks before functional assays, and 4-10 days before RNA 

extraction was performed. 

 

2.4 Real-time RT-PCR—Total RNA was isolated from subconfluent cells using an 

RNeasy kit (Qiagen, Valenica, CA, USA) and reverse-transcribed into cDNA using the 

Superscript III First-Strand Synthesis kit (Invitrogen, Calsbad, CA, USA). Primer sets 

specific to approximately 100bp sequences of target genes and a control gene (PUM1) 

used were designed and synthesized by Invitrogen. Primer sets were: AREG 

F5’GTGGTGCTGTCGCTCTTGATA3’ R5’ACTCACAGGGGAAATCTCACT3’ BTC 

F5’TTCACTGTGTGGTGGCAGAT3’ R5’CCTTTCCGCTTTGATTGTGT3’ EGF 

F5’CGCAGGAAATGGGAATTCTA3’ R5’TCCACCACCAATTGCTCATA3’ TGFA 

F5’TCGCTCTGGGTATTGTGTTG3’ R5’GGGAATCTGGGCAGTCATTA3’ HB-EGF 

F5’GGCAGATCTGGACCTTTTGA3’ R5’CCCCTTGCCTTTCTTCTTTC3’ EPGN 

http://www.jbc.org/cgi/redirect-inline?ad=Invitrogen�
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F5’CCCAGCAAGCTGACAACATA3’ R5’CTCATGGTGGAATGCACAAG3’ EREG 

F5’CTGCCTGGGTTTCCATCTTCT3’ R5’GCCATTCATGTCAGAGCTACACT3’ 

RHOB F5’ATCCCCGAGAAGTGGGTCC3’ R5’CGAGGTAGTCGTAGGCTTGGA3’ 

CNTN1 F5’GTGGCACTTACTTGGAGCC3’ R5’GGGGGATCTGTCTTTGCATCTT3’ 

HEY1 F5’TATCGGAGTTTGGGATTTCG3’ R5’AGATGCGAAACCAGTCGAAC3’ 

HES7 F5’CGGGATCGAGCTGAGAATAGG3’ 

R5’GCGAACTCCAATATCTCCGCTT3’.  Real-time RT–PCR was performed in 25 ul 

reactions using 96-well plates, 100 to 200 ng cDNA, and the FastStart SYBR Green 

Master Mix (Roche Diagnostics, Mannheim, Germany).  The reactions were done in 

replicates of three using the Bio-rad iQ5 real-time PCR machine (Bio-Rad Laboratories, 

Hercules, CA). Calculation of the ΔΔCT values was performed as previously described 

(Livak and Schmittgen, 2001).  Briefly, for each cell line, the average number of cycles 

for PUM1 control primer reactions to reach threshold fluorescence was calculated and 

subtracted from the average number of cycles for the test primer reactions to reach 

threshold fluorescence, the differences are raised to the power of -2 and then the negative 

inverse was taken. 

 

2.5 Immunoblotting— Cells were grown to 80% confluence in their normal growth media 

and lysed in a buffer containing 20 mM Tris-HCl (pH 8.0), 137 mM NaCl, 1%NP40, 

10% glycerol, 1 mM Na3VO4, 1 mM phenylmethylsulfonyl fluoride, 1% aprotinin, and 

20 μg/ml leupeptin for 10 minutes.  Cells were scraped and spun down to remove cell 

material. Protein concentrations were equalized using the Bradford method.  For whole 
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cell lysates, Laemmli sample buffer was added and the samples were boiled.  Western 

blotting was performed as previously described (Kumar-Sinha et al., 2003).  50-500ng of 

protein from whole cell lysates was loaded onto 15% SDS-polyacrylamide gels for 

AREG detection, and for EGFR detection lysates were loaded onto 7.5% SDS-

polyacrylamide gels.  After transferring proteins to polyvinylidene difluoride membranes, 

blots were probed with required antibodies: anti-EGFR antibody 31G7 (Zymed 

Laboratories), phosphor-tyrosine antibody P-Tyr (EMD Chemicals), anti-AREG antibody 

AF262 (R & D Systems), phospho-tyrosine specific antibodies (Cell Signaling 

Technologies) or anti-B-Actin (Sigma-Aldrich) and visualized by enzymatic 

chemiluminescence (Pierce, Thermos Fisher Scientific, Waltham, MA).  

2.6 Enzyme-linked Immunosorbent Assay (ELISA)—Twenty-four hour conditioned 

medium was obtained from cells grown in 6-well plates.  An AREG DuoSet ELISA 

(R&D systems, Minneapolis, MN, USA), with an AREG antibody specific to the 

extracellular domain of AREG was used to measure AREG medium concentration. High 

binding ELISA plates were coated with 3 μg/ml AREG antibody in sterile phosphate-

buffered saline (PBS) overnight at room temperature.  Absorbance was measured on a 

VERSAmax microplate reader (Molecular Devices Corp., Sunnyvale, CA, USA).  Cells 

were lysed, and nuclei were counted with a Z1 Coulter Counter (Beckman Coulter, Brea, 

CA, USA) for normalization. Samples were done in triplicate.  

2.7 Cell Proliferation Assays—Cells were seeded on day 0 in 6-well plates at 1.0×104 

cells/well.  Either 1 μg/ml AREG Ab, 1 μg/ml EGFR Ab, 1 μg/ml EGF Ab, 1 μg/ml 

http://www.jbc.org/cgi/redirect-inline?ad=Zymed�
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EPGN Ab, 1 μg/ml IgG Mouse Ab, and 1 μg/ml IgG Goat Ab, or 0.5 μmol/L Iressa was 

added daily.  After 7 days of treatment, plates were washed with PBS three times and 

agitated on a rocker table with 0.5 ml of a Hepes/MgCl2 buffer (0.01 m Hepes and 0.015 

m MgCl2) for 5 min. Cells were then lysed for 10 min using a Bretol (ethyl 

hexadecyldimethylammonium) solution, and the nuclei were counted using a Z1 Coulter 

Counter (Beckman Coulter, Brea, CA, USA).  Day 1 cells were counted for seeding 

efficiency. All experiments were done in triplicate.  

2.8 Cell Invasion Assay—Matrigel invasion chambers (BD Biosciences, San Jose, CA, 

USA) were rehydrated with Dulbecco's modified Eagle's medium for 1 h in a 37°C 

incubator. 2.5 × 105 of MCF10A cells in SFIHE medium and SUM149, SUM-149sh4, 

SUM-149shPld, SUM-149shNS cells in SFIH medium were added to the upper chamber 

of both control and rehydrated Matrigel invasion chambers.  5% fetal bovine serum was 

added to media in the bottom chamber as a chemoattractant. After 24 h, membranes were 

fixed and stained using the Hema 3 Staining System (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA).  Membranes were allowed to dry and then were placed onto slides 

for visualization.  Cells on Matrigel membranes were counted from six microscopic fields 

after 24 h.  Percentage of invasion was calculated by dividing the mean number of cells 

on the invasion membranes by the number of cells seeded for each cell line.  Experiments 

were repeated three times.  

2.9 Soft Agar Assay—A bottom layer of 1:1 Ham's F-12 serum-free medium to 1% 

agarose was poured and allowed to solidify.  A 1-mL suspension of 1.0 × 105 cells in a 

http://en.wikipedia.org/wiki/Waltham,_Massachusetts�
http://en.wikipedia.org/wiki/Waltham,_Massachusetts�
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0.3% agarose solution was plated into six-well plates and fed once a week by adding 3mL 

medium on top of the soft agar.  Cells were then counted at weeks three and four with 

GelCount automated mammary colony counter (Oxford Optronix, Oxford, UK).  

 

2.10 In vitro Mammosphere assay—For the in vitro mammosphere assay, cells were 

grown in a serum-free mammary epithelial growth medium (MEBM Basal Medium, 

Lonza, Walkersville, MD, USA) supplemented with B27 (Invitrogen, Carlsbad, CA, 

USA) 1μg/ml hydrocortisone, 5μg/ml insulin, 5μg/ml β-mercaptoethanol, and 10ng/ml 

epidermal growth factor; 10,000 cells were plated on a six-well ultra low attachment plate 

(Corning Inc., Acton, MA, USA) and 1ml of medium was added every 3 days. After 7–10 

days, the mammospheres were moved to adhering dishes, allowed to attach with 2% FBS, 

stained with 1X crystal violet for 1 min, washed, and counted after 2-4 days. 

 

2.11 Immunofluorescence assays —Approximately 1×105 SUM-149, SUM-149sh4, 

SUM-149shPld, and SUM-149shNS cells were seeded on coverslips and given 5%IH, 

5%IH+10ng/ml EGF, of 5%IH+20ng/ml AREG for 24hours.  The next day, cells were 

washed 3 times with ice cold PBS, fixed in 4% para-formaldehyde for 20 min at room 

temperature, washed 3 times in PBS and then permeabilized with ice cold 0.1% Triton-X 

in PBS for 2 min. Cells were washed 3 times and then blocked for 1 h in 20% Goat 

Serum. A 1:1000 dilution of 2 μg/μl anti-EGFR antibody MAB108 was incubated with 

cells for 1 h.  Cells were washed 3 times and incubated for 1 h with an Alexa488-

conjugated anti-mouse secondary antibody (Molecular Probes, Invitrogen) at 1:1000 

http://en.wikipedia.org/wiki/Carlsbad,_California�
http://en.wikipedia.org/wiki/Carlsbad,_California�
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dilution.  Cells were then washed 3 times with PBS and once more with distilled water to 

remove salt. ProLong gold with DAPI was used as a mounting reagent (Molecular 

Probes, Invitrogen) and coverslips were put on slides for microscopy.  Pictures were 

taken with a 65× oil lens on a Zeiss LSM-310 Laser Scanning Confocal Microscope 

at the Wayne State University Confocal Imaging Facility. 

 

2.12 Illumina microarray analysis— RNA was isolated from SUM-149, SUM149sh4, 

SUM-149shPld, SUM-149shNS, MCF10A, MCF10A+AREG, MCF10A-EGF, 

MCF10A-AREG cells in triplicate. Quantity measurement of all RNA samples was 

measured by analysis with the NanoDrop 1000 (Agilent Technologies, Waldbronn, 

Germany). Expression levels for each cell line were determined by microarray analyses 

using the Illumina human Ref12v3 chip (Illumina, San Diego, CA, USA). Data were 

processed for quality control and normalized across compared arrays by quantile 

normalization.  Data were exported from GenomeStudio after performing the needed 

quality control checks and uploaded into GeneSpring. The data were then quantile 

normalized, transformed to median baseline, and analyzed using Ingenuity Pathway 

analysis. Using an un-paired T-test genes were found to be significantly different in 

expression at the p<0.05 level.  An additional statistical test, Rank-Prod was also 

performed which identified genes that were significantly different at the p< 0.05 level.  

The genes described were present in both gene sets.  Genes identified using these 

statistical tests were imported into the Ingenuity Knowledge Base for further analysis.  
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The raw data of the SUM-149 and MCF10A microarray analysis have been deposited in 

the GEO database GSE26079 and GSE26264, respectively. 
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CHAPTER 3 

KNOCK-DOWN OF AMPHIREGULIN INHIBIITS CELLULAR 

INVASION IN INFLAMMATORY BREAST CANCER 

3.1 Introduction 

The epidermal growth factor receptor (EGFR) is a transmembrane protein 

belonging to the ErbB tyrosine kinase family. EGFR is activated following binding of 

one of a number of EGFR ligands, which include epidermal growth factor (EGF), 

amphiregulin (AREG), betacellulin (BTC), heparin-binding EGF (HB-EGF), 

transforming growth factor alpha (TGF-a), epiregulin (EREG), and epigen (EPGN) 

(Olayioye et al., 2000).  Ligand binding to the extracellular domain of EGFR initiates 

activation of receptor dimers resulting in phosphorylation of the C-terminal tail, and 

subsequent down stream signaling. De-regulation of EGFR expression or signaling has 

been implicated in cancer progression. In fact, approximately 30% of breast cancers over 

express EGFR, which correlates with poor prognosis (Nicholson et al., 2001; Tsutsui et 

al., 2002).  

AREG is a heparin binding growth factor that binds EGFR (Cook et al., 1991).  It 

was first isolated from the conditioned medium of MCF-7 breast cancer cells following 

treatment with a tumor promoter, phorbol 12-myristate 13-acetate (PMA) (Shoyab et al., 

1988).  AREG was named for its ability to stimulate the proliferation of human 

fibroblasts and keratinocytes as well as tumor cells, and its ability to inhibit the 

proliferation of some carcinoma cell lines in culture (Shoyab et al., 1988).  Later studies 

showed that AREG is synthesized as a 252 amino acid transmembrane precursor that 



 62

requires proteolytic cleavage for secretion.  Cleavage results in two mature soluble 

protein forms consisting of either 78 or 84 amino acids and ranging from 19-21-kDa in 

molecular weight (Plowman et al., 1990; Shoyab et al., 1989).  Post-translastional 

modifications of pro-AREG produces a major soluble 43-kDa form, 28-, 26-, 16-kDa 

membrane anchored forms, and soluble 21-, 19-, and 9-kDa forms (Brown et al., 1998) .  

AREG acts as an autocrine growth factor in human urothelial cells, normal human 

keratinocytes, and human lung bronchial epithelial cells (Kansra et al., 2004; Tsao et al., 

1996; Varley et al., 2005; Willmarth and Ethier, 2006).  During development in the 

mouse mammary gland, AREG has been shown to play an important role in terminal end 

bud formation and ductal elongation (Ciarloni et al., 2007; Luetteke et al., 1999).  In 

addition, expression of AREG mRNA has been observed in a variety of cancers including 

colon, breast, liver, prostate, pancreatic, lung, bladder, ovarian, skin, myeloma, and 

squamous cell carcinoma (D'Antonio et al., 2002; Ebert et al., 1994; Fontanini et al., 

1998; Mahtouk et al., 2005; Salomon et al., 1995b; Sehgal et al., 1994; Tsai et al., 2006).  

SUM-149 breast cancer cells were isolated from a patient with triple negative, 

inflammatory breast cancer whose disease progressed through chemotherapy. Our lab 

found that SUM-149 cells over express constitutively active EGFR, are EGF independent 

for growth, and over express AREG mRNA and protein. The EGF-independent growth of 

SUM-149 cells is regulated predominately by AREG (Willmarth and Ethier, 2006). 

Previously, our lab has shown that in SUM-149 cells AREG functions through a 

self-sustaining AREG/EGFR autocrine loop. In this loop, AREG stimulation of EGFR 

results in AREG transcription and secretion allowing for AREG to signal EGFR 
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continuously.  More recently we have shown that AREG activation of EGFR results in an 

increase in the steady state levels of EGFR and accumulation of EGFR at the cell surface 

(Willmarth et al., 2009; Willmarth and Ethier, 2006). Consistent with our previous 

findings, Baldys et. al. (Baldys et al., 2009) showed that AREG promotes the recycling of 

EGFR to the plasma membrane. Still the role of AREG in cancer has not been fully 

elucidated. In this report we describe knock-down of AREG expression using shRNA 

techniques to analyze the cancer-associated phenotypes and to examine the genes 

regulated by AREG that contribute to these phenotypes. 
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3.2 Results 

AREG Knock-down Slows Proliferation of SUM-149 cells. 

Our lab has previously shown that SUM-149 breast cancer cells are dependent on 

EGFR activation for proliferation and depend on a self-sustaining AREG/EGFR 

autocrine loop promoting proliferation (Willmarth and Ethier, 2006). Given that AREG is 

primarily responsible for EGFR activation, we wanted to investigate the effects of AREG 

knock-down on these phenotypes in the SUM-149 cells. Using five pLKO.1 shRNA 

constructs specific to AREG, and a non-silencing (SUM-149shNS) vector from 

OpenBiosystems, we knocked-down AREG expression in the SUM-149 cells. Among the 

five constructs tested, three constructs induced the highest level of AREG knock-down, 

yielding approximately 15 to 60-fold reduction in AREG mRNA levels.  The sh4 

construct induced the most dramatic knock-down resulting in a 40-60-fold decrease in 

AREG mRNA expression, as determined by real-time RT-PCR analysis (Fig. 3.1A). In 

attempt to achieve an even further fold-change in AREG knock-down, the three best 

constructs (viruses sh2, sh3, and sh4) were pooled (shPld) and used to infect the SUM-

149 cells.  By real-time RT-PCR, we did not observe any additional AREG knock-down 

by pooling the three constructs as compared to infection with the sh4 virus alone (Fig. 

3.1B).  As a result, all additional experiments were performed using SUM-149sh4 and 

SUM-149shPld cells, as compared to SUM-149shNS cells, which were infected with a 

non-silencing control shRNA. 

 To test the effects of shRNA on AREG protein expression, we quantified the 

amount of AREG secreted into the conditioned media by an enzyme-linked 
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immunosorbent assay (ELISA).  Conditioned media was removed from 80% confluent 

cells, cells were counted, and the media was analyzed using an AREG specific ELISA kit 

(R&D Systems).  Secreted AREG was un-detectable in the conditioned media of the 

knock-down cells, while the SUM-149 parental and SUM-149shNS controls secreted 

approximately 100pg/ml AREG/100,000 cells over 24hrs (Fig. 3.1C).  To measure the 

presence of cellular AREG protein, western analysis was performed with the parental and 

knock-down cells.  Western blot analysis demonstrated a dramatic decrease in each of the 

AREG isoforms (Fig. 3.1D). However, a faint band representing the 43 kDa AREG 

isoform was detected in the SUM-149sh4 and SUM-149shPld cells.  Next, we 

investigated the rate of proliferation in the control cells and each of the knock-down 

populations.  Growth assays following infection with the sh2, sh3, and sh4 and treatment 

with the selecting antibiotic, puromycin, resulted in the greatest decrease in cell 

proliferation relative to the SUM-149shNS control (Fig. 3.2A).  Doubling times (DT) 

were determined by counting cells at five time points over a 94 hr period. SUM-149 and 

the SUM-149shNS cells had a DT of 27 and 29 hrs, respectively, while SUM-149sh4 and 

SUM-149shPld cells had DTs of 36 and 42 hrs, respectively (Fig. 3.2B).  These results 

indicate that a 40-60-fold knock-down of AREG reduced, but did not completely block 

proliferation of SUM-149 cells. 
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Figure 3.1 

 
 

 

 
AREG Knock-down in SUM-149 cells 

SUM-149 cells were stably infected with various AREG shRNA lentiviral expression 
constructs. Levels of AREG mRNA expression in cells infected with each individual 

construct and the combined sh2, sh3, sh4 constructs (shPld) was measured by real-time 
RT-PCR (A&B). SUM-149 mRNA expression was set to one. Secreted AREG was 

measured by ELISA (B). Conditioned media was harvested after 24 hours from the SUM-
149, SUM-149sh4, SUM-149shPld, and SUM-149shNS cells. The cells were counted and 
the concentration of AREG was normalized to cell number. AREG protein expression in 

the whole cell was measured by western blot (D). 
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Figure 3.2 

 

 
 

AREG knock-down decreases the rate of proliferation in SUM-149 cells 
(A) Infected cells were treated with 1ug/ml puromycin 12 hours post-infection (Day1) 
and counted at days 4, 7, and 10. B) Cells at low passage following shRNA infection 

were seeded at 1x104 cells per well and counted at approximately 24 hour intervals for 94 
hours, and doubling times were calculated. Error bars represent the standard deviation of 

three replicates in the experiment. 
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Continued proliferation of AREG knock-down cells is EGFR dependent  

Despite the high levels of AREG knock-down, SUM-149sh4 and SUM-149shPld 

cells continued to proliferate, although at a slower rate than the parental cells.  To address 

the continued proliferation of the AREG knock-down cells, we first investigated the 

status of EGFR in these cells.  We performed EGFR western blot analysis on the parental 

and knock-down cells.  Results shown in figure 3.3A demonstrated an increase in steady-

state EGFR protein levels in the AREG knock-down cells compared to SUM-149 and 

SUM-149shNS (Fig. 3.3A).  Consistent with the increase in EGFR protein expression we 

observed a further accumulation of EGFR to the plasma membrane by 

immunofluorescence in the AREG knock-down cells (Fig. 3.4).  Western analysis of 

specific EGFR tyrosine phosphorylation sites including, Y845 (phosphorylated by src), 

and autophosphorylation sites Y992, Y1068, Y1086, and Y1148 indicated that EGFR 

remained active in the knock-down cells (Fig. 3.3B), which is consistent with continued 

slower proliferation (Fig. 3.2B).  

Next, we investigated the importance of EGFR signaling in the proliferation of 

the knock-down cells using inhibitory antibodies, and the small molecule EGFR inhibitor 

gefitinib.  Data shown in figure 3.3C shows that exposure of the parental cells to gefitinib 

or EGFR blocking antibody for seven days inhibited cell growth by more than 80% 

compared to growth in their normal cell culture media.  Additionally, the residual cell 

proliferation observed in the AREG knock-down cell lines was also inhibited by the 

presence of the EGFR inhibitors.  These results indicate that the proliferation observed in 

the AREG knock-down cells is dependent on EGFR signaling.  Furthermore, in one 
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experimental group, an AREG neutralizing antibody was incubated with the AREG 

knock-down and control cells for seven days (Fig. 3.3C).  Unlike the EGFR antibody, the 

AREG antibody did not further inhibit cell proliferation in the knock-down cells, while it 

did reduce growth in control cells.    
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Figure 3.3 

 
 
 
 

Continued proliferation of AREG knock-down cells is EGFR dependent 
(A) Western blot showing EGFR protein levels and (B) phosphorylation at specific 

EGFR tyrosine residues during normal growth of MCF10A, SUM-149, SUM-149sh4, 
SUM-149shPld, and SUM-149shNS cells. (C) SUM-149, SUM-149sh4, SUM-149shPld, 
and SUM-149shNS cells were seeded at 1x104 cells per well. The first bar in each group 
represents the number of cells on day one. The next four bars show the number of cells 

after seven days in their normal growth media or with everyday exposure to 1 μg/ml 
EGFR Ab, 0.5 μmol/L Iressa, or 1 μg/ml AREG Ab. Error bars represent the standard 

deviation of three replicates in the experiment. 
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Figure 3.4 

 

 
 

EGFR localizes to the plasma membrane and cell-cell junctions after AREG knock-down 
(A) EGFR localization in SUM-149, SUM-149sh4 +/- EGF and AREG, SUM-149shPld 

+/- EGF and AREG, and SUM-149shNS. Cells were permeabilized, fixed, incubated with 
EGFR Ab, a secondary alexa-fluor Ab, and mounted with DAPI prolong gold. 
Representative confocal images are shown. Higher magnification of the cells is 

represented in the panel on the left to show more detailed localization on the membrane 
and at cell-cell junctions. 

 

 



 72

There are seven known ligands that bind to and stimulate EGFR; EGF, AREG, 

BTC, HB-EGF, TGF-, EREG, or EPGN. It was previously determined that SUM-149 

cells synthesize EREG (Willmarth and Ethier, 2006).  To investigate the possible 

expression of other EGFR ligands in SUM-149 AREG knock-down cells, real-time RT-

PCR analysis was performed.  Data in figure 3.5A show that the expression of four of the 

EGFR ligands was concomitantly down-regulated as a result of AREG knock-down.  

However, two EGFR ligands, EGF and EPGN were not altered in their expression in the 

AREG knock-down cells (Fig 3.5A).  To determine if the observed down-regulation of 

ligands in the AREG knock-down cells was due to reduced EGFR signaling, we analyzed 

EGF-family ligand expression by real-time RT-PCR in SUM-149 cells before and after 

treatment with gefitinib.  After 24 hours of treatment with gefitinib, the same ligands that 

were down-regulated in AREG knock-down cells were reduced in their expression 

relative to non-treated SUM-149 cells (Fig. 3.5B). These data are consistent with the 

hypothesis that decreased expression of AREG and other EGFR ligands in the AREG 

knock-down cells is in response to the decrease in EGFR activation, and not to off target 

effects of the shRNAs.  Indeed, BLAST analysis of the AREG shRNA sequences did not 

reveal any similarity to sequences present in other EGFR ligands. 
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Figure 3.5 

 

 

 

The role of EGF family ligands in growth of AREG knock-down cells 
(A) Relative mRNA expression by real-time RT-PCR of AREG, EREG, EGF, TGF-a, 
BTC, HB-EGF, and EPGN in the SUM-149, SUM-149sh4, SUM-149shPld, and SUM-
149shNS cells. (B) Relative mRNA expression by real-time RT-PCR of AREG, EREG, 
TGF-a, BTC, HB-EGF, and EPGN in the SUM-149 and SUM-149 cells treated with 0.5 

μmol/L Iressa for one or 24 hours. 
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Since AREG knock down did not decrease expression of EGF or EPGN, we 

investigated possible proliferative effects of endogenous EGF or EPGN on the growth of 

knock-down and parental cells by performing growth assays using neutralizing antibodies 

for each of the ligands.  For seven days cells were treated with AREG, EGF, or EPGN 

neutralizing antibodies or control antibodies, gefitinib, or an EGFR inhibitory antibody.  

The experiment was performed using cells at different passage levels following AREG 

knock-down.  Figure 3.6A shows that at early passage after AREG knock-down (<p4) 

EGF or EPGN neutralizing antibodies had no effect on growth of the knock-down cells.  

When the growth assays were repeated with cells at a later passage after AREG knock-

down  (>p20), EGF and EPGN neutralizing antibodies reduced cell growth by about 20% 

in the SUM-149sh4 and SUM-149shPld cells, while growth of SUM-149 and SUM-

149shNS cells was not affected (Fig. 3.6B).  However, exposure to AREG neutralizing 

antibodies also resulted in a decrease in growth of late passage SUM-149, SUM-

149shNS, and AREG knock-down cells.  To confirm these results, real-time RT-PCR 

analysis demonstrated that AREG mRNA expression in SUM-149sh4 and SUM-

149shPld cells at passage 18 after knock-down was only two-fold lower than control cells 

as compared to 40-60-fold lower at early passage (Fig. 3.7).  These data suggest that 

AREG knock-down slows proliferation of SUM-149 cells, but as the cells are passaged 

their growth rate increases through increased expression of AREG and other EGF-like 

ligands. 
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Figure 3.6 
 

 
 

 
The role of EGF family ligands in growth of AREG knock-down cells 

(C) Bars show growth of early passage cells (<p4) and (D) late passage cells after AREG 
knock-down (>p18) Cells were seeded at 1x104 cells per well. The first bar in each group 
represents the number of cells on day one. The next four bars show the number of cells 
after seven days of growing in their normal growth media or with everyday exposure to 

1ug/ml IgG mouse Ab, 1ug/ml IgG goat Ab, 1 μg/ml AREG Ab, 1 μg/ml EGF Ab, 
1ug/ml EPGN Ab, 1ug/ml EGFR Ab or 0.5 μmol/L Iressa. Error bars represent the 

standard deviation of three replicates in the experiment. 

A.. 

B. 
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Figure 3.7 

 

 

The role of EGF family ligands in growth of AREG knock-down cells 
(E) Relative mRNA expression by real-time RT-PCR of AREG in late passage knock-

down cells (>p18) with SUM-149 parental cells normalized to one. 
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Knock-down of AREG Affects Cancer-associated Phenotypes 

 The ability to grow in soft agar is a hallmark of cancer transformation.  Therefore, 

we measured the soft agar colony forming ability of parental SUM-149 cells, SUM-

149sh4, SUM-149shPld, and SUM-149shNS cells.  Figure 3.7A shows that SUM-149sh4 

and SUM-149shPld cells formed 50% fewer colonies in soft agar after 3 weeks than 

SUM-149 cells (Fig. 3.8A, 3.8C).  However, given longer growth periods (four weeks), 

AREG knock-down cells were able to produce a similar number of colonies as the SUM-

149 and SUM-149shNS controls (Fig. 3.8B, 3.8D), suggesting that the smaller number of 

colonies observed at three weeks reflects the slower growth of the knock-down cells and 

not their ability to survive under anchorage independent conditions. 
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Figure 3.8 

 
 

 

Effect of AREG knock-down on soft agar colony formation 
The bars represent the number of colonies that grew in soft agar after three weeks (A) or 

four weeks (B) of growth divided by the number of cells seeded (1x105). Cells were 
counted with GelCount, automated mammalian cell counter. Error bars represent the 
standard deviation of three replicates in the experiment. (C) Colonies formed after 3 

weeks. (D) Colonies formed after 4 weeks. 
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To determine whether AREG shRNA expression affects phenotypes of cancer 

stem cells, we performed mammosphere colony forming assays.  Cells were plated at 

10,000 cells/well in ultra low attachment plates, cultured for one week, transferred to 

standard tissue culture plates, and allowed to attach for two days before being stained and 

counted. When the mammosphere assay was performed using the same growth factor-

free medium used to maintain the control and knock-down cells, AREG knock-down 

cells showed a decrease in mammosphere colony formation (Fig. 3.9).  However, when 

parental and knock-down cells were grown in stem cell medium which contains EGF, 

there was no difference in the number of mammospheres that developed.  We interpret 

these results to indicate that the ability of SUM-149 cells to form mammospheres is not 

influenced by the presence or absence of AREG.  Previously, ALDH1 has been suggested 

to be a marker of breast cancer stem cells and particularly in SUM-149 cells (Charafe-

Jauffret et al., 2010; Charafe-Jauffret et al., 2009).  To determine if the percentage of 

ALDH1 positive cells was influenced by AREG knock-down, we performed Aldefluor 

assays.  Results of these experiments were consistent with the mammosphere assay and 

indicated that AREG knock-down did not decrease the proportion of ALDH1 positive 

SUM-149 cells (Data not shown).  
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Figure 3.9 

 
Effect of AREG knock-down on mammosphere growth 

(C) Cells were seeded at 1x104 cells in ultra-low attachment plates in mammosphere 
media with (IHE) or with out (IH) 10 ng/ml of exogenous EGF. The bars represent the 
number of spheres counted by visualization with a microscope. Error bars represent the 

standard deviation of three replicates in the experiment. 
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Next, we investigated the invasive capacity of the AREG knock-down cells in a 

Matrigel invasion assay (BDbioscience).  In these experiments, 25,000 SUM-149, SUM-

149sh4, SUM-149shPld, or SUM-149shNS cells were seeded on top of a Matrigel matrix 

in Boyden chambers and incubated with their serum containing growth media below the 

Matrigel for 24 hours.  MCF10A cells were used as a negative control and showed little 

invasion through the matrix, while, SUM-149 and the SUM-149shNS cells were highly 

invasive.  The data in figure 3.10 shows that both SUM-149 AREG knock-down cell 

lines exhibited a dramatic decrease in the number of cells that invaded through the matrix 

relative to the parental and control cells (Fig. 3.10A,B).  Indeed, AREG knock-down 

decreased the invasive capacity of the SUM-149 cells by greater than 75%.  Taken 

together, these results indicate that whereas AREG knock-down has a marginal effect on 

SUM-149 cell soft-agar colony formation and no effect on the expression of stem cell 

phenotypes, AREG knock-down has a dramatic effect on the motile and invasive capacity 

of SUM-149 cells.  
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Figure 3.10 

 

 
AREG knock-down inhibits cellular invasion 

(A) MCF10A, SUM-149, SUM-149sh4, SUM-149shPld, and SUM-149shNS cells were 
seeded in serum free media on a Matrigel matrix and incubated at 37°C for 24 hours with 
serum containing media as the chemoattractant. The bars represent the average number of 
cells that invaded the matrix divided by the number of cells seeded (2.5x104 cells). Error 

bars represent the standard deviation of three replicates in the experiment. (B) Photos 
represent one field of view after staining invading cells. 
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Effect of AREG knock-down on gene expression. 

To examine the influence of AREG knock-down on the transcriptome of SUM-

149 cells, we performed DNA microarray analysis using Illumina micro-arrays.  SUM-

149, SUM-149sh4, SUM-149shPld, and SUM-149shNS cells were grown to 80% 

confluence and RNA was isolated one day after feeding. The RNA was reverse 

transcribed and hybridized to the DNA array.  All arrays were performed in triplicate.    

Analysis of the microarray data indicated a statistically significant difference in 

expression of 952 genes between SUM-149sh4 and SUM-149shNS cells.  Of these, 659 

genes were greater the 1.3 fold different between the two cell lines, and 381 genes 

exhibited a greater than 1.5 fold difference.  Ingenuity Pathway analysis (IPA) of the 952 

gene set identified cell death (173 genes) and cellular movement (110 genes) as the top 

two biological functions influenced by AREG knock-down.  With respect to cell 

movement, AREG influenced expression of several genes that are part of canonical 

pathways associated with cellular motility and invasion including: integrin-linked kinase 

signaling, focal adhesion kinase signaling, caveolar mediated endocytosis signaling, 

WNT signaling and Notch signaling (Table 3.1).  Given our observation of the influence 

of AREG knock-down on motility and invasion as shown in figure 3.9, the identification 

of changes in specific genes associated with motility and invasion such as several 

integrins, vimentin, and MMPs (Table 3.1) were consistent with those experimental 

observations.  Up-regulation of two specific genes, DKK1 and RHOB, which have been 

implicated in cancer cell motility and invasion (Jiang et al., 2004; Pukrop et al., 2006) 

were chosen for validation experiments.  Data in figure 3.11 shows that changes in 
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expression level of each gene by real-time RT-PCR were consistent with the micro-array 

results, and western blot analysis demonstrated an increase in expression of RHOB 

associated with AREG knock-down (Fig. 3.11A,B,C).  In several studies, DKK1 and 

RHOB have been implicated as negative regulators of cellular motility (Jiang et al., 2004; 

Pukrop et al., 2006).  The expression of RHOB and DKK1 was low in SUM-149 cells 

and was increased approximately 10-fold in the AREG knock-down cells (Fig 3.11B,C).  

Thus, results of microarray analysis of SUM-149sh4 and SUM-149shNS cells are 

consistent with the biological experiments with respect to motility and invasion, and also 

point to other important pathways that could be regulated by AREG in these cells. 
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Table 3.1 

 
 

Summary of genes regulated by AREG knock-down in SUM-149 cells 
Six signaling pathways associated with cell motility and invasion are listed in bold. The 
top three genes up and down regulated in each pathway are listed beneath each signaling 

pathway as determined by Ingenuity Pathways Analysis. 
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Figure 3.11 

 

 
 

Validation of increased expression of RHOB and DKK1 in AREG knock-down cells 
(A) Western blot showing RhoB protein expression in parental and knock-down cells. -
Actin is used as a loading control. Relative mRNA expression by real-time RT-PCR of 

(B) RHOB and (C) DKK1 mRNA expression with SUM-149 or SUM-149shNS parental 
cells normalized to one. 
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3.3 Discussion 

Over expression of EGFR correlates with advanced stage and a poor prognosis in 

many types of cancer, including breast cancer (Salomon et al., 1995a).  Neal et. al. (Neal 

et al., 1985) found EGFR expression correlates with poor differentiation and invasion in 

transitional cell carcinoma of the bladder.  Additionally, over expression of EGFR is 

accompanied by autocrine regulation of its stimulating ligands (Voldborg et al., 1997).  

Our lab has shown that AREG promotes proliferation of SUM-149 breast cancer cells 

through the expression of an AREG/EGFR autocrine loop (Willmarth and Ethier, 2006).  

The present work examined transformed phenotypes in SUM-149 cells following knock-

down of AREG using lentiviral AREG shRNAs.  We found that AREG knock-down 

failed to completely inhibit cell proliferation, although it did slow the growth-rate of 

cells.  In addition, knock-down did not significantly inhibit the cells’ ability to form 

colonies in soft agar nor did it affect the expression of stem-cell phenotypes as 

determined by mammosphere colony formation and Aldefluor staining.  However cells 

with AREG knock-down exhibited a dramatic decrease in their invasive capability.  

Moreover, microarray data were consistent with this observation and identified a number 

of genes associated with invasive and motile phenotypes that were altered in expression 

by AREG knock-down. 

The observation that dramatic levels of AREG knock-down did not completely 

block growth of SUM-149 cells, was unexpected.  These knock-down cells, while 

expressing undetectable levels of AREG by ELISA and western blot, continued to 

express tyrosine phosphorylated EGFR.  The increase in steady-state levels of EGFR 
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protein in the knock-down cells, as detected by western blot, is consistent with reduced 

EGFR activity in these cells.  Further, EGFR remained localized to the cell surface in the 

knock-down cells (Fig. 3.11).  However, EGFR remained active and was responsible for 

the continued proliferation of the knock-down cells as exposure to either EGFR 

neutralizing antibodies or small molecule inhibitors completed the inhibition of growth of 

the knock-down cells.   

We observed that AREG levels steadily increased in the knock-down cells with 

passage after infection with lentiviral AREG shRNA vectors.  This finding, coupled with 

the residual proliferation and EGFR activation in the knock-down cells suggests that 

small sub-populations of cells were present that continued to express low levels of 

AREG, and that these cells increased in proportion with each passage.  Interestingly, this 

low-level AREG mediated cell growth was not affected by AREG neutralizing 

antibodies.  If this interpretation is correct, it would explain the continued EGFR 

activation observed in the population of cells that were responding to paracrine growth 

factors secreted by this sub-population.  This interpretation also has implications for the 

ability of breast cancer cells to respond to very low levels of EGFR ligands, particularly 

when EGFR accumulates on the cell surface.   

We were surprised to find that knock-down of AREG resulted in concomitant 

decreases in expression of other EGFR ligands, Previously, we showed that AREG 

mRNA expression in SUM-149 cells is regulated by EGFR activation (Willmarth and 

Ethier, 2006).  Results presented here extend that finding and demonstrate that reduced 
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EGFR activation, whether via AREG knock-down or EGFR inhibition, results in 

decreased transcription of several EGFR ligands, not just AREG.   

Despite the inability to completely block proliferation of SUM-149 cells 

following AREG knock-down, we did find that these cells had dramatically reduced their 

invasive capacity.  Numerous studies have shown that EGF stimulation of EGFR 

promotes cell invasion and motility in various cancers including glioblastoma, squamous 

cell carcinoma, bladder, gastric, renal, prostate, and breast cancer (Libermann et al., 

1984; Neal et al., 1985; Ozawa et al., 1987; Price et al., 1996; Schlegel et al., 1994; Toi et 

al., 1990; Tokunaga et al., 1995; Turner et al., 1996). On the contrary, there have been 

few studies reporting AREG promotion of invasion. Invasion associated with AREG has 

been described in vitro in breast and head and neck cancers.  In two different studies, 

squamous cell carcinomas have been shown to secrete AREG in response to G protein-

coupled receptor (GPCR) ligand stimulation resulting in cell proliferation, motility, and 

invasion (Gschwind et al., 2003; Zhang et al., 2006).  

In normal epithelial tissue, AREG is expressed during development of the 

embryonic lung (Schuger et al., 1996) and in the pubertal mammary gland during ductal 

morphogenesis and terminal end bud (TEB) formation (Ciarloni et al., 2007; Luetteke et 

al., 1999). EGFR and AREG interactions occur in the stroma thereby stimulating the 

proliferation of nearby epithelial cells in the ducts and TEBs.  Similarly, embryonic lung 

branching of the epithelial trees depends on the presence of AREG as well as the 

presence of the extracellular matrix (ECM) (Schuger et al., 1996).  The important role of 

AREG/EGFR interactions in tissue development and morphogenesis is consistent with 
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the pathological role of AREG in mediating motility and invasion when inappropriately 

expressed in cancer cells. 

Mechanisms proposed for AREG/EGFR induced cellular invasion focus on the 

altered expression of matrix metalloproteases (MMPs). These proteases play a role in 

embryonic development and growth, while in cancer they function in breaking down the 

basement membrane barrier.  In metastatic breast cancer cells (SKBR-3), an increase in 

MMP-9 expression modulates AREG promotion of invasion (Kondapaka et al., 1997). 

Additionally, inhibition of AREG by anti-sense cDNA in NS2T2A1 mouse mammary 

tumor cells inhibited MMP-9 expression (Ma et al., 2010).  Microarray data comparing 

gene expression in AREG knock-down cells to cells infected with the non-silencing 

control are consistent with the report of Ma et. al., in that we also found MMP-9 

expression was decreased in SUM-149sh4 knock-down cells (Table1).  Our gene 

expression profiling data also indicated a role for AREG in the regulation of expression 

of other genes that play a role in invasion such as RHOB and DKK1.  Rho GTPase’s, 

regulate cytosekeltal rearrangements during cell invasion and motility in inflammatory 

breast cancer (IBC) cells (Lin and van Golen, 2004), and RhoB expression has been 

shown to be dramatically reduced as tumors become more aggressive (Adnane et al., 

2002; Forget et al., 2002; Mazieres et al., 2004).  DKK1, which acts as a negative 

regulator or WNT signaling, has also been implicated in regulating the invasive 

phenotype (Pukrop et al., 2006).  Thus, our observation of dramatic up-regulation of 

DKK1 in AREG knock-down cells is consistent with a role of WNT signaling in 

modulating the invasive phenotype.  
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In summary, our results with AREG- knock-down versions of SUM-149 cells not 

only point to roles of the autocrine ligand in maintaining proliferation of the cells in an 

autocrine manner, but provide further support for the hypothesis that AREG activated 

EGFR is a major driver of invasion in breast cancer cells.  Furthermore, our results 

suggest that the invasive phenotype is a result of the altered signaling that occurs in cell 

surface localized EGFR, which occurs as a direct result of AREG-EGFR interaction, and 

is in contrast to what occurs with other EGFR ligands, particularly EGF, which drives 

internalization and degradation of the receptor.  It would be constructive to test our 

findings in additional cell lines where the cells rely on AREG as the SUM-149 cells do 

and in an experimental in vivo model.  Further work is required to understand the 

mechanistic basis for EGFR stability and cell surface localization of AREG activated 

EGFR. 
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CHAPTER 4 

GENOME-WIDE ANALYSIS OF GENE EXPRESSION REGULATED 

BY AREG IN NORMAL AND BREAST CANCER CELLS 

 

4.1 Introduction 

SUM-149 cells expressing shRNA constructs specific to AREG demonstrated a 

decrease in cell proliferation, a decrease in cellular invasion, and an increase in the 

expression of cell surface localized EGFR protein.  These results led us to investigate 

differences occurring in the biology of the cell. By microarray analysis we measured 

AREG’s involvement in various cellular events and processes.  We isolated RNA from: 

SUM-149, SUM-149sh4, SUM-149shPld, and SUM-149shNS cells, reverse transcribed 

the RNA to cDNA and hybridized the cDNA to an Illumina array (described in Chapter 

3).  

To address further the biological the role of AREG, we cultured MCF10A cells 

either with or without EGF or in the presence or absence of exogenous AREG. MCF10A 

cells are spontaneously immortalized cells derived from mammary epithelial cells (Soule 

et al., 1990).  MCF10A cells were continuously grown in serum free media supplemented 

with 10ng/ml of EGF (MCF10A) or 20ng/ml of AREG (MCF10A+AREG).  

Additionally, we withdrew EGF or AREG for 24 hours from MCF10A and 

MCF10A+AREG cells, respectively.  RNA from MCF10A+/-EGF and MCF10A+/- 

AREG was isolated; cDNA was synthesized and hybridized to an Illumina array.  By 

Ingenuity Pathway Analysis (IPA) we found AREG expression to be associated with 
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NOTCH signaling in the context of cancer cells only, and with Wnt signaling in both 

normal and cancer cells.  Wnt and NOTCH signaling pathways function in stem cell 

biology and play major roles in mammary gland development and tumorigenesis (Collu 

and Brennan, 2007; Molofsky et al., 2004).  Wnt signaling alone can cause 

tumorigenesis; however, recently it has been hypothesized that there is cross talk between 

two pathways promoting tumorgenesis (Ayyanan et al., 2006). 
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4.2 Results 

Venn diagrams 

We performed microarray analysis with three experimental groups, 

MCF10A+EGF, MCF10A+AREG and SUM-149 cells.  MCF10A cells withdrawn of 

AREG for 24 hours were compared to MCF10A cells growing in the presence of AREG, 

and, MCF10A cells withdrawn of EGF for 24 hours were compared to MCF10A cells 

growing in the presence of EGF.   SUM-149shNS cells were compared to SUM-149sh4 

cells.  Figure 4.1 shows a Venn diagram representing the number of genes changed in 

each gene list and the number of genes that overlap in the three groups as determined by 

T-Test and RankProd statistical analysis where p < 0.05. 
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Figure 4.1 

 

 
 

Venn Diagram 
(A) Venn diagram of genes differentially expressed by MCF10A+/- EGF, MCF10A+/-

AREG and SUM-149 cells. Expression based on T-test and RankProd statistical analysis. 
Biological processes and gene lists are represented in Tables (4.2, 4.4, 4.6, and 4.8) 
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 The molecular profile of MCF10A cells regulated by AREG differs from 

MCF10A cells regulated by EGF.  However, there are 725 genes that are commonly 

regulated by both growth factors (Figure 4.1).  The main cellular process regulated by 

both EGF and AREG in MCF10A cells are: cell cycle, followed by cellular assembly and 

organization, and DNA replication, recombination, repair (Table 4.1).  The top canonical 

pathways and associated genes regulated by EGF and AREG are listed in Table 4.2.  As 

expected, genes and pathways associated with cell division and thus tissue growth were 

the most significantly altered by the removal of both EGF and AREG.  Cyclins, 

transcription factors, and cell cycle checkpoint genes were the most significantly affected 

by AREG and EGF (Table 4.2).  
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Table 4.1 

Molecular and Cellular Functions 
Regulated by EGF and AREG in MCF10A cells 

Name p-value # of molecules

Cell Cycle 1.59 x 10-31 129 

Cellular Assembly and Organization 2.21 x 10-13 50 

DNA Replication, Recombination, Repair 2.21 x 10-13 111 

Cellular Growth and Proliferation 1.03 x10-9 164 

Cellular Movement 2.01 x10-9 82 

 

Molecular and Cellular Functions Regulated by EGF and AREG in MCF10A cells 
Listed are the five most significantly altered cellular functions, the number of genes 

expressed in each function, and the statistical significance are listed  
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Table 4.2 

 
 

Summary of genes in specific canonical pathways regulated by EGF and AREG in 
MCF10A cells 

Five signaling pathways associated with cell cycle control and mitosis are listed in bold. 
The top genes up and down regulated in each pathway are listed beneath each signaling 

pathway as determined by IPA. 
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Comparison of MCF10A+AREG cells to MCF10A cells in the absence of AREG 

for 24 hours resulted in a list of 1269 statistically significant differentially regulated 

genes (Figure 4.1).  These genes are regulated by AREG in the MCF10A model. 465 of 

these genes are regulated by AREG (Figure 4.1, red).  The top cell function regulated by 

AREG in MCF10A-AREG cells versus MCF10A+AREG gene lists, based on statistics, 

is cell death followed by cellular movement and cell cycle (Table 4.3).  Table 4.3 lists the 

genes differentially regulated by AREG in some of the statistically significant canonical 

pathways.  Among these pathways are: NRF-2-mediated Oxidative Stress Response, 

Interferon Signaling, Glutathione Metabolism, Xenobiotic Metabolism Signaling, and 

Wnt signaling. Genes up and down regulated in the top canonical pathways are listed in 

Table 4.4.  The pathways and genes altered by AREG in MCF10A cells are associated 

with oxidative stress.  Reactive oxidative species (ROS) can cause a significant damage 

to molecules and cell structures in the cell.  NRF-2 signaling induces the transcription of 

genes influencing oxidative stress, thereby defending the body against oxidative stress 

(Sykiotis, Science, 2010).  Xenobiotics are sources of ROS and glutathione transferases 

are enzymes that can alleviate/detoxify the ROS stress response.  AREG in these cells 

induces the expression of glutathione signaling moleules to remove the harmful effects of 

the xenobiotic signaling molecules.  In addition to altered ROS signaling Wnt signaling is 

influenced by the AREG in MCF10A cells. 
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Table 4.3 

Molecular and Cellular Functions 
Regulated by AREG in MCF10A cells 

Name p-value # of molecules 

Cell Death 1.26 x 10-5 79 

Cellular Movement 4.20 x 10-5 49 

Cell Cycle 1.71 x 10-4 37 

Free Radical Transport 2.09 x10-4 11 

Molecular Transport 2.09 x10-4 15 

 

Molecular and Cellular Functions Regulated by AREG in MCF10A cells 
Listed are the five most significantly altered cellular functions, the number of genes 

expressed in each function, and the statistical significance are listed  
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Table 4.4 

 
Summary of genes in specific canonical pathways regulated by AREG in MCF10A cells 
Six signaling pathways associated with oxidative stress and ROS signaling are listed in 

bold. The top genes up and down regulated in each pathway are listed beneath each 
signaling pathway as determined by IPA. 
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79 genes were regulated by AREG in both normal (MCF10A) and cancer (SUM-

149) cells (Figure 4.1, purple).  Cell-to-cell signaling and interaction was the most 

significantly altered (Table 4.5).  In addition, cell movement was a highly significant 

process that was regulated by AREG in both MCF10A and SUM-149 cells.  These 

analyses corroborate the findings from chapter 3 showing AREG promotes cell motility 

and invasion in SUM-149 cells.  Table 4.6 lists the top canonical pathways and the genes 

commonly regulated by AREG in SUM-149 and MCF10A cells.  These pathways include 

Clatherin mediated endocytosis and Wnt Signaling; however, the degree of change is 

greater in the SUM-149 cells than in the MCF10A cells.  Genes in these pathways 

include the integrins, SFRP1, and a frizzled receptor (Table 4.6).  
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Table 4.5 

Molecular and Cellular Functions 
Regulated by AREG in MCF10A and SUM-149 cells 

Name p-value # of molecules

Cell-to-Cell Signaling and Interaction 2.78 x 10-7 17 

Cell Death 5.83 x 10-6 20 

Cellular Movement 5.92 x 10-6 14 

Cell Cycle 7.54 x10-5 12 

Cell Growth and proliferation 1.17 x10-4 23 

 

Molecular and Cellular Functions Regulated by AREG in MCF10A and SUM-149 cells 
Listed are the five most significantly altered cellular functions, the number of genes 

expressed in each function, and the statistical significance are listed  
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Table 4.6 

 

 

 

Summary of genes in specific canonical pathways regulated by AREG in MCF10A and 
SUM-149 cells 

Five signaling pathways associated with endocytosis and Wnt signaling are listed in bold. 
The top genes up and down regulated in each pathway are listed beneath each signaling 

pathway as determined by IPA. 
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Gene regulation by AREG plays a distinct role in SUM-149 breast cancer cells. 

952 genes were altered in their expression after shRNA knock-down of AREG compared 

to a non-silencing vector (Figure 4.1).  The list of genes produced were analyzed by IPA 

in chapter 3.  Table 3.1 (chapter 3) lists the top five signaling pathways altered as a result 

of AREG knock-down and the top 3 genes up- and down-regulated relative to each 

signaling pathway.  

Of the 952 genes, 549 genes were regulated by AREG only in the SUM-149 

breast cancer cells and not the MCF10A cells, 140 genes were regulated by both EGF and 

AREG in SUM-149 and MCF10A+/-EGF cells, 184 genes were regulated by 

MCF10A+/-AREG, SUM-149, and MCF10A+/-EGF, and 79 genes were regulated by 

AREG in SUM-149 and MCF10A+/-AREG cells (Figure 4.1).  In the 549 gene list 

produced the most significant cellular functions affected were cellular movement, cell 

death, and cell cycle (Table 4.7).  The top genes either up- or down-regulated by AREG 

in SUM-149 cells are listed under each canonical pathway in Table 4.8.  The most 

significantly altered pathway was Agrin Interactions at Neuromuscular Junction.  Genes 

altered in this pathway are predominantly associated with cellular motility, such as 

ITGB2, CTTN, and ITGA6.  The observed decrease in cell invasion and motility 

following AREG knock-down in SUM-149 cells correlates with the gene lists created by 

IPA.  
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Table 4.7 

Molecular and Cellular Functions 
Regulated by AREG in SUM-149 cells 

Name p-value # of molecules 

Cellular Movement 1.88 x 10-5 53 

Cell Death 6.79 x 10-5 84 

Cell Cycle 5.65 x 10-4 24 

Cellular Growth and Proliferation 6.05 x10-4 89 

Cell-to-Cell Signaling and Interaction 7.34 x10-4 41 

 

 

Molecular and Cellular Functions Regulated by AREG in SUM-149 cells 
Listed are the five most significantly altered cellular functions, the number of genes 

expressed in each function, and the statistical significance are listed  
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Table 4.8 

 

Summary of genes in specific canonical pathways regulated by AREG in SUM-149 cells 
Five signaling pathways associated with cell motility, invasion, and NOTCH signaling 

are listed in bold. The top genes up and down regulated in each pathway are listed 
beneath each signaling pathway as determined by IPA. 
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Only in SUM-149 cells did we observe altered NOTCH signaling in response to 

AREG. NOTCH signaling regulates cell communication in embryonic and adult 

development.  Furthermore we observed the Wnt signaling pathway to be regulated by 

AREG in SUM-149 cells.  Based on the finding that NOTCH signaling was only affected 

in the SUM-149 cell model and not the MCF10A cell model, we chose to validate 

molecules in this signaling pathway. Figure 4.2 depicts the NOTCH signaling pathway 

and the genes altered by AREG in SUM-149sh4 versus SUM-149shNS cells.  After 

AREG knock-down we observed a decrease in gene expression of Contactin1 (CNTN1), 

a cell adhesion molecule that enhances NOTCH signaling and plays a role in tumor 

invasion and motility, present on the extracellular surface of a cell. CBF1, Suppressor of 

Hairless, LAG-1 (CSL), a well characterized transcription repressor, hairy/enhancer of 

split (E(spI))-related family of transcription factors (HES genes 1,5, and 7, and HEY1), 

transcriptional targets of CSL, were also down-regulated after AREG knock-down 

(Purow et al., 2005).  The HEY/HES family are NOTCH target genes that counteract or 

block differentiation.  They negatively regulate the expression and/or function of 

transcription factors influencing the determination of cell lineage (Meier-Stiegen et al., 

2010; Schwanbeck et al., 2010).  We confirmed the down-regulation of CNTN1, HES7, 

and HEY1 by real-time RT-PCR (Figure 4.3).  HES7 and HEY1 in Hodgkin lymphoma 

cells have been shown to be over expressed as a result of aberrant NOTCH signaling 

(Kochert et al., 2010).  
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Figure 4.2 

 

 

NOTCH Signaling Pathway 
Genes in the NOTCH signaling pathways that are regulated by AREG only in the SUM-
149 cells. Green indicates the gene is down-regulated and red indicates the gene is up-

regulated. 
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Figure 4.3 
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Validation of decreased expression of CNTN1, HEY1, and HES7 in AREG knock-down 
cells 

(A) Relative mRNA expression by real-time RT-PCR of CNTN1, HEY1, and HES7 
mRNA expression in AREG knock-down cells with SUM-149 parental cells normalized 

to one. 
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4.3 Discussion 

By utilizing IPA we were able to identify signaling pathways that were altered by 

the expression profiles in figure 4.1.  Wnt and NOTCH signaling pathways arose as 

pathways that were affected in the expression profiles of SUM-149 and MCF10A+/-

AREG cells.  A recent study, aimed at identifying priming factors contributing to 

progression from lung dysplasia to cancer identified an up-regulation of AREG and 

notably, NOTCH and Wnt signaling cascades (Rohrbeck and Borlak, 2009).  The 

identification of these pathways in our system encourages further investigation. 

NOTCH signaling occurs when the extracellular domain of the NOTCH receptor 

on one cell binds to the extracellular domain of a NOTCH ligand on a neighboring cell; 

therefore, NOTCH signaling requires cell-cell contacts.  Interestingly NOTCH signaling 

was altered by AREG only in the SUM-149 cells (Table 4.7 and 4.8, Fig 4.2 and 4.3).  

The MCF10A+/-AREG gene profiles did not reflect any changes in NOTCH signaling.  

This suggests that activation of the NOTCH signaling cascade is contextually dependent, 

as we only observed its activation in the cancer cell model.  

 In addition to NOTCH signaling, genes commonly regulated by SUM-149sh4 

versus shNS and MCF10A+/-AREG cells influenced the Wnt signaling pathway (Table 

4.5 and 4.6, Fig. 4.4).  Wnt signaling influences stem cell self-renewal in a variety of 

epithelial cells (Reya et al., 2001).  We observed changes in the Wnt pathway in all of the 

gene lists, however the change in gene regulation varied.  In the Wnt pathway, the level 

of change in expression of the genes increased in the AREG model compared to the EGF 

model.  Similarly, genes regulated in the SUM-149 cells, especially DKK1, expressed 
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higher levels of differential expression than the MCF10A+/-AREG gene expression 

profiles.  DKK1, SFRP1, and Wnt were down-regulated in the absence of AREG. The 

array data was confirmed by analyzing DKK1 mRNA expression by real-time RT-PCR 

(Fig. 3.10).  DKK1 expression was down-regulated in all three cell models, but the 

expression was down-regulated by approximately one tenth of the expression levels 

observed when regulated by AREG.  

 A summary of the flow of genes expression, molecular functions, and signaling 

pathways are shown in a flow chart in figure 4.5.  In cancer cells, the change in 

expression of negative Wnt regulators is dramatically increased.  This suggests that Wnt 

signaling, in addition to NOTCH signaling, is context dependent.  
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Figure 4.4 
 

 
 

 
 

Wnt Signaling Pathway 
Genes in the Wnt signaling pathways are regulated by AREG in both MCF10A and 

SUM-149 cells. Green indicates the gene is down-regulated and red indicates the gene is 
up-regulated. The intensity of the red or green indicates the level of up- or down- 

regulation 
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Figure 4.5 

MCF10A+/-AREG ---- MCF10A+/-EGF

MCF10A+/-AREG MCF10A+/-EGF

SUM-149+/-shAREG --- MCF10A+/-AREG

SUM-149+/-shAREG

Molecular Functions: Cell cycle, cellular growth and proliferation

Signaling Pathways: low level of  in negative Wnt Regulator DKK1, regulation of cell cycle checkpoint genes

Molecular Functions: Cell death and movement

Signaling Pathways: Increased level of  in Wnt negative regulator 
SFRP1, but not DKK1, NRF-2-mediated oxidative stress 

Molecular Functions: Cell cycle, cell checkpoints

Signaling Pathways: low levels of  in Wnt negative regulator DKK, 
but not SFRP1

Molecular Functions: Cell-to-cell signaling, cell movement

Signaling Pathways: low level of  in negative Wnt Regulator DKK1, regulation of clatherin mediated 
endocytosis genes

Molecular Functions: Cell movement, cell death

Signaling Pathways: high levels of  in negative Wnt Regulators DKK1 and SFRP1, regulation of NOTCH 
signaling

 
Change of Flow in Molecular Function and Signaling Pathway Regulation 
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

SUM-149 is an aggressive, highly transformed, primary, triple negative, 

inflammatory breast cancer cell line.  These cells are EGF-independent for growth, 

motile, and highly invasive (Hoffmeyer et al., 2005; Jia et al., 2004; Willmarth and 

Ethier, 2006).  They express relatively high levels of constitutively active EGFR and are 

dependent on EGFR for growth (Rao et al., 2000).  In order to understand the EGF-

independent phenotype and the constitutive activation of EGFR, genes that promoted 

EGF-independent growth were isolated from MCF10A cells infected with a cDNA 

library from SUM-149 cells.  From these experiments AREG was identified as the gene 

mediating EGF-independent growth in SUM-149 cells (Berquin et al., 2005).  

The discovery of AREG expression in SUM-149 cells and the identification of 

AREG and EGFR co-over expression in inflammatory breast cancer lead to our focus on 

AREG (LeJeune et al., 1993; Ma et al., 2001).  AREG is over expressed at the protein 

and mRNA level.  Inhibition of the ligand with a neutralizing AREG antibody, 

preventing ligand binding to EGFR, inhibited cell proliferation suggesting that AREG is 

the autocrine factor driving the EGF-independent phenotype (Willmarth and Ethier, 

2006).  In addition, we observed that the synthesis of AREG is also regulated by EGFR 

signaling. It was the results from these experiments that led us to the identification of an 

AREG/EGFR autocrine loop in SUM-149 cells.  The AREG/EGFR autocrine loop, in 

addition to regulating cell proliferation, was also found to regulate the localization of 
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EGFR and the cellular motility and invasiveness of SUM-149 cells (Willmarth and 

Ethier, 2006).  Stemming from the findings of Pan et. al. that SUM-149 cells express 

constitutively active NF-B, our lab discovered a NF-B/IL- feedback loop 

interconnected the AREG/EGFR autocrine loop that influences that proliferative, 

migratory, and invasive capacity of the SUM-149 cells (Pan et al., 2003; Streicher et al., 

2007).  

These previous experiments led us to knock-down the expression of AREG. Our 

initial hypothesis, based on the observation that an AREG/EGFR autocrine loop functions 

in regulating SUM-149 cell proliferation, was that AREG knock-down would inhibit cell 

proliferation. We found that AREG knock-down, in a polyclonal population, allowed for 

cells to continue proliferating albeit at a slower rate.  However, as cells were passaged the 

levels of AREG expression increased.  In addition, the EGFR levels increased and 

localized to the cell membrane.  This suggested that breast cancer cells are able to 

respond to very low levels of EGFR ligands, particularly when EGFR accumulates on the 

cell surface. 

Recently, clones were derived from SUM-149sh4 cells.  By real-time RT-PCR, 

clonal derivative SUM-149sh4-c1 showed the greatest knock-down of AREG compared 

to the SUM-149 parental and SUM-149shNS controls while c5 had the highest levels of 

AREG mRNA and protein expression (data not shown).  Some cells growing in the 

polyclonal population are producing AREG.  This suggests that AREG produced in these 

cells supports the growth of the entire population by paracrine signaling mechanisms and 
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that these AREG expressing cells are slowly taking over the culture, hence why we 

observe increased AREG expression as the cells are passaged. 

Given that SUM-149 cells are capable of growing in serum free conditions, SUM-

149sh4 clonal derivatives were switched from 5% serum to serum free media. SUM-

149sh4-c1 grows slower than the polyclonal SUM-149sh4 cells while SUM-149sh4-c4 

and c6 do not proliferate at all and show signs of mitotic catastrophe and apoptosis in 

serum free conditions (data not shown).  It is now our understanding that there may be 

serum factors that help to promote proliferation of the SUM-149sh4 population. To truly 

understand AREG knock-down we need to continue our studies using the clonal 

derivatives grown in serum free media. Future studies should be directed at studying 

AREG knock-down in other cell lines over expressing AREG, such as the ovarian cancer 

cell line, KCI-OV1.  In addition, it would be valuable to study the invasive capacity and 

rate of proliferation of the knock-down cells in an in vivo model.  

Our findings presented in this dissertation highlight the pathological role of 

AREG in tumor progression. In the past, EGFR’s promotion of disease progression has 

been associated with EGFR when it is either amplified or mutated.  In our cell model, 

AREG drives EGFR accumulation to the cell membrane in the absence of an EGFR 

mutation or amplification.  Moreover, our findings suggest that cell surface EGFR when 

stimulated by AREG, as opposed to EGF, has a pathological role in promoting tumor 

invasion.  

Previous studies support our finding of AREG’s role in enhancing cellular 

invasion (Gschwind et al., 2003; Zhang et al., 2004).  The mechanism(s) by which AREG 
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can promote invasion is still unclear.  The genetic profiles we have obtained in our 

microarray studies lead us to cell signaling pathways altered in the absence of AREG for 

further investigation.  For example, Wnt signaling is one signaling pathway regulated 

only by AREG and not by EGF in either normal (MCF10A) and cancer (SUM-149) cells.  

Wnt and NOTCH are two signaling pathways, among others like hedgehog, that 

regulate stem-cell self renewal (Molofsky et al., 2004). Stem cell self-renewal is 

regulated by the coordination of multiple signaling pathways (Molofsky et al., 2004).  

Wnt signaling promotes the proliferation and maintenance of stem cells by either 

canonical (with -catenin) or non-canonical signaling (Cobas et al., 2004; Reya and 

Clevers, 2005).  Expression of DKK1 and Secreted frizzled-related protein1 (SFRP1), 

genes involved in the Wnt pathway, inhibit Wnt signaling and, therefore, the proliferation 

of stem cells (Mao et al., 2002).  Removal of either EGF or AREG from normal epithelial 

cells slightly up-regulates DKK1, but not secreted frizzled receptor protein 1 (SFRP1), 

and knock-down of AREG in SUM-149 breast cancer cells dramatically up-regulates 

DKK1 and SRFP1.  These data suggest that SUM-149 cells with AREG/EGFR signaling 

induces Wnt signaling, which promotes stem cell self-renewal, perhaps in concert with 

NOTCH signaling.  Further experiments should analyze the involvement of Wnt 

signaling and invasion in cells that are responding to an AREG/EGFR autocrine loop 

In addition to Wnt signaling, gene lists and signaling pathways derived from 

microarray data comparing the SUM-149 AREG knock-down to the shNS control shined 

a light on NOTCH signaling.  NOTCH signaling has been suggested to act coordinately 
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with Wnt signaling to regulate stem cell self-renewal.  Interestingly, NOTCH signaling 

was observed only in the cancer cells and not in the MCF10A cell model.  

NOTCH signaling, depending on the context, can inhibit or promote stem-cell 

renewal (Henrique et al., 1997; Hitoshi et al., 2002).  In addition, NOTCH signaling has 

been observed to promote differentiation (Morrison et al., 2000).  Our data suggest that 

AREG/EGFR signaling is playing a role in the stem cell biology of breast cancer cells by 

shifting the probability of a symmetric division of two stem cells, therefore maintaining 

the stem cell population.  The down-regulation of the HES/HEY family of stem cell 

differentiation repressors after AREG knock-down indicates that in the presence of 

AREG/EGFR signaling stem cells continue to divide and produce more stem cells.  This 

results in expansion of a self-renewing stem cell population resulting in tumorigenesis.  

Further investigation of context dependent NOTCH signaling in SUM-149 cells as 

regulated by AREG would be of great interest. 

Our studies translate to the clinic, as AREG is a potential bio-marker for 

aggressive and invasive disease.  After EGFR inhibition, the AREG/EGFR axis makes 

cells more sensitive to radiation (Rao et al., 2000).  Additionally, AREG/EGFR sensitizes 

patients to treatment with cetuximab (Khambata-Ford et al., 2007).  Our studies suggest 

that AREG/EGFR promotes an aggressive and highly transformed form of breast cancer.  

Recently, high concentrations of AREG in the serum have been suggestive of better 

disease-specific survival when non-small cell lung patients were treated with EGFR 

tyrosine kinase inhibitors (Vollebergh et al., 2010).  Therefore, patients could benefit 
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from being screened for the serum levels of AREG and then be given a more appropriate 

treatment regime.   
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We have previously shown that SUM-149 human breast cancer cells require an 

AREG/EGFR autocrine loop for cell proliferation.  We also demonstrated that AREG can 

increase EGFR stability and promote EGFR localization to the plasma membrane.  In the 

presented dissertation we successfully knocked-down AREG expression in SUM-149 

cells by lenti-viral infection of AREG shRNA.  In the absence of AREG expression, 

SUM-149 cell growth was slowed, but not completely inhibited.  Furthermore, cells 

infected with AREG shRNA constructs showed an increase in EGFR protein expression 

by western blot.  Immunofluorescence and confocal microscopy showed that following 

AREG knock-down, EGFR continued to localize to the cell surface. Soft agar assays 

demonstrated that AREG knock-down cells retain anchorage-independent growth 

capacity.  Additionally mammosphere forming assays and Adefluor staining analysis 

showed that knock-down of AREG expression did not affect the expression of stem cell 
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phenotypes.  However, following AREG knock-down, SUM-149 cells demonstrated a 

dramatic decrease in their ability to invade a Matrigel matrix.  Consistent with this 

observation, microarray analysis comparing cells infected with a non-silencing vector to 

the AREG knock-down cells, identified genes associated with the invasive phenotype 

such as  RHOB  and DKK1, and networks associated with cell motility such as integrin-

linked kinase signaling, and focal adhesion kinase signaling.  AREG was also found to 

modulate WNT and Notch signaling in SUM-149 cells.  In an additional microarray 

study, changes in gene expression were analyzed from cDNA transcribed from RNA 

isolated from MCF10A cells growing in the presence of AREG or EGF and after 24 

hours withdrawl of the respective ligand. Genes regulating WNT signaling, but not 

NOTCH signaling, were altered in the MCF10A cells.  Thus, the pathway that 

AREG/EGFR signaling effects is contextually dependent on the cell type that it is 

functioning in.  We conclude that AREG functions in regulating the invasive phenotype, 

and we propose that this regulation may be through altered signaling that occurs when 

AREG activates plasma membrane localized EGFR.  
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