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Determining the number of factors to extract is a critical decision in exploratory factor analysis. 
Simulation studies have found the Parallel Analysis criterion to be accurate, but it is computationally 
intensive. Two freeware programs that implement Parallel Analysis on Macintosh and Windows 
operating systems are presented.  
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Introduction 
 

Exploratory factor analysis is an 
important analytic tool for investigating test 
validity. Of all the decisions made in exploratory 
factor analysis, determining the number of 
factors to extract is perhaps the most critical 
because incorrect specification will obscure the 
factor structure (Cattell, 1978; Glorfeld, 1995; 
Goodwin & Goodwin, 1999). Although over-
extraction might be somewhat less serious than 
under-extraction (Wood, Tataryn, & Gorsuch, 
1996), it has been empirically demonstrated that 
both have deleterious effects (Fava & Velicer, 
1992, 1996). 

Many criteria for determining the 
number of factors to extract have been proposed 
(Benson & Nasser, 1998). Unfortunately, most 
are inaccurate guides to practice (Kanyongo, 
2005; Zwick & Velicer, 1986). Based upon 
current simulation research (Velicer, Eaton, & 
Fava, 2000; Zwick & Velicer, 1986), only two 
methods have consistently emerged as accurate: 
the Parallel Analysis (PA) method of Horn 
(1965) and the Minimum Average Partial 
(MAP) method of Velicer (1976). 
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The MAP procedure entails partialling 
each successive factor out of a correlation matrix 
to create a partial correlation matrix. The 
average of the squared correlations of the off-
diagonal partial correlation matrix is then 
computed. This average should decrease as long 
as shared variance is being extracted, but begin 
to increase when error variance predominates. In 
contrast, PA requires that a set of random 
correlation matrices be generated based upon the 
same number of variables and participants as the 
experimental data. These random correlation 
matrices are then subjected to principal 
components analysis and the average of their 
eigenvalues is computed and compared to the 
eigenvalues produced by the experimental data. 
The criterion for factor extraction is where the 
eigenvalues generated by random data exceed 
the eigenvalues produced by the experimental 
data. 

Thompson and Daniel (1996) explicitly 
recommended PA procedures for determination 
of the number of factors to extract. 
Unfortunately, neither MAP nor PA is included 
in common statistical software packages 
(Fabrigar, Wegener, MacCallum, & Strahan, 
1999) and both methods are computationally 
intensive. Consequently, many published factor 
analytic studies have relied on inaccurate 
methods to determine the number of factors to 
retain (Fabrigar, et al. 1999). 

The MAP method remains relatively 
inaccessible, but simpler alternatives have been 
developed for PA. Of these, regression equations 
to predict PA criteria have predominated. 
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However, simulation studies indicated that they 
are inaccurate (Velicer, Eaton, & Fava, 2000; 
Zwick & Velicer, 1986). Tables of random 
eigenvalues generated by Monte Carlo 
simulations have been found to be accurate and 
make PA criteria accessible (Lautenschlager, 
1989; Velicer, et al., 2000). Unfortunately, they 
do not cover all possible variable-participant 
combinations and interpolation of tabled values 
is tedious and may be error-prone. Additionally, 
current tables only allow comparison of obtained 
eigenvalues with the mean of a sample of 
random eigenvalues. Several researchers have 
suggested that mean comparisons may retain 
more factors than is warranted and 
recommended that the 90th or 95th percentile be 
used instead (Cota, Longman, Holden, & 
Fekken, 1993; Glorfeld, 1995). 

O'Connor (2000) provided a tutorial for 
using PA and MAP with existing general 
purpose statistical software, but use requires 
expensive software (i.e., SPSS or SAS) and 
manipulation of complex syntax code. In 
contrast, Kaufman and Dunlap (2000) published 
a standalone FORTRAN program to calculate 
PA criteria. Unfortunately, it only operates on 
the Windows platform (excluding Macintosh 
users) and does not accommodate problems with 
more than 50 variables or 1,000 subjects. The 
present paper presents two computer programs 
which make PA criteria more flexible and 
readily available. 
 
Programs 
MacParallel 

Data were generated in a set of Monte 
Carlo simulations in which the number of 
variables (V) ranged from 5 to 100 in steps of 5 
and sample sizes (N) were 100, 150, 200, 300, 
400, 500, 750, 1000, 1500, 2000, and 2500. 
Using SPSS for the Macintosh, Version 6.1 
(Norusis, 1994), random normal data were 
generated for each of the 220 combinations of 
variables and subjects and subsequently 
subjected to principal components analysis 
(PCA). Resulting eigenvalues were saved and 
each V by N simulation was replicated 100 
times. The final output from these 22,000 
simulations was the mean first through Vth 
eigenvalues and associated standard errors. 

When compared to the 3,950 
overlapping values presented by Lautenschlager 
(1989), the largest difference was .036 and the 
average difference was .000051. Thus, these 
results appear to be consistent with previous 
simulations which were found to be accurate in 
determining the number of components to retain 
(Velicer, et al., 2000; Zwick & Velicer, 1986). 

MacParallel is a standalone RealBASIC 
program which provides an electronic look-up 
table of these random data eigenvalues and 
standard errors with integral linear interpolation. 
To increase accessibility, identical versions are 
available for Macintosh and Windows operating 
systems. 
 
Monte Carlo PCA for Parallel Analysis 

Although MacParallel is quick and 
accurate, it does not directly calculate all 
possible variable-participant combinations. In 
contrast, Monte Carlo PCA for Parallel Analysis 
is a standalone RealBASIC program which 
allows specification of 3-300 variables, 100-
2,500 participants, and 1-1,000 replications. The 
program: (a) generates random normal data for 
the quantity of variables and participants 
selected; (b) computes the correlation matrix; (c) 
calculates eigenvalues for those variables via a 
Jocobi routine; (d) repeats the process as many 
times as specified in the replications field; and 
(e) calculates the average and standard deviation 
of the eigenvalues across all replications. 
Identical versions are available for Macintosh 
and Windows operating systems. 

Computation of random eigenvalues 
with Monte Carlo PCA for Parallel Analysis is 
dependent upon processor speed as well as the 
number of variables, participants, and 
replications requested. Results from 25 
variables, 500 participants, and 100 replications 
were produced in 18 seconds by a Macintosh 
iMac G5 operating under System X.4.1. An 
identical analysis took 32 seconds under 
Windows NT on a 733 MHz Intel Pentium III 
processor. 
 
Availability 

Freeware versions of MacParallel and 
Monte Carlo PCA for Parallel Analysis are 
available  for Macintosh and Windows operating  
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systems at: 
http://www.personal.psu.edu/mww10 
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