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Applications of Some Improved Estimators in Linear Regression    
 

B. M. Golam Kibria  
Department of Statistics 

Florida International University 
 

 
 
The problem of estimation of the regression coefficients under multicollinearity situation for the restricted 
linear model is discussed. Some improve estimators are considered, including the unrestricted ridge 
regression estimator (URRE),  restricted ridge regression estimator (RRRE),  shrinkage restricted ridge 
regression estimator (SRRRE),  preliminary test ridge regression estimator (PTRRE), and  restricted Liu 
estimator (RLIUE). The were compared based on the sampling variance-covariance criterion. The RRRE 
dominates other ridge estimators when the restriction does or does not hold. A numerical example was 
provided. The RRRE performed equivalently or better than the RLIUE in the sense of having smaller 
sampling variance.  

 
Key words: Bias; non-Central F, preliminary test, restricted Liu estimator, ridge regression, shrinkage 
estimation, variance matrix. 
 
 

Introduction 
 
Multiple linear regression model plays an 
important role in statistical inference and is used 
extensively in business, environmental, 
industrial, and social sciences. In linear 
regression model, one usually assume that the 
explanatory variables are independent. However, 
in practice, there may be strong or near to strong 
linear relationships among the explanatory 
variables. In that case, the independence 
assumptions are no longer valid, which causes 
the problem of multicollinearity. In the presence 
of multicollinearity, it is difficult to estimate the 
unique   effects   of   individual  variables  in  the  
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regression equation. Moreover, the estimated 
regression coefficient will have large sampling 
variance which affects both inference and 
prediction. In the literature, there are various 
methods existing to solve this problem. Among 
them, ridge regression is the most popular one 
which has much usefulness in real life.   To 
describe the ridge regression, the following 
multiple linear regression model was considered: 
  
                             ,= eXy +β                        (1) 

 
where y  is a random vector of length n , β  is 
a 1×p  vector of fixed but unknown regression 
coefficients, X  is a pn×  known design matrix 
of rank p and e  is a 1×n  vector random 
variable, which is distributed as multivariate 
normal with mean vector 0  and covariance 
matrix nI×2σ , nI  is an identity matrix of order 

n , and 0>2σ  is unknown error variance. Of 
primary interest is an estimation of the 
regression coefficient β , when the it is  a priori 
suspected that    β    may   be   restricted  to  the  
subspace  
 
                              ,= hHβ                             (2) 
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where  H is a pq×  known matrix of rank 
)(< pq  and  h is an 1×q  vector of known 

constants. The usual least squares estimate 
(ULSE) or the maximum likelihood estimate 
(MLE) of β  is given by ,=~ 1 yXC ′−β  which 
will heavily depend on the characteristics of the 
matrix XXC ′= . If the C  matrix is ill 
conditioned (det 0( ≈′XX )), the LSE are 
sensitive to a number of errors, for example, 
some of the regression coefficients may be 
statistically insignificant with wrong sign and 
meaningful statistical inference become difficult 
for the practitioners. To solve this problem, 
Hoerl and Kennard (1970) suggested use of 

0)(,=)( ≥+ kkICkC p , instead of C  for 

estimating β . The resulting estimators are 
given as:  
  
                   ,)(=)(~ 1 yXkICk p ′+ −β              (3) 

 
which are known as unrestricted ridge regression 
estimators (URRE). The constant, 0>k  is 
known as shrinkage or biasing or ridge 
parameter. Though these estimators result in 
biasing for 0≥k , they yield minimum  mean 
square error (MSE) compared to the unrestricted 
least squares estimator (URLSE) (for examples, 
see Hoerl & Kennard, 1970, Saleh & Kibria, 
1993).   The objective of this article is to 
compare the perfromance of some ridge 
regression estimators under the sampling 
variance-covariance criterion. The findings will 
be illustrated with a numerical example.   

 
Proposed Estimators, Biases and Variances 

In this section, some ridge type 
estimators are considered for β , when hH =β  
is  a priori suspected in the case of 
multicollinearity. Biases and variance-
covariance matrices of the estimators were also 
provided.     

 
Unrestricted Ridge Regression Estimator 
(URRE):    

The URRE in (3), can be re-written as 
follows:  
 

 0,;][=,~=)(~ 11 ≥+ −− kkCIWWk pββ (4) 
 

where β~  is the  unrestricted least square 
estimator (URLSE) of β . The bias and the 
variance matrix of URRE are as follows:  
           

  

1
1

p

2 1
1

Bias = B (k) = E( (k)) = kC (k) ;
C(k) = [C kI ];

V( (k)) = V (k) = (WC W').

−

−

β − β − β
+

β σ

�

�
 

                                                                         (5) 
 

 
Restricted Ridge Regression Estimator (RRRE):  

Sarkar (1992) proposed the following  
RRRE:  
 
                            ,ˆ=)(ˆ ββ Wk                        (6) 

 
where )~()'('~=ˆ 111 hHHHCHC −− −−− βββ  
is  the restricted least squares estimator (RLSE) 
of β . The bias and the variance matrix of 
RRRE are as follows:  
 

    
),'()'(=)(

;)(=)(
212

2

1
2

WAWWWCkV
kkCWkB

σσ
βη

−

−−
−

−

 

                                                                         (7) 
 
where  
 

1111 )'('= −−−− HCHHCHCA , 
 

δη 111 )'('= −−− HHCHC   
and  
 

hH −βδ = . 
 

 
 
 
 
Shrinkage Restricted Ridge Regression 
Estimator (SRRRE):  

Haq and Kibria (1996) proposed the 
following SRRRE,  
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                            SRSR Wk ββ ˆ=)(ˆ                  (8) 
where  

  
    1,0,ˆ)(1~=ˆ ≤≤−+ dddSR βββ   

 
is the  shrinkage restricted least squares 
estimator (SRLSE) of β  and the coefficient d  
is known as the coefficient of distrust and may 
completely be determined by the user, 
depending on the degree of belief about the null 
hypothesis. For 1=d , β~  is obtained and for 

0=d , β̂  is obtained. Therefore, )(ˆ kSRβ  is a 

convex combination of β~  and β̂ . The bias and 
variance matrix of SRRRE are given as follows:  

   

).'()(1)'(=),(

;)()(1=),(
2212

3

1
3

WAWdWWCdkV
kkCWddkB

σσ
βη

−−

−−−
−

−

   

                                                                         (9) 
 

Preliminary Test Ridge Regression Estimator 
(PTRRE):  

Saleh and Kibria (1993), first introduced 
the preliminary test ridge regression estimator,  

 

         
⎩
⎨
⎧

,ˆ

~
=ˆ=)(ˆ

0

0

istrueifHW
isfalseifHWWk PTPT

β
βββ     

                                                                       (10) 
 
where )<(ˆ)(~=ˆ

αα βββ FLnIFLnIPT +≥  is 
the  preliminary test least squares estimator 
(PTLSE) of β , which is introduced by Bancraft 
(1944) and )(XI  is the indicator function of 
X .   Here Ln  is the test-statistic for testing the 

null-hypothesis hHH =:0 β  against 
hHH ≠β:1  and is given by                   

       ,~
)~()'()~(= 2

11

e

n

q
hHHHChHLn

σ
ββ −′− −−

        

                                                                       (11) 
where  
  
        )~()~()(=~ 12

nne XYXYpn ββσ −′−− −  
 

is the unrestricted least squares estimator of 2σ . 
The corresponding restricted least squares 
estimator of 2σ  is given by  

   
      ).ˆ()ˆ()(=ˆ 12

nne XYXYqpn ββσ −′−+− −  
 
Under 0H , the test-statistic Ln  follows a 

central F -distribution with ),( pnq −  degrees 
of freedom and αF  is the upper α -level critical 
value from this distribution. However, when 0H  
does not hold, Giles (1991) had shown that the 
probability density function of Ln  is non-
central F-distribution with non-centrality 

parameter 
2
Δ

, where  

 

 .'=)()'()(= 22

11

σ
ηη

σ
ββ ChHHHChH −′−Δ

−−

  

                                                                       (12) 
 
is called the departure parameter. For the power 
of the F-test, readers are referred to Sutradhar 
(1988) and Giles (1991) among others.   
Preliminary test and ridge regression approaches 
have been studied by Bancroft (1944, 1964), 
Bock and Yancey (1973), Giles (1991), Han and 
Bancroft (1968), Judge and Bock (1978), Kibria 
and Saleh (1993), Kibria (2003), Kibria 
(2004a,b), Kibria and Saleh (2004, 2005a, 
2005b, 2006), Obenchain et al. (1975) and Saleh 
and Han (1990) to mention a few. The bias and 
variance matrix of the PTRRE are as follows:  
 

        

*
4 q 2,n p

1

2 1
4

2 *
q 2,n p

B (k, , ) = W G (l ; )

kC (k) ;
V (k, , ) = (WC W')

(WAW')G (l ; )

(W 'W')G( , ),

+ − α

−

−

+ − α

Δ α − η Δ

− β
Δ α σ

−σ Δ

+ ηη Δ α

 

             
                                                             (13) 

where  
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*
q 2,n p

**
q 4,n p

2 *
q 2,n p

2G (l ; )

G( , ) = G (l ; )

G (l ; )

+ − α

+ − α

+ − α

⎡ ⎤Δ
⎢ ⎥

Δ α − Δ⎢ ⎥
⎢ ⎥
− Δ⎢ ⎥⎣ ⎦

        (14) 

 
and )(.;, ΔnmG  is the cumulative density 

function )(cdf  of a non-central F-distribution 
with ),( nm  degrees of freedom and the non-

centrality parameter Δ . Also αα F
q

ql
2

=*

+
 and 

αα F
q

ql
4

=**

+
. When 1=α , then 0=αF  and 

0=)(.;, ΔnmG , consequently, the 0H  will be 
rejected and thus PTRRE becomes URRE. On 
the other hand, when 0=α , then ∞=αF  and 

1=)(.;, ΔnmG , consequently, the 0H  will not 
be rejected and thus PTRRE becomes RRRE.     

 
Restricted Liu Estimator (RLIUE):  

Kaciranlar et al. (1999) proposed the 
following restricted Liu estimator (RLIUE):  
 
                          ,ˆ=)(ˆ ββ b

RL Fb                   (15) 
 

based on the corresponding unrestricted Liu 
estimator (ULIUE) (Liu 1993), ,~=)(ˆ ββ b

UL Fb  

where )()(= 1 bICICFb ++ −  and b  is the 
constant to be determined. Note that for 1=b , 
the ULIUE and RLIUE become corresponding 
URLSE and RLSE respectively. It also noted 
that for 1=k  and 0=b  both RRRE and 
RLIUE become the same.   The bias and the 
variance matrix of the RLIUE are as follows:  

   

       
}.)({=)(

;)1)((=),(
12

5

1
5

bb

b

FACFbV
FICbbB

′
−

−

′−

++−Δ

σ
ηβ

  

                                                                       (16) 
 
  
 
 

In the following section, the 
performance of the proposed ridge type 

estimators will be proposed under the restriction 
(2) and using the sampling variance criterion. 
This is because the value of the test statistics 
depends on the sampling variance than the mean 
squares error (MSE). Because the detailed 
analysis about ULIUE and RLIUE are available 
in Kaciranlar et al. (1999), for convenience, the 
comparison of ridge regression estimators with 
that of RLIUE would be provided only by an 
example.  

 
Performance of the estimators under 0H  

Comparison between β~  and )(~ kβ  
The difference between the sampling 

variance of URLSE and URRE is  
 

,)()(=
'][2=

'])()[(=
']'[=

]')([=))(~()~(

112

3222

11112

11112

112

′
+

−′++
−

−−

−−

−−

−−−−

−−−−

−−

kECkCk
WCkkCW

WCkCICkCIW
WCWCWW

WkCCkVarVar

pp

σ
σ

σ
σ

σββ

                                                                       (17)  
 
where ][=)( kICkC +  and )(2= 1−+ kCIE  
are the positive definite (p.d.) matrices. Thus, 
the difference in (17) is non-negative definite 
(n.n.d) for 0>k  and therefore, )(~ kβ  is 

superior to β~  with respect to sampling 

variance. It further notes that the variance of β~  

will be equal to that of )(~ kβ  iff 0=k .  
 
Comparison between β̂  and )(ˆ kβ  

  The difference between the sampling 
variance of RLSE and RRRE is  

   
2 1 1

2 2
2 1 1

0

V (0) V (k) = [(C A) W(C A)W']

= k C (k)[E F ]C (k) ,

− −

− −

− σ − − −
′σ −

                                                                       (18) 
 

 
 
where )(=0 kAACCAF ++  is a symmetric 
matrix. Then, following Anderson (1984) 
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(Theorem A.2.2, p.589), there existed a 
nonsingular matrix P  such that IEPP ='  and 

Λ=' 0PFP , where Λ  is a diagonal matrix and 
its elements are roots of the polynomial equation 

0|=| 0FE λ− . Because 
Λ−−− IPFEPPFPEPP =)('=)''( 00  is a 

non-negative definite matrix, then 0)(1 ≥− iλ . 
That means, )''( 0PFPEPP −  to be the n.n.d. 

matrix, it is necessary that 1)( 0
1 ≤− FEmaxλ .    

              Let 1)( 0
1 ≤− FEmaxλ . Because E  is 

positive definite matrix and 0F  is symmetric 

matrix, then 1
0 λλ ≤

′
′

≤
Exx

xFx
p , where 

)()()( 0
1

0
1

20
1

1 FEFEFE p
−−− ≥≤≥ λλλ …  are 

the roots of 0|=| 0FE λ−  (see Anderson, 1984, 
Theorem A.2.4, p. 590). Then, it is obvious that 

)((0) 22 kVV −  is non-negative definite for 
0≥k  if and only if 1)( 0

1 ≤− FEmaxλ . 
Therefore, sampling variance of RRRE is always 
less than or equal to that of RLSE if and only if 

1)( 0
1 ≤− FEmaxλ .   

                If the sampling variance of URRE is 
compared with that of RRRE, then  
 

 0,);'(=)()( 2
21 ≥− kWAWkVkV σ  

 
which is a positive semidefinite matrix. 
Therefore, RRRE is always superior to that of 
URRE, when the sampling variance criterion is 
considered.  

 
Comparison between SRβ̂  and )(ˆ kSRβ  

The difference between sampling 
variance of SRLSE and SRRRE is  

 

,)(])[(=
]'))(1())(1[(=

),()(0,

1
1

12

21212
33

′−
−−−−−

−

−−

−−

kCFEkCk
WAdCWAdC

dkVdV

σ
σ

                                                                       (19) 
where 12= −+ kCIE  and 

])[(1= 2
1 kAACCAdF ++− . Then, it is 

obvious that ),()(0, 33 dkVdV −  is non-negative 
definite for 0≥k  and 10 ≤≤ d  if and only if 

1)( 1
1 ≤− FEmaxλ .   
If the sampling variance of SRRRE is 

compared with that of URRE, then  
 
        ,')(1=),()( 122

31 WWCddkVkV −−− σ  
 
which is always positive semi definite matrix for 
all 0≥k  and 10 ≤≤ d . Thus, SRRRE is 
superior to URRE. If the sampling variance of 
SRRRE is compared with that of RRRE, then  

   
,'=),()( 122

32 WWCddkVkV −−− σ  
 

which is negative semidefinite. Therefore, 
RRRE is superior to SRRRE for all d  and k  
when the restriction holds.  

 
Comparison between PTβ̂  and )(ˆ kPTβ  

The difference between the sampling 
variance of PTLSE and PTRRE is  

 

          4 4
2 1 1

2

V (0,0, ) V (k,0, )

= k C (k)[E F ]C (k) ,− −

α − α
′σ −

      (20) 

 
where ;0)(][= *

2,2 αlGkAACCAF pnq −+++ . 

Then, the sampling variance of )(ˆ kPTβ  is 

always less than or equal to that of PTβ̂  if and 
only if 1)( 2

1 ≤− FEmaxλ  for all α .   If the 
sampling variance of PTRRE is compared with 
that of URRE, then  
 

1 4
2 *

q 2,n p

V (k) V (k,0, )

= (WAW')G (l ;0),+ − α

− α

σ
 

 
which is always positive semi definite matrix for 
all 0≥k . Thus, PTRRE is superior to URRE. If 
PTRRE is compared with that of RRRE, then  
 

2 4
2 *

q 2,n p

V (k) V (k,0, )

= (WAW')(G (l ;0) 1),+ − α

− α

σ −
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which is negative semidefinite for all (0,1)∈α . 
Therefore, RRRE is superior to PTRRE for all 
α  and k  when the restriction hold. If the 
variance of PTRRE is compared with that of 
SRRRE, then 

   
3 4

*
q 2,n p2

2

V (k,d) V (k,0, )

G (l ;0)
= (WAW') .

(1 d )
+ − α

− α

⎧ ⎫⎪ ⎪σ ⎨ ⎬
− −⎪ ⎪⎩ ⎭

 

  
Thus, the PTRRE will dominates SRRRE if  
 

             ),(12> 21
2, dG

q
qF pnq −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ + −
−+α        (21) 

 
otherwise, SRRRE will dominate PTRRE.    

It is observed from equations (5), (7), 
(9), (13) and (16), that under the restrictions, all 
the proposed ridge estimators are biased and the 
amount of biases are same for the ridge 
regression estimators. For 0=k , all proposed 
ridge estimators become corresponding usual 
least squares estimator and under restrictions 
they are unbiased. It is also observed that the 
RRRE dominates all other estimators under the 
variance criterion and when the restriction holds. 
In the following section, the performance of the 
estimators will be compared when the restriction 
does not hold.  

  
Performance of the estimators under aH  

Comparison between PTβ̂  and )(ˆ kPTβ  
The difference between the sampling 

variance of PTLSE and PTRRE is  
 

                 4 4
2 1 1

3

V (0, , ) V (k, , )

= k C (k)[E F ]C (k) ,− −

Δ α − Δ α
′σ −

  

                                                                       (22) 
  

where )(2= 1−+ kCIE  is positive definite 
matrix and  

*
3 q 2,n p

2

F = (CA AC kA)G (l ; )

1 ( 'C C ' k ')G( , )

+ − α+ + Δ

− ηη + ηη + ηη Δ α
σ

 

 

is a symmetric matrix and ),( αΔG  is greater 
than 0 for all α  and Δ . Then, following 
Anderson (1974, Theorems A.2.2 and A.2.4), 
the difference in (22) will be non-negative 
definite if and only if 1)( 3

1 ≤− FEmaxλ . 
Therefore, under the alternative hypothesis, 
sampling variance of )(ˆ kPTβ  ( 0≥k ) is always 

less than or equal to that of PTβ̂  if and only if 
1)( 3

1 ≤− FEmaxλ .     
 

Comparison between PTRRE and URRE    
            

   1 4
2 *

q 2,n p

V (k) V (k, , )

= (WAW')G (l ; ) W 'W'G( , ),+ − α

− Δ α

σ Δ − ηη α Δ
                          

                                                                       (23) 
where ),( ΔαG  is defined in (14).    

Let P  be the orthogonal matrix with 
eigen vectors of C  so that  
 

 ).,,,(==' 21 pdiagCPP λλλ …Λ  
 

Because )'(WAW  and )''( WWηη , are the 
pp×  symmetric matrices, the following may 

be written  
 
        '][][=' 1*1 PkIAkIPWAW −− +ΛΛΛ+Λ  
 
where *=' AAPP . Then, the thi  diagonal 

element of the matrix 'WAW  is 2

2*

)( k
a
i

ii

+λ
λ

 . 

Similarly, the thi  diagonal element of the matrix 

''WWηη  is 2

22*

)( ki

ii

+λ
λη

, where *
iη  is the thi  

element if the vector P'=* ηη . Then, the 
difference in (23) is positive semidefinite if,  

      

*
q 2,n p

** 2 *
q 4,n p q 2,n p* *2

i i
q 2,n p

2G (l ; )

G (l ; ) G (l ; )
a .

G ( , )

+ − α

+ − α + − α

+ −

⎡ ⎤Δ
⎢ ⎥

− Δ − Δ⎢ ⎥
≥ η⎢ ⎥α Δ⎢ ⎥
⎢ ⎥
⎣ ⎦

 

                                                             (24) 
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Thus, PTRRE will dominate URRE when (24) 
holds.     
 
Special Cases on Δ  

Consider 0=k  in (23), and then 
following Judge and Bock (1978, p.115-117), 
the sampling variance of PTLSE is obtained and 
is smaller than that of the URLSE when,  

 
*

q 2,n p
*

q 2,n p

**
q 4,n p

2 *
q 2,n p

G (l ; )
.

2[2G (l ; )

G (l ; )

G (l ; )]

+ − α

+ − α

+ − α

+ − α

Δ
Δ ≤

Δ

− Δ

− Δ

 

 
This result coincides with that of Judge and 
Bock (1978, p.116).     
 
Comparison between PTRRE and RRRE    

 

 

[ ]

2 5

2 *
q 2,n p

V (k) V (k,d, , )

(WAW') 1 G (l ; )
= .

(W 'W')G( , )
+ − α

− Δ α

⎧ ⎫⎡ ⎤σ − Δ⎪ ⎪⎣ ⎦−⎨ ⎬
+ ηη α Δ⎪ ⎪⎩ ⎭

 

 
It is observed that the above difference is always 
negative semi-definite for all (0,1)∈α , 

)(0,∞∈Δ  and (0,1)∈d . Therefore, the RRRE 
dominates PTRRE, SRRRE and URRRE 
whether the restriction does or does not holds.     
 
Comparison between PTRRE and SRRRE    

    

        
3 4

2 2 *
q 2,n p

V (k,d) V (k, , )

(WAW'){(1 d G (l ; )}
= .

W 'W'G( , )
+ − α

− Δ α

⎧ ⎫σ − − Δ⎪ ⎪−⎨ ⎬
+ ηη α Δ⎪ ⎪⎩ ⎭

  

 
                                                             (25) 

 
The difference in (25) will be negative 
semidefinite and therefore, the SRRRE will 
dominates PTRRE if  

  

,);(1 *
2, Δ−≤ −+ αlGd pnq  

 
otherwise, PTRRE will dominates SRRRE.  

Numerical Example 
An example is considered that 

demonstrates the performance of the proposed 
estimators. Accordingly, the dataset on Portland 
cement, originally due to Woods et al. (1932), 
was analyzed. This dataset has widely been 
analyzed by Hald (1952, p.635-652), Gorman 
and Torman (1966, p.735), Nomura (1988, 
p.735), Piepel and Redgate (1998) and recently 
Kaciranlar et al. (1999) among many 
researchers. This data came from an 
experimental investigation of the heat evolved 
during the setting and hardening of the Portland 
cements of varied composition as a function of 
the percentage of four compounds in the clinkers 
from which the cement was produced. Woods et 
al. (1932) considered the following four 
compounds: Tricalcium aluminate 

).(3 32OAlCaO , Tricalcium silicate 
).(3 2SiOCaO , Tetracalcium aluminoferrite 

)..(4 3232 OFeOAlCaO , and β -dicalcium 
silicate ).(2 2SiOCaO . The heat evolved after 
180 days of curing is measured in calories per 
gram of cement. For details about the dataset, 
please see Woods et al. (1932). Consider the 
following linear model to analyze the cement 
dataset.  
 

                     i 0 1 1 2 2 3 3

4 4 i

y = x x x
x e ; i = 1,2, ,13,
β + β + β + β

+β + …
  

                                                                       (26) 
 

where =iy  denotes the thi  measurement for the 
heat evolved in calories per gram of cement. 

1x =Tricalcium aluminate ).(3 32OAlCaO , 

2x =Tricalcium silicate ).(3 2SiOCaO , 

3x =Tetracalcium aluminoferrite 
)..(4 3232 OFeOAlCaO , 4x = β -dicalcium 

silicate ).(2 2SiOCaO  and e  is a random error 
which is distributed as )(0, 2σN . The model 
(26) is known as  inhomogeneous linear 
regression model and will be used to analyze the 
cement dataset to compare the performance of 
the proposed estimators and compared them 
with that of Kaciranlar et al. (1999).   The least 
square estimates and their corresponding 
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estimated standard error (SE)s, together with 
associated 8t -statistic and two-sided P-values 
are given in Table 1.  
 
 

Table 1: The Regression Analysis 
 

Coefs           SE        t-value  P-value
62.4054   70.0710      0.8906  0.3991
  1.5511     0.7450      2.0821  0.0709
  0.5102     0.7239      0.7048  0.5010
  0.1019     0.7550      0.1350  0.8960
-0.1441      0.7092    -0.2031  0.8441  

 
Note that S-plus software was used 

to analyze the dataset. It was found that 
0.9824=2R , which implies that 98.24% of 

 

 
 
 
 
 
 

the total variation has been explained by the 
regressors, 111.48=0.05,4,8F , which is highly 
significant. However, none of the regression 
coefficients is statistically significant at 5% 
level. This could possibly be due to the  high 
correlation among the explanatory variables, 
which can be observed from the correlation 
matrix provided in Table 2.  

Moreover, the singular values for the 
design matrix are: 211.36746660, 
77.23614495, 28.45965700, 10.26736008, 
and 0.03490017 and the condition number 
of X is 211.36746660/0.03490017 = 
6056.3744. So, the X  matrix is severely ill-
conditioned (Kaciranlar, 1999), which 
probably make the regression coefficients 
insignificant and therefore, it is hard to make 
a valid inference or prediction using usual 
least squares method. To make a valid 
inference and to compare the performance of 
the proposed estimators, the cement dataset 
would be the most appropriate one to 
analyze. 
 
 
 
 
 

 
 
 
 
 
 
 

To compare the performance of the 
proposed ridge estimators with that of 
ULIUE and RLIUE, consider the following 
parametric restriction: 0=321 βββ +−  as 
that of Kaciranlar (1999), which can be 
expressed as  
 

 
Table 2: The correlation matrix   

 
              1x        2x            3x            4x          y  

1x     1.0000    0.2286   -0.8241   -0.2454    0.7307

2x     0.2286  1.0000   -0.1392  -0.9730      0.8163 

3x   -0.8241  -0.1392     1.0000   0.0295    -0.5347

4x   -0.2454   -0.9730     0.0295   1.0000  -0.8213 
y    0.7307     0.8163   -0.5347  -0.8213   1.0000 
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0,:
0=:0

≠β
β

HH
HH

a

  

                                                                 (27) 
 

where 1,1,0)(0,1,= −H  is an 51×  kown 
matrix. In the notation, 1=q  and 5=p . To 
test the hypotheses in (27), use (11) and 
observe that 1.92=nL . Because 

5.32=0.05,1,8F , one would not reject 0H  at 
5% significance level. It is noted that the 
proposed ridge regression estimators depend 
on the value of k . Many different 
techniques for estimating k  have been 
proposed or suggested by different 
researchers. Among them, Hoerl et al 
(1975), Lawless and Wang (1976), are 
notable.  

For detailed about the estimation 
technique of k , see Kibria (2003) and 
references therein. The estimated values of 
k  by using, Hoerl et al. (1975, p.107), and 
Lawless and Wang (1976, p.311) are 0.0077 
and 0.00025 respectively. The estimated 2σ  
by using URLSE and RLSE are 5.982955, 
6.595198 respectively. The sampling 
variance of the proposed estimators depends 
on the value of 2σ .  

Therefore, 5.982955 was used to 
estimate the sampling variance of URLSE, 
URRE and URLIUE and 6.595198 for ridge 
regression estimators and RLIUE. The 
estimated standard error (SE) has been 
provided for all proposed estimators along 
with unrestricted Liu Estimator (ULIUE) 
and restricted Liu estimator (RLIUE) in 
Table 3.  It  may  be  observed  from Table 3  

 
that all the proposed ridge regression 
estimators dominate corresponding usual 
least squares estimators in the sense of 
having smaller sampling variances. Assume 

0.5=d ; the natural choice for the analysis. 
It was also found from Table 3 that 

for any value of 0,0.00025=k  and 0.0077 , 

the RRRE produces the smallest sampling 
variances compared to other ridge 
estimators. Specifically, for 0.0077=k , all 
ridge estimators dominate the restricted Liu 
estimator. Thus, using ridge regression 
technique, one would be able to improvise 
the estimators. From Table 3, it was also 
observed that the sampling variance of 
RLIUE is smaller than that of ULIUE, 
which is the consequences of Theorem 
3.1.1. (Kaciranlar 1999, p.448). Finally, 
using 0.0077=k , the data was analyzed and 
URRRE along with corresponding least 
squares estimators (in the parentheses) are 
provided in Table 4. Table 5 provides the 
regression analysis for RRRE and the 
restricted Liu estimator (in the parentheses).    

It may be seen from Table 4, that under 
the OLS method, the regression coefficients are 
insignificant, yet under the ridge regression 
approach, all the regression coefficients are 
highly significant. It was also observed that the 
sign of the estimated regression coefficients has 
been changed, which is expected for highly 
correlated data (see Hoerl & Kennard, 1970). 
When the RLIUE was compared with that of 
RRRE, it was seen from Table 5 that all the 
regression coefficients, with the exception of 2β  
under RLIUE, is not significant. 

Next, the following parametric 
restrictions were considered: 

0=321 βββ +− , 0=432 βββ +− , 
0=421 βββ −− , which yield the following 

hypotheses,  
 

                       0

a

H : H = 0
H : H 0,

β
β ≠

   (28) 

 
 
 
 
 
 
 



APPLICATIONS OF SOME IMPROVED ESTIMATORS IN LINEAR REGRESSION    
 
376 

                                   
 
 

 
 
 

 
Table 3: Estimated standard error of the proposed estimators 

URLSE   RLSE   SRLSE   PTLSE   ULIUE 
0.05=α   0.5=d   k=0 

70.0710  31.6114   44.4629   43.5948   55.7471
0.7450   0.1789     0.4025     0.3899     0.6032
0.7239   0.3674     0.4817     0.4733     0.5766
0.7550   0.2074     0.4183     0.4062     0.6083
0.7092   0.3464     0.4648     0.4561     0.5647
URRE   RRRE   SRRRE   PTRRE   RLIUE 

0.05=α   d=0.5   k=0.00025 
58.1381  26.2285   36.8912   36.1710  31.6215
  0.6269    0.1265     0.3317     0.3209     0.1721
  0.6008    0.3114     0.4037     0.3975     0.3690
  0.6325    0.1549     0.3435     0.3332     0.2031
  0.5891    0.2933     0.3886     0.3821     0.3481

URRE   RRRE   SRRRE   PTRRE  RLIUE 
0.05=α    d=0.5  k=0.0077 

 9.5703    4.3195      6.0738    5.9553    31.6215
 0.2121    0.1304      0.1549     0.1517     0.1721
 0.1095    0.0894      0.0949     0.0949     0.3690
 0.1897    0.1049      0.1342     0.1304     0.2031
 0.1049    0.0775      0.0837     0.0837     0.3481

 
 

Table 4: Ridge regression (Usual Least Squares) analysis without restriction 
Coefficients                    SE                      t -value               P-value 
8.5642 (62.4054)  9.5703 (70.0710)   0.8949 (0.8906)    0.3970 (0.3991) 
2.1048  (1.5511)   0.2121   (0.7450)   9.9238 (2.0820)    0.0000 (0.0708)  
1.0651  (0.5102)   0.1095   (0.7239)   9.7268 (0.7047)    0.0000 (0.5009) 
0.6683  (0.1019)   0.1897   (0.7550)   3.5231 (0.1350)    0.0078 (0.8959)  
0.3998 (-0.1441)   0.1049   (0.7092)   3.8115 (-0.2031)  0.0052 (0.8441) 

 
 

Table 5: Ridge regression (Restricted Liu) analysis under the restriction   
         Coefficients                 SE                      t -value                 P-value 
 20.4006   (142.0379)    4.3195 (31.6215)    3.3528 (4.4918)     0.0100 (0.0020) 
   1.8724       (0.6207)    0.1304 (0.1721)    15.2503 (3.6065)     0.0000 (0.0069) 
   0.9716     (-0.2819)    0.0894 (0.3690)    11.3907 (-0.7640)    0.0000 (0.4668) 
   0.4504      (-0.8298)    0.1049 (0.2031)     5.3322 (-4.0857)    0.0007 (0.0035) 
   0.2985      (-0.9302)    0.0775 (0.3481)     4.5051 (-2.6721)     0.0020 (0.0283)
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where H matrix is defined as 
 

0 1 –1   1     0 
0 0   1 –1   –1 
0 1 –1   0   –1 

 
To test the null hypothesis in (28), use 

(11) and observe that 133.522.=nL  The upper 
percentage point of the non-central F 
distribution with 3 and 8 degrees of freedom and 
non-centrality parameter 10.78 is 16, so, the null 
hypothesis is rejected at the 5% significance 
level. Now, the analysis will be carried out 
under the alternative hypothesis. The 
unrestricted and restricted estimated values of 

2σ  are found to be 5.982955 and 222.221 
respectively. It is noticed that the estimation of 

2σ  in a restriction model very much depends of 
the  restriction  on  the   parameters.  Using (12),   

 
 

 

the non-centrality parameter Δ  is estimated by 
replacing β  by β~  and 2σ  by 2~σ  as 10.78.    

The estimated SE for the proposed 
estimators along with ULIUE and RLIUE are 
presented in Tables 6 and 7, where 2σ  is 
estimated by 2~σ  and 2σ̂  respectively. It was 
found that the estimated SE in Table 7 is 6 times 
bigger than the SE in Table 7, as 2σ̂  is bigger 
than the 2~σ . From both Tables 6 and 7, it was 
observed that the proposed ridge regression 
estimators have smaller sampling variances 
compared to usual least squares estimator for 
any values of k . It was also noticed that the 
RRRE performed better than the URRRE, 
SRRRE and PTRRE in the sense of having 
smaller as well as stable  sampling variance. For 
the restriction (27), the PTRRE performs better 
than URRRE and SRRRE. 

 
 

 

 
Table 6: Estimated SE of the proposed estimators using 2σ  estimated by 2~σ  

URLSE   RLSE   SRLSE   PTLSE   URLIE 
  0.05=α   0.5=d  k=0     

70.0710  1.1688  35.0501  32.9698   70.0464
  0.7450  0.0316    0.3742    1.0232     0.7445
  0.7239  0.0000    0.3619    0.3795     0.7235
  0.7550  0.0316    0.3782    0.2811     0.7545
  0.7092  0.0316    0.3564    0.2608     0.7088
URRE   RRRE   SRRRE   PTRRE  RLIUE 

0.05=α   d=0.5   k=0.00025 
58.1381 0.9701  29.0812   27.3548     1.1632
0.6269   0.0316    0.3146     0.9762     0.0370
0.6008   0.0000    0.3000     0.3225     0.0001
0.6325   0.0447    0.3178     0.2569     0.0371
0.5891   0.0316    0.2966     0.2121     0.0370
URRE   RRRE   SRRRE   PTRRE  RLIUE 

0.05=α    d=0.5  k=0.0077 
  9.5703  0.1612   4.7872    4.5010    1.1632 
  0.2121  0.0316   0.1095    0.8000    0.0370 
  0.1095  0.0000   0.0548    0.0949    0.0001 
  0.1897  0.0447   0.1049    0.2881    0.0371 
  0.1049  0.0316   0.0548    0.1378    0.0370  
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The estimated optimum value of b  
using equations (3.10) and (3.11) of 
Kaciranlar (1999, p. 450) are found to be 

0.9996484=OLSb  and 0.995122=RLEb  
respectively. It was noticed that both of the 
estimated b  are approximately equal to 1. 
One would therefore expect that ULIUE will 
give similar result like that of URLSE and 
RLIUE will produce similar result like that 
of RLSE. These results can be evident from 
Tables 6 and 7. It is noted from numerical 
analysis that the RRRE performed better 
than URLSE, URRE, RLSE, SRLSE, 
SRRRE, PTLSE, and PTRRE in the sense of 
having smaller sampling variance. From the 
analysis,   it   is   also   noted  that the RRRE  

 
 
 
 

 
 

performed equivalently or better than 
RLIUE in the sense of having smaller 
sampling variance. 

Using 0.0077=k , the regression 
analysis for the RRRE and the RLIUE (in 
the parenthesis) have been presented in 
Tables 8 and 9 where 2σ  is estimated by 

2~σ  and 2σ̂  respectively. It may be found 
from Table 8 that all the regression 
coefficients are statistically significant under 
both RRRE and RLIUE. However, from 
Table 9, it was found that all the regression 
coefficients are statistically significant under 
the restricted ridge regression model and 
only 2β  is significant under the RLIUE 
model. 
 
 
 
 

 
Table 7: Estimated SE of the proposed estimators when 2σ  is estimated 2σ̂  

URRE   RRRE   SRRRE   PTRRE   URLIE 
  0.05=α   0.5=d       

 427.0441   7.1237   213.6112   152.6839  426.8942  
     4.5389   0.2258       2.2779       1.8218      4.5375  
     4.4111   0.0000       2.2054       1.5818      4.4095  
     4.5996   0.2258       2.3080       1.6462      4.5980  
     4.3212   0.2258       2.1696       1.5479      4.3198  

 URRE   RRRE   SRRRE   PTRRE  RLIUE  
  0.05=α   d=0.5   k=0.00025   

 354.3197   5.9108   177.2338   126.6822  7.0890 
       3.8196   0.2168       1.9189       1.5837  0.2255 
       3.6636   0.0000       1.8319       1.3153  0.0004 
       3.8555   0.2366       1.9386       1.3889  0.2261 
       3.5882   0.2168       1.8039       1.2888  0.2255  

 URRE   RRRE   SRRRE   PTRRE   RLIUE 
  0.05=α    d=0.5  k=0.0077    

 58.3256   0.9742   29.1750   20.8533   7.0890 
       1.2900   0.1789     0.6633     0.8246    0.2255 
       0.6701   0.0632     0.3391     0.2550    0.0004 
       1.1589   0.2811     0.6285     0.5404    0.2261 
       0.6419   0.1789     0.3564     0.3033    0.2255  
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Conclusion 

 
In this article, some ridge type estimators were 
considered for estimating the regression 
parameters under a parametric restriction. The 
proposed estimators have been studied by using 
the variance criterion. It was found that a 
sufficient and necessary condition for all the 
ridge estimators to have smaller sampling 
variance than their corresponding least squares 
estimators. It was found that, under both 0H  
and aH , the RRRE dominates all other ridge 
estimators and corresponding least squares 
estimators. As Δ  moves away from 0 , the 
conditions of superiority of the PTRRE and 
SRRRE over the URRE and URLSE are 
determined. The findings were illustrated by 
analyzing the Portland Cement dataset. From the 
analysis, it is evident that RRRE is superior to 
other proposed ridge regression estimators and 
as good as restricted Liu estimator.  
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