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Interval Estimation of Risk Difference in Simple Compliance Randomized Trials 
 

Kung-Jong Lui 
San Diego State University 

 
 
Consider the simple compliance randomized trial, in which patients randomly assigned to the 
experimental treatment may switch to receive the standard treatment, while patients randomly assigned to 
the standard treatment are all assumed to receive their assigned treatment. Six asymptotic interval 
estimators for the risk difference in probabilities of response among patients who would accept the 
experimental treatment were developed. Monte Carlo methods were employed to evaluate and compare 
the finite-sample performance of these estimators. An example studying the effect of vitamin A 
supplementation on reducing mortality in preschool children was included to illustrate their practical use.    
 
Key words: interval estimation; coverage probability; average length; efficiency; simple compliance trial. 
 
 

Introduction 
 
In randomized clinical trials, because the 
characteristics of the experimental treatment 
effect are often not completely known, some 
patients randomly assigned to this treatment may 
not comply with their assigned treatment. For 
example, consider the study of vitamin A 
supplementation to reduce mortality among 
preschool children in rural Indonesia (Sommer 
& Zeger, 1991, Sommer, Tarwotjo, Djunaedi, et 
al., 1986). Children who resided in 225 
randomly selected villages out of 450 villages 
were assigned to receive a large oral dose of 
vitamin A two to three months following 
baseline enumeration and again six months later. 
Children in the remaining 225 villages would 
receive no vitamin A supplementation. The 
number of deaths in both comparison groups 
was ascertained in a  second  population  census  
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12 months following the baseline census.  
Nearly 20 percent of children assigned to the 
experimental group failed to receive vitamin A 
supplementation. The mortality rates between 
the groups were then compared. Because the 
data structure for this simple compliance study is 
essentially the same as that of the single consent 
randomized design (Zelen, 1979, 1990, Anbar, 
1983, Brunner & Neumann, 1985, Ellenberg, 
1984, Bernhard & Compagnone, 1989, McHugh, 
1984, Matts & McHugh, 1987, 1993, Lui & Lin, 
2003), all statistical methods developed here for 
the simple compliance trial are applicable to the 
latter (Sommer & Zeger, 1991, Zelen, 1986) as 
well.      

In this article, six asymptotic interval 
estimators of the risk difference between two 
treatments among patients who would accept the 
experimental treatment were developed. These 
included the interval estimator using Wald’s 
statistic (Casella & Berger, 1990, Sommer & 
Zeger, 1991), the interval estimator 
using tanh ( )−1 x  transformation (Edwardes, 
1995, Lui, 2002) of the maximum likelihood 
estimator (MLE), the interval estimator derived 
from a quadratic equation based on the MLE and 
its asymptotic properties, the interval estimator 
using an idea similar to that of Fieller’s Theorem 
(Casella & Berger, 1990), and the interval 
estimator using a randomization-based approach 
with and without the continuity correction (Mark 
& Robins, 1993, Sato, 2000). To evaluate and 
compare the finite sample performance of these 
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estimators, Monte Carlo simulation was 
employed.  Finally, an example studying the 
effect of vitamin A supplementation on reducing 
mortality in preschool children (Sommer, 
Tarwotjo, Djunaedi, et al., 1986) was included to 
illustrate their practical use.    
 
Methods and Notations 

Consider comparing an experimental 
treatment with a standard treatment in a simple 
compliance randomized trial. Patients randomly 
assigned to the experimental treatment are 
allowed to switch to receive the standard 
treatment, while patients randomly assigned to 
the standard treatment are assumed to all receive 
their assigned treatment. For clarity, the 
probabilities pij of response for the experimental 
treatment are summarized in the following table. 
For example, the parameter p11 denotes 
probability of obtaining a patient who would 
accept the experimental treatment and have a 
positive response. Define pi + = pi1 + pi0  and 
p j+ = p j1 + p j0  for i = 1, 0 and j = 1, 0 (see 

Table 1).   
Similarly, the parameter pij

*  ( i = 1, 0 and 
j = 1, 0) denotes the corresponding cell 

probability of response in the following table for 
the standard treatment. Define pi+

* = pi1
* + pi0

*  
and p j+

* = p j1
* + p j0

*  for i = 1, 0 and j = 1, 0 (see 
Table 2).   

Because a patient assigned to the 
experimental treatment will receive the standard  

 
 

 
 
 

treatment   if   he/she   declines   to   receive   the  
experimental treatment and because patients are 
randomly assigned to either treatment, the 
equality pi0 = pi0

*  (for i = 1, 0) can be reasonably 
assumed to hold (Sommer & Zeger, 1991). 
These imply that the proportions of patients who 
would consent to accept the experimental 
treatment between the two treatment groups are 
equal (i.e., p+1 = p+1

* ).  
Suppose that there are n and m patients 

independently randomly assigned to receive the 
experimental and standard treatments, 
respectively. Let nij (and mij ) denote the 
observed frequencies corresponding to the cell 
probabilities pij  (and pij

* ) in the experimental 
(and the standard) treatment. Then the random 
vector n = ( n n n n11 10 01 00, , , ) ' follows the 
multinomial distribution with parameters n and 
( p p p p11 10 01 00, , , ) ' . Because patients assigned to 
the standard treatment were not asked whether 
they would accept the experimental treatment, 
only the marginal total number of responses 
m1+ (= m m11 10+ ), following the binomial 
distribution with parameters m 
and p p p1 11 10+ = +* * *( ) , was observed.  

In this article, searching for a good 
interval estimator for the risk difference 
Δ( ( / ) ( / ) ( ) / )* * *= − = −+ + + + +p p p p p p p11 1 11 1 1 1 1

between two treatments among patients who 
would accept the experimental treatment is the 
main focus of interest here. Note that the range 
for Δ  is, by definition, − < <1 1Δ . 
 
 

 
 
 
 

 
Table 1. Experimental Treatment: Consent to Receive the Experimental Treatment 

                                             
 
  Yes No Total 

Positive p11  p10  p1+  
Negative p01  p00  p0+  

Total p+1  p+0        1 

  Response 
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Based on the intent-to-treat analysis 
(Zelen, 1979), patients are compared according 
to the treatments to which they are originally 
designated despite whether patients comply with 
their regimen. The maximum likelihood 
estimator (MLE) for Δ  is given by  
                       
                        Δ = ( *p p1 1+ +− )/ p+1                 (1)                                                                                       
 
where p p p1 11 10+ = + , p p p+ = +1 11 01 , 

/p n nij ij= , and /*p m m1 1+ += . Furthermore, on 
the basis of the delta method (Appendix), an 
estimated asymptotic variance of Δ  is obtained 
as   
   

^

* * 3
1 10 01 1 10 1 0 1

ˆ( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ( ) (2 )] /( )

Var
p p p p p p p np+ + + + +

Δ
= + − −
+ −+ + +( ) / ( )* *p p mp1 1 1

21                      
                                                                         (2) 
 
Based on (1) and (2), an asymptotic 100(1-α ) 
percent confidence interval using Wald’s 
statistic for Δ  is given by    
 

                [max{ Δ - Zα ./2 ( ( ))
^

/Var Δ 1 2 , -1}, 

                 min{ Δ + Zα ./2 ( ( ))
^

/Var Δ 1 2 ,1}]                                     
                                                                         (3) 
 
where Zα ./2  is the upper 100 ( / )α 2 th  percentile 
of the standard normal distribution.   
 

 

 
 
 

Because the sampling distribution of Δ  
can be skewed, interval estimator (3) may not 
perform well when the number of patients 
assigned to either treatment is not large. On the 
basis of some empirical results that the 

transformation tanh ( )( log(( ) / ( )))− = + −1 1
2

1 1x x x has 

been successfully applied to improve the 
performance of statistics relevant to the 
difference in proportions under other situations 
(Edwardes, 1995, Lui, 2002), this transformation 
is considered in this article as well. Based on the 
delta method again, an estimated asymptotic 
variance can be shown to be given by 

Var Var
^ ^

(tanh ( )) ( ) / ( )− = −1 2 21Δ Δ Δ . This leads 
to produce an asymptotic 100(1-α ) percent 
confidence interval for Δ  to be           

 

     [ tanh ( tanh ( )−1 Δ - Zα ./2 ( (tanh ( )))
^

/Var −1 1 2Δ ),    
                                         

   tanh ( tanh ( )−1 Δ + Zα ./2 ( (tanh ( )))
^

/Var −1 1 2Δ )]                            
(4) 

 
Note that when both n and m are large, the 
probability P( ( ) / ( )Δ Δ Δ− 2 Var ≤ Zα /2

2 ) ≈ −1 α , 
where Var( )Δ  is, as shown in Appendix, given 
by  
 

Δ[( )( ) ( )] / ( )*p p p p p p np1 1 1 11 1 1 1
21 2+ + + + + +− − − − +

p p np p p mp1 1 1
2

1 1 1
21 1+ + + + + +− + −( ) / ( ) ( ) / ( )* * . 

 
 

 
Table 2. Standard Treatment: Consent to Receive the Experimental Treatment 

 
 
 
 
 
 

 Yes No Total 
Positive p11

*  p10
*  p1+

*  
Negative p01

*  p00
*  p0+

*  
Total p+1

*  p+0
*   1 

Response 
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This suggests the following quadratic inequality: 
                           
                        Δ2 2− B Δ +C ≤ 0 ,                   (5)                                                                                  
 
where      
 

A = 1 
 

2 *
/ 2 1 1 1

2
11 1 1 1

ˆ ˆ ˆ ˆB= [( )(1 )
ˆ ˆ ˆ ˆ2( )] /(2 )

Z p p p
p p p np

α + + +

+ + +

Δ + − −

− −
 

             
 

2 2 2
/ 2 1 1 1

* * 2
1 1 1

ˆ ˆ ˆ ˆC= - [ (1 ) /( )
ˆ ˆ ˆ(1 ) /( )]

Z p p np
p p mp

α + + +

+ + +

Δ −

+ −
. 

 
Thus, if B AC2 0− > , then an asymptotic 100(1-
α ) percent confidence interval for Δ would be 
given by 
 
               [max{ ( ) /B B AC A− −2 ,-1},     

                min{ ( ) /B B AC A+ −2 ,1}]  .                            
                                                                         (6) 
     

To alleviate the concern that the 
sampling distribution of the MLE 

(Δ = ( *p p1 1+ +− )/ p+1 ) can be, as noted 
previously, skewed when n or m is small, the 
idea of Fieller’s Theorem (Casella & Berger, 
1990) may be considered. Define Z * =  
( )*p p p1 1 1+ + +− − Δ . First, note that the 
expectation E Z( )* is equal to 0. The variance of 
Z * is       

 
* * *

1 1 1 1
2

1 1 11 1 1

( ) (1 ) / (1 ) /

(1 ) / 2 ( ) /

Var Z p p n p p m
p p n p p p n

+ + + +

+ + + +

= − + − +

Δ − − Δ −
 

                                                                        
(7) 

       
Thus, when both n and m are large, the 
probability P( ( ) / ( ) )* *

/Z Var Z Z2
2

2≤ ≈α 1 − α . 
This leads to considering the following quadratic 
equation: 
 
                     

               A B C* * *Δ Δ2 2 0− + ≤                    (8)                             
 
where     
 
A p Z p p n*

/ ( ) /= − −+ + +1
2

2
2

1 11α  
              
B p p p Z p p p n* *

/( ) ( ) /= − − −+ + + + +1 1 1 2
2

11 1 1α  
             

( )

* * 2
1 1

* *
2 1 1 1 1

/ 2

ˆ ˆ( )

ˆ ˆ ˆ ˆ1 (1 )

C p p

p p p p
Z

n mα

+ +

+ + + +

= − −

− −
+

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
If ( )* * *B A C2 0− > , then an asymptotic 100(1-
α ) percent confidence interval for Δ would be 
given by  
 
          [max{ ( ( ) ) /* * * * *B B A C A− −2 ,-1},       

           min{ ( ( ) ) /* * * * *B B A C A+ −2 ,1}]  .                
                                                                         (9) 
      

Following Mark and Robins (1993), 
Sato (1995, 2000) discussed sample size 
calculation using a randomization-based 
approach in binary outcome data. Based on the 
same arguments as those given by (Sato, 2000, 
pp. 2691-2692), an asymptotic 100(1-α ) 
percent confidence interval for Δ  is obtained as  
 
      [max{ ( ( ) ) /** ** ** ** **B B A C A− − −− −2 ,-1},                               

       min{ ( ( ) ) /** ** ** ** **B B A C A+ + ++ −2 ,1}],                                
                                                                       (10) 
where  
 
A n m Z nm N**

/[ ( ) / ]= ++1
2 2

2
2
α  

  
**

1 1 1
2

/ 2 1 1 1

( )

( 2( )) /(2 )

B mn mn nm c
Z nmn N n m Nα

± + + +

+ + +

= − ±

− − +
 

             
** 2

1 1
2

/ 2 1 1 1 1

( )

( )( ( ))/N

C mn nm c
Z nm n m N n mα

± + +

+ + + +

= − ±

− + − +
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N n m= + , n n n1 11 10+ = + , n n n+ = +1 11 01 , and 
c = N/2 when one wishes to employ the 
continuity correction; and c = 0, otherwise.      
  
Monte Carlo Simulation 

To evaluate and compare the finite 
sample performance of interval estimators (3), 
(4), (6), (9), and (10), Monte Carlo simulation is 
employed. Given the population proportion of a 
randomly selected patient who would consent to 
accept the experimental treatment 
p p+ +=1 1( )* and the probability of positive 

response pr c|
* ( = +p p11 1

* */ ) among patients who 
would consent to accept the experimental 
treatment (if he/she had been assigned to the 
experimental treatment) in the standard 
treatment, the cell probability p11

* = p pr c|
* *

+1 = 

p pr c|
*

+1  can then be uniquely determined. For 
given a value Δ , the cell 
probability: p p p11 11 1= + +

* Δ .  
Similarly, the cell 

probability p p10 10
* ( )= can be determined 

by p pr c|
* *( )1 1− + when the probability pr c|

*  of 
positive response among patients who would 
decline to receive the experimental treatment in 
the standard treatment is given. In the 
simulation, pr c|

*  is arbitrarily set equal to pr c|
* /3. 

For simplicity, the case of equal sample 
allocation (i.e., n m= ) is focused here.  

This article considers the situations, in 
which the probability of a randomly selected 
patient who would consent to accept the 
experimental treatment p+1  = 0.30, 0.50, 0.80; 
the underlying difference between two 
treatments among patients who would consent to 
accept the experimental treatment Δ = 0.0, 0.10, 
0.20; the conditional probability of positive 
responses among patients who would consent to 
accept the experimental treatment in the 
standard treatment group pr c|

* =0.20, 0.50; and 
the number of patients assigned to either 
treatment n m( )= = 30, 50, 100.  

For each configuration determined by a 
combination of these parameters, SAS (1990) is 
applied to  generate  10000 repeated samples  of  

 

observations following the desired multinomial 
distributions to estimate the coverage probability 
and the average length. Note that if a sample led 
to p+1  = 0 or an estimate Δ  was out of the 
range − < <1 1Δ , any interval estimator 
discussed here would be inapplicable.   

Furthermore, if the two distinct real 
roots of a quadratic equation did not exist, the 
corresponding interval estimator could not be 
employed either. The estimated coverage 
probability and average length are calculated 
over those samples for which the corresponding 
interval estimator exists.  For completeness, the 
probability of failing to produce a confidence 
interval for each interval estimator in all the 
above situations is also calculated.   
 

Results 
 
Table 3 summarizes the estimated coverage 
probability and average length of 95% 
confidence interval using interval estimators (3), 
(4), (6), (9), as well as the interval estimator (10) 
with and without the continuity correction. Note 
that the coverage probability of interval 
estimator (10) using the randomization approach 
without the continuity correction can be 
frequently less than 95% by more than 1% when 
the underlying difference Δ  is not equal to 0.  
By contrast, the interval estimator (10) with the 
continuity correction tends to be conservative 
and hence lose efficiency with respect to the 
average length as compared with the other 
estimators considered here (Table 3). Note 
further that interval estimators (3) and (6) are 
essentially equivalent and both are preferable to 
interval estimator (9) with respect to efficiency.  

Finally, note that interval estimator (4) 
is consistently the most efficient with respect to 
the average length among all interval estimators 
with the coverage probability larger than or 
equal to the desired 95% confidence level 
considered here. In fact, interval estimator (4) is 
the only one estimator that has the estimated 
coverage probability larger than the 95% 
confidence level in all the situations discussed in 
Table 3.  
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Table 3.  The estimated coverage probability and average length (in parenthesis) of 95% confidence 
interval using interval estimators (3), (4), (6), (9), as well as the interval estimator (10) with and 
without continuity correction.  Each entry is calculated on the basis of 10000 repeated samples. 
__________________________________________________________________________________ 

p+1  Δ   pr c|
*
    n    (3)     (4)     (6)     (9)        (10) 

 0.30 0.00 0.20   30  0.965   0.992   0.949   0.946   0.995a  0.950b 
                     (1.060) (1.004) (1.044) (1.166) (1.204) (1.016) 
                  50  0.956   0.984   0.937   0.937   0.980   0.944 
                     (0.831) (0.792) (0.829) (0.915) (0.941) (0.815) 
                 100  0.956   0.970   0.950   0.950   0.976   0.951 
                     (0.582) (0.565) (0.583) (0.613) (0.646) (0.580) 
 
           0.50   30  0.972   0.998   0.964   0.962   0.988   0.972 
                     (1.395) (1.328) (1.352) (1.453) (1.483) (1.341) 
                  50  0.965   0.995   0.950   0.950   0.975   0.956 
                     (1.161) (1.096) (1.145) (1.231) (1.237) (1.125) 
                 100  0.954   0.983   0.946   0.946   0.966   0.949 
                     (0.835) (0.795) (0.836) (0.877) (0.886) (0.821) 
 
      0.10 0.20   30  0.965   0.994   0.949   0.948   0.987   0.944 
                     (1.093) (1.034) (1.084) (1.210) (1.229) (1.036) 
                  50  0.958   0.987   0.945   0.946   0.976   0.938  

                     (0.868) (0.825) (0.868) (0.959) (0.956) (0.828) 
                 100  0.953   0.968   0.947   0.946   0.964   0.939  
                     (0.605) (0.587) (0.606) (0.638) (0.647) (0.581) 
 
           0.50   30  0.969   0.999    0.960   0.958   0.987   0.967 
                     (1.391) (1.325) (1.362) (1.461) (1.499) (1.354) 
                  50  0.961   0.998    0.949   0.950   0.975   0.955 
                     (1.158) (1.091) (1.148) (1.236) (1.244) (1.130) 
                 100  0.951   0.986    0.943   0.943   0.964   0.945 
                     (0.837) (0.795) (0.838) (0.879) (0.891) (0.825) 
 
      0.20 0.20   30  0.960   0.994   0.944   0.944   0.980   0.932  
                     (1.107) (1.061) (1.106) (1.227) (1.247) (1.047) 
                  50  0.956   0.989   0.944   0.946   0.970   0.931  
                     (0.882) (0.841) (0.886) (0.975) (0.961) (0.831) 
                 100  0.952   0.972   0.946   0.946   0.960   0.933  
                     (0.617) (0.599) (0.619) (0.650) (0.647) (0.580) 
 
           0.50   30  0.973   1.000   0.964   0.962   0.991   0.975 
                     (1.372) (1.328) (1.362) (1.440) (1.504) (1.361) 
                  50  0.959   0.998   0.946   0.946   0.978   0.955 
                     (1.142) (1.088) (1.143) (1.229) (1.248) (1.134) 
                 100  0.958   0.991   0.952   0.952   0.972   0.957 
                     (0.824) (0.785) (0.828) (0.868) (0.889) (0.823) 
_____________________________________________________________________ 
a :This column is calculated with the continuity correction. 
b: This column is calculated without the continuity correction.   

: means that the estimated coverage probability is less than the desired 95% confidence level by more than 
1%.  

: indicates that the interval estimator has the shortest average length among interval estimators subject to its 
estimated coverage probability less than the desired 95% confidence level by no more than 1%. 
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Table 3 (Continued) 
_____________________________________________________________________ 

p+1  Δ   pr c|
*
    n    (3)     (4)     (6)     (9)        (10) 

 0.50 0.00 0.20   30  0.949   0.971   0.941   0.941   0.987   0.944 
                     (0.698) (0.670) (0.699) (0.755) (0.819) (0.688) 
                  50  0.955   0.967   0.947   0.947   0.979   0.949 
                     (0.538) (0.524) (0.538) (0.563) (0.612) (0.533) 
                 100  0.952   0.957   0.950   0.950   0.973   0.950 
                     (0.379) (0.374) (0.379) (0.387) (0.417) (0.377) 
 
           0.50   30  0.950   0.985   0.945   0.945   0.976   0.953 
                     (0.973) (0.919) (0.968) (1.033) (1.057) (0.935) 
                  50  0.951   0.976   0.947   0.947   0.971   0.952 
                     (0.755) (0.723) (0.756) (0.790) (0.814) (0.736) 
                 100  0.945   0.957   0.940   0.940   0.961   0.942 
                     (0.528) (0.516) (0.529) (0.540) (0.561) (0.521) 
 
      0.10 0.20   30  0.948   0.976   0.943   0.943   0.979   0.934  
                     (0.734) (0.703) (0.735) (0.793) (0.821) (0.689) 
                  50  0.947   0.965   0.944   0.944   0.969   0.933  
                     (0.564) (0.549) (0.565) (0.590) (0.610) (0.532) 
                 100  0.951   0.957   0.948   0.948   0.961   0.937  
                     (0.399) (0.393) (0.399) (0.407) (0.417) (0.378) 
 
           0.50   30  0.951   0.990   0.944   0.944   0.978   0.953 
                     (0.968) (0.912) (0.967) (1.033) (1.060) (0.937) 
                  50  0.949   0.977   0.944   0.944   0.971   0.952 
                     (0.746) (0.714) (0.748) (0.781) (0.810) (0.732) 
                 100  0.951   0.963   0.948   0.948   0.967   0.952 
                     (0.525) (0.513) (0.526) (0.536) (0.561) (0.521) 
 
      0.20 0.20   30  0.943   0.975   0.938   0.939   0.969   0.919  
                     (0.753) (0.723) (0.757) (0.815) (0.824) (0.692) 
                  50  0.951   0.966   0.946   0.947   0.963   0.928  
                     (0.581) (0.565) (0.582) (0.608) (0.612) (0.534) 
                 100  0.948   0.956   0.947   0.946   0.953   0.927  
                     (0.411) (0.405) (0.411) (0.419) (0.418) (0.378) 
 
           0.50   30  0.950   0.992   0.942   0.942   0.978   0.955 
                     (0.953) (0.901) (0.957) (1.022) (1.062) (0.938) 
                  50  0.949   0.977   0.943   0.942   0.971   0.952 
                     (0.735) (0.706) (0.738) (0.770) (0.810) (0.732) 
                 100  0.951   0.962   0.947   0.948   0.968   0.955 
                     (0.516) (0.505) (0.517) (0.527) (0.560) (0.521) 
_____________________________________________________________________ 
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Table 3 (continued) 
_______________________________________________________________________ 

p+1  Δ   pr c|
*     n    (3)     (4)     (6)     (9)        (10) 

 0.80 0.00 0.20   30  0.945   0.953   0.941   0.941   0.982   0.951 
                     (0.473) (0.464) (0.473) (0.482) (0.546) (0.467) 
                  50  0.945   0.950   0.942   0.942   0.974   0.945 
                     (0.368) (0.364) (0.368) (0.372) (0.414) (0.365) 
                 100  0.949   0.952   0.950   0.950   0.968   0.950 
                     (0.261) (0.259) (0.261) (0.262) (0.284) (0.260) 
 
           0.50   30  0.948   0.964   0.951   0.951   0.977   0.952  
                     (0.624) (0.604) (0.624) (0.636) (0.682) (0.603) 
                  50  0.946   0.953   0.944   0.944   0.966   0.944  
                     (0.484) (0.475) (0.484) (0.489) (0.522) (0.474) 
                 100  0.947   0.952   0.945   0.945   0.959   0.945  
                     (0.343) (0.340) (0.343) (0.345) (0.364) (0.339) 
 
      0.10 0.20   30  0.944   0.953   0.941   0.942   0.969   0.930  
                     (0.505) (0.494) (0.505) (0.514) (0.545) (0.466) 
                  50  0.950   0.956   0.950   0.950   0.965   0.934  
                     (0.393) (0.388) (0.393) (0.397) (0.414) (0.365) 
                 100  0.947   0.950   0.946   0.946   0.956   0.932  
                     (0.279) (0.277) (0.279) (0.280) (0.284) (0.260) 
 
           0.50   30  0.943   0.960   0.937   0.939   0.973   0.950 
                     (0.619) (0.600) (0.620) (0.631) (0.682) (0.603) 
                  50  0.949   0.958   0.947   0.947   0.972   0.952 
                     (0.481) (0.472) (0.481) (0.486) (0.523) (0.475) 
                 100  0.945   0.950   0.944   0.944   0.963   0.948 
                     (0.340) (0.337) (0.340) (0.342) (0.364) (0.339) 
 
      0.20 0.20   30  0.944   0.956   0.943   0.943   0.961   0.918  
                     (0.524) (0.513) (0.524) (0.534) (0.546) (0.467) 
                  50  0.943   0.951   0.943   0.943   0.951   0.917  
                     (0.408) (0.402) (0.408) (0.412) (0.413) (0.365) 
                 100  0.946   0.952   0.947   0.947   0.946   0.918  
                     (0.289) (0.287) (0.289) (0.291) (0.285) (0.260) 
 
           0.50   30  0.949   0.964   0.947   0.947   0.979   0.960 
                     (0.605) (0.588) (0.606) (0.617) (0.683) (0.605) 
                  50  0.946   0.957   0.945   0.945   0.974   0.957 
                     (0.468) (0.460) (0.469) (0.473) (0.523) (0.474) 
                 100  0.950   0.953   0.948   0.949   0.969   0.956 
                     (0.332) (0.329) (0.332) (0.334) (0.364) (0.340) 
_______________________________________________________________________ 
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Finally, Table 4 shows that except for 
the extreme cases where both the probability of 
consent p+1  and the number of patients assigned 
to each treatment n are small (i.e., p+1 = 0.30 and 
n = 30), the probability of failing to produce a 
95% confidence interval by using interval 
estimators discussed here is generally negligible 
( ≤ 0.002) in all the situations considered in 
Table 3.   
 
An Example 

Consider the randomized trial of 
studying vitamin A supplementation to reduce 
the mortality among preschool children in rural 
Indonesia (Sommer, Tarwotjo, Djunaedi, et al., 
1986). As described previously, children were 
randomly assigned to either the treatment group 
of receiving a large oral dose of vitamin A for 
two to three months following baseline 
evaluation and again six months later, or to the 
control group without receiving any vitamin A 
supplementation. In the control group, children 
were precluded from receiving a placebo for 
ethical reasons and therefore, only the total 
number of survival children without the 
information on children who would fail to take 
vitamin A if they were assigned to receive this 
vitamin was observed. The results on mortality 
from month 4 (following completion of the first 
distribution cycle) to month 12 were compared.  

As shown elsewhere (Sommer & Zeger, 
1991), the number of survival children in the 
control group, ( )m1+ = was 11,514 out of 
( )m = 11,588 children. Furthermore, the 
frequencies: 11n 9,663= , 10n 2,385= , 
n01 12= , n00 34= , were obtained for the total 
number 12,094 of children assigned to the 
treatment of receiving vitamin A. Suppose that 
one is interested in estimation of vitamin A 
effect on the non-death rate between the group 
receiving vitamin A and the group without 
receiving vitamin A supplement among children 
who would consent to accept vitamin A.   

Given the above data, the MLE Δ  is 
0.0032. Applying interval estimators (3), (4), 
(6), (9), as well as (10) with and without the 
continuity correction leads to produce 95% 
confidence intervals to be: [0.0010, 0.0055], 
[0.0010, 0.0055], [0.0010, 0.0055], [0.0010, 

0.0055], [0.0008, 0.0061], and [0.0009, 0.0060], 
respectively. Because the total number of 
children in this randomized trial is quite large, 
the resulting 95% confidence interval using 
interval estimators (3), (4), (6), and (9) are 
essentially identical. Note that the 95% 
confidence interval using (10) with the 
continuity correction tends to have the length 
larger than the others. This is actually consistent 
with the previous findings obtained in 
simulations. Because all the above lower limits 
fall above 0, there is a significant evidence to 
support that taking vitamin A can increase the 
survival rate for preschool children at 5%-level.     
 

Conclusion 
 

It was found that the interval estimator (10) 
using the randomization-based approach with 
the continuity correction can lose efficiency, 
while this estimator without the continuity 
correction can be slightly liberal when the 
underlying difference Δ  is not equal to 0. This 
article also finds that the interval estimator (4) 
using the tanh ( )−1 Δ transformation is probably 
preferable to all the other estimators discussed 
here with respect to the coverage probability and 
the average length.  Thus, interval estimator (4) 
is recommended for general use.   

Following Brunner and Neumann 
(1985) as well as Bernhard and Compagnone 
(1989), one can also discuss interval estimation 
of the selection effect, defined as 
p p p p11 1 10 0

* * * */ /+ +−  which is the difference in 
probabilities of positive response for the 
standard treatment between patients who would 
agree and patients who would decline to receive 
the experimental treatment. By the functional 
invariance property, the MLE for this selection 
effect is simply equal to ( / ) /*p p p p1 10 0 1+ + +−  
(Appendix). Thus, it is straightforward to extend 
the above discussion to account for interval 
estimation of this selection effect. However, the 
detailed derivation and discussion on the 
selection effect are beyond the scope of this 
article and can be a future possible research 
topic.     
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Table 4.  The estimated probability of failing to apply interval estimators (3), (4), (6), (9), as well 
as the interval estimator (10) with and without the continuity correction. 
______________________________________________________________________________________ 

 p+1  Δ   pr c|
*
     n    (3)     (4)     (6)     (9)         (10) 

 0.30 0.00 0.20   30  0.012   0.012   0.013   0.017   0.047a   0.012b 
                  50  0.001   0.001   0.001   0.001   0.006   0.001 
                 100  0.000   0.000   0.000   0.000   0.000   0.000 
           0.50   30  0.041   0.041   0.041   0.043   0.041   0.041 

                  50  0.010   0.010   0.010   0.010   0.010   0.010 
                 100  0.000   0.000   0.000   0.000   0.000   0.000 
      0.10 0.20   30  0.010   0.010   0.010   0.014   0.041   0.010 
                  50  0.002   0.002   0.002   0.002   0.004   0.002 
                 100  0.000   0.000   0.000   0.000   0.000   0.000 
           0.50   30  0.038   0.038   0.038   0.041   0.038   0.038 
                  50  0.008   0.008   0.008   0.008   0.008   0.008 
                 100  0.000   0.000   0.000   0.000   0.000   0.000 
      0.20 0.20   30  0.016   0.016   0.016   0.020   0.048   0.016 
                  50  0.002   0.002   0.002   0.002   0.005   0.002 
                 100  0.000   0.000   0.000   0.000   0.000   0.000 
           0.50   30  0.040   0.040   0.040   0.043   0.040   0.040 
                  50  0.009   0.009   0.009   0.009   0.009   0.009 
                 100  0.000   0.000   0.000   0.000   0.000   0.000 
 
 0.50 0.00 0.20   30  0.000   0.000   0.000   0.000   0.015   0.000 
                  50  0.000   0.000   0.000   0.000   0.001   0.000 
                 100  0.000   0.000   0.000   0.000   0.000   0.000 
           0.50   30  0.002   0.002   0.002   0.002   0.002   0.002 
                  50  0.000   0.000   0.000   0.000   0.000   0.000 
                 100  0.000   0.000   0.000   0.000   0.000   0.000 
      0.10 0.20   30  0.000   0.000   0.000   0.000   0.015   0.000 
                  50  0.000   0.000   0.000   0.000   0.000   0.000 
                 100  0.000   0.000   0.000   0.000   0.000   0.000 
           0.50   30  0.001   0.001   0.001   0.001   0.001   0.001 
                  50  0.000   0.000   0.000   0.000   0.000   0.000 
                 100  0.000   0.000   0.000   0.000   0.000   0.000 
      0.20 0.20   30  0.000   0.000   0.000   0.000   0.014   0.000 
                  50  0.000   0.000   0.000   0.000   0.001   0.000 
                 100  0.000   0.000   0.000   0.000   0.000   0.000 
           0.50   30  0.002   0.002   0.002   0.002   0.002   0.002 
                  50  0.000   0.000   0.000   0.000   0.000   0.000 
                 100  0.000   0.000   0.000   0.000   0.000   0.000 
 
_______________________________________________________________________ 
a : This column is calculated with the continuity correction. 
b : This column is calculated without the continuity correction  
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In summary, six interval estimators for 

estimating the risk difference in a simple 
compliance     randomized     trial     have    been 
developed. The evaluation and comparison of 
the finite-sample performance of these interval 
estimators have been carried out in a variety of 
situations. The interval estimator using 
the tanh ( )−1 Δ transformation of the MLE has 
been shown to be the best among all interval 
estimators for the risk difference considered 
here. The results and the discussion presented in 
this article should have use for biostatisticians 
and clinicians when they encounter data under a 
simple compliance randomized trial.       
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Appendix 

Let R  denote the response random 
variable: R = 1 if the underlying response is 
positive and = 0, otherwise. Furthermore, let T 
and C denote the random variables for the 
treatment assignment and the acceptance of the 
experimental treatment, respectively: T = 1 for 
the experimental treatment, and T = 0 for the 
standard treatment; C = 1 for accepting the 
experimental treatment and C = 0, otherwise. 
Let P R T i( | )= =1 denote the probability of 
response for treatment i (i=1 and 0).  Because 
patients were randomly assigned to the 

treatment, it may reasonably be assumed that the 
proportion of patients who would consent to 
accept the experimental between the 
experimental and standard treatment groups are 
equal  
 
(i.e., P C T P C T P C( | ) ( | ) ( ))= = = = = = =1 1 1 0 1  

 
Note that  
 
P R T P R T( | ) ( | )= = − = =1 1 1 0 = 
 [ ( | , )P R T C= = =1 1 1 -
P R T C( | , )]= = =1 0 1 P C T( | )= =1 1 + 
 [ ( | , )P R T C= = =1 1 0 -
P R T C( | , )]= = =1 0 0 P C T( | )= =0 1 .                                           
                                                                     (A.1) 
 

Because a patient assigned to the 
experimental treatment who does not consent to 
accept his/her assigned treatment will receive 
the standard treatment (i.e., T = 0), by the 
exclusion restriction assumption (Angrist, 
Imbens, & Rubin, 1996), the 
equality P R T C( | , )= = = =1 1 0  P R T C( | , )= = =1 0 0  
holds. Thus, the second component of (A.1) is 
zero.  These suggests that equation (A.1) can be 
expressed in terms of notations pij  and pij

*  as   
 

p p1 1+ +− * = Δ p+1  
                                                        (A.2) 

 
where Δ = −+ +( / ) ( / )* *p p p p11 1 11 1  is the 
difference in probabilities of positive response 
among patients who would consent to accept the 
experimental treatment. Say, there are n and m 
patients independently randomly assigned to 
receive the experimental and standard 
treatments, respectively. Let nij (and mij ) denote 
the observed frequency corresponding to the cell 
probability pij  (and pij

* ) in the experimental 
(and the standard) treatment. Then, the random 
vector n = ( n n n n11 10 01 00, , , ) ' follows the 
multinomial distribution with parameters n and 
( p p p p11 10 01 00, , , ) ' .  Furthermore, the marginal 
number m1+ (= m m11 10+ ) of patients with 
positive response in the standard treatment 
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follows the binomial distribution with 
parameters m and p p p1 11 10+ = +* * *( ) .  Therefore, 
by the functional invariance property (Casella & 
Berger, 1990) of the MLE, the MLE for Δ  is  
 
                        Δ = ( *p p1 1+ +− )/ p+1             (A.3)                                                                                      
 
where p p p1 11 10+ = + , p p p+ = +1 11 01 , and 

* * *p p p1 11 10+ = + , where /p n nij ij=  and 

/*p m mij ij= .  By the Central Limit Theorem 
(Casella & Berger, 1990), as both n and m are 
large, the random vector 
( , , )* 'p p p1 1 1+ + + asymptotically follows the 
multivariate normal distribution with mean 
vector ( , , )* 'p p p1 1 1+ + +  and covariance matrix 
with diagonal terms given by           
 

Var p p p n( ) ( ) /1 1 11+ + += − , 
Var p p p n( ) ( ) /+ + += −1 1 11 , 
Var p p p m( ) ( ) /* * *

1 1 11+ + += − , 
 
and  off-diagonal terms given by  
 
Cov p p p p p n( , ) ( ) /1 1 11 1 1+ + + += − ,  
 
and 
 
Cov p p( , )*

1 1+ + =  Cov p p( , )*
+ + =1 1 0.  

 
On the basis of the delta method, an 

asymptotic variance of Δ  is given by      
                         

            
*

1 1 1
2

11 1 1 1

ˆ( ) [( )(1 )

2( )] /( )

Var p p p
p p p np

+ + +

+ + +

Δ = Δ − −

− − +
 

 
p p np p p mp1 1 1

2
1 1 1

21 1+ + + + + +− + −( ) / ( ) ( ) / ( )* * .                              
                                                                     (A.4) 
  
 
 
 
 
 
 
 

From (A.4), the following variance estimator  
 

              

^

1 10 01

* * 3
1 10 1 1 1

* * 2
1 1 1

ˆ ˆ ˆ ˆ( ) [ ( )
ˆ ˆ ˆ ˆ ˆ(2 (1 ))] /( )
ˆ ˆ ˆ(1 ) /( )

Var p p p
p p p p np
p p mp

+

+ + + +

+ + +

Δ = +

− − −

+ −

                     

                                                                                                        
                                                                     (A.5) 
 
is obtained by simply substituting Δ for Δ , p1+  
for p1+ , p+1  for p+1 , *p1+  for p1+

* , and p11  
for p11 . For assessing the selection effect 
(Brunner & Neumann, 1985, Bernhard & 
Compagnone, 1989), consider the following 
difference:   

     

( 1| 0) ( 1| 1, 0)
[ ( 1| 0, 1)

( 1| 0, 0)] ( 1| 1)

P R T P R T C
P R T C

P R T C P C T

= = − = = =
= = = =
− = = = = =

 

                                                                     (A.6) 
 

In terms of notations pij and pij
* , formula 

(A.6) may be rewritten as  
                    
       p p p1 10 0+ +−* / =( p p p p11 1 10 0

* * * */ /+ +− ) p+1  .                           
                                                                     (A.7)                           
 
Thus, the selection effect, defined as 
p p p p11 1 10 0

* * * */ /+ +−  which is simply the 
difference in probabilities of positive response 
for the standard treatment between patients who 
would accept and patients who would decline to 
the experimental treatment, can be estimated by 
using the MLE:  
 
                     ( / ) /*p p p p1 10 0 1+ + +− .           (A.8)                            
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