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An Alternative to Warner’s Randomized Response Model 
               
                 Sat Gupta                          Javid Shabbir 

                    University of North Carolina at Greensboro     Quaid-I-Azam University 
 
 
A modification to Warner’s (1965) Randomized Response Model is suggested. The suggested model is 
more efficient than the original model. 
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Introduction 
 
Warner (1965) suggested an Indirect 
Questioning method to circumvent social 
desirability response bias in surveys involving 
sensitive questions. If π  is the proportion of 
subjects in a population who have a sensitive 
characteristic A, then Warner’s method 
recommends using a randomization device, such 
as a deck of cards, to scramble the true response. 
A known proportion ( )p  of the cards in the 
deck have the statement “I have characteristic 
A” and the remaining cards in the deck have the 
statement “I do not have characteristic A”. A 
participant in the survey draws a card randomly 
from the deck and reports his/her 
agreement/disagreement with the statement on 
the card. Thus, a respondent who actually has 
the characteristic A, but draws a “I do not have 
characteristic A” card, will give a response “no” 
indicating lack of agreement with the statement 
on the card. Probability of a “yes” response 
( yp ) is given by 
 
                    )1)(1( ππ −−+= ppp y .         (1) 
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Equation (1) can be rewritten as 
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Equation (2) suggests estimating π  by wπ  
where 
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where 1n  is proportion of “yes” responses in a 
simple random sample with replacement of size 
n . The fact that 1n has a binomial distribution 
with parameters ( ypn, ) can be used to prove 

that wπ  is a maximum likelihood estimator 
ofπ . Its variance is given by 
 

 2)21(
)1()1()(

pn
pp

n
V w −

−+−= πππ .    (4) 

    
The second term in the above expression is the 
penalty due to indirect responding. Note that the 
penalty is smallest when p is closest to zero or 
one. 

Several variations of Warner’s model 
have been proposed in the literature. These 
include models by Greenberg et. al (1969), 
Mangat and Siingh (1990) and Christofides 
(2002). Gupta and Thornton (2002) have 
attempted to validate some of these models with 
actual survey data. 
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Proposed Alternative Strategy 
It is clear from (4) that Warner’s model 

works best when p is very close to zero or to 
one. But, both of these cases make the 
scrambling deck look very suspicious because 
almost all of the cards will be of the same type. 
Using two decks of the type described above is 
proposed, one with a low value of p (say 1p ) 
and the other with a high value of p (say 2p ). 
This will increase cooperation because the 
respondent is less suspicious in using decks of 
both kinds – one with a high value of  p  and 
one with a low value of p . 

A simple random sample with 
replacement of size n is selected and each 
respondent is asked to give a response using 
each of the two decks. Let 

niZZ ii ,...,2,1),,( 21 =  be the responses where 

1=kiZ  if the response using the thk  deck 

( 2,1=k ) is “yes” and 0=kiZ if the response is 
“no”. Let 2,1,1 =in i , be the number of “yes” 
responses from the two decks. Then one can 
construct two estimators of the type (3). These 
are given by 
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It is easy to note from (4) that both of these 
estimators have the same variance if 1p and 

2p are symmetric about .5. 
 

We now propose the estimator   
            2211 wwp kk πππ += , 121 =+ kk .    (7) 
    
Obviously pπ  is unbiased because both 1wπ   
 
 
 

and 2wπ are unbiased. Also, variance of pπ  is 
given by 
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The following lemma is proven before exploring 
this variance further. 
 
Lemma 1:  
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In the above block in the middle equation, please 
change the second summation to ∑

j
jZ 2  

 
because iZ1  and jZ 2  are independent for ji ≠ . 
Hence,  
  ),( 1211 nnCov = 

)}()().({),( 121112111211 ZEZEZZEnZZnCov −=  
  = }{ 21 yyyy pppn − ,  
           (10) 
 
where yyp is the probability of a “yes” response 

with both decks, 1yp is the probability of a “yes” 

response with Deck 1 and 2yp is the probability 
of a “yes” response with Deck 2. The following 
is provided as in (1). 
 
          2,1),1)(1( =−−+= ippp iiyi ππ    (11) 
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and 
    
    )1)(1)(1( 2121 ppppp yy −−−+= ππ .(12) 
    
Substituting (11) and (12) in (10), one can easily 
obtain 
 

)12)(12)(1(),( 211211 −−−= ppnnnCov ππ  
                                    

                                                                       (13) 
 

The lemma follows easily from (5), (6) 
and (13). Also, it is easy to verify that when 

2121 ,1 pppp ≠=+ , the optimum values of 
),( 21 kk in (8) are (.5, .5). This is because 

)()( 21 ww VV ππ =  if 12 1 pp −= . With these 
choices for ),( 21 kk , our proposed estimator 
becomes 
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As remarked earlier, pπ  is unbiased because 

both 1wπ  and 2wπ are unbiased. 
 
Theorem 1:  

When    121 =+ pp     and    21 pp ≠ ,  
estimator pπ  is more efficient than Warner’s 

estimators 1wπ  and 2wπ .  
 

Proof:  
Note that  
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Numerical Examples 

In this section, the efficiency of the 
proposed estimator is compared with Warner’s 
estimator for various choices of π , 

1p and )1( 122 ppp −= . Note that the proposed 
estimator is more efficient than Warner’s 
estimator, as expected, for all choices of the 
parameters. 
 
 
 
 

 
 

 
Table1: Efficiency of the proposed estimator compared to Warner’s estimator 

 

π  1.01 =p  2.01 =p  3.01 =p  4.01 =p  

0.1 143.860  171.171  187.940  197.087 
0.2 130.529  158.140  180.398  194.937 
0.3 125.084  151.414  175.758  193.458 
0.4 122.659  148.077  173.222  192.593 
0.5 121.951  147.059  172.414  192.308 
0.6 122.659  148.077  173.222  192.593 
0.7 125.084  151.414  175.758  193.458 
0.8 130.529  158.140  180.398  194.937 
0.9 143.860  171.171  187.940  197.087  
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Conclusion 
 
The proposed strategy is likely to induce greater 
cooperation from the survey participants because 
it provides greater diversity in the scrambling 
process. Moreover, the proposed strategy is 
clearly more efficient than Warner’s model, 
particularly for higher values of 1p . 
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