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CHAPTER 1 

BACKGROUND 

Traumatic brain injury (TBI) is a major health problem and one of the leading 

causes of disability claims in those under 40 with approximately 1.4 million new injuries 

each year (Draper & Ponsford, 2008; Langlois, Rutland-Brown, & Thomas, 2006). 

Approximately 80,000 – 90,000 TBI survivors demonstrate lasting impairments in a 

multitude of domains (Langlois et al., 2006). Memory impairment is common after TBI 

(Dikmen, Machamer, Winn, & Temkin, 1995; Fleming, Riley, Gill, Gullo, Strong, & 

Shum, 2008; Gronwall & Wrightson, 1981; McAllister, 1992; Tabaddor, Mattis, & Zazula, 

1984; Vakil, 2005) and may last years after injury (Draper & Ponsford, 2008; Tabaddor 

et al., 1984). Understanding the nature and severity of these impairments is paramount 

for TBI survivors, clinicians, and researchers. Cognitive evaluations post TBI typically 

include a formal assessment of memory using well developed standardized measures. 

Unfortunately, even the most psychometrically sound measures are vulnerable to 

variability that is influenced by the level of effort put forth by the examinee. Less-than-

full effort may be put forth by examinees for many reasons, but the common end result 

is that the obtained results are of questionable validity and accuracy. Although clinicians 

could simply ask examinees about the level of effort exerted during testing, their 

responses may be inaccurate due to conscious or unconscious reasons, and if an 

examinee is intentionally faking, it is highly unlikely they would willingly divulge such 

information. As a result, a number of stand-alone measures and empirically-derived 

prediction models have been developed to detect suboptimal effort. Historically, 

detection of suboptimal effort also has employed prediction models using embedded 
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measures derived from tests commonly used in a comprehensive cognitive battery, 

such as the Wechsler Memory Scale (e.g., Ord, Greve, & Bianchini, 2008). The aims of 

the present study were to (1) investigate the ability of the newest revision of the 

Wechsler Memory Scale (4th Edition) to distinguish poor performance due to suboptimal 

effort among TBI dissimulators from poor performance due to actual TBI, and (2) 

develop an empirically-derived prediction formula for use in clinical practice. 

Section 1.1 - Assessment of Memory 

Memory functioning generally refers to the ability to retain learned information 

over time and is one of several primary domains of cognitive ability typically evaluated in 

the context of a comprehensive neuropsychological assessment (Lezak, Howieson, 

Loring, Hannay, & Fischer, 2004; Pereira, 2007). It is important to note that memory is 

typically not viewed as a unitary construct but rather as a cluster of related abilities 

based on the duration of time that information is retained (e.g., short-term vs. long-term) 

and the content that is stored (e.g., long-term verbal memory, etc.; Baddeley, 2002; 

Pereira, 2007; Vakil, 2005). Furthermore, memory is also composed of multiple 

processes that are typically linear in progression, any of which can be disrupted to 

impair memory functioning. The most commonly referenced processes include 

encoding, storage and retrieval (Baddeley, 1997; Pereira, 2007), and each of these 

must be assessed in order to provide a comprehensive understanding of a clients 

memory functioning. 

The Wechsler Memory Scale (WMS) is a battery of subtests frequently 

administered in a neuropsychological assessment (Rabin, Barr, & Burton, 2005) and is 

designed to evaluate multiple aspects of learning and memory. The measure originally 
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appeared for clinical use in 1945 and was first published as an article in the Journal of 

Psychology (Wechsler, 1945). It has recently been revised and updated to the current 

fourth edition (WMS-IV), and it was substantially revised from the previous edition. 

Administration of this new edition in its entirety generates primary index scores for 

immediate and delayed memory as well as secondary indexes of visual working 

memory, auditory memory, and visual memory (Pearson Education, 2008). In the 4th 

edition, only three out of seven subtests were retained from the previous version 

whereas the remaining four tests are new. 

Section 1.2 – Memory Functioning in Traumatic Brain Injury 

 Following traumatic brain injury, cognitive deficits – particularly in relation to 

learning and memory – have been shown using a variety of assessment techniques 

including caregiver report (e.g., McKinlay, Brooks, Bond, Martinage, & Marshall, 1981), 

self-report (e.g., Boake, Freeland, Ringholz, Nance, & Edwards, 1995; Cicerone & 

Kalmar, 1995), and formal neuropsychological assessment (e.g., Dikmen et al., 1995; 

Draper & Ponsford, 2008). At 1 year post injury, some of the most commonly cited 

difficulties include slowed thinking and reduced processing speed, impaired attention, 

and memory deficits in addition to general cognitive impairment, all of which 

demonstrated a relationship with injury severity as measured by time to follow command 

(Dikmen et al., 1995). Considering that memory is a higher-order cognitive functioning in 

that it requires lower-order cognitive abilities such as attention and processing speed – 

skills that are commonly affected by TBI – it is no surprise that memory impairment is 

frequently observed among TBI survivors.  
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In a longitudinal survey of TBI survivor caregivers, poor memory was one of the 

most commonly cited deficits (McKinlay et al., 1981). Using the original version of the 

WMS, Brooks (1976) demonstrated that in comparison to a neurologically intact control 

sample, individuals with history of TBI not only demonstrated severe memory deficits, 

but also that the severity of their deficits were predicted by the length of post-traumatic 

amnesia, a finding which closely paralleled that of Dikmen et al. (1999) nearly two 

decades later. Subsequent research demonstrated that the rate of memory recovery 

following traumatic brain injury was predicted by length of post-traumatic disorientation 

(Gronwall & Wrightson, 1981; Parker & Serrats, 1976). More recently, several studies 

have emerged demonstrating the lasting cognitive and functional impairments 

associated with TBI, even as long as 30 years post injury (Himanen, Portin, Isoniemi, 

Helenius, Kurki, & Tenovuo, 2006; Hoofien, Gilboa, Vakil, & Donovick, 2001). In a 

recent longitudinal study focusing on cognitive ability at 10-year follow up, processing 

speed, memory, and executive functioning were significantly lower in a TBI group in 

comparison to demographically matched controls (Draper & Ponsford, 2008). It is 

important to note that the majority of cases studied by Draper and Ponsford were 

moderate to severe injuries as lasting impairments are not typical of mild traumatic brain 

injury. 

Approximately 70% of all traumatic brain injuries are classified as “mild”, which 

typically is defined as a Glasgow Coma Scale (GCS) score of 13 or greater and a time-

to-follow commands of 1 hour or less (Dikmen et al., 1995; Larrabee, 2005). In nearly all 

cases of uncomplicated mild injury, symptoms have completely resolved by 

approximately 3 months post injury (Binder, 1986; Binder & Rohling, 1996; Binder, 
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Rohling, & Larrabee, 1997; Dikmen et al., 1995; Larrabee, 2005). Although some 

individuals do demonstrate persisting deficits, particularly in cases of complicated mild 

injury (Kashluba, Hanks, Casey, & Millis, 2008; Larrabee, 2005), the greater majority of 

mild TBI cases do not. Interestingly, however, mild TBI represents the most frequently 

referred case in forensic neuropsychology (Larrabee, 2005; Ruff & Richardson, 1999). 

These evaluations commonly attempt to determine whether any impairments resulting 

from a neurological insult are present (Binder, 1997; Sherer & Madison, 2005), and 

when one considers the prevalence of persisting deficits, the validity of a substantial 

number of injury claims is brought into question. 

Unlike mild injuries, persisting cognitive impairments, including memory deficits, 

are present in a majority of cases for moderate and severe TBI survivors. The acute 

recovery phases are typically characterized by periods of confusion, attentional 

difficulties, and memory dysfunction. This cluster of symptoms closely paralleling a 

delusional state is frequently referred to as posttraumatic confusion or amnesia (PTA; 

Ahmed, Bierley, Sheikh, & Date, 2000; Forrester, Encel, & Geffen, 1994; Larrabee, 

2005; Sherer & Madison, 2005) and is a good predictor of functional outcome following 

injury (Boake, Millis, High, Delmonico, Kreutzer, Rosenthal, Sherer, & Ivanhoe, 2001; 

Brown, Malec, McClelland, Diehl, Englander, & Cifu, 2005; De Guise, Leblanc, Feyz, & 

Lamoureux, 2005; Nakase-Richardson, Yablon, & Sherer, 2007). Length of PTA can 

also aid in injury classification (Shores, Lammel, Hullick, Sheedy, Flynn, Levick, & 

Batchelor, 2008) when used in conjunction with other indicators (e.g., intracranial 

abnormalities, positive neuroimaging). 
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Frequently following moderate and severe injuries, memory dysfunction is 

typified by both retrograde and anterograde amnesia in the acute recovery phases 

(Levin, 1992; Sherer & Madison, 2005). In the post-acute phase of recovery, specific 

patterns of memory functioning have been identified (Millis & Ricker, 1994) as well as 

memory impairment subtypes (Curtiss, Vanderploeg, Spencer, & Salazar, 2001), but a 

careful review of the literature suggests that memory functioning following moderate to 

severe TBI is highly variable. For example, although some have cited deficits in the 

encoding of new memories (Roche, Moody, Szabo, Fleming, & Shum, 2007), others 

have suggested that the underlying memory dysfunction observed in cases of TBI is 

more likely a consolidation deficit (Vanderploeg, Crowell, & Curtiss, 2001). More 

specifically, Vanderploeg et al. (2001) observed comparable learning rates between TBI 

survivors and normal controls but the TBI group demonstrated a much more rapid rate 

of forgetting, suggesting consolidation deficiencies. Furthermore, both groups benefited 

equally from retrieval cues implying that retrieval abilities were comparable between 

groups. 

Curtiss, Vanderploeg, Spencer, and Salazar (2001) identified three distinct 

clusters of memory deficit deficits including impairments in retrieval, consolidation, and 

retention while also finding a subgroup of TBI survivors that demonstrated intact 

memory performance. Interestingly though, those demonstrating relatively preserved 

verbal learning abilities also appeared to adopt a more passive encoding strategy (e.g., 

reliance on serial position vs. semantic clustering) similar to the findings of Millis and 

Ricker (1994). Curtiss et al. (2001) also found evidence that even in their most impaired 

sample, immediate memory as indicated by digit span performance was within normal 
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expectations. Although injury severity was not a significant predictor of memory deficit in 

their sample, they were also careful to point out that location of injury may have an 

important role in determining specific memory deficits. It is suspected that this finding is 

a significant factor contributing to the variability of post-TBI memory profiles within the 

literature. 

Section 1.3 – Malingering 

A fundamental assumption of clinical assessment is that clients and practitioners 

share similar goals in the assessment process (Rogers, 1997a), and moreover that the 

assessment is taken seriously by both parties. Unfortunately, however, this is not 

always the case. With the increasing prevalence of forensic evaluations and the 

potential for financial remuneration following demonstration of cognitive impairment, the 

temptation to feign dysfunction on formal testing has also risen. In addition to the quality 

of measures chosen, and the proficiency of the psychologist, the validity of results 

obtained in an evaluation of memory functioning are also highly dependent upon the 

level of effort exerted during the evaluation by the examinee. Several terms have been 

developed to describe situations where an examinee has greatly exaggerated their 

symptoms or intentionally put forth suboptimal effort during an evaluation (Larrabee, 

2007) including “suspect” effort (Babikian, Boone, Lu, & Arnold, 2006) and “incomplete” 

effort (Axelrod, Fichtenberg, Millis, & Wertheimer, 2006). The phenomenon that they 

each refer to, however, is highly similar; a subset of behavior encompassed under this 

rubric includes the psychiatric disorder “malingering”.  

According to the most recent version of the Diagnostic and Statistical Manual of 

Mental Disorders (Association, 2000), malingering is “the intentional production of false 
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or grossly exaggerated symptoms that are motivated by external incentives”. It is 

important to point out that effort is not a simple bifurcated phenomenon with only good 

and poor effort (Iverson, 2006) and also that malingering is distinct from other conditions 

where symptom exaggeration is a prominent factor such as factitious disorder and 

conversion disorder. Conversion disorder is the most discrepant from malingering in that 

the incentive is internal (e.g., psychological), and the exaggeration of symptoms is not 

under voluntary control. In factitious disorder, the fabrication of symptomatology is a 

conscious, voluntary effort, but there is no direct external incentive such as that which is 

found in malingering. Although closely related, malingering is also different from simple 

provision of poor effort without the intent to obtain some form of incentive (Iverson, 

2006). The distinction between intentional exaggeration and malingering is clearly a 

very fine line, as is the distinction between poor effort and intentional feigning. 

Although technically listed as a V-Code in the DSM-IV-TR (V65.2), several 

unofficial sets of classification schemes have been developed by practicing clinicians 

and researchers in order to facilitate communication, classification and research of 

malingering (e.g., Greiffenstein, Gola, & Baker, 1995; Rogers, 1990). Developed 

specifically for use in neuropsychology, one of the most commonly employed are the 

diagnostic criteria for malingered neurocognitive deficit (MND) proposed by Slick, 

Sherman and Iverson (1999). Diagnosis of MND is a multifaceted assessment method 

taking into consideration behavioral self-report, observations of behavior, medical 

records, and neuropsychological test performance. 

Slick et al. (1999) defined MND as “the volitional exaggeration or fabrication of 

cognitive dysfunction for the purpose of obtaining substantial material gain, or avoiding 
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or escaping formal duty or responsibility. Substantial material gain includes money, 

goods, or services of nontrivial value (e.g., financial compensation for personal injury) 

and formal duties are defined as actions that people are legally obligated to perform 

(e.g., prison, military, or public service, or child support payments or other financial 

obligations). Formal responsibilities are those that involve accountability or liability 

within legal proceedings (e.g., competency to stand trial)” (p. 552). Three levels of 

classification are available in the Slick et al. criteria including definite, probable, and 

possible malingering with objectively defined criteria for each level. Common across all 

three levels of classification is the presence of a substantial external incentive, and that 

the presentation is not fully accounted for by other factors such as psychiatric, 

neurological, and/or developmental causes. Further distinction however is based upon 

the level of certainty and the nature and amount of clinical data suggestive of 

malingering. 

Definite malingering is characterized by “the presence of clear and compelling 

data indicating volitional exaggeration or fabrication of cognitive dysfunction without 

plausible evidence of alternative explanations for such a cognitive profile” (p. 552). 

Probable malingering on the other hand is characterized by “the presence of evidence 

strongly suggesting volitional exaggeration or fabrication of cognitive dysfunction 

without plausible explanation” (p. 552). The major distinction between definite and 

probable malingering is that there is no clear evidence of a definite negative response 

bias for probable malingering. The lowest level of certainty in the Slick et al. criteria is 

Possible malingering which is essentially considered if evidence exists that to an extent 

suggests symptom exaggeration but the evidence is less strong than in probable or 
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definite malingering. Alternatively, possible malingering is considered in cases where 

criteria for definite or probable malingering are met, but alternative explanations cannot 

be ruled out. Table 1 presents each of the diagnostic criteria as well as the required 

criteria for each level of diagnosis. 

The estimated base rates of general malingering vary based on the nature of the 

referral question, the setting of the evaluation, and the classification scheme 

(Mittenberg, Patton, Canyock, & Condit, 2002; Russeler, Brett, Klaue, Sailer, & Munte, 

2008), but recent surveys suggest that the base rate of malingering approximates 40% 

across multiple settings (Larrabee, Millis, & Meyers, 2009). At first glance, they can be 

quite staggering, with some estimates exceeding 85% in mild head injury cases when 

the estimated prevalence of persisting deficits in mild TBI is taken into consideration 

(Larrabee, 2007). A review of 11 studies published between 1978 and 2002 found the 

average estimated prevalence of malingering to approximate 40% in compensation-

seeking mild head injury claimants when using the Slick et al. criteria (Larrabee, 2003), 

and a study of personal injury litigants and workers compensation claimants, found that 

the base rate of insufficient effort exceeded 40%, and effort accounted for up to 35% of 

the variance in neuropsychological test performance (Stevens, Friedel, Mehren, & 

Merten, 2008). 

By surveying members of the American Board of Clinical Neuropsychology 

practicing in multiple clinical settings including litigating and non-litigating civil and 

medical settings, as well as criminal settings, Mittenberg et al. (2002) identified the 

highest rates of malingering among medico-legal cases in rehabilitation, medical, 

veterans, and psychiatric hospitals (31.0%) with private practice coming in a close 
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second (29.8%); removal of the influence of litigation or compensation reduced these 

prevalence estimates to 11.6% and 7.1% respectively, demonstrating the powerful 

effect financial compensation has on test performance. Evaluation of prevalence 

estimates based on diagnosis reveals the three highest incident rates are among those 

reporting mild head injury (38.5%), fibromyalgia/chronic fatigue (34.7%), and 

pain/somatoform disorders (31.4%). Interestingly, only 8.8% of moderate to severe 

head injury cases were identified as malingering, the second lowest of all populations 

studied. These estimates reported by Mittenberg et al. are based on evaluation of 

multiple sources of objective evidence, the most common being a discrepancy between 

the severity of impairment in relation to injury severity and a pattern of performance on 

neuropsychological tests that was inconsistent with injury severity. Clearly, the provision 

of suboptimal effort and/or symptom exaggeration within the context of 

neuropsychological assessment is a serious and relatively commonplace issue. 

The strategies employed by malingerers vary considerably in approach, efficacy, 

and sophistication; some are very easy to detect whereas others are much more 

deceptive. In one of the only qualitative post-hoc reviews of malingering research, 

Iverson (1995) surveyed participants from an analog malingering study and found that 

most laypeople have inaccurate beliefs about the sequelae of TBI. The most commonly 

employed approach to feigning memory impairment was to portray severe memory loss 

and total amnesia. Other commonly employed strategies were to fake partial amnesia 

and to “go blank” during the assessment. Iverson asked participants not only what 

strategies they employed during the simulation, but also asked what other ways people 
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could think of to fake memory impairment. Interestingly, 30% of survey respondents 

could not identify any other way to fake memory dysfunction. 

More recently, Axelrod (2008) found that the memory profile of individuals failing 

a combination of three symptom validity tests (SVT’s) was significantly lower than the 

remainder of their cognitive profile, suggesting a deliberate attempt to falsify 

performance on tests specifically related to memory. Although those passing the effort 

measures also demonstrated memory impairment in relation to IQ functioning, those 

who failed the SVT’s produced significantly worse memory profiles, even in comparison 

to those who passed the SVT’s. These findings taken together further reinforce that of 

the major cognitive domains typically assessed in a thorough neurocognitive evaluation, 

memory is highly susceptible to non-credible performance and malingering. 

Although clinicians ask participants to put forth full effort during the evaluation, 

many individuals may be tempted to put forth less than optimal effort for a myriad of 

reasons including financial incentive (Flaro, Green, & Robertson, 2007), mitigation of 

responsibility (Larrabee, 2007), fatigue (Majer, Welberg, Capuron, Miller, Pagnoni, & 

Reeves, 2008), or viewing the assessment as a tool being used to remove certain social 

freedoms (Rogers, 1997a). Although the latter may seem counterintuitive, some 

examinees may feel that they are powerless in the assessment process and that 

regardless of their performance they will lose certain aspects of their independence. As 

such, there is a prominent need for empirically-derived prediction models to aid in the 

detection of incomplete effort, as self-report based assessment of effort is too subjective 

and unreliable. 
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Section 1.4 – Assessment of Effort 

In response to the increased risk for suboptimal effort, clinicians have developed 

strategies to detect client engagement in negative impression management strategies. 

Although clinical judgment is one tool towards that goal, previous research has 

demonstrated that even the most experienced clinicians are incapable of reliably and 

accurately detecting even simulated TBI in the absence of specifically designed effort 

measures (Heaton, Smith, Lehman, & Vogt, 1978). Within the malingering literature, 

there are several approaches to the detection of suboptimal effort, including evaluation 

of inconsistencies in the client’s report of symptoms and/or test performances with other 

sources of clinical data (e.g., observation, collateral report, etc.), and performance on 

measures designed to indicate the provision of suboptimal effort; such measures are 

frequently referred to as “Symptom Validity Tests.” 

At present, a number of Symptom Validity Test’s (SVT) are available to the 

clinical neuropsychologist for the purpose of evaluating the legitimacy of an examinee’s 

cognitive profile, and their use is endorsed by national organizations including the 

National Academy of Neuropsychology (Bush, Ruff, Troster, Barth, Koffler, Pliskin, 

Reynolds, & Silver, 2005) and the American Academy of Clinical Neuropsychology 

(Heilbronner, Sweet, Morgan, Larrabee, Millis, & Conference, 2009). Independent, 

stand-alone symptom validity tests such as the Test of Memory Malingering (TOMM; 

Tombaugh, 1996), and Paul Green’s verbal and non-verbal Medical Symptom Validity 

Test (MSVT; 2005) are commonly included within a neuropsychological battery. 

Although these measures have been developed by independent parties, they have two 

primary factors in common: first, they are both related to aspects of memory functioning, 
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because memory is a cognitive domain highly susceptible to impression management 

strategies and dissimulation (Binder & Rohling, 1996; Suhr & Barrash, 2007; Williams, 

1998). Second, these measures are constructed within a framework of a forced-choice 

paradigm (Hiscock & Hiscock, 1989), which is designed to detect below-chance 

performance based on statistically derived cut-off scores. Unfortunately, forced-choice 

validity measures are not very robust to even simple coaching (Suhr & Gunstad, 2007), 

and information about how to dissimulate successfully is sufficiently available via 

resources such as the internet for the commonly used forced-choice measures to allow 

examinees to avoid detection (Bauer & McCaffrey, 2006). 

As a result, several “embedded” measures of effort have also been developed. 

These are typically composed of a specific index or score, from a standard measure 

(e.g., the digit span subtest of the Wechsler Adult Intelligence Scale, 3rd Edition ; 

Axelrod et al., 2006; Wechsler, 1997), or statistical prediction models that employ 

multiple scores from a particular measures to determine the probability of malingering, 

such as those developed for the California Verbal Learning Test (Coleman, Rapport, 

Millis, Ricker, & Farchione, 1998; Millis, Putnam, Adams, & Ricker, 1995; Wolfe, Millis, 

Hanks, Fichtenberg, Larrabee, & Sweet, 2010), and Repeatable Battery for the 

Assessment of Neuropsychological Status (Silverberg, Wertheimer, & Fichtenberg, 

2007). 

Similar prediction models have also been generated for the previous editions of 

the Wechsler Memory Scales (Iverson, Slick, & Franzen, 2000; Langeluddecke & 

Lucas, 2003; Ord et al., 2008). Sensitivity estimates of the primary index scores were 

highest for recognition scores, which ranged from 64% to 81% with 100% specificity 
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(Langeluddecke & Lucas, 2003). In a similar study investigating both individual index 

scores and aggregated summary WMS-III scores among mild TBI survivors, sensitivity 

ranged from 58% to 61% at 100% specificity (Ord et al., 2008). Although the 

specificities of these prediction methods are quite impressive, the sensitivities are too 

low to be considered useful in isolation from other effort measures. They do, however, 

represent a viable option to be used in conjunction with other diagnostic tools, and when 

combined with failure of another SVT, the probability of poor effort approaches 100% 

(Larrabee, 2008) 

In contrast to stand-alone effort measures, embedded measures typically are not 

readily identifiable as measures of effort, making it is less likely that an examinee will 

alter his or her response style for that subtest and put forth high effort in order to avoid 

detection. Statistically based prediction models present a very difficult scenario for 

examinees to dissimulate successfully, as doing so would require a sophisticated 

understanding of the measure and a very complex performance strategy (Suhr & 

Gunstad, 2007). Embedded measures and prediction modes have the added benefit of 

providing useful clinical data regarding cognitive ability (only when poor effort is not a 

concern), thus increasing efficiency and maximizing the utility of information garnered in 

a standard assessment. In addition, developing measures of effort embedded within 

standard neuropsychological measures affords clinicians to investigate the credibility of 

a cognitive profile when data from independent SVT’s is unavailable such as may be the 

case in forensic record reviews (van Gorp, Humphrey, Kalechstein, Brumm, McMullen, 

Stoddard, & Pachana, 1999). Hence, the best practice is to employ a combination of 

both stand-alone and embedded symptom validity tests, the findings of which can be 
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considered together to formulate clinical decisions regarding the validity of an 

examinee’s test performance (Greve, Ord, Curtis, Bianchini, & Brennan, 2008). 

Section 1.5 – Coaching and Effort Testing Research 

Effort testing research is a sensitive subject of study, as balancing test security, 

development of detection strategies, and publication of findings can be difficult. There 

are a number of ethical issues that come into play within this area that are not 

necessarily prevalent in other areas of clinical research. With the rapid increase of 

empirical literature on effort testing and psychological measures over the past decade 

and the availability of publicly-accessible information (Bauer & McCaffrey, 2006; Ruiz, 

Drake, Glass, Marcotte, & van Gorp, 2002) comes increased uncertainty as to how the 

data will be used and by who (Iverson, 2006). Although the research is intended to aid 

practicing clinicians and promote further research, there is little stopping a patient or the 

savvy attorney from accessing such information and using it to their advantage. In a 

survey of members of the American Trial Lawyers association, it was revealed that 

many attorneys spend up to an hour coaching their clients prior to a neuropsychological 

evaluation (Essig, Mittenberg, Petersen, Strauman, & Cooper, 2001). One of the tools 

likely used are the empirical articles on malingering reporting detection abilities of 

various measures. Given this potential, many researchers refrain from publishing 

sufficient information (e.g., logistic regression variables) in their manuscripts that would 

allow for detecting the presence of an SVT and subsequently altering their response 

patterns. Instead, they provide the information upon request in an attempt to keep better 

track of who is using the data and how. 
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Coaching – the provision of sufficient information intended to help an examinee 

portray themselves in a disingenuous way (Suhr & Gunstad, 2007) – is still highly 

prevalent and can take multiple forms. In addition to the internet and attorneys, 

repeated neuropsychological evaluations which are common in a forensic case can 

provide information to clients on how to take cognitive tests, especially when feedback 

on performance is given (Suhr & Gunstad, 2007). Given the prominence of coaching 

within the forensic neuropsychology arena, this area of practice lends itself well to 

research with the aims of developing better detection strategies that are more robust to 

coaching (Rogers, 1997b). The three most common methods of coaching within the 

context of a neuropsychological evaluation include the provision of information related 

to injury symptoms, specific strategies on how to take tests (e.g., “if you see a test 

where you have to choose between two pictures, do your best”, etc.), and warning 

clients of the use of SVT’s within the assessment (Suhr & Gunstad, 2007). If 

neuropsychological assessment is to remain a valid and accurate practice, effort testing 

research is a critical and essential endeavor toward its preservation. 

Several approaches to effort testing research exist, which include case study, 

differential prevalence designs, simulation studies, and known-group designs (Larrabee, 

2007; Rogers, 1997b). The weakest and least frequently used is the differential 

prevalence design in which a researcher estimates the prevalence of malingering and 

non-malingering in given sample (Rogers, 1997b). Unfortunately, however, there is little 

empirical evidence supporting the classification of group membership and such 

discriminations are typically inferred based on existing literature as opposed to being 

measured directly (Larrabee, 2007). The case study approach clearly has extremely 
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limited generalizability and as such is rarely, if ever, used in clinical research. It is, 

however, an essential aspect of clinical work and individual case conceptualization as 

examining individual patterns of performance within a cognitive profile can lead to 

hypothesis generation and further investigation on a case by case basis (Larrabee, 

2007).  

The most commonly used malingering research approach to date has been the 

simulation study (Suhr & Gunstad, 2007); however, the use of known-group designs is 

on the rise based on criticisms of analog designs (Greiffenstein et al., 1995; Larrabee, 

2007). In a simulation study, normal participants are coached in some way to feign 

cognitive impairment. The major issue with an analog simulator group is that there is 

little, if any, assurance that the simulators will perform in the same way that true clinical 

malingering patients would, which limits generalizability and applicability in a forensic 

arena (Larrabee, 2007). Although there are ways to improve the generalizability of 

findings from analog studies (e.g., randomly assigning clinical patients to a simulation or 

control condition; Rogers, 1997b), the feasibility of such research is questionable and 

the ethics of randomly assigning bona-fide TBI patients involved in real world 

assessments to malingering or honest effort conditions is highly debatable.  

Perhaps the most robust research approach is the known-groups design which 

utilizes specific objective criteria to classify clinical patients into two or more groups 

based on objectively defined criteria and makes comparisons between the groups 

(Larrabee, 2007; Rogers, 1997b). The greatest advantage of the known-group design is 

that it dramatically increases the generalizability of findings as the sample is drawn from 

real world patients and the feigning of cognitive impairment is occurring in vivo (ibid.). 
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The two major drawbacks to this methodology are that random assignment is lost 

entirely as classifications are based on objective criteria, typically after completion of the 

assessment, and classification itself can be difficult (Larrabee, 2007). With the advent of 

objectively defined classification criteria such as those developed by Slick et al. (1999), 

group classification has been greatly improved and has thus facilitated the use of 

known-groups designs. Unfortunately however, there is little that can be ethically done 

to address the issue of random assignment. 

Although each approach to researching malingering has its drawbacks, each also 

has its place. In the early phases of SVT development and malingering detection 

strategies, analog studies are well suited as there is minimal risk involved to participants 

and generalizability is of less importance than test development. Once a measure has 

been developed and proven using an analog study, further validation using a known-

group design is warranted and the appropriate follow-up to the analog study. 

Alternatively, a blended design can also be an excellent approach to aid in both the 

development and validation of a malingering detection strategy. For example, by using a 

three-group design including simulators, full-effort clinical patients, and known 

malingerers using post-hoc classification, a single study can both develop a detection 

method by comparing performance between the simulator group and honest-effort 

group, which can then be validated in comparisons between the honest-effort and poor 

effort group. 

Section 1.6 – Efficacy and Outcome Research 

Evidence-based medicine is standard practice within the fields of mental health 

(APA, 2006) and general medicine (AMA, 1992), and recently it has been indicated for 



20 

 

use in rehabilitation whenever possible (DenBoer & Hall, 2007; Tate, Kalpakjian, & 

Kwon, 2008). Research into the efficacy of intervention programs within the 

rehabilitation setting is critical to the advancement of the field and to the greater well 

being of the population being served. By understanding what works in the rehabilitation 

environment, we are better able to effectively treat those in need. A necessary factor in 

understanding the efficacy of specific interventions is the randomized controlled trial, 

which investigates efficacy of an intervention in comparison to a gold standard form of 

treatment using reliable outcome measures (Piantadosi, 2005). As such, the results of 

these studies are highly dependent on the measures used as well as the level of effort 

put forth by participants on those outcome measures. For example, poor effort may 

artificially attenuate efficacy estimates, making an effective intervention appear 

ineffective or less effective than it truly may be. By developing empirically-validated, 

embedded measures of effort within a cognitive assessment battery such as the WMS-

IV that can be used in conjunction with existing stand-alone effort measures, we can 

effectively screen for effort and account for individuals in analyses and subsequent 

participation that have provided less than optimal effort.  

Section 1.7 – Limitations of the extant literature 

Although there is a substantial amount of peer-reviewed literature investigating 

the assessment of effort put forth during cognitive evaluations, the WMS-IV is 

essentially an all-new measure and has been almost entirely revised from its previous 

version. As such, there is a dearth of research on this measure except for studies 

conducted by the test developers that are included in the technical manual; most 

frequently, studies of effort assessment are left to the realm of independent clinical 
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researchers. Although clinicians would be able to utilize the previous version of the 

Wechsler Memory Scale in order to include validated embedded measures of effort, 

using obsolete instruments would not be considered an acceptable standard of care 

(APA, 2002) and it would quickly become inconsistent with state-of-science 

expectations for the assessment of memory function.  

Additionally, it remains possible for very sophisticated dissimulators to slip past 

even well developed measures of effort. With essentially only a small handful of 

qualitative studies on malingering strategies, what remains unclear is how successful 

malingerers are succeeding. More specifically, it is presently unknown what strategies 

are employed to avoid detection on effort measures by persons who successfully feign 

impairment. Gaining better perspective of the strategies used will aid in the 

development of future effort measures that are robust to these strategies. 



22 

 

CHAPTER 2 

AIMS OF THE CURRENT STUDY 

The present study sought to add to the literature regarding use of the WMS-IV 

among persons with TBI by investigating its ability to differentiate cases of bona fide TBI 

from feigned memory impairment. Similar to the work of Ord et al. (2008) who used the 

WMS-III, the development of empirically-based strategies for the detection of insufficient 

effort using the WMS-IV was of substantial interest, especially considering the 

significant impact effort has on neuropsychological test performance (Stevens et al., 

2008) the susceptibility of memory tests to feigned cognitive dysfunction (Binder & 

Rohling, 1996), and the common use of Wechsler family tests in assessment practices 

(Rabin et al., 2005). Not only are data obtained from neuropsychological assessments 

used for the development of therapeutic interventions for TBI survivors (Bush et al., 

2005; Pereira, 2007; Stringer & Nadolne, 2000), they are also a common outcome 

measure in efficacy studies investigating specific interventions. 

Section 2.1 – Specific Objectives 

A. Determine the ability of the WMS-IV and its subtests to reliably distinguish between 

cases of dissimulated brain injury (SIM) and verified traumatic brain injury (TBI). 

 

A primary objective in the present design was to identify variables within the WMS-IV 

that contribute to the identification of persons putting forth suboptimal effort during 

their evaluations. In addition, this study sought to determine the decisional accuracy 

of generated prediction models in comparison to existing methods of effort 

assessment. 
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Hypothesis 1: It was predicted that individual indices or a combination of indices 

obtained from administration of the WMS-IV would be capable of reliable 

differentiation between persons with verified TBI and neurologically-normal 

participants dissimulating TBI.  

 

B. Determine the ability of the WMS-IV and its subtests to reliably distinguish between 

cases of successfully dissimulated TBI and unsuccessfully dissimulated TBI. 

 

A second objective in the present design was to determine the pattern of 

performance that characterized individuals asked to dissimulate TBI who pass 

independent measures of effort. 

 

Hypothesis 2: It was predicted that individual indices or a combination of indices 

obtained from administration of the WMS-IV would be capable of reliably 

differentiating between successful TBI dissimulators and unsuccessful TBI 

dissimulators. 
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CHAPTER 3 

METHODS 

Section 3.1 Participants 

Data for the present study were collected from persons in the Detroit 

Metropolitan area and surround suburbs. Two primary samples were collected including 

persons with traumatic brain injury (TBI) and healthy adults coached to feign cognitive 

impairment (SIM); these samples were subsequently further divided based on the 

number of effort tests failed. Traumatic brain injury survivors were recruited from the 

pool of individuals presently enrolled in the Southeastern Michigan Traumatic Brain 

Injury System (SEMTBIS) research project who agreed to be contacted regarding future 

research projects. As a result of inclusion criteria, this sample excluded persons with 

mild injuries or very severe brain injuries who did not receive inpatient rehabilitation. A 

full listing of inclusion criteria for the SEMTBIS project can be found in Appendix B. The 

initial sample size recruited and tested for the TBI group was 61 people. After 

completion of testing, persons in this group were classified as either putting forth good 

or poor effort based on the number of effort measures failed; there was no consideration 

given to which two effort measures were failed. Failure of two or more was considered 

poor effort based on previous research suggesting that with a base rate of 

approximately 40%, failure of two or more effort measures yields a 94% probability of 

poor effort (Larrabee, 2008). 

A demographically comparable group of healthy adults coached to dissimulate 

TBI was recruited from the greater Southeastern Michigan region via newspaper 

advertisements and posted fliers. Exclusion criteria for this sample were such that the 
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presence or history of neurological dysfunction or injury such as seizure, brain injury, 

stroke, or concussion prevented participation. Attempts were made to match this 

sample on key demographic factors including age and education. The initial pool of 

healthy individuals that completed testing included 65 people. Just as with the TBI 

sample, failure of two or more effort measures was used as the criterion for 

classification as putting forth poor effort. In addition, anyone who reported not following 

instructions on the debriefing questionnaire (e.g., indicating that they did not try to fake 

a brain injury) was removed from analysis as this report gave indication that the 

participant failed to follow instructions. 

Section 3.2 - Measures 

Section 3.2.1 - Demographic and Health Behavior Factors 

In order to account for variance in outcome that is attributable to demographic 

and health status, information about gender, age, race/ethnicity, years of education, 

comorbid illnesses, and medication usage was recorded. 

Section 3.2.2 - Injury Severity 

Time to follow commands, which is defined as the number of days that it takes to 

obtain a score of 6 on the motor subscale of the GCS two out of two times within a 24-

hour period, was used as an index of brain injury severity (Dikmen et al., 1995; Rohling, 

Meyers, & Millis, 2003). This value along with other indices of injury severity (e.g., 

length of post-traumatic confusion, initial GCS score) was used to account for variance 

in outcome that is attributable to TBI severity. Participants with GCS scores of 9 or 

greater were classified as mild/moderate injuries based. Traditionally, a GCS score of 

13 to 15 is considered a mild injury; however, in the present sample the inclusion criteria 
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for the SEMTBIS project were such that participants with GCS scores in the mild range 

also had documented intracranial hemorrhage significant enough to warrant inpatient 

rehabilitation. Empirical findings indicate that the cognitive profiles of persons with 

complicated mild injuries (e.g., a mild TBI with an intracranial bleed) are more similar to 

persons who have moderate brain injuries than to those who have uncomplicated mild 

brain injuries (Kashluba et al., 2008). Participants with a GCS score of less than 9 were 

classified as severe. 

Section 3.2.3 - Memory Functioning 

Wechsler Memory Scale – 4th Edition (WMS-IV): The primary measure of memory 

functioning was the WMS-IV, which is the latest revision of the measure released in 

January of 2009. The WMS-IV is a battery of subtests designed to evaluate multiple 

forms of memory functioning including immediate and delayed memory, as well as 

working memory, visual memory, and auditory memory. Complete administration of the 

WMS-IV generates 5 individual index scores, 12 primary subtest scores, 9 secondary 

subtest scores and 13 contrast scores. Raw scores as well as age-adjusted scaled 

scores from this measure were evaluated for use as predictor variables in the primary 

logistic regression. 

California Verbal Learning Test – 2nd Edition (CVLT-II)(Delis, Kramer, Kaplan, & Ober, 

2000): A secondary measure of memory functioning that was used as a gold-standard 

comparison for the WMS-IV is the CVLT-II. This measure is a verbal list-learning task 

that requires test takers to learn a list of 16 words from four semantic categories 

presented verbally over a series of five consecutive learning trials. Subsequent to the 

initial learning trials, a distracter set is presented followed by a short delay free recall of 
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the initial learned set of words. Following a 30-minute delay, a second free recall portion 

is administered to assess long-term retention. In addition to the free recall trials, there 

are two separate cued recall trials and a forced choice recognition trial. 

In the standard administration procedures of the WMS-IV outlined by the test 

publisher, the Trials 1-5 T score from the CVLT-II can be substituted for Verbal Paired 

Associates 1 and the Long-Delay Free Recall Z score can be substituted for Verbal 

Paired Associates 2. According to the test publisher, substitution of the CVLT-II scores 

generates scaled scores that correlate very highly with those obtained from standard 

administration. Although the publisher strongly discourages administration of both tests 

to avoid intra-individual comparison of substituted scores to non-substituted scores, in 

the present design both tests were administered and such comparisons were made in 

order to determine both the validity of this substitution as well as to determine the most 

discriminating variable set. 

Section 3.2.4 – Effort 

In addition to the primary measures of learning and memory, a total of seven 

effort measures were administered to each participant including four stand-alone 

measures and three embedded measures. With one exception (Word Choice Test; 

described below), performance on the individual effort measures was classified as 

either passing or failing based on published criteria. As previously described, the 

number of failed effort measures was then used to classify participants as either good 

(failed fewer than two) or poor (failed more than one) effort. 

Test of Memory Malingering (TOMM): The TOMM (Tombaugh, 1996) is a 50-item, 

forced-choice visual recognition measure that is commonly used to assess effort. 
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Although the TOMM has demonstrated good specificity in detecting insufficient effort 

(Gierok & Dickson, 2000; Rees, Tombaugh, Gansler, & Moczynski, 1998; Teichner, 

Wagner, & Newman, 2000), recent research has failed to produce adequate sensitivity 

to be used in isolation from other effort measures (Greve et al., 2008). As such, it is 

typically incorporated into psychological assessment batteries along with other effort 

measures. According to the test manual, a raw score of 45 or less on Trial 2 is 

considered a failure; data from Trial 1 are not used and the optional retention trial was 

not administered. 

Medical Symptom Validity Test (MSVT): The MSVT is a shortened version of the Word 

Memory Test. It is a forced-choice, computer administered measure of verbal memory 

that contains embedded measures designed to evaluate the validity of an examinee’s 

presentation on the test (P. Green, 2005). Multiple studies have demonstrated the ability 

of the MSVT to detect suboptimal effort (Carone & Turk, 2008; Merten, Green, Henry, 

Blaskewitz, & Brockhaus, 2005; Richman, Green, Gervais, Flaro, Merten, Brockhaus, & 

Ranks, 2006). Data obtained from administration of this measure were used to classify 

individuals as putting forth good or poor effort. According to the manual, a score of 85% 

or less on any of the immediate recall, delayed recall or consistency measures is 

considered a failure. 

Non-Verbal Medical Symptom Validity Test (NV-MSVT): In addition to the MSVT, a 

similar measure was also administered that used pictures of item pairs (e.g., a dog with 

a bone) as opposed to word pairs. The non-verbal medical symptom validity test (NV-

MSVT; P. Green, 2008) may be more difficult than the MSVT because it requires a shift 

in target recognition such that unbeknownst to the test-taker, foils later become targets; 
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however, similar scores are generated including percentage correct for a number of 

trials including immediate, delayed, and cued recall. The failure criteria for this measure 

are a bit more complex than the verbal version of this measure. According to the 

manual, if the mean of the immediate recall, delayed recall, consistency, the two 

delayed recall conditions (archetypes or variations) and paired associates is below 90% 

or the mean of the two delayed recall conditions, overall delayed recall, and consistency 

is below 88%, the test is considered failed. 

Wechsler Adult Intelligence Scale – 4th Ed. Reliable Digit Span (RDS): Calculation of the 

reliable digit span is frequently used as an embedded measure of effort (Greiffenstein et 

al., 1995). The RDS is calculated by summing the item span of the last trial where both 

items were correctly recalled. Although the original criterion for poor effort was 

considered a RDS of 7 or less, some have argued that this often results in an 

unacceptable false positive rate in cases of severe injury (Babikian et al., 2006). As a 

result, in the present study, the criterion for poor effort was lowered to a RDS of 6 or 

less. 

Embedded Indices within the CVLT-II: Within the CVLT-II, there are two embedded 

effort measures. The first is a forced-choice recognition trial developed by the publisher 

and included at the end of administration. As with many of the stand-alone effort 

measures – particularly one with so few items – the sensitivity to brain injury is very low 

with high specificity. For the present study, the criterion for poor-effort was set at a 

score of 14 or less. In addition to the forced choice measure, a prediction equation has 

been validated using three indices obtained from standard administration (Wolfe et al., 

2010) that generates a probability of poor effort. 
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Pearson Advanced Clinical Solutions: Following the release of the WMS-IV, Pearson 

released the Advanced Clinical Solutions (ACS) that contained five embedded effort 

measures for use with the WMS-IV. One of these measures is the Word Choice Test 

(WC), a 50-item forced-choice measure in which participants are presented a list of 

targets and later asked to identify the target from a single foil. Of all the effort measures 

administered, this was the only measure not included in the classification of participants 

as either good or poor effort, in order to avoid contamination of criterion with predictor. 

The four additional embedded measures include the Reliable Digit Span from the WAIS-

IV, Visual Reproduction Recognition, Logical Memory Recognition, and Verbal Paired 

Associates Recognition. The ACS does not provide cutoff scores for classification of 

poor effort, but rather provides comparisons of performance to the overall clinical 

samples used in the validation process of the WMS-IV and WAIS-IV in the form of base 

rates. 

Section 3.2.5 - Pre-morbid Intelligence 

Wechsler Test of Adult Reading (WTAR): The WTAR is a single word-reading test of 

increasing difficulty that generates an estimate of overall intellectual ability (full scale 

IQ). Existing research on the WTAR has found it to be a valid estimate of intellectual 

functioning regardless of the presence of TBI (R. Green, Melo, Christensen, Ngo, 

Monette, & Bradbury, 2008). An estimate of premorbid intelligence also was calculated 

to account for variance in outcome measures that may be attributed to overall 

intellectual ability. 
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Section 3.3 - Procedure 

Section 3.3.1 - Traumatic Brain Injury group (TBI) 

Persons with TBI (n = 61) were contacted via telephone and informed of the opportunity 

for additional voluntary participation in a research study investigating use of a new 

memory assessment tool. All participants who agreed to participate were evaluated at 

the Rehabilitation Institute of Michigan’s main campus following the provision of 

informed consent. Testing was completed in a single session by the primary investigator 

or a research assistant and participants were compensated $30 for their time upon 

completion of the study. Each TBI participant was asked to put forth their full effort on all 

measures attempted. The order of administration varied among participants due to 

differences in test performance; some participants completed the measures intended to 

occupy delay periods quickly, whereas others took longer to complete such measures. 

The administration of either the CVLT-II or the WMS-IV as the first memory measure, 

however, was counterbalanced across the TBI sample to reduce order effects. 

Following administration, all measures were scored according to standardized 

procedures. For this group, persons with TBI were classified as good effort if they 

obtained passing scores on at least 5 out of 6 effort measures. 

Section 3.3.2 - Dissimulated Traumatic Brain Injury group (SIM) 

Participants in the coached group (n = 65) were neurologically normal persons 

recruited from the Detroit Metro area community via printed advertisement (e.g., Metro 

Times, Detroit News, etc.) as well as the staff and students of Wayne State University. 

Participants were excluded from the study if they reported a history of neurological 

condition or event (e.g., seizure disorder, TBI, etc.). As with the TBI group, testing took 
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place at either the Rehabilitation Institute of Michigan (RIM) or the research laboratory 

of the primary investigator.  

Following provision of informed consent, participants in the SIM group were 

administered the WTAR under instructions to put forth full effort to obtain an accurate 

estimate of intellectual ability. After completion of the WTAR, participants were then told 

that a particular focus of the remainder of the study was to determine the ability of a 

new test of learning and memory to assess the amount of effort put forth during a 

cognitive examination. Each participant was then presented with a scenario indicating 

their involvement in litigation following a motor vehicle accident that resulted in a TBI. 

The scenario described was constant for all SIM participants and was read from a script 

used successfully in prior research on dissimulation of this basic design (DenBoer & 

Hall, 2007; Tombaugh, 1997). A complete copy of the script read to each participant, is 

presented in Appendix A. 

Consistent with prior research on dissimulation of TBI and based on the 

recommendations outlined by Suhr and Gunstad (2007), participants in the SIM group 

were also provided with literature describing the nature of the cognitive impairment 

typically resulting from TBI (e.g., memory dysfunction, reduced processing speed, etc.; 

Coleman et al., 1998). Participants were given time to read the literature and then asked 

to restate both the instructional set and the common symptoms of TBI in their own 

words to ensure comprehension; if a participant was unable or unwilling to follow the 

instructions, they were compensated for their time and excused from participation. Each 

SIM participant was evaluated in a single session. As with the TBI group, the order of 
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administration was variable in order to fulfill required delay periods, with the 

administration of the memory measures counterbalanced across the SIM sample. 

Section 3.3.3 - Debriefing 

Following the completion of the assessment battery, all participants in the SIM 

group completed a questionnaire asking them to provide their strategies for 

dissimulation. More specifically, each participant first reported whether or not they 

followed instructions to feign cognitive impairment (an indication of not following 

instructions removed the participant’s data from analysis). If they reported following 

instructions, they were then asked to rate the level of difficulty on a 7-point Likert scale 

ranging from “Very Easy” to “Very Hard”. Participants were also given the opportunity to 

provide a written explanation of the strategies employed during the assessment.  
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CHAPTER 4 

ANALYSES 

Section 4.1 - Data Coding 

All cases in the TBI group were screened for the provision of poor effort: To 

remain eligible for inclusion in subsequent analyses, at least five of the six data validity 

indicators (e.g., MSVT, TOMM) were negative for the provision of suboptimal effort. This 

cutoff was chosen based on previous research (e.g., Larrabee, 2008) and the 

assumption that few clinicians would consider a participant to be globally putting forth 

poor effort based on a single failed effort measure. As a result of this classification 

procedure, the remaining sample of TBI survivors can be considered to have provided 

good effort and generated valid results. This sample was further divided based on injury 

severity using the GCS score taken at the time of admission to the emergency 

department into a mild/moderate TBI group and severe TBI group. 

For the simulator group, in order to be included in further analysis, participants 

had to have reported feigning cognitive impairment on the debriefing form. If they did 

not, their data were removed from subsequent analysis, as it was assumed they failed 

to follow instructions. From this point, data coding in the SIM group was similar to the 

TBI group and produced two groups based on variability in presentation. The primary 

simulator group of interest was those individuals who failed two or more of the symptom 

validity tests; this group is referred to as “unsuccessful simulators” using the logic that 

they were not successful in avoiding detection on formal effort testing. Those who failed 

one or none of the effort measures were coded as “successful simulators” in the sense 

that they were successful in avoiding detection.  
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Given the possibility that simulators classified as “successful” may not have 

followed instructions despite stating they had done so on the debriefing form, this 

sample was further divided into “impaired” or “intact” based on their WMS-IV 

performance. In order to be considered “impaired”, the participant had to have obtained 

at least one index score that was 1 standard deviation or more below the mean (e.g., ≤ 

85). 

Section 4.2 - Primary Analyses  

The primary analytic strategy for the present study (e.g., binary logistic 

regression and ROC curve analysis) has been successfully employed in similar 

research conducted on data collected from our outpatient rehabilitation population 

(Miller, Millis, & Fichtenberg, 2010). In the present study, binary logistic regression was 

used to compare unsuccessful simulators to good-effort TBI. Mean values were 

calculated for each of the primary index scores as well as the subtests and secondary 

measures. Using a pooled standard deviation, effect sizes (Cohen’s d) were calculated 

to aid in selection of viable predictors. Those variables demonstrating large effect sizes 

were considered candidates for further analysis. Exploratory models were built using 

those WMS-IV scores identified as potential predictors and group membership (TBI vs. 

SIM) as the outcome. This process was repeated using several combinations of 

secondary measures as well as the subtest scores. 

From these initial models, collinearity diagnostics were examined in order to 

determine the potential for statistical overlap between variables, and odds ratios were 

examined to determine the relative influence of each variable on identification of group 

membership. In the presence of significant overlap between two or more variables 
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based on collinearity diagnostics, a theoretically guided decision based on both 

observed odds ratios and relevant existing literature was made as to which variable(s) 

should be removed from subsequent models. This process was repeated until a model 

was produced that was void of substantial collinearity and represented the most 

parsimonious model. Because index scores are composed of multiple measures, 

however, this approach was too broad to identify the most discriminating variables and 

subtests. As a result, this analytic approach was repeated using individual subtest 

scores. 

Following generation of models composed of only unique variables, the models 

were compared using Bayesian information criterion (BIC) statistics to determine which 

model best fit the observed data. Receiver operating characteristic (ROC) curves were 

also generated to aid in determination of classification hit rate, and sensitivity and 

specificity of each predictive model. Positive and negative predictive powers were not 

calculated due to the artificial base rate created by the study design. 

Section 4.3 - Secondary Analyses 

Following completion of the primary analyses, secondary analyses were 

conducted on the simulator groups to determine if a performance pattern exists that 

distinguished successful from unsuccessful dissimulators. An identical analytic 

approach to the primary analyses (e.g., binary logistic regression and ROC curves) was 

employed using SIM status (successful vs. unsuccessful) as the outcome variable. 
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CHAPTER 5 

RESULTS 

Section 5.1 – Sample Demographics 

The overall TBI group (n = 60) was predominantly African American (81.7%) men 

(93.3%) with a mean age of 43.9 years (SD = 12.1), mean education of 12.0 years (SD 

= 2.2). The overall SIM group (n = 64) was also predominantly African American 

(68.8%) men (82.8%) with a mean age of 43.9 years (SD = 11.4), mean education of 

12.9 years (SD = 2.1). Following classification of effort level using the previously 

described methods, four subgroups were obtained, which are the primary groups of 

interest to be used in subsequent comparisons: 1) Good Effort TBI (n = 41); 2) Suspect 

Effort TBI (n = 19); 3) Successful Simulators (n = 18); and 4) Unsuccessful Simulators 

(n = 41). Five participants were removed from the simulator group, as they did not follow 

coaching instructions, and one was removed because of excessive missing data. 

Demographic data for each subgroup are presented in Table 2. The four effort groups 

were compared on all demographic factors and no significant differences were observed 

for age (F (3, 115) = 2.13, p = .10), education (F (3, 115) = 2.46, p = .066), gender (χ2 

(3) = 5.09, p = .165) or ethnicity (χ2 (2) = 8.09, p = .232). 

The Good Effort TBI group was 51.2% mild/moderate injuries (n = 21) and 46.3% 

severe injuries (n = 19); one case was missing injury severity data. Time since injury 

ranged from 10 to 234 months for Good Effort TBI participants, and the mean number of 

days in acute rehab was 26.5 days (SD = 13.9; range = 6.0 to 66.0). The average time 

to follow commands was 7.1 days (SD = 11.3; range = 0.5 to 41.0) and the average 

time to clear post-traumatic confusion was 22.4 days (SD = 19.5; range = 0.0 to 72.0). 
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The Suspect Effort TBI group was 52.6% mild/moderate injuries (n = 10) and 42.1% 

severe injuries (n = 8); one case was missing injury severity data. Time since injury 

ranged from 10 to 234 months for Suspect Effort TBI participants and the average 

length of stay in acute rehab was 23.7 days (SD = 14.4; range = 7.0 to 56.0). The 

average time to follow commands was 5.4 days (SD = 7.2; range = 0.5 to 25.0) and the 

average time to clear post-traumatic confusion was 22.8 days (SD = 18.0; range = 0.0; 

to 64.0). There were no significant differences found between the Good Effort and 

Suspect Effort TBI groups on any of the injury related variables. 

Section 5.2 – Test Performance 

Section 5.2.1 – Wechsler Memory Scale – Fourth Ed. (WMS-IV) 

Performance on the WMS-IV for each of the four subgroups is summarized in 

Table 3 (Index Scores), Table 4 (Substitution Scores) and Table 5 (Secondary Scores). 

Figure 1 presents a subtest score profile for each of the four groups. Effect sizes 

(Cohen’s d) are also presented in the tables and are based on a pooled standard 

deviation comparing the Good Effort TBI group to the Unsuccessful Simulator group in 

order to evaluate the effect of coaching in the present study. These effect sizes were 

also used to guide variable selection for entry into subsequent prediction equations. 

Section 5.2.1.1 Good Effort TBI 

One-way analyses of variance (ANOVA) compared the mild/moderate TBI and 

severe TBI groups on each of the primary index scores and did not reveal the presence 

of significant differences. As such, the two severity groups were collapsed and the 

WMS-IV performance of the combined overall Good Effort TBI group was used in 

subsequent analyses. For the Good Effort TBI sample, the majority of participants 
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(39.0%) demonstrated an impaired performance (defined as at least 1 SD or more lower 

than the mean) on all five index scores using the standard calculation; using the CVLT-II 

substitution method, 36.8% were impaired on all five index scores. Less than 10% of the 

sample scored within 1 SD of the mean on all five of the index scores with the standard 

administration, and 13.2% did so when substituting CVLT-II indices. As can be seen in 

Table 3, on four out of five standard index scores, over 60% of Good Effort TBI 

participants demonstrated impairment; the exception was the VMI, on which slightly less 

than half the sample showed impaired performance. Each of the three index scores 

based on CVLT-II substitution were impaired for 50% or more of the Good Effort TBI 

sample. In comparison to the Unsuccessful Simulator group, the Good Effort TBI group 

demonstrated a significantly lower proportion of impaired scores on the VMI (χ2 (1, N = 

82) = 9.02, p = .003, phi = .33) and DMI (χ2 (1, N = 82) = 7.75, p = .005, phi = .31). The 

two groups did not differ significantly on the proportion of impaired scores for AMI, 

VWMI, or IMI (all p’s > .10). In comparison to the Successful Simulator group, the Good 

Effort TBI group demonstrated a significantly higher proportion of impaired scores on 

the AMI (χ2 (1, N = 59) = 10.68, p = .001, phi = .43) and VWMI (χ2 (1, N = 59) = 6.47, p 

= .011, phi = .33), whereas the groups did not differ significantly on VMI, IMI, and DMI 

(all p values > .10). 

As can be seen in Figure 1, the Good Effort TBI group generally produced lower 

scores on verbal subtests in comparison to visually based subtests. Using the same 

criteria of impairment (e.g., 1 SD or more below the mean), subtest means were in the 

impaired range for 5 out of 10 primary subtests. For most subtests, more than 50% of 

the Good Effort TBI sample demonstrated impairment. The exceptions to this were on 
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the delay portion of Designs (31.7% impaired), and both immediate (39.0%) and delay 

(48.8%) portions of Visual Reproduction. 

Recognition measures are summarized in Table 5. Raw scores ranged from 11 

to 29 (out of 30) for Logical Memory (LM) recognition and from 2 to 7 (out of 7) for 

Visual Reproduction (VR) recognition. For LM recognition, 73.2% of participants 

achieved at least 65% accuracy and on VR recognition, 68.3% of participants obtained 

a score of 6 or better. On the recognition portion of the Designs subtest, scores ranged 

from 8 to 18 out of 24 with 65% of participants correctly identifying 50% of more of the 

targets. For Verbal Paired Associates (VPA) recognition, in addition to a simple hit rate, 

the WMS-IV also calculates the number of Easy Hits, Hard Hits, False Positives, and a 

discriminability score. There are a total of 14 targets (4 of which are Easy) and 26 foils. 

Total hits ranged from 15 to a maximum of 40 with a median of 36; all but one Good 

Effort TBI participant achieved at least 67% accuracy. Easy hits ranged from 1 to 4 with 

90.3% of the sample correctly identifying at least 3 of the easy items and 73.2% of the 

sample correctly identifying all 4. Hard hits totals ranged from 2 to 10 with 75.9% of the 

sample correctly identifying 9 (n = 16) or all 10 (n = 15) of the Hard items. False 

positives ranged from 0 to 16 with 30.0% of the sample not making any false positives 

errors and 65.0% making 3 or less false positive errors; only 2 people in the Good Effort 

TBI group made more than 10 false positive errors. Verbal Paired Associates 

recognition discriminability is calculated using the following formula: 

 

Discriminability = (Hits / 14 + ([26 – False Pos.] / 26)) / 2 
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Values for the discriminability range from 0.0 to 1.0 and are considered an overall 

measure of recognition accuracy that weights false positives along with the total number 

of hits. In the good effort TBI sample, discriminability ranged from .37 to 1.00 with a 

mean of .89 (SD = .11) indicating that participants in this group were able to correctly 

separate out the correct items with relatively few false positives errors. Ninety percent of 

the sample achieved a discriminability score of .78 or better. 

Although not included in the calculation of any index score, the Brief Cognitive 

Status Exam (BCSE) is essentially an expanded version of the Information and 

Orientation subtest from the WMS-III. The BCSE is divided up into seven sections 

including Orientation, Time Estimation, Mental Control, Clock Drawing, Incidental 

Recall, Inhibition, and Verbal Production. Scores from each section are weighted and 

summed, and the total score is classified based on age group and education as 

Average, Low Average, Borderline, Low, or Very Low. Good effort TBI participants 

generally performed well on this measure with raw scores ranging from 23 to 58 (out of 

58) and 53.7% of participants being classified as Average, and 22.0% being classified 

as Low Average. 

Section 5.2.1.2 Suspect Effort TBI 

The suspect effort group consisted of outpatient adults who were part of the 

SEMTBIS project who failed two or more of the symptom validity tests; none reported 

involvement in current litigation or other legal proceedings. As with the Good Effort TBI 

group, one-way ANOVA’s compared each of the primary index scores by injury severity 

and did not reveal the presence of significant differences, so the suspect effort TBI 

group was also combined across injury severity. The majority of participants in the 
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Suspect Effort TBI group (57.9%) demonstrated impaired performance on all five of the 

standard index scores; using the CVLT-II substitution method, 52.6% were impaired on 

all five of the index scores. Using either method (CVLT-II substitution or standard 

administration), the entire Suspect Effort TBI sample was impaired on three or more of 

the index scores. For every subtest, including the substituted scores, over 60% of this 

group scored in the impaired range with some as high as 95% (Spatial Addition). 

Comparing each of the index scores between the Good effort and Suspect effort 

TBI groups using one-way ANOVA revealed significant differences (all p values < .005; 

η2 range from .19 to .22), thus confirming that those individuals in the TBI group who 

were classified as putting forth questionable effort based on SVT failure, performed 

significantly worse on the primary WMS-IV indices. A similar pattern of findings was 

revealed at the subtest level. More specifically, the Suspect Effort TBI group performed 

significantly worse on most subtests in both the immediate and delay portions with the 

exception of the Designs subtest, which approached significance. On the recognition 

measures, the Suspect Effort TBI group again performed significantly worse except for 

LM recognition where the observed difference was not significant. 

Section 5.2.1.3 Unsuccessful SIM 

 Unsuccessful Simulators (U-SIM) represent the primary group of comparison 

against the Good Effort TBI that were used in generation of the primary prediction 

equations. All participants in this group were healthy adults who failed at least two of the 

six effort measures. On the WMS-IV, the number of impaired index scores ranged from 

1 to 5 using the standard administration and from 0 to 5 using the CVLT-II substitution. 

With the standard administration, 70.7% of U-SIM participants demonstrated impairment 
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on all five of the index scores using the standard administration; this value dropped to 

65.9% with the substitution method. 

In comparison to the Good Effort TBI group, the number of impaired index scores 

was significantly higher for U-SIM participants using either the standard administration 

(Mann-Whitney U = 561.5, p = .004) or the substitution method (Mann-Whitney U = 

510.0, p = .004). Additionally, U-SIM participant performance did not differ significantly 

on the AMI, although a significant trend was observed (F (1, 80) = 3.736, p = .057, η2 = 

.05). For all other index scores, including the substitution scores, the U-SIM participants 

performed significantly worse than the Good Effort TBI participants (p < .005). 

Evaluation of Cohen’s d calculated using a pooled standard deviation approach 

revealed effects that ranged in size from medium (AMI, d = .44) to Very Large (VWMI, d 

= 1.20) with a mean effect size of 0.75 (Large) at the index score level. 

At the subtest level, U-SIM participants also performed quite poorly on the verbal 

subtests. Logical Memory Immediate (LM1) scaled scores ranged from 1 to 12 with 

85.4% of participants demonstrating impaired performance. On LM2, scores ranged 

from 1 to 13 with 90.2% of scores falling in the impaired range. For this subtest, 14.6% 

and 7.3% of U-SIM participants scored in the Average range on immediate and delayed 

recall portions respectively. In comparison to Good Effort TBI participants, U-SIM 

participants performed significantly worse on both immediate recall (F (1, 80) = 4.496, p 

= .037) and delayed recall (F (1, 80) = 5.266, p = .024). The pooled SD effect sizes 

were classified as medium effects for both immediate (d = .47) and delayed (d = .48) 

recall. Logical Memory recognition (LM-Rec) performance was also poor; raw scores 

ranged from 10 to 29 with 51.2% of the sample achieving 65% accuracy. 



44 

 

Performance on VPA was similar with 68.3% of scores in the impaired range for 

VPA1; on VPA2, 58.5% of scores were classified as impaired. There were no significant 

differences between U-SIM and good effort TBI participants on VPA performance for 

either the immediate or delayed recall. On VPA recognition (VPA-Rec), the total number 

of correct responses for the U-SIM sample was fairly evenly distributed with raw scores 

ranging from 11 to 40 and over 80% of the sample demonstrating greater than 65% 

accuracy. More refined analysis of VPA-Rec performance suggests quite poor 

performance. Although the average total hit rate was high (M = 10.1, SD = 3.7), 

discriminability ranged from .26 to 1.00 with a mean of .76 (SD = .18). More than half of 

U-SIM participants correctly identified all of the easy items (56.1%), but only 56.1% 

correctly identified 8 out of 10 hard items, and the number of false-positive errors was 

high (M = 5.0, SD = 4.8). In comparison to Good Effort TBI participants, U-SIM 

participants demonstrated significantly lower discriminability scores (F (1, 79) = 13.45, p 

< .001, η2 = .15). 

On the visually-based immediate and delayed recall subtests, U-SIM participants 

again demonstrated poor performance. For Designs 1 (DES1), scores ranged from 1 to 

11 with 65.9% of scores in the impaired range. Designs 2 (DES2) performance ranged 

from 1 to 13 and found 63.4% of scores in the impaired range. In comparison to good 

effort TBI participants, U-SIM performance was no different on the immediate recall 

portion (although a trend was observed; (F (1, 80 = 3.46, p = .067, η2 = .04), but was 

significantly worse on the delay portion (F (1, 80) = 10.09, p = .002, η2 = .11). Visual 

reproduction Immediate Standard Scores (SS) ranged from 1 to 12 with a surprising 

31.7% of participants achieving a SS of 1 on this subtest, suggesting that this subtest in 
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particular was a common target of dissimulation strategy. A total of 75.6% of scores 

were in the impaired range. The same pattern was not observed for Visual 

Reproduction-2 (VR2) with scores ranging from 1 to 15. Only 7.3% achieved a SS of 1 

and 80.5% scored in the impaired range. Unsuccessful SIM performance was 

significantly lower in comparison to Good Effort TBI for both immediate (F (1, 80) = 

15.95, p < .001, η2 = .17) and delay conditions (F (1, 80) = 13.54, p < .001, η2 = .15). On 

the recognition portion of the visual memory subtests, 51.2% of U-SIM participants 

achieved 50% accuracy on Designs-Recognition (DES-Rec) and on Visual 

Reproduction-Recognition (VR-Rec), 75.6% of the sample correctly identified only three 

or fewer of the designs. Simulator recognition performance was significantly lower for 

both Designs (F (1, 79) = 6.56, p = .012, η2 = .08) and VR (F (1, 80) = 67.69, p < .001, 

η2 = .49) in comparison to good effort TBI. 

 The two additional working memory subtests (Spatial Addition and Spatial Span) 

also revealed a consistent pattern of impaired performance with SS’s ranging from 1 to 

10 for both Spatial Addition (SA) and Spatial Span (SSp). On the SA subtest, 17.1% of 

participants achieved a SS of 1 with 85.4% of scores in the Impaired range. On SSp, 

the modal SS was 6 with 82.9% of scores in the impaired range. Simulators again 

performed significantly worse on these two subtests (SA, F (1, 80) = 19.77, p < .001, η2 

= .20; SSp, F (1, 80) = 21.47, p < .001, η2 = .21) in comparison to good effort TBI. 

 On the BCSE, U-SIM participant scores ranged from 2 to 56 with 61.0% of 

participants scoring in the Very Low range. Only 2.4% U-SIM participant scored in the 

Average range, 7.3% scored in the Low Average range, 12.2% in the Borderline range, 

and 17.1% in the Low range. BCSE scores for the U-SIM group were significantly lower 
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than the good effort TBI group (Mann-Whitney U = 211.5, p < .001) with an effect size of 

1.55 (huge). 

 Averaging across the effect sizes (Cohen’s d) for the individual subtests yielded a 

mean of 0.61 (medium effect). The mean effect size for the immediate recall verbal 

subtests, including the substituted VPA scores was 0.32 (small) and for verbal delay 

was 0.42 (small). Visual subtests demonstrated larger effects with a mean effect size of 

0.71 (medium) for immediate visual subtests and 0.77 (medium) for delay subtests. The 

working memory subtests, however, demonstrated the largest effect sizes (SA = 1.03 

and SSp = 1.04). Effect sizes for most of the recognition subtests were quite large with 

a mean of .83 (large) and range from .32 (LM-Rec) to 1.83 (VR-Rec). 

 In comparison to the Suspect Effort TBI group, there were no significant 

differences in the number of impaired index scores using either method, and the only 

index score that demonstrated a significant difference was the standard administration 

of the AMI (F (1, 56) = 5.06, p = .028, η2 = .08). More specifically, suspect effort TBI 

participants performed significantly worse on this index than the unsuccessful simulator 

participants. All other pairwise index score comparisons between Suspect Effort TBI 

and U-SIM participants were not significant.  

At the subtest level, the only significant difference observed was for VPA. More 

specifically, suspect effort TBI participants scored significantly worse on VPA1 (F (1, 57) 

= 17.97, p < .001, η2 = .24) and on VPA2 (F (1, 56) = 7.52, p = .008, η2 = .12), which 

contributed to the significantly lower AMI. Across all other subtests, no significant 

differences were observed between these two groups. In terms of recognition 
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performance, no significant differences were observed for any of the 4 recognition 

portions. 

Section 5.2.1.4 Successful SIM 

 The Successful Simulator (S-SIM) group is composed of healthy adults who 

reported feigning memory impairment on the debriefing questionnaire, but who passed 

at least five of the six effort measures. As can be seen in Table 3, all of the Index scores 

and subtest SS means were within 1 SD of the mean. In this sample, the number of 

impaired index scores using the standard calculation ranged from 0 to 5 with most 

participants generating no impaired index scores; 50.0% of this sample demonstrated 

impairment on two or more index scores. Using the substitution method, the most 

participants in this group did not demonstrate impairment on any index score; 44.4% of 

this sample showed impairment on two or more of the index scores using CVLT-II 

indices. On any of the individual subtests, no more than 50% of the S-SIM sample 

demonstrated impairment. 

Section 5.2.2 – Effort Measures 

 Effort test performance by group is presented in Table 6 (TOMM, RDS, and 

CVLT-II indices) and Table 7 (Green Measures). Of the four groups, the U-SIM group 

had the highest failure rate on four of the six effort measures. The exceptions were the 

CVLT-II three-variable model and the NV-MSVT on which the Suspect Effort TBI group 

had a slightly higher failure rate. The S-SIM group had the lowest failure rate on all 

effort measures except for the NV-MSVT. In the Good Effort TBI group, 70.7% of 

participants failed one measure with most failures on the CVLT-II three-variable model; 

29.3% passed all six effort measures. In the suspect effort TBI group, 47.4% of 
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participants failed two SVT’s, 36.8% failed three, and 15.8% failed four of the six SVT’s; 

the highest failure rate for this group was observed on the NV-MSVT.  

The majority (66.7%) of participants in the S-SIM group passed all six of the 

effort measures with only 33.3% failing one SVT; the NV-MSVT was the most failed 

measure among S-SIM participants.  The number of failed SVT’s for the U-SIM group 

ranged from 2 (19.5%) to all 6 (19.5%) with most U-SIM participants failing four of the 

six (26.8%). The highest failure rate among U-SIM participants was observed on the 

NV-MSVT. 

Section 5.3 – Primary Prediction Equations 

Hypothesis 1: It was predicted that individual indices or a combination of indices 

obtained from administration of the WMS-IV would be capable of reliable differentiation 

between persons with verified TBI and neurologically-normal participants dissimulating 

TBI.  

Section 5.3.1 – Advanced Clinical Solutions Embedded Measures 

The first set of predictors used were those included in the Advanced Clinical 

Solutions (ACS) package as embedded effort indicators. For the following ACS 

analyses only, which includes raw score and base rate models, the RDS and WCT were 

not used to classify subjects as putting forth good or poor effort to avoid contamination 

of predictor with criterion, because these two measures are included in the ACS. 

Following classification of effort using the previously described methods without 

inclusion of the RDS, the resulting Good Effort TBI sample (n = 45) was predominantly 

African American (76%) men (91%) with a mean age of 43.4 years (SD = 12.1) and a 

mean education of 11.8 years (SD = 2.3). The Unsuccessful SIM group (n = 39) was 
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also predominantly African American (74%) men (82%) with a mean age of 42.4 years 

(SD = 11.5) and mean education of 12.8 years (SD = 2.0). These two groups were 

initially equivalent on age, gender, and ethnicity, but with this reclassification, the SIM 

group demonstrated a significantly higher mean level of education (F (1, 82) = 4.49, p = 

.037). In regard to test performance, the SIM group performed significantly worse than 

the TBI group on four of the five ACS variables; the exception was LM-Rec which did 

not significantly differ between these two groups (F (1, 82) = 0.86, p = 36). Test 

performance data for this analysis are presented in Table 8 along with effect sizes 

(Cohen’s d) calculated using a pooled standard deviation. 

An initial model was fitted using each of the five individual embedded effort 

measures identified by Pearson (e.g., WAIS-IV Reliable Digit Span, Word Choice Test, 

Logical Memory recognition, Visual Reproduction recognition, and Verbal Paired 

Associates recognition) as predictors with group membership (e.g., Good Effort TBI vs. 

Unsuccessful SIM) as the outcome of interest. Education was also entered to account 

for the statistical difference observed between groups using this particular classification 

scheme. A test of this model against a constant only model was statistically reliable (χ2 

= 72.38, p < .001, Nagelkerke R2 = .77) with an AUC of .95 (95% CI = .90 - 1.00), 

indicating that these five measures together with education performed extremely well at 

discriminating between groups in the present sample. The overall hit rate for this model 

was 90.5% with 89.7% sensitivity to poor effort and 91.1% specificity. Although the 

overall model was statistically reliable, only four of the six individual predictors were 

significant. More specifically, education and LM-Rec did not contribute significantly to 

the overall model and participant classification, thus reinforcing the utility of the 
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remaining four variables. The ROC curve for this model is presented in Figure 2 and 

model summary statistics for the Full ACS model with education are presented in Table 

9. 

Note: The remaining analyses use the primary participant classification described in the 

methods section (i.e., use of all effort measures except for the Word Choice test). As a 

result, the model fit statistics used in the present study (e.g., Bayesian Information 

Criterion) for the previous model cannot be compared to those for the subsequent 

models because the Pearson ACS model was fit using a slightly different sample. 

Rather, qualitative comparisons can be made using AUC values. 

Section 5.3.2 – Word Choice Test 

To examine the efficiency of the Word Choice test (WCT) separately, a model 

was fit using only the WCT raw score. A test of this model against an empty model was 

statistically reliable (χ2 = 32.89, p < .001, Nagelkerke R2 = .41) with an AUC of .83 (95% 

CI = .74 - .92). The odds ratio for the Word Choice test was 0.82 (p < .001; 95% C.I. = 

0.74 - 0.90). When interpreting odds ratios, a value of 1.00 is indicative of little to no 

predictive ability and the number translates to a percent change in probability of group 

membership. As values depart from one – in either direction – the greater the degree of 

influence a particular variable has on prediction of the outcome. In this case, an odd’s 

ratio of .817 indicates that for every unit increase in the score on the WCT, the 

probability of being classified as a simulator decreases by 18.3%. The ROC curve for 

this model is presented in Figure 3. 

Based on predicted probabilities using a criterion of .50 (which translates to a cut 

off score of 43), the WCT correctly classified 78.0% of the sample and demonstrated an 
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overall sensitivity to simulation of 73.2% with 82.9% specificity. Examining the 

coordinates of the ROC curve revealed that the diagnostic efficiency can be improved 

by using a lower cutoff score of 37 that yielded 56.1% sensitivity to poor effort with 

95.1% specificity for the present sample. Given the risk associated with false-positives 

(i.e., falsely classifying an individual as malingering), the lower cutoff generating higher 

specificity is preferred, even if it comes at the expense of sensitivity. 

The Bayesian Information Criterion (BIC) was also calculated in order to 

generate an overall estimate of model fit for use in comparing to subsequent models fit 

to the same sample that are not nested. The BIC is a model fit statistic used to compare 

prediction models (Hardin & Hilbe, 2007) based on the deviance statistic (D) of a 

specified model (MK), sample size (n), and degree’s of freedom (df). It is calculated as: 

 

BIC = D (MK) – (df) ln (n) 

 

 For the previous model using only the raw score from the WCT, the calculated 

BIC was -271.75. Although a BIC value in isolation is relatively uninformative and there 

is no statistical test associated with it, it is very useful when it can be compared to other 

BIC values calculated from models fit to the same data. According to interpretive 

guidelines, the more negative value is associated with the preferred model, and the 

difference between BIC values can be used as an indication of the degree of 

preference. Differences between 0 and 2 indicated a “Weak” preference for the model 

with the more negative value, 2 to 6 yield a “Positive” preference, 6 to 10 suggests 
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“Strong” preference, and differences greater than 10 provides “Very Strong” evidence 

(Raftery, 1996). 

Section 5.3.3 – Wechsler Memory Scale, Fourth Ed. Brief Cognitive Status Exam 

Included in the WMS-IV as an optional subtest is the Brief Cognitive Status Exam 

(BCSE). The BCSE is a measure intended to provide an overview of cognitive 

functioning including orientation, language, visual-spatial, memory, and inhibitory 

abilities and is a replacement for the Information and Orientation subtest from the WMS-

III. Administration generates a total raw score that along with age and education, is 

used to classify test takers as Average, Low Average, Borderline, Low, or Very Low. 

Although the classification grouping is too coarse a measure to use as a predictor, the 

total raw score represents a viable option as a measure of symptom validity. 

Based on observations made during data collection as well as the rather large 

effect size found, the BCSE was selected as a candidate for use as a variable for the 

detection of suboptimal effort. A model was fit that again used the Unsuccessful SIM 

and Good Effort TBI as the groups of interest and primary outcome variable and the 

total raw score for the BCSE was used as the predictor. A test of this model against a 

constant only model was significant (χ2 = 40.24, p < .001, Nagelkerke R2 = .52) with an 

AUC of .87 (95% CI = .80 - .95). In this model, the BCSE was a significant predictor with 

an odds ratio of 0.85 (95% C.I. = 0.79 – 0.92). The BIC value associated with this model 

was -279.10. Examining the coordinates of the ROC curve finds that using a cut off 

score of 34 that yielded 52.5% sensitivity to simulation and 93.9% specificity maximized 

diagnostic efficiency. The ROC curve for this model is presented in Figure 4. 
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Section 5.3.4 – Wechsler Memory Scale, Fourth Ed. Visual Reproduction Recognition 

 Although VR-Rec is included in the ACS package, it was evaluated separately 

given the very large effect size reported in earlier analyses, suggesting that it may be a 

viable option independently. Fitting a model with VR-Rec as a predictor and group 

membership as the outcome of interest was significant (χ2 = 45.58, p < .001, 

Nagelkerke R2 = .57) with an AUC of .88 (95% CI = .80 - .96). The odd’s ratio for VR-

Rec was 0.37 (p <  .001; 95% C.I. = 0.25 - 0.55) and the BIC value for this model was -

284.44. With an odd’s ratio so discrepant from 1.00, it is clear that VR-Rec had a very 

large effect on classification. Examining the coordinates of the curve suggest that a 

cutoff score of 3 was the most appropriate. At this level, sensitivity to simulation was 

61.0% and specificity was 96.4%; the ROC curve is presented in Figure 5. 

Section 5.3.5 – Wechsler Memory Scale, Fourth Ed. Verbal Paired Associates 

Recognition 

 As with VR-Rec, Verbal Paired Associates recognition (VPA-Rec) is also 

included in the ACS package. However, the ACS uses only the total raw score and 

makes no consideration of the process measures available (e.g., easy hits, hard hits, 

false positives, discriminability). Given the availability of these measures and a history 

of their effective use in effort research with the CVLT and CVLT-II (e.g., Millis, Putnam, 

Adams, & Ricker, 1995; Wolfe et al., 2010), prediction models were fit using these 

variables. 

 The first model fit using these indices contained raw scores for total hits and total 

false-positives. A test of this model against a constant only model was significant (χ2 = 

15.33, p < .001, Nagelkerke R2 = .23), but the only predictor to contribute significantly to 
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the model was the total number of hits (Odds Ratio = 0.71, p = .007; 95% C.I. = 0.56 - 

0.91); the total number of false positives was not significant. This model was 

deconstructed and refitted by breaking down the total number of hits into the number of 

easy and hard hits and using those values as predictors instead. A test of this model 

against an empty model was also significant (χ2 = 11.88, p = .003, Nagelkerke R2 = 

.18), but the only predictor to contribute to the overall model was the total number of 

hard hits (Odds Ratio = 0.73, p = .012; 95% C.I. = 0.57 - 0.93); the number of easy hits 

was not significant. The model was again refitted, but this time only the number of hard 

hits was entered as a predictor. This model was significant (χ2 = 11.46, p = .001, 

Nagelkerke R2 = .17) and the number of hard hits was a reliable predictor on its own 

(Odds Ratio = 0.71, p = .004; 95% C.I. = 0.56 - 0.90). The BIC for the model containing 

only the number of hard hits was -250.32 and the AUC was .70 (95% C.I. = .59 - .82). 

 In the continued search of VPA-recognition process variables to be used as 

predictors of group membership, a model was fit using VPA-Rec discriminability. This 

model was also significant (χ2 = 13.71, p < .001, Nagelkerke R2 = .21) as was the only 

predictor (Odds Ratio = 0.002, p = .002; 95% C.I. = 0.000 - 0.100). The calculated BIC 

value for the discriminability only model was -248.59. As with the number of hard-hits, 

the AUC for this model was disappointingly low at .72 (95% C.I. = .61 - .83). Examining 

the coordinates of this curve reveal that a discriminability cut-off of .80 achieves 

sensitivity to poor effort of 54% with 90% specificity. In comparison to the hard-hits 

model presented previously, the difference in BIC values indicates a “Weak” degree of 

preference for the model using the number of hard hits; however, the larger AUC for 
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discriminability suggests better overall diagnostic efficiency. The ROC Curves for both 

of the VPA recognition variables are presented in Figure 6 simultaneously. 

Section 5.3.6 – Wechsler Memory Scale, 4th Ed., Spatial Span Subtest 

 The Spatial Span (SSp) subtest is a measure that is a visual analog to the Digit 

Span subtest from the WAIS-IV. Given the similarity, it was hypothesized that a 

measure of effort could be calculated using the longest span correctly recalled. For 

each participant, the number of items in the last correctly-recalled item was recorded 

and entered into a prediction model. Although the WAIS-IV uses a “reliable” span, the 

longest correctly recalled span from the SSp was chosen because there are up to five 

trials per span, and given the low level of performance, using a reliable span would 

have caused a severely restricted range. The average longest span for the Good Effort 

TBI group was 3.2 (SD = 0.5) and for the U-SIM group was 2.5 (SD = 0.9); this 

difference was significant (F (1, 80) = 22.98; p < .001, η2 = .22). 

When entered into a logistic regression, a test of this model was statistically 

reliable (χ2 = 21.59, p < .001, Nagelkerke R2 = .31) with an AUC of .750 (95% C.I. = 

.644 - .855). The odds ratio for the longest span was 0.21 (p < .001; 95% C.I. = 0.09 - 

0.48); the BIC value associated with this model was -260.45, indicating a high degree of 

fit in comparison to other indices towards this hypothesis. Analysis of the coordinates of 

the ROC curve identified that a cutoff score of 2 yielded a 30.4% sensitivity, which is 

unacceptably low, but a near perfect specificity of 97.5%. When this value was raised to 

a cut score of 3, sensitivity increased to 68.3%, but specificity dropped considerably to 

63.4%. Given the risk of false positives in relation to false negatives, a more 

conservative cutoff score of 2 would be advisable, given the very high specificity. With 
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such a low sensitivity, it would be essential to use this measure only in conjunction with 

other, well-validated measures. 

Section 5.3.7 – The Advanced Clinical Solutions, Revised 

 In light of the previous set of findings, the set of variables included in the ACS 

was revisited and revised. Based on the classification accuracy of the variables 

explored, a model was fit that contained those variables identified as robust as well as 

those hypothesized to be among the most commonly employed in clinical practice. The 

outcome of interest was again group membership and the variables entered as 

predictors were the BCSE total score, Word Choice Test raw score, VR-Rec total raw, 

and VPA-Rec discriminability. These variables were selected based on their 

performance individually, and the likelihood that they would be among the most 

commonly used measures by clinicians. All variables were entered simultaneously and 

a test of this model against a constant only model was significant (χ2 = 67.93, p < .001, 

Nagelkerke R2 = .76) with a BIC of -289.63; all four predictors were significant. The AUC 

for this model was .95 (95% C.I. = .91 - .99) indicating an “outstanding” degree of 

diagnostic efficiency and overall classification accuracy (Hosmer & Lemeshow, 2000).  

Inspection of the odds ratios, however, suggested the possibility for the presence 

of multicollinearity. More specifically, VPA-Rec demonstrated an unusually large odds 

ratio and an extremely wide confidence interval that was disproportionate to the scale of 

measurement and the remaining odds ratios. Collinearity diagnostics were run and 

revealed the presence of significant overlap between the Word Choice Test and VPA-

Rec discriminability. Thus, a decision was made to remove the WCT from the model 

because it was previously evaluated independently, and the model was refitted using 
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the BCSE total raw score, VR-Rec and VPA-Rec discriminability. A test of this model 

against and empty model was significant (χ2 = 58.75, p < .001, Nagelkerke R2 = .69) 

with an AUC of .93 (95% C.I. = .87 - .99); two of the three predictors were significant. 

The BIC value for this model was -284.84. Model summary statistics including 

regression coefficients and odds ratios for the individual predictors are presented in 

Table 9, and the ROC curve is presented in Figure 7. 

Section 5.4 – Secondary Prediction Equations 

The models investigated in Hypothesis 1 were revisited to determine their 

abilities to address Hypothesis 2. Then additional exploration determined whether other 

viable models existed within the present data. Due to the small size of the successful 

simulator group (n = 18), models with more than two predictors should be interpreted 

with caution and are not advised for clinical use until replicated with a larger sample. 

Hypothesis 2: It was predicted that individual indices or a combination of indices 

obtained from administration of the WMS-IV would be capable of reliably differentiating 

between successful TBI dissimulators (S-SIM) and unsuccessful TBI dissimulators (U-

SIM) 

Section 5.4.1 – Advanced Clinical Solutions Embedded Measures 

 The first model fit using all five raw scores from the ACS was statistically reliable 

in comparison to an empty model (χ2 = 41.39, p < .001, Nagelkerke R2 = .71); however, 

none of the individual predictors themselves were significant, suggesting the presence 

of multicollinearity. Examining collinearity diagnostics revealed a substantial amount of 

overlap between the Word Choice test and VPA recognition, which is consistent with the 

previous model that found overlap between VPA-Rec discriminability and the WCT. As 
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in the previous analysis, given that the WCT would be evaluated separately, a decision 

was made to refit the model without inclusion of the WCT and retain the embedded 

nature of the ACS. 

Refitting the model with only the three recognition variables and the RDS was 

statistically reliable (χ2 = 37.34, p < .001, Nagelkerke R2 = .66) with an AUC of .94 (95% 

C.I. = .88 - .99) indicating a high degree of classification accuracy; the BIC for this 

model was -184.95. This reduced version of the ACS model correctly classified 84.7% 

of participants with 72.2% sensitivity to successful simulation and 90.2% specificity. Out 

of the four variables entered, only the RDS and VR-Rec were significant predictors; LM-

Rec and VPA-Rec were not significant. This finding is consistent with observations 

made in the analyses addressing Hypothesis 1. However, it is important to consider the 

available power in the present sample to effectively fit a model with so many predictors; 

it is presented here to provide preliminary evidence of its utility. As a result, with a larger 

sample the previous model may in fact be a better fit. Summary statistics are presented 

for the ACS 4-Variable model in Table 10; however, the use of regression coefficients to 

generate predictions from this model is ill advised. The ROC curve for this model is 

presented in Figure 8. 

Section 5.4.2 – Word Choice Test 

The Word Choice test alone was also a reliable predictor between successful 

and unsuccessful simulators (χ2 = 28.97, p < .001, Nagelkerke R2 = .55), with an odds 

ratio of 0.72 (95% C.I. = 0.59 - 0.89). The BIC value for this model was -188.81, and the 

AUC for the Word Choice test as a predictor was .90 (95% C.I. = .81 - .98), 

demonstrating a high degree of diagnostic efficiency. Evaluating the coordinates of the 
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curve find that a modest balance between sensitivity and specificity was achieved using 

a cutoff score of 37, which yielded a sensitivity to successful simulation of 94.4% and a 

specificity of 56.1% Interestingly, cutoff scores between 36 and 46 all yielded the same 

sensitivity, but specificity varied dramatically. At the upper end, using a cutoff of 46, 

specificity to successful simulation was maximized at 78.1% while retaining the 94.4% 

sensitivity. The high degree of sensitivity suggests that this measure is very good at 

detecting cases of poor effort; however, it is inefficient at differentiating between those 

who simulated well and those who did not. The ROC curve for the WCT only model is 

presented in Figure 9. 

Section 5.4.3 – Wechsler Memory Scale, Fourth Ed. Brief Cognitive Status Exam 

 Using the BCSE to differentiate between successful and unsuccessful simulators 

was statistically reliably in comparison to a constant only model (χ2 = 14.97, p < .001, 

Nagelkerke R2 = .32) with an AUC of .81 (Figure 10; 95% C.I. = .68 - .94). The odds 

ratio for the BCSE in this model was 0.90 (p = .002; 95% C.I. = 0.85 - 0.97) and the 

overall hit rate was 83.1%. Specifying a cutoff score of 45 yielded 63.9% sensitivity to 

successful simulation and 83.0% specificity. Raising the cutoff to 47 lowered sensitivity 

to 58.4%, but raised specificity to 92.7%. This cutoff score is quite high; however, 

considering the performance of the TBI group in the present sample, as well as the 

ease of this measure, a score of 45 (out of 58) is actually quite poor and would be 

classified as Borderline or Low Average for most participants, except for those with an 

8th grade education or less. The BIC value for this model was -174.81, which suggests 

that although the BCSE is a statistically reliable predictor, it is not as good a fit as the 

WCT is between the two simulator samples. 
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Section 5.4.4 – Wechsler Memory Scale, Fourth Ed. Visual Reproduction Recognition 

 Visual Reproduction recognition was again a very reliable predictor of group 

membership (χ2 = 24.12, p < .001, Nagelkerke R2 = .47) with an odds ratio of 0.44 (p < 

.001; 95% C.I. = 0.29 - 0.67) and an AUC of .86 (95% C.I. = .75 - .97). Using a cutoff 

score of 5 out of 7 was necessary to achieve sensitivity to successful simulation of 

77.8% and specificity of 84.2%. Increasing the cutoff to 6 lowered sensitivity to 47.3% 

but raised specificity to 91.5%. The BIC value for this variable was -183.96, which thus 

far was the second-best fit of the present data of the single-variable prediction models. 

Section 5.4.5 – Wechsler Memory Scale, Fourth Ed. Verbal Paired Associates 

Recognition 

 Process variables from VPA-Rec were again entered into prediction models with 

simulator status as the outcome of interest. Given the findings from section 1, two 

separate models were fit; one using VPA-Rec Hard Hits and one using discriminability. 

The first model using the number of hard hits was statistically reliable (χ2 = 15.60, p < 

.001, Nagelkerke R2 = .34) with an odds ratio of 0.45 (p = .009; 95% C.I. = 0.25 - 0.82) 

and an AUC of .79 (95% C.I. = .68 - .91). The BIC for this model was -172.82. A very 

high cutoff score was necessary to achieve an adequate balance between sensitivity 

and specificity. More specifically, using a cutoff of 9 (out of 10) resulted in 73.6% 

sensitivity to successful simulation and 70.8% specificity. Using a lower cutoff score of 6 

resulted in 100% sensitivity; however, specificity was low at 31.7%. A cutoff of 7 yielded 

a sensitivity of 97.1% and specificity of 39.0%. Thus, as with the WCT, a low number of 

hard hits on VPA recognition is very sensitive to simulation, but not very specific to the 

level of sophistication. 
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Using VPA-Rec discriminability was also a reliable predictor (χ2 = 23.02, p < 

.001, Nagelkerke R2 = .47) with an odds ratio of 0.00 (95% C.I. = 0.00 - 0.01) and an 

AUC of .86 (95% C.I. = .77 - .96); the BIC value for this model was -180.23. Using a 

cutoff score of .95 – near perfect discrimination – resulted in 52.9% sensitivity to 

successful simulation and 87.8% specificity. Using a discriminability score of .74 as a 

cutoff, perfect sensitivity was achieved, but specificity dropped to 39.0%. Although each 

of these variables reliably differentiated between groups, very stringent cutoff scores 

were necessary to achieve acceptable diagnostic efficiency suggesting that the S-SIM 

group performed well on these measures in comparison to the U-SIM group, at levels 

which are approaching an intact level of performance. Thus, as with the other variables 

identified in the present section, the VPA-Rec Discriminability score was effective at 

capturing simulators, but not very efficient at differentiating between those who 

simulated well, and those who do not. 

Section 5.4.6 – Longest Spatial Span  

 Given the performance of the longest spatial span in section 1, its ability to 

differentiate among simulator samples was also evaluated. The overall model was 

significant as compared to an empty model (χ2 = 18.43, p < .001, Nagelkerke R2 = .38) 

with an AUC of .81 (95% C.I. = .68 - .93). The only predictor was significant (p = .001) 

with an odds ratio of 0.20 (95% C.I. = 0.08 - 0.52). The BIC for this model was -178.27, 

and in comparison to the previously fit models, does not represent the best fit of the 

available data. The diagnostic efficiency of the longest span was not much better in the 

present section than in section 1. Using a cutoff score of 5 achieved perfect specificity; 
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however, sensitivity to successful simulation was virtually zero. Using a cut off of 3, 

however, yielded 75.0% sensitivity and 68.3% specificity. 

Section 5.4.7 – The ACS-Revised Model  

 In this section, the revised ACS model identified in section 1 was evaluated for its 

ability to differentiate between successful and unsuccessful simulators The overall 

model was significant as compared to an empty model (χ2 = 30.70, p < .001, 

Nagelkerke R2 = .59) with an AUC of .91 (95% C.I. = .82 – 1.00) and of the three 

predictors entered, VPA-Rec discriminability was significant (p = .046; Odds Ratio = 

0.00, 95% C.I. = 0.00 - 0.81) and VR-Rec was also significant (p = .021; Odds Ratio = 

0.56, 95% C.I. = 0.34 - 0.92); the BCSE total score was not significant. The BIC for this 

model was -179.79, and in comparison to the previously fit models, it did not represent 

the best fit of the available data. It is important to note, however, that this particular 

model approaches the limits of available power with three predictor variables entered. In 

the presence of a larger successful simulator sample, this model may be a better fit. 

Model summary statistics are not reported for this model due to its instability, but the fit 

statistics are presented in Table 11 for comparison to the same model used in section 1. 

The ROC curve, however, is plotted and can be found in Figure 11. 

Section 5.4.8 – The 2-Varible ACS Model  

 In order to conform to the constraints of the S-SIM sample size, the previously fit 

variables were explored, and based on BIC values and odds ratios when entered 

individually, the two best fitting indices were simultaneously entered; the resultant model 

included the WCT and VR-Rec as predictors.  This two-variable model was statistically 

reliable (χ2 = 35.86, p < .001, Nagelkerke R2 = .64) with an AUC of .94 (95% C.I. = .87 - 
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.99). The BIC value for this model was -191.62, the largest observed thus far for models 

addressing Hypothesis 2. Both predictors were statistically significant with odds ratios of 

less than 1. Model summary statistics are presented in Table 10, and the resulting ROC 

curve is presented in Figure 12. Comparing the overall performance of this model to the 

remaining models fit towards addressing this hypothesis, this model is the best fit. 

Interestingly, it demonstrated nearly identical diagnostic efficiency as the four-variable 

model in this section, and in comparison to the Revised ACS model fit in section 1, its 

performance was marginally lower based on comparison of ROC curves. 

Section 5.5 – Additional Prediction Equations 

Although not specified as an a priori model for section 1, the two-variable model 

was also fit using good effort TBI and U-SIM classification as the outcome of interest as 

a basis for direct comparison. A test of this model against a constant only model was 

significant (χ2 = 51.91, p < .001, Nagelkerke R2 = .63) with an AUC of .91 (95% C.I. = 

.85 - .97). The BIC value for this model was -286.36. In comparison to the other models 

fit for Hypothesis 1, this model did not perform as well, although it was the second-best 

fitting model tested. Comparing the performance of the two-variable model between 

Hypothesis 1 and Hypothesis 2, based on AUC values, it appears that this model is 

more effective at differentiating between cases of successful and unsuccessful 

simulation than between cases of unsuccessful simulation and good effort TBI. 

Even though not part of the original project proposal, a third set of models was fit 

towards addressing a third hypothesis which is of substantial clinical interest; 

specifically, whether or not the previously identified models are capable of differentiating 

between successful simulators and good effort TBI. Given the limited sample size of the 
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successful simulator group, and to avoid fitting underpowered models, only the 

individual predictors were summarized as well as models that contained two predictors 

or fewer. Of all the variables that reliably differentiated between groups in the previous 

two sections, the only variable that reliably differentiated between successful simulators 

and good effort TBI was VPA recognition discriminability (χ2 = 7.99, p = .005, 

Nagelkerke R2 = .19) with an AUC of .74 (95% C.I. = .60 - .88), which did not perform 

particularly efficiently and is barely considered acceptable clinical use (Hosmer & 

Lemeshow, 2000). Several of the other predictors approached significance (e.g., Word 

Choice test, VPA Recognition Hard Hits, and the longest Spatial Span), which 

suggested given a larger sample they may be viable predictors. 
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CHAPTER 6 

DISCUSSION 

 Overall, the findings support the hypothesis that the fourth edition of the 

Wechsler Memory Scale (WMS-IV) can be a reliable and valid tool to identify suboptimal 

effort and feigned memory impairment. Indices from the WMS-IV reliably differentiated 

between individuals coached to feign cognitive impairment that were clearly withholding 

effort (unsuccessful simulators) and traumatic brain injury (TBI) survivors putting forth 

good effort. When patterns of performance were evaluated across several of these 

indices, the predictive abilities were improved. Similarly, individual indices as well as 

patterns of performance across multiple indices from the WMS-IV reliably differentiated 

between coached individuals who did so successfully (i.e., avoided detection) and 

coached individuals who were less sophisticated in their simulation strategies (i.e., were 

identified as feigning). Furthermore, indices were identified that offer promise towards 

differentiating between TBI survivors and coached individuals who avoided detection, 

which is of considerable clinical interest. Thus, based on these findings, it can be 

concluded with relative certainty that the WMS-IV contains indices obtained from routine 

administration that can be used for the detection of negative response bias and 

suboptimal effort. 

Section 6.1 – Hypothesis 1 (Good Effort TBI vs. Unsuccessful Simulator) 

 The present study not only confirmed that the WMS-IV can detect cases of 

symptom exaggeration, it offers specific measures that will allow clinicians to do so. A 

primary focus of the present study was to determine the ability of the WMS-IV to 

differentiate between cases of individuals with bona fide TBI from healthy adults who 
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were coached to feign cognitive impairment associated with TBI. Being able to do so in 

a clinical setting is of great interest to clinicians and researchers alike, especially with 

the relatively high base rate of malingering (Larrabee et al., 2009; Mittenberg et al., 

2002). Because memory is a common target of feigning strategies (Suhr & Barrash, 

2007), the WMS-IV is therefore highly susceptible to symptom exaggeration. Given the 

very large number of potential scores and values that can be used to classify 

individuals, only raw scores and scaled scores were used with few exceptions which 

were made based on previous research (e.g., discriminability, longest spatial span). 

Although these methods are by no means intended to be exhaustive, they are an 

excellent point from which further research can be implemented and based. 

 One of the best fitting models was the five-variable model included as part of that 

Advanced Clinical Solutions (ACS) package that evaluated performance across multiple 

measures within the WMS-IV. After the release of the WMS-IV, Pearson Education 

released the ACS package that contained two stand-alone symptom validity tests and 

identified three WMS-IV recognition variables as embedded measures of effort. The two 

stand-alone measures were the Reliable Digit Span (RDS) developed by Greiffenstein, 

Gola, & Baker (1995) from the Wechsler Adult Intelligence Scale, 4th Ed. (WAIS-IV), and 

the Warrington Recognition Memory test (Warrington, 1984) analog, the Word Choice 

test (WCT). The RDS is not a new measure, and it is not surprising that it was included 

in this package considering the long-standing history of use as an embedded measure 

of symptom validity (e.g., Axelrod et al., 2006; Larrabee, 2003; Mathias, Greve, 

Bianchini, Houston, & Crouch, 2002; Nelson, Boone, Dueck, Wagener, Lu, & Grills, 

2003). Pearson’s use of recognition measures was also consistent with other embedded 
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symptom validity indicators. Typically, recognition paradigms create a forced-choice 

response option that allows for calculation of chance-performance levels (Greve, 

Binder, & Bianchini, 2009; Hiscock & Hiscock, 1989), and moreover, recognition 

memory measures have demonstrated previous efficacy in this area. Their production of 

the WCT is also consistent with previous methods of assessing symptom validity. 

Similar measures have been used for some time (e.g., Warrington Recognition Memory 

Test; Warrington, 1984) and the WCT performed much like its predecessor (Millis, 

1994). 

 When all five of the measures included in the ACS method were used in 

conjunction with education, the group of measures was highly successful at accurately 

classifying individuals as an unsuccessful simulator or a true TBI survivor putting forth 

good effort, offering strong evidence in support of Hypothesis 1. The error rate for this 

model was less than 10%, and most misclassification errors were false negatives (i.e., 

missed cases of malingering) as opposed to false positives (i.e., bona fide TBI 

misclassified as a faker). If used in a clinical setting, false-positive errors carry greater 

consequence and thus, this model balances types of errors well, and in the preferred 

direction. Of note, education had very little impact on classification. In fact, education 

showed weak relation to any of the WMS-IV indices that would be used to identify 

suboptimal effort. Of the five indices included in the ACS classification model, four met 

rigorous criteria for contributing to accurate classification of the groups, with the 

exception of Logical Memory recognition. 

For Logical Memory recognition, participants classified as unsuccessful 

simulators generally performed comparably to TBI survivors putting forth good effort, 
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and based on effect sizes, Logical Memory recognition was least affected by coaching 

of the five ACS measures. Overall, the unsuccessful simulators were detected as such 

because they overestimated the impairment that persons with TBI would show on the 

other ACS measures. However, they did well in approximating the amount of 

impairment on Logical Memory recognition; in other words they did poorly on the task, 

sufficient to appear brain injured, but not so poorly as to appear disproportionately 

impaired. What remains unclear is whether or not the TBI group performed particularly 

poorly on this measure, or alternatively if the unsuccessful simulator group selectively 

withheld their strategy on this task. Another possibility is that scoring rubric for Logical 

Memory recognition (total hits) is an insensitive method to detect the simulators’ 

strategy, and further refinement of this score is necessary as was done with Verbal 

Paired Associates Recognition. Similar approaches have been taken with the previous 

edition of the Wechsler Memory Scale and the Rarely Missed Index (Killgore & 

DellaPietra, 2000), though such efforts have met mixed review (Axelrod, Barlow, & 

Paradee, 2010; Bortnik, Boone, Marion, Amano, Ziegler, Victor, & Zeller, 2010). 

An ideal method to address this issue would be to convert the raw scores to a 

common metric using the means and standard deviations from the normative sample, 

but no such data are available. Alternatively, base rates of performance could be 

examined for each individual using the groupings assigned by Pearson; this approach, 

however, is a coarse metric. Nonetheless, it is noteworthy that the base rate of the 

average performance for the TBI group was at the 17th to 25th percentile on Logical 

Memory recognition, which is considered marginally poor. The SIM group’s base rate 

classification was considerably lower, falling at the 3rd to 9th percentile, thus arguing 
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against the hypothesis that simulators changed their response style on this task. It is 

important to note that performance on this measure is highly negatively skewed, such 

that even a single point difference can have a dramatic effect on base rate performance, 

and there were no differences in performance base on raw scores. In sum, it appears 

that the Logical Memory recognition score was not more easily or differently feigned, 

rather it was a relatively challenging task for persons with TBI which narrowed the 

typical gap from simulators, who usually grossly overestimate the level of impairment. 

Each of the other four indices in the ACS method (Reliable Digit Span, Word 

Choice, Verbal Paired Associates recognition, and Visual Reproduction recognition) 

reliably contributed to participant classification and was strongly affected by coaching, 

especially Visual Reproduction recognition. More specifically, for every incorrectly 

recognized design, the probability of being misclassified as a true TBI survivor 

decreased by a considerable 63.5%; no other index had such a powerful influence over 

classification. It is worth noting that the large effect on probability is in part due to the 

small range of possible scores on this measure, but at the same time, is also due to the 

fact that unsuccessful simulators performed disproportionately poorly on this measure in 

comparison to bona fide TBI survivors. 

The predictor with the second greatest influence was the Reliable Digit Span 

(RDS), with a 49% reduction in the probability of being classified as having a TBI for 

every 1-unit drop in the RDS. Interestingly, Verbal Paired Associates recognition 

produced an odds ratio that indicates that for every incorrectly identified item, the 

probability of being misclassified as having a TBI increases by 23%. This is a 

paradoxical finding, and it is inconsistent with the means for each group, which reflect 
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worse performance among the unsuccessful simulators than bona fide TBI. In 

evaluating the base rate of the group mean for this variable, which fell in the 10th to 16th 

percentile, it becomes clear that TBI survivors performed poorly on this measure in 

comparison to the normative sample. 

Although the present study offers support for the ACS method using these five 

indices as predictors of group membership simultaneously, additional models were 

explored due to the potential for excessive overlap among the predictors and the fact 

that not all variables are obtained from the WMS-IV. These models not only achieved 

comparable diagnostic efficiency, they utilized only indices from the WMS-IV and thus 

do not require administration of additional tests or use of the ACS package. The best fit 

of these models that contained only unique predictors without evidence of excessive 

overlap was a three-variable model dubbed the “Revised-ACS” model. Predictors in this 

model included the Brief Cognitive Status Exam (BCSE), a discriminability score from 

Verbal Paired Associates recognition, and Visual Reproduction recognition. 

The Revised-ACS model demonstrated outstanding classification accuracy. It 

was the best fitting of the a priori specified models toward differentiation among good 

effort TBI and unsuccessful simulators, despite the fact that only two of the three 

individual predictors in this model were reliable in the sense that they offered stable 

predictions of participant classification. In the presence of the BCSE and Visual 

Reproduction recognition, the discriminability score did not contribute to classification 

accuracy. Even though refitting the model without the discriminability score may have 

improved the overall fit, to avoid artificial introduction of bias, it was retained as a 

predictor. As with the full version of the ACS, Visual Reproduction recognition had a 
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dramatic influence on classification, though less so in this revised model than in the full 

ACS model, likely due to the additional presence of better fitting predictors. Similar to 

Visual Reproduction recognition, the BCSE influenced the probability of being classified 

in the same direction such that for every 1-unit drop in raw score on the BCSE, the 

probability of being classified as a TBI survivor is reduced; in this case by 13%. The 

weaker influence (e.g., smaller odds ratio) of the BCSE score in comparison to Visual 

Reproduction recognition is probably related to the wider range of possible scores for 

the BCSE that translates into greater variance. 

Following development of the more complex models, individual predictors were 

evaluated including those used as part of the ACS and the Revised-ACS, refined 

analysis of Visual Reproduction recognition, and the longest span on the Spatial Span 

subtest. Of these indices, Visual Reproduction recognition was still the most powerful 

single predictor and demonstrated the highest classification accuracy. In comparison to 

the next best single-variable index – the BCSE – Visual Reproduction did a better job at 

identifying feigned cognitive impairment even though both were effective. Of note, 

Occam’s razor (Thorburm, 1915) applies when comparing models using Bayesian 

methods: Also known as the principle of parsimony, it advises and rewards the simplest 

model among a set of otherwise equivalent solutions. Thus, although the Revised-ACS 

model was somewhat superior to Visual Reproduction recognition alone in terms of 

predictive accuracy, Bayesian fit statistics reward simplicity and penalize complexity, 

particularly with smaller to medium sample sizes (Hastie, Tibshirani, & Friedman, 2009); 

therefore, the Bayesian comparison equated Visual Reproduction recognition and the 

Revised ACS model. For theoretical or psychometric reasons, clinicians may choose 
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either index, but because the ACS-Revised model does not require additional time or 

clinical resources in exchange for the increase in predictive accuracy, it is 

recommended as the more appropriate tool. However, in the event that the ACS 

measures are not administered, clinicians can feel confident in using the recognition 

score from Visual Reproduction. 

Why individuals coached to feign memory impairment selected visual tasks as a 

target of simulation strategy is unclear. What is important to note, however, is that of the 

available recognition measures evaluated in the present study, Visual Reproduction 

recognition was the only one that does not utilize a forced-choice recognition paradigm; 

Verbal Paired Associates recognition and Logical Memory recognition both utilize a 

yes/no format. On Visual Reproduction recognition, respondents select the correct 

design from six foils, and perhaps the presentation of multiple response options allowed 

for individuals to be more creative in their responses and introduce more variability than 

a simply correct or incorrect response. In addition, there is greater probability for 

incorrect responses, though the same holds true for good effort participants. The other 

recognition memory task that has more than two response options was the Designs 

subtest, which demonstrated a medium effect based on standard interpretation 

guidelines; however, it was much smaller than the Visual Reproduction recognition 

effect size. In the present study, as well as in the Pearson ACS model, the Designs 

recognition subtest was not evaluated for its ability to detect cases of suboptimal effort. 

The reason Pearson excluded this test is unclear; however, it was excluded in the 

present study based on observations of a high proportion of random responding among 

participants in both groups. 
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One possibility is that the good effort TBI group performed particularly poorly on 

the Designs subtest, and its recognition component, which would attenuate the effect 

size and limit the utility of this measure as a measure of symptom validity. Even though 

only one of the two visual memory recognition measures was useful in differentiating 

between groups, it is hypothesized that visual memory, particularly drawings, are a 

common target of simulation strategy. This is not to suggest that verbal measures do 

not retain similar susceptibility; however, in the present study there was a more 

consistent effect of coaching on the visually based measures. Comparing effect sizes 

from the TOMM, which uses line drawings, to the WCT, a procedurally similar task 

using verbal stimuli, further supports this notion. This is most certainly a point worthy of 

further investigation in future research. 

The other reliable predictor in the Revised ACS was the BCSE and when used in 

isolation of the other two predictors, it demonstrated good overall diagnostic efficiency. 

However, in an overall comparison, the complete Revised ACS model or Visual 

Reproduction recognition both are recommended over the BCSE alone. The 

performance of easily detected simulators on the BCSE was interesting, and at times 

comical. The allowance of open-ended responses afforded respondents even greater 

flexibility in their response style and this generated some rather outlandish answers. 

The most frequent errors were on the orientation portion of the measure, and the errors 

represent a potential source symptom validity screening. Although individuals with 

actual TBI are prone to errors in orientation, none of the good effort TBI survivors 

reported the current president of the United States as “Captain Kirk”. Confabulations of 

this nature are rare in bona fide neuropsychological disorders, although they do occur in 
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conditions such as Wernicke’s aphasia and Korsakoff’s syndrome (Lezak et al., 2004). 

Another advantage of the BCSE is that it also offers several weighted scores for each 

individual cognitive domain assessed in the BCSE that could potentially offer greater 

predictive ability over the total raw score. 

The BCSE is a good example of the public’s general lack of awareness related to 

actual functioning after TBI. Many individuals asked to simulate TBI did very poorly on 

this measure, particularly among items related to orientation and visual naming. It 

appeared as though individuals asked to simulate assumed that TBI survivors are in a 

complete and permanent state of confusion and disorientation, which is typically not the 

case following an emergence from post-traumatic amnesia (Dikmen et al., 1995; Lezak 

et al., 2004). 

One example within the present study in which score refinement proved to be 

useful was with Verbal Paired Associates recognition. The standard method of scoring 

simply provides the total number of correct responses, but with the release of the ACS 

came the ability to calculate separately the hard hits and easy hits, as well as the 

number of false positives and a discriminability score. Each of these indices were 

evaluated for the ability to differentiate among groups. The number of easy hits on its 

own was not sufficient to detect cases of simulated impairment. This was likely due to a 

very limited range (only four items are considered “easy”). However, very few of TBI 

survivors putting forth good effort missed any of the easy items, and nearly all got three 

of the four correct. As such, a score of 2 or less should raise suspicion. The number of 

false-positives was also not a reliable predictor, even though those feigning memory 
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impairment committed more errors of this nature. The indices that did emerge as 

reliable were the number of hard hits and the discriminability score. 

The number of hard hits was similar to the number of easy hits but with a larger 

range (there are 10 possible hard hit items), in that the TBI group performed relatively 

well and those in the simulator group did slightly worse. In the present study, this was 

the worst predictive index, and because of the low discriminability no cut off score was 

offered. Because other measures within this subtest offer better classification accuracy 

(e.g., Verbal Paired Associates recognition discriminability), clinicians are encouraged 

to use those instead of the number of hard hits, especially because such measures take 

the number of hard hits into account. 

The Verbal Paired Associates recognition discriminability score was also 

calculated and proven to be a reliable predictor, despite rather poor differentiation 

between groups and being the least preferred index of those tested. Discriminability 

scores have been used in other recognition memory measures (e.g., CVLT-II) as well as 

prediction models for the detection of suboptimal effort (e.g., Wolfe et al., 2010). The 

reliability of this index appearing in measures of symptom validity is not surprising, 

considering the way in which such a score is calculated. It also highlights the strength of 

embedded measures and prediction models. To demonstrate good discrimination 

between targets requires a sophisticated response style and simulation strategy. Not 

only must examinees understand the way in which the value is determined, they must 

also possess exceptional working memory skills in order to keep track of their previous 

responses. Such mental efforts are likely to impede a person’s ability to concentrate on 

the task at hand and maintain their sophisticated approach to failing the test. 
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The visually based version of the Digit Span subtest also showed promise. 

Unfortunately, as was the case with the number of easy hits for Verbal Paired 

Associates recognition, the longest Spatial Span suffered from restriction of range, with 

the TBI group demonstrating a longest span that averaged only three designs. Despite 

such a restriction, the longest spatial span still was a far better fit than any of the Verbal 

Paired Associates recognition indices. Although the low level of performance of the TBI 

group suggests a high degree of difficulty for the task, the fact that simulators 

demonstrated even lower performance reinforces the susceptibility of visually based 

measures to feigned cognitive impairment. As with Visual Reproduction recognition, a 

single unit drop in longest span had dramatic influence over the probability of being 

classified as a simulator. Like many indices used in symptom validity testing (including 

the present study), the longest Spatial Span suffered from very low sensitivity; however, 

the specificity at a cutoff score of 2 was near perfect, with less than a 3% false-positive 

rate. 

The only dedicated stand-alone SVT in the WMS-IV, the Word Choice Test, was 

surprisingly inefficient in comparison to some of the other measures (e.g., BCSE, Visual 

Reproduction recognition) at differentiating between cases of blatant feigned memory 

impairment and good effort TBI survivors. Using a cutoff score of 37 offered the best 

balance between false-positive and false-negative errors. This value essentially 

represents a level of chance performance and is consistent with research on similar 

measures (Horner, Bedwell, & Duong, 2006); however, in setting the criterion of passing 

performance at 37, more than 40% of test-takers withholding effort will go undetected. 

With such low sensitivity, if this index is adopted for clinical use, it is essential that it is 
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used in conjunction with at least one other independent measure of symptom validity. 

Interestingly, the performance of the Word Choice Test improved considerably when 

differentiating between those who avoided detection and those readily identified as 

simulators, which will be discussed in detail in the following section. 

A pattern that emerged in these findings is the relationship between the degree 

of flexibility in response options and the ability of a test to detect cases of blatant 

simulated memory impairment. In comparison to responses given by individuals putting 

forth good effort with a legitimate TBI, individuals simulating memory impairment appear 

to offer a greater degree of atypical responses. Although not formally analyzed in the 

present data, observations made during the course of data collection suggested that 

participants in the simulator sample made a very high number of intrusion errors, and 

more of these intrusions were often semantically and phonetically unrelated to any of 

the target words on the CVLT-II. This, too, is a promising avenue of future research.  

One possibility is that this observation highlights a limitation of analog studies: 

Perhaps in an experimental setting, persons asked to fake cognitive impairment take a 

more cavalier approach than would be used by someone seeking remuneration; they 

have more fun with it because their performance has no bearing on the outcome. It may 

be that these individuals have little empirical knowledge about how legitimate memory 

impairment manifests itself, even though they know it is a common complaint, and thus 

they adopt unusual response styles. The counter to this argument, however, is that 

being in a car accident, suffering a concussion or some other form of mild injury, or 

involvement in active litigation does not simply increase awareness and understanding 

of memory loss (unless one retains a really unscrupulous lawyer). 
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Section 6.2 – Hypothesis 2 (Unsuccessful Simulators vs. Successful Simulators) 

 A prominent interest of the present project was to determine the differences in 

performance among those asked to simulate memory impairment that do so while 

avoiding detection (e.g., successful simulator) and those who are readily identified as a 

simulator (e.g., unsuccessful simulator). The approached used here, despite identical 

terminology, is different than what has previously been used in the literature (DenBoer & 

Hall, 2007). Although their study attempted to differentiate between successful and 

unsuccessful simulators, the criterion employed DenBoer and Hall (2007) was the 

influence of coaching on successful simulation. The findings of the present study 

suggest that this is an inadequate method of classification. In the current symptom 

validity literature, there is a lack of research investigating the differences among those 

who feign cognitive impairment. Most studies related to symptom validity testing use a 

well-validated external criterion in their classification procedures, such as failure of one 

or more specific SVT’s, and all those meeting that criterion are thus considered to be 

withholding effort. The present findings clearly indicate that such practice is ill-advised 

because many individuals who reported feigning impairment in fact passed five out of 

six indices of effort. 

One could argue that these individuals simply did not follow instructions and only 

endorsed that they did so on the debriefing questionnaire in order to appear as though 

the followed instructions. Considering that a handful of individuals chose not to follow 

instructions and honestly reported not doing so, as well as the fact that all participants in 

the study were clearly informed during the consent process that they would be 
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compensated regardless of their performance, there is no apparent incentive for 

dishonesty in the debriefing.  

Alternatively, it could be argued that these individuals did not follow instructions 

to feign memory impairment based on the fact that their scores were largely in the 

normal range and few successful simulators demonstrated impairment on the WMS-IV. 

This is not believed to be the case either. Within the present data, there are no other 

estimates of memory functioning when the individuals are putting forth maximal effort. 

Perhaps “Average” memory functioning for these participants is in fact the result of poor 

effort, and that under optimal effort circumstances, their memory functioning would be 

considered “High Average” or better. This is unlikely to be the most plausible 

explanation as it would then be expected that if this were the case – that Average 

memory function is the result of withholding effort for these individuals – estimates of 

intellectual ability would be considerably greater given the relationship between memory 

and IQ (Rapport, Axelrod, Theisen, Brines, Kalechstein, & Ricker, 1997), which they 

were not. Furthermore, in a clinical setting, an individual with Average memory 

functioning would not be considered as having suffered brain damaged. 

A more plausible possibility is that these individuals adopted a strategy to appear 

brain injured so subtle that it was undetectable with the present measures (i.e., too 

subtle to appear impaired) or perhaps they attempted to appear brain injured in 

idiosyncratic ways that were not assessed by the effort indices (e.g., increased 

response latency), but still, the sum of their efforts on the present measures was not 

believable as appearing like TBI even though they were “successful” on the effort 

indices. Therefore, these individuals were classified as “successful simulators” based 
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only on the logic that they were effective at avoiding detection on SVTs. Understanding 

how these individuals perform on cognitive testing is of great importance. 

Unfortunately, research on this particular class of test-takers is extremely difficult. 

First and foremost, obtaining a sufficient sample size to comprehensively investigate 

patterns of performance beyond simple descriptive statements is difficult. In the present 

study, the base rate of successful simulation was only 28%. Although this seems like a 

high base rate, it is important to consider that they came from a group with a 100% 

incidence of exaggerated symptom presentation. In a clinical setting, assuming a base 

rate of 40%, out of every 100 people only 11 would go undetected as successful 

simulators. Even though this is considered a “rare” or “uncommon” phenomenon, this 

does not negate its clinical importance; most psychological disorders have lower base 

rates than this and are still areas of highly active research. In the present study, the 

sample size limited the number of predictors that could be effectively entered into a 

model. However, the individual predictors as well as a refined two-variable model were 

examined and their performance was compared to models used to discriminate good 

effort TBI from unsuccessful simulators. Although the full five-variable ACS model 

demonstrated good classification accuracy overall, this model cannot be considered 

valid until it is replicated with a larger sample. The same holds true for the Revised-ACS 

model examined in this context. 

Another issue of difficulty, particularly in relation to Hypothesis 2, is that with such 

a small sample size and such a poor degree of performance of the unsuccessful 

simulator group in comparison to the successful simulator group, most prediction 

models using single variables are not much more informative than a simpler analysis of 
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variance (ANOVA). With the exception being that logistic regression allows for creating 

ROC curves as well as diagnostic statistics, most of the single-variable prediction 

models were significant because of such discrepant performance. For example, of the 

single-variable predictors, the Word Choice test was best at differentiating between 

successful and unsuccessful simulators. Examining the average performance of each 

group, however, explains the finding, because the successful simulators averaged 

nearly perfect performance whereas the unsuccessful simulators averaged very poor 

performance. In other words, the finding primarily reflects the large discrepancy in 

performance; similar statements can be made regarding most of the individual 

predictors. 

The successful simulators demonstrated a largely consistent pattern of reduced 

performance on subtests largely at the low end of the Average range. Specifically, there 

was a clear discrepancy on the verbal measures: the successful simulators performed 

considerably better on the verbal tasks than did any of the other groups. On the visual 

memory and working memory measures, however, their performances were far more 

consistent with the TBI group that put forth good effort; in other words, these individuals 

were effective at simulating bona fide TBI in that regard. This raises the question of how 

good our current methods of assessing symptom validity are if this group of individuals 

was able to avoid detection and still produce a pattern of performance that is essentially 

undifferentiated from actual TBI. 

In this regard it is very noteworthy that although these “successful simulators” 

were able to avoid detection as fakers by putting forth adequate effort on the symptom 

validity indices, they did not achieve the ultimate goal of successful simulation of TBI; to 
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do that required that they appeared brain injured on the cognitive evaluation. In fact, 

28% of simulators successfully navigated the effort indices, but only a handful of those 

individuals (20% of all persons attempting to simulate) also successfully showed 

impairment on at least one of the WMS-IV memory indexes. These observations 

strengthen the notion that we can obtain valid estimates of persons purporting to have 

TBI-related cognitive deficits and that feigning is a complex and difficult task. Most 

individuals attempting to simulate TBI-related cognitive decline will be unsuccessful at 

two ends of the assessment spectrum: Too much and they are detected by indices of 

suboptimal effort, which identify the majority of simulators, too little and they appear too 

normal to have sustained a clinically meaningful TBI. 

Interestingly, several models were a better fit for differentiating between cases of 

simulator success than for the detection of bona fide neurological injury. In particular, 

whereas Verbal Paired Associates recognition discriminability was one of the worst 

predictors for classification of TBI survivors, it was one of the best predictors at 

differentiating successful from unsuccessful simulators. Based on the pattern of 

performance of each group, it appears that the successful simulators were more 

sophisticated and careful in their responses than were the unsuccessful simulators, thus 

reinforcing the notion that appropriately balancing target recognition with false positives 

is difficult and its measurement is an effective index for detecting even well-executed 

symptom exaggeration. In the present data successful simulators generally showed 

better discriminability, essentially implying that they were more vigilant in balancing the 

number of hits and number of false-positives. Similarly, Verbal Paired Associates 

recognition discriminability was the only measure to differentiate between actual and 



83 

 

well-simulated TBI, thus confirming the utility of this score. The number of hard-hits on 

Verbal Paired Associates recognition was also a better classification tool for 

differentiating successful versus unsuccessful simulators than for differentiating 

unsuccessful simulators from bona fide TBI. 

Visual Reproduction recognition was again an excellent predictor, and when 

combined with the WCT, yielded the best model to differentiate successful versus 

unsuccessful simulators. The value of this model is that it contains performance on two 

separate measures from the WMS-IV, each of which showed good discriminability on 

their own, with one each from the visual domain and the verbal domain. In addition, one 

measure is a truly embedded measure, and the other is an independent stand-alone 

test. Overall, Visual Reproduction recognition showed a greater influence over 

classification in comparison to the WCT. Although this two-variable model was not 

initially examined as a tool to differentiate unsuccessful simulators from bona fide TBI, 

subsequent evaluation of the model in this context showed excellent ability at doing so. 

Of note, it was the best fitting model among those tested in section one even though it 

was slightly less efficient overall in classification accuracy in comparison to the Revised 

ACS model. 

Section 6.3 – Good Effort TBI vs. Successful Simulators 

 Although this comparison was not specified as an original hypothesis, it seemed 

essential to address this question for both theoretical and clinical reasons. The ability to 

differentiate between successful simulators and bona fide neurological injury is of great 

importance. Although the models examined in this section suffer from the same issues 
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and limitations as those examined in section 2, these exploratory analyses provided 

some important information. 

 Unfortunately, the only index that distinguished these two groups with any 

reliability was Verbal Paired Associates recognition discriminability, which is not 

surprising considering its widespread efficacy in previous models presented here as 

well as other research (Wolfe et al., 2010). In the present study, when used on its own it 

was not particularly effective, and in the absence of other measures of symptom validity 

its use is unadvisable. Its reliability in this context, however, strongly supports the notion 

that simulation and feigning memory impairment is a challenging task to do well. 

 One reason this index is so reliable in the detection of credible performance may 

be that it is a purely embedded measure, in that it is calculated based on patterns of 

performance within a measure as opposed to a simple performance indicator. With the 

exception of persons very well versed in psychometrics and/or test construction, few 

test takers are likely to be aware of this index, and as such, place little consideration to 

the factors contributing to its calculation (e.g., number of hits relative to the number of 

false-positives). 

 Even though other indices showed promise as potentially useful in combination 

with other measures, in the present study, no other indices reliably differentiated 

between successful simulators and actual TBI survivors putting forth good effort. 

Although indices may in fact exist to this end, short of a haphazard approach to variable 

selection, no such model was identified, and the present sample size precludes use of 

statistically driven model specification (e.g., Bayesian Model Averaging). Based on 
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these observations, ongoing research in this area is certainly needed and of substantial 

importance. 

Section 6.4 – Study Limitations 

A major limitation of the present study is that it has been argued that analog 

studies of malingering are limited in the generalizability of their findings (e.g., Larrabee, 

2007; Rogers, 1997b; Suhr & Gunstad, 2007), which has implications within the forensic 

arena. However, the increasing presence of neuropsychology within a litigating 

environment brings with it the increased potential for coaching, particularly by plaintiff 

attorneys seeking to help their clients secure external rewards. Given this possibility, 

there is a prominent need for empirical evidence documenting the patterns of 

performances observed in response to coaching of neurologically intact individuals 

(Coleman et al., 1998). Conducting a study that has a known group of individuals who 

are likely to be actual malingerers would represent the strongest design. The current 

study, however, certainly lessens the gap between a pure analog study and a known-

groups design due to its inclusion of persons with verified TBI. Furthermore, in the 

development phases of an embedded SVT, analog studies can be particularly helpful as 

they involve minimal risk to participants and are well suited to follow-up with more 

robust designs such as a known-groups design. 

Another limitation of the present study is the small sample size of the successful 

simulator group. With fewer than 20 participants in this group, the ability to evaluate 

reliable and stable prediction models was substantially limited to two indices per model. 

Although standards do exist that have suggested that models can be fit with a subject to 

predictor ratio of 6 to 1, this is at the more liberal end of the cutoff. Much greater 
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confidence can be placed in a model with at least a 10 to 1 ratio. Despite this 

shortcoming, the present study certainly provides for a foundation upon which further 

research can be built. This study has successfully identified the predictive abilities of 

single variables that can potentially be combined far more effectively with a larger 

sample. 

Section 6.5 – Study Conclusions and Future Directions 

In conclusion, several themes can be taken from the present study. First and 

foremost, the findings from the present study strongly support the use of multiple 

measures of symptom validity interspersed throughout testing. Under no circumstances 

should a clinician base a conclusion – especially one with such high risk associated with 

a false positive – on a single piece of data, and the present results clearly support this 

principle. In addition, this study has also provided firm support for the use of the WMS-

IV in detecting cases of feigned cognitive impairment and offered several methods to 

effectively do so. The present study has also shown just how difficult it is to simulate a 

TBI in a way that is credible. 

The present has also generated a number of avenues to pursue in future 

research endeavors. One such pursuit for effort testing should evaluate more refined 

pattern analysis of individual scores and performances across multiple measures. The 

present study has demonstrated that there are differences in approaches among 

individuals feigning cognitive impairment, and some are more effective at avoiding 

detection than others. For example, some individuals may adopt very unique strategies 

to simulate impairment and the present battery of SVTs available to the clinician may 
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not be sufficient to detect these strategies. As such, future research should attempt to 

both understand these unique approaches and to develop measures to detect them. 

Also of interest along the lines of pattern performance is to further explore the 

notion of targeted simulation. In the present study there appeared to be a trend in 

simulators to target visually based measures as the target of their strategies, and 

gaining more insight into the reliability of this phenomenon in other samples may 

provide direction towards development of future methods of detecting feigned cognitive 

impairment. 

An additional point of future research would be to engage in error analysis of 

individuals feigning impairment. For example, previous research has evaluated the 

semantic relationship of intrusion errors on VPA to the targets and stimuli (Rapport, 

Axelrod, & Mansharamani, 1995). Observations made during the course of data 

collection in the present study also suggested that individuals with TBI generated more 

intrusions that were of high semantic relatedness in comparison to the simulator 

sample. Alternatively, a similar approach would be to evaluate base rate data of error 

responses. A high number of intrusions with low or non-existent semantic associations 

may be indicative of an intentional response bias. 

One of the most intriguing portions of the present study was the sample of TBI 

survivors who put forth less than optimal effort. In a clinical setting, the results of these 

individuals would be deemed invalid and the individuals would have possibly been 

labeled as “malingering”. However, there is no readily apparent motivation for them to 

respond in such a way, raising the possibility that these individuals were not necessarily 

exaggerating their impairments, but that they simply were not putting forth maximal 
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effort. If this is the case, it highlights the ability of “effort” tests to detect less than full 

effort. However, it also reaffirms the notion that a failure of on an SVT does not allow for 

differentiation between less than full effort and a negative response bias. Thus, it is 

recommended that future research investigate the patterns of cognitive performance 

that differentiate individuals who are simply not putting forth sufficient effort from those 

who are actively malingering in a clinical setting. 
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APPENDIX A 

TABLES 

Table 1. Slick et al. (1999) Diagnostic Criteria for Malingering 
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Table 2. Demographic Data. 
 

  Good Effort TBI 
Suspect Effort 

TBI 
Successful 
Simulator 

Unsuccessful 
Simulator 

 (n = 41) (n = 19) (n = 18)1 (n = 41)2 
Variable M (SD) M (SD) M (SD) M (SD) 
         
Months since injury 108.7 (75.0) 119.5 (73.2) NA - NA - 
         
Glasgow Coma 
Scale 9.3 (3.9) 9.7 (4.2) NA - NA - 

         
Age (years) 43.0 (12.3) 46.0 (11.6) 49.7 (8.2) 42.0 (12.1) 
         
Education (years) 12.0 (2.3) 12.0 (2.2) 13.3 (2.4) 12.9 (2.0) 
         
WTAR FSIQ 86.2 (9.9) 82.1 (6.6) 96.2 (13.4) 92.8 (11.9) 
         
Gender (% men) 90%  100%  83%  80%  
         
Race/Ethnicity         

African American 76%  95%  61%  73%  
Caucasian 22%  5%  39%  27%  
Hispanic 2%  0%  0%  0%  
         

Note. WTAR = Wechsler Test of Adult Reading; FSIQ = Full Scale IQ. 
1. Coached to feign cognitive impairment and failed fewer than two effort measures; WTAR 

administered prior to coaching instructions. 
2. Coached to feign cognitive impairment and failed two or more effort measures; WTAR 

administered prior to coaching instructions.
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Table 3. Wechsler Memory Scale-IV Index Scores by Group. 
 

  Good Effort 
TBI 

Suspect Effort  
TBI 

Successful  
Simulator 

Unsuccessful  
Simulator 

 

 (n = 41) (n = 19) (n = 18)1 (n = 41)2  

Variable M (SD) % 
Impaired M (SD) % 

Impaired M (SD) % 
Impaired M (SD) % 

Impaired3 
Cohen’s 

d 
Auditory Memory 79.8 (16.9) 73.2% 64.3 (13.9) 94.1% 93.1 (13.2) 27.8% 73.2 (13.6) 82.9% 0.44 
              
Visual Memory 85.5 (11.6) 48.8% 73.8 (15.2) 75.0% 86.7 (14.0) 55.6% 73.3 (15.7) 80.5% 0.89 
              
Visual Working 
Memory 83.0 (11.1) 78.0% 70.9 (9.3) 88.9% 87.3 (12.0) 44.4% 66.8 (15.8) 90.2% 1.20 

              
Immediate Memory 78.7 (14.3) 68.3% 63.1 (14.0) 94.1% 87.3 (14.8) 50.0% 68.8 (16.2) 82.9% 0.66 
              
Delayed Memory 82.5 (13.5) 61.0% 68.7 (12.8) 93.8% 89.7 (12.9) 44.4% 72.0 (13.6) 87.8% 0.78 

              
Note. Effect sizes calculated between Unsuccessful Simulator and Good Effort TBI samples using a pooled standard deviation. 
1. Coached to feign cognitive impairment and failed fewer than two effort measures; reported faking as instructed on debriefing 

survey. 
2. Coached to feign cognitive impairment and failed two or more effort measures; reported faking as instructed on debriefing survey. 
3. % Impaired = percent of scores 1 SD or more below the mean. 
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Table 4. Wechsler Memory Scale-IV Substituted Scores by Group. 
 

  Good Effort 
TBI 

Suspect Effort  
TBI 

Successful  
Simulator 

Unsuccessful 
Simulator 

 

 (n = 41) (n = 19) (n = 18)1 (n = 41)2 Cohen’s 
d 

Variable3 M (SD) M (SD) M (SD) M (SD)  

Auditory Memory 80.3 (17.4) 68.6 (14.2) 93.0 (10.9) 71.3 (15.7) 0.55 
          
Immediate Memory 79.3 (14.8) 66.5 (12.6) 87.7 (14.0) 69.4 (17.6) 0.62 
          
Delayed Memory 81.4 (14.5) 70.3 (13.5) 89.1 (12.4) 70.1 (13.5) 0.82 
          
Verbal Paired Associates 1 7.4 (2.7) 5.5 (2.4) 9.1 (2.8) 6.2 (3.1) 0.42 
          
Verbal Paired Associates 2 7.3 (3.7) 5.2 (3.3) 8.9 (2.9) 5.8 (3.2) 0.44 
          

Note. Effect sizes calculated between Unsuccessful Simulator and Good Effort TBI samples using a pooled standard deviation. 
1. Coached to feign cognitive impairment and failed fewer than two effort measures; reported faking as instructed on debriefing 

survey. 
2. Coached to feign cognitive impairment and failed two or more effort measures; reported faking as instructed on debriefing survey. 
3. Based on substitution of CVLT-II Trial 1-5 T score and Long-delay free-recall Z scores for Verbal Paired Associates I and II, 

respectively. 
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Table 5. Additional Wechsler Memory Scale-IV Scores by Group. 
 

  Good Effort 
TBI 

Suspect Effort  
TBI 

Successful  
Simulator 

Unsuccessful 
Simulator 

 

 (n = 41) (n = 19) (n = 18)1 (n = 41)2 Cohen’s 
d 

Variable M (SD) M (SD) M (SD) M (SD)  

          
Designs 1          

Content 7.8 (3.0) 6.6 (3.1) 8.4 (2.2) 6.9 (2.7) 0.32 
Spatial 8.0 (2.4) 6.4 (2.9) 7.9 (2.7) 7.0 (2.4) 0.42 

Designs 2          
Content 9.0 (2.1) 7.1 (2.3) 8.8 (2.5) 7.4 (2.8) 0.65 
Spatial 9.1 (2.4) 8.8 (2.6) 8.7 (1.9) 8.0 (2.1) 0.49 

          
Logical Memory Recognition 21.8 (4.2) 19.8 (4.0) 24.2 (4.0) 20.4 (4.6) 0.32 
          
Verbal Paired Associates 
Recognition 35.3 (4.5) 29.6 (6.0) 38.1 (2.7) 31.0 (6.9) 0.75 

          
Visual Reproduction Recognition 5.6 (1.1) 3.6 (1.3) 5.6 (1.5) 2.8 (1.9) 1.83 

          
Designs Recognition 13.7 (2.1) 12.1 (3.0) 12.7 3.1 11.8 (3.9) 0.57 

          
Word Choice 46.2 (4.6) 41.6 (7.1) 48.1 (3.4) 35.1 (11.7) 1.26 

          
Brief Cognitive Status Exam 48.3 (7.8) 40.1 (10.4) 45.6 (12.2) 31.1 (13.9) 1.55 

1. Coached to feign cognitive impairment and failed fewer than two effort measures; reported faking as instructed on debriefing 
survey. 

2. Coached to feign cognitive impairment and failed two or more effort measures; reported faking as instructed on debriefing survey. 
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Table 6. Effort Indicators Performance by Group. 
 

  Good Effort 
TBI 

Suspect Effort  
TBI 

Successful  
Simulator 

Unsuccessful  
Simulator 

 

 (n = 41) (n = 19) (n = 18)1 (n = 41)2  

Variable M (SD) Failure 
Rate3 M (SD) Failure 

Rate M (SD) Failure 
Rate M (SD) Failure 

Rate 
Cohen’

s d 
Test of Memory 
Malingering              

Trial 1 45.4 (4.4) NA 41.2 (5.8) NA 46.8 (3.7) NA 32.0 (10.0) NA 1.76 
Trial 2 49.3 (1.9) 2% 46.6 (4.7) 26% 49.7 (0.8) 0% 34.1 (12.8) 76% 1.68 

              
Reliable Digit Span 8.6 (1.9) 12% 6.3 (1.5) 47% 8.4 (1.4) 6% 5.6 (2.8) 51% 1.27 
              
CVLT-II Forced Choice 15.8 (0.6) 3% 15.2 (1.6) 17% 15.9 (0.3) 0% 13.0 (3.2) 59% 1.21 
              
CVLT-II 3-Variable Model 0.45 (0.2) 42% 0.56 (0.2) 72% 0.30 (0.2) 11% 0.60 (0.2) 71% 0.76 

              
Note. Effect sizes calculated between Unsuccessful Simulator and Good Effort TBI samples using a pooled standard deviation. 
1. Coached to feign cognitive impairment and failed fewer than two effort measures; reported faking as instructed on debriefing 

survey. 
2. Coached to feign cognitive impairment and failed two or more effort measures; reported faking as instructed on debriefing survey. 
3. Failure Criteria: TOMM Trial 2 < 45; Reliable Digit Span ≤ 6; CVLT-II Forced Choice ≤ 14; CVLT-II 3-Variable Predicted Probability 

> 0.5. 
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Table 7a. Green's Effort Measures Performance by Group: Non-Verbal Medical Symptom Validity Test. 
 

  Good Effort 
TBI 

Suspect Effort  
TBI 

Successful  
Simulator 

Unsuccessful  
Simulator 

 

 (n = 25) (n = 14) (n = 16)1 (n = 39)2  

Variable M (SD) M (SD) M (SD) M (SD) Cohen’s d 

Immediate Recall 99.6 (2.0) 97.5 (7.0) 100.0 (0.0) 77.4 (28.5) 1.01 
          

Delayed Recall 95.6 (8.2) 83.2 (17.4) 94.4 (8.9) 65.8 (27.9) 1.35 
          
Consistency 95.2 (8.5) 82.9 (16.6) 94.4 (8.9) 73.5 (19.4) 1.37 
          
Delayed Recognition 
Archetypes 83.2 (14.9) 68.9 (18.9) 86.9 (12.0) 63.3 (23.0) 1.00 

          
Delayed Recognition 
Variations 96.4 (8.1) 85.7 (16.5) 94.4 (8.1) 57.2 (31.7) 1.57 

          
Paired Associates 99.2 (4.0) 92.1 (19.3) 100.0 (0.0) 81.3 (23.2) 1.23 

          
Free Recall 60.6 (21.6) 47.9 (21.1) 61.3 (20.6) 42.6 (18.9) 0.89 

          
Failure Rate3 16% 86% 19% 85%  
      

Note. Effect sizes calculated between Unsuccessful Simulator and Good Effort TBI samples using a pooled standard deviation. 
1. Coached to feign cognitive impairment and failed fewer than two effort measures; reported faking as instructed on debriefing 

survey. 
2. Coached to feign cognitive impairment and failed two or more effort measures; reported faking as instructed on debriefing survey. 
3. Failure Criteria: Either the mean of the IR, DR, CNS, DRA, DRV and PA is 90% or below OR the mean of DR, CNS, DRA and 

DRV is below 88%. 
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Table 7b. Green's Effort Measures Performance by Group: Medical Symptom Validity Test. 
 

  Good Effort 
TBI 

Suspect Effort  
TBI 

Successful  
Simulator 

Unsuccessful  
Simulator 

 

 (n = 38) (n = 19) (n = 17)1 (n = 41)2  

Variable M (SD) M (SD) M (SD) M (SD) Cohen’s d 

Immediate Recall 98.2 (4.1) 93.2 (7.7) 99.4 (1.7) 69.1 (25.3) 1.60 
          

Delayed Recall 98.2 (4.3) 86.3 (17.6) 99.1 (2.0) 66.8 (25.6) 1.70 
          
Consistency 97.1 (6.2) 84.7 (18.4) 98.5 (2.9) 71.3 (20.2) 1.72 
          
Paired Associates 95.8 (9.3) 69.5 (26.1) 95.9 (7.9) 59.5 (29.2) 1.67 
          
Free Recall 59.2 (19.3) 35.8 (19.9) 70.3 (12.9) 40.9 (19.6) 0.95 

          
Failure Rate3 5% 47% 0% 78%  

          
Note. Effect sizes calculated between Unsuccessful Simulator and Good Effort TBI samples using a pooled standard deviation. 
1. Coached to feign cognitive impairment and failed fewer than two effort measures; reported faking as instructed on debriefing 

survey. 
2. Coached to feign cognitive impairment and failed two or more effort measures; reported faking as instructed on debriefing survey. 
3. Failure Criteria = At least one of the IR, DR, or CNS scores is at or below 85%. 
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Table 8. Test performance on ACS measures when grouped without use of the Reliable 
Digit Span as a criterion. 
 

  Good Effort  
TBI 

Unsuccessful 
Simulators  

 (n = 45) (n = 39)  
Variable M (SD) M (SD) Cohen’s d 
Reliable Digit Span 8.2 (2.2) 5.6 (2.9) 1.03 
      
Logical Memory Recognition 21.5 (4.2) 20.6  (4.4) 0.21 
      
Verbal Paired Associates 
Recognition 34.8  (5.0) 30.8  (7.0) 0.67 

      
Visual Reproduction 
Recognition 5.6  (1.2) 2.8  (1.9) 1.81 

      
Word Choice 46.5  (4.4) 34.7  (11.8) 1.38 
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Table 9. Hypothesis 1 logistic regression model summary statistics (Good Effort TBI vs. 
Unsuccessful Simulators). 
 

 B p Odds 
Ratio 95% C.I. 

       
Full ACS Model:       
       

Word Choice Test -0.218 .007 0.804 0.687 – 0.941 
       
Reliable Digit Span -0.670 .001 0.512 0.345 – 0.760 
       
Logical Memory Recognition -0.075 .572 0.928 0.715 – 1.204 
       
Verbal Paired Associates 
Recognition 0.269 .025 1.309 1.035 – 1.656 

       
Visual Reproduction Recognition -1.009 .001 0.365 0.203 – 0.655 
       
Education 0.211 .268 1.234 0.850 – 1.792 
       
Constant 8.426 .034     

       
       
ACS Revised Model:       
       

Brief Cognitive Status Exam -0.140 .002 0.870 0.795 – 0.951 
       
VPA Recognition Discriminability 1.946 .502 7.003 0.024 – 2053.194 
       
Visual Reproduction Recognition -0.833 .000 0.435 0.275 – 0.688 
       
Constant 1.931 .001     
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Table 10. Hypothesis 2 logistic regression model summary statistics (Successful 
Simulators vs. Unsuccessful Simulators). 
 

 B p Odds Ratio 95% C.I. 

       
ACS 4-Variable:       
       

Reliable Digit Span -0.567 0.05 0.567 0.32 – 1.00 
       
Logical Memory Recognition 0.097 0.54 1.102 0.81 – 1.51 
       
Verbal Paired Associates 
Recognition -0.231 0.23 0.793 0.55 – 1.15 
       
Visual Reproduction Recognition -0.639 0.03 0.528 0.30 – 0.92 
       
Constant 13.73 0.02   –  
       

       
ACS 2-Variable:       
       

Word Choice Test -0.269 0.02 0.76 0.62 – 0.95 
       
Visual Reproduction Recognition -0.565 0.02 0.57 0.36 – 0.90 
       
Constant 15.306 0.00     
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Table 11. Prediction model summary table. 
 

 Traumatic Brain Injury vs. 
Unsuccessful Simulator 

(Hypothesis 1) 
 

Unsuccessful Simulator vs. 
Successful Simulator 

(Hypothesis 2) 
        

 AUC  BIC  AUC  BIC 
        
Word Choice Test 0.830  -271.75  0.897  -188.81 
        
Brief Cognitive Status Exam 0.874  -279.10  0.813  -174.81 
        
Visual Reproduction Recognition 0.878  -284.44  0.857  -183.96 
        
Verbal Paired Associates Recognition - Hard Hits 0.701  -250.32  0.793  -172.82 
        
Verbal Paired Associates Recognition - 
Discriminability 0.718  -248.59  0.864  -180.23 

        
Longest Spatial Span 0.750  -260.45  0.808  -178.27 
        
Revised ACS Model 0.929  -284.84  0.911  -179.79 
        
2-Variable ACS Model 0.907  -286.36  0.935  -191.62 
        
Full Pearson ACS Model 0.950  -  0.913  - 
        

 
Note. BIC values for the Full Pearson ACS model cannot be compared to the other models presented, because the models were 
fitted using different samples; AUC statistics may be compared. 
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APPENDIX B 

FIGURES 

Figure 1. WMS-IV subtest performance profile by group 
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Figure 2. ROC Curve for Pearson ACS 
Full Model (Good Effort TBI vs. 
Unsuccessful Simulators) 

 

Figure 3. ROC Curve for WCT Model 
(Good Effort TBI vs. Unsuccessful 
Simulators) 

 

Figure 4. ROC Curve for Brief Cognitive 
Status Exam (Good Effort TBI vs. 
Unsuccessful Simulators) 

 

Figure 5. ROC Curve for Visual 
Reproduction Recognition (Good Effort 
TBI vs. Unsuccessful Simulators) 
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Figure 6. ROC Curves for Verbal Paired 
Associates recognition variables (Good 
effort TBI vs. Unsuccessful Simulator) 

 

Figure 7. ROC Curve for the ACS 
Revised model (Good effort TBI vs. 
Unsuccessful Simulator) 

 

Figure 8. ROC curve for the ACS model 
without the WCT (Successful Simulator 
vs. Unsuccessful Simulator) 

 

 

Figure 9. ROC Curve for the Word 
Choice test only (Successful Simulator 
vs. Unsuccessful Simulator) 
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Figure 10. ROC Curve for the Brief 
Cognitive Status Exam (Successful 
Simulator vs. Unsuccessful Simulator) 

 

Figure 11. ROC Curve for ACS-Revised 
(Successful Simulator vs. Unsuccessful 
Simulator) 

 

 

Figure 12. ROC Curve for 2-Variable 
ACS Model (Successful Simulator vs. 
Unsuccessful Simulator) 
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APPENDIX C 

SIMULATOR ACCIDENT SCENARIO (ADAPTED FROM: TOMBAUGH, 1997) 

 “In this study you will be asked to complete several tasks that are often used to 

measure a variety of changes that occur in people who have brain damage. As you take 

each test, I would like you to assume the role of someone who has experienced some 

brain damage from a car accident. 

Pretend that you were involved in a head-on collision. You hit your head against 

the windshield and were unconscious for 15 minutes. You were hospitalized overnight 

for observation and then released. Gradually, over the past few months, you have 

started to feel normal again. However, your lawyer has informed you that you may 

obtain a larger settlement from the court if you look like you are still suffering from brain 

damage. Therefore, you should pretend that the symptoms have persisted and that they 

still significantly interfere with your life. 

As you portray the above person, try to approach each test as you imagine this 

person would respond if the individual had been given the same instructions from his or 

her lawyer. Perform on the tests in such a way as to convince the examiner that you are 

truly brain damaged, keeping in mind that settlement monies depend upon your being 

diagnosed as cognitively impaired. Also be aware that having a lawsuit pending often 

raises the suspicion that people may try to exaggerate their difficulties. This means that 

your impairments resulting from the head injury must be believable. Major 

exaggerations, such as not being able to do anything, remembering absolutely nothing, 

or failing to respond are easy to detect.” 



106 

 

APPENDIX D 

ELIGIBILITY CRITERIA FOR INCLUSION IN THE SOUTHEASTERN MICHIGAN 

TRAUMATIC BRAIN INJURY SYSTEM 

 

In order to be eligible SEMTBIS participants, persons must have suffered a 

moderate to severe TBI (post-traumatic amnesia > 24 hours, loss of consciousness > 

30 minutes, Glasgow Coma Scale score < 13 upon presentation to the emergency 

department, or intracranial neuroimaging abnormalities), must have been at least 16 

years of age at the time of injury, received acute care at a designated model system site 

within 72 hours after injury, been directly transferred to a model system inpatient 

rehabilitation unit, and given informed consent. 
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Even the most psychometrically sound measures are sensitive to the level of 

effort put forth by the examinee and their intent. This is especially true for measures of 

memory functioning that are a common target of negative response bias and 

withholding effort. The aim of the present study was to develop methods for detecting 

these behaviors for the current edition of the Wechsler Memory Scale, 4th Edition 

(WMS-IV) using a community sample of healthy adults coached to simulate traumatic 

brain injury (TBI) and a sample of bona fide TBI survivors. The primary analytic strategy 

involved generation of prediction models to classify participants according to group 

membership via logistic regression and evaluate classification accuracy with receiver 

operating characteristic (ROC) curves. It was predicted that measures from within the 

WMS-IV would be able to reliably differentiate between actual and simulated TBI, and 

furthermore, between well simulated and poorly simulated TBI. The results from this 

study provide confirming evidence in support of both tested hypotheses. Several key 

findings can be taken from the present study. First there is strong support for the use of 

multiple measures of symptom validity interspersed throughout testing. Second, this 
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study provides firm support for the use of the WMS-IV in detecting cases of feigned 

cognitive impairment and offered several methods to effectively do so. Third, the 

present study has also shown just how difficult it is to simulate a TBI in a way that is 

credible. Fourth, these results highlight the similarity of performance profiles between 

poor effort and intentional negative response bias. Several areas of future research are 

presented. 
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