Inference for $P(Y$

Vee Ming Ng

Murdoch University, Australia, VNg@murdoch.edu.au

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the [Applied Statistics Commons](https://digitalcommons.wayne.edu/jmasm), [Social and Behavioral Sciences Commons](https://digitalcommons.wayne.edu/jmasm), and the [Statistical Theory Commons](https://digitalcommons.wayne.edu/jmasm)

Recommended Citation

DOI: 10.22237/jmasm/1162353840

Available at: http://digitalcommons.wayne.edu/jmasm/vol5/iss2/5

This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in *Journal of Modern Applied Statistical Methods* by an authorized editor of DigitalCommons@WayneState.
Inference for $P(Y < X)$ for Exponential and Related Distributions

Vee Ming Ng
School of Engineering Sciences,
Murdoch University, Australia

Some tests and confidence bounds for the reliability parameter $R = P(Y < X)$ are proposed, where X and Y are independent random variables from a two-parameter exponential distribution. The results are based on missing or incomplete data and are applicable to some related distributions.

Key words - Confidence bounds, exponential distribution, missing data, P-value, reliability parameter

Introduction

The problem of estimating and testing the reliability parameter $R = P(Y < X)$ has been widely researched in the literature. The problem originated in the context of reliability of a component of strength X subjected to a stress Y, the component failing if and only if at any time the applied stress is greater than its strength. Other applications for the reliability parameter exists when X and Y have different interpretation, such as when Y is the response for a control group and X is the response for the treatment group. Inference on R shall be considered when X and Y are random variables from a two-parameter exponential distribution. Inference on R for the one-parameter exponential distribution can be found in Enis and Geisser (1971), Tong (1977), and Chao (1982) among others.

Gupta and Gupta (1988) derived and compared some point estimators for R in the case of two independent exponential variables having a common scale parameter. For the case in which the location parameter is common, Bai and Hong (1992) discussed point and interval estimation of R and Baklizi (2003) compared the performance of several types of asymptotic, approximate, and bootstraps confidence intervals. Ali, Woo, and Pal (2004) considered test and estimation of R when the scale parameters are equal and known and also inference procedures for R which are based on likelihood ratio tests for equality of scale and equality of location parameters.

This article considers some tests and confidence bounds for $P(Y < X)$ for the two-parameter exponential distribution with a common but unknown scale parameter and also with a common but unknown location parameter. Exact tests and confidence bounds are derived in situations where data may be missing or incomplete, the situation with complete data being a special case. These results are extended to some related distributions.

Methodology and Results

A two-parameter exponential distribution with parameters (μ, σ) is defined by the probability density function:

$$f(x; \mu, \sigma) = \frac{1}{\sigma} e^{-(x-\mu)/\sigma}, \quad x > \mu, \quad \sigma > 0$$

Suppose X and Y are independent exponential random variables with parameters (μ_x, σ_x) and (μ_y, σ_y) and probability density...
functions \(f(x; \mu_x, \sigma_x) \) and \(f(y; \mu_y, \sigma_y) \) respectively. Then

\[
R = P(Y < X) = \int_{\mu_y}^{\mu_x} \int_{\sigma_y}^{\sigma_x} f(x; \mu_x, \sigma_x) f(y; \mu_y, \sigma_y) \, dy \, dx
\]

\[
= \left\{ \frac{\sigma_x}{\sigma_x + \sigma_y} e^{-\delta/\sigma_x}, \delta \geq 0 \right\}
\]

\[
= \left\{ 1 - \frac{\sigma_y}{\sigma_x + \sigma_y} e^{-\delta/\sigma_y}, \delta < 0 \right\}
\]

where \(\delta = \mu_x - \mu_y \). Inference on \(R \) is considered for two cases: (a) scale parameters are equal and unknown and (b) location parameters are equal and unknown.

Assuming two independent samples of size \(n \) and \(m \) from the exponential distributions with parameters \((\mu_x, \sigma_x)\) and \((\mu_y, \sigma_y)\) respectively, let \(X_q < X_{q+1} < \ldots < X_r \) and \(Y_l < Y_{l+1} < \ldots < Y_p \) denote the ordered observations; some of these could be missing where \(q = 1, r = n \), and \(l = 1, p = m \) would correspond to all observations being available.

Let \(S_x = \sum_{i=q+1}^{r} c_i (n-i+1)(X_i - X_{i-1}) \) \(c_i = 1 \)

or \(0; \)

\(S_y = \sum_{j=l+1}^{p} d_j (m-j+1)(Y_j - Y_{j-1}) \)

\(d_j = 1 \) or \(0 \), and \(S_p = S_x + S_y \), \(v_x = \sum_{i=q+1}^{r} c_i \), \(v_y = \sum_{j=l+1}^{p} d_j \), \(v = v_x + v_y \). It is well known that:

- \(X_q, Y_l, S_x, S_y, S_p \) are statistically independent (see Tanis (1964), Likes (1974)).
- \(2S_x / \sigma_x, 2S_y / \sigma_y, 2S_p / \sigma \) when \(\sigma_x = \sigma_y = \sigma \), have chi-square distributions with \(2v_x, 2v_y, 2v \) degrees of freedom respectively.

- The probability density functions of the ordered statistics \(X_q \) and \(Y_l \) can be written, respectively, as

\[
f(x; \mu_x, \sigma_x, n, q) = \sum_{i=0}^{q-1} a(n, q, i) \frac{1}{\sigma_x} e^{-n(q + x - \mu)/\sigma_x} \]

\[
f(y; \mu_y, \sigma_y, m, l) = \sum_{j=0}^{l-1} b(m, l, j) \frac{1}{\sigma_y} e^{-m(l + y - \mu)/\sigma_y} \]

where

\[
a(n, q, i) = q \binom{n}{q} \binom{q-1}{i} (-1)^i \]

\[
b(m, l, j) = l \binom{m}{l} \binom{l-1}{j} (-1)^j \]

\[
n(q, i) = n - q + i + 1 \]

\[
m(l, j) = m - l + j + 1 \]

Test of hypothesis when \(\sigma_x = \sigma_y = \sigma \)

Suppose that \(\sigma_x = \sigma_y = \sigma \) but \(\sigma \) is unknown, then

\[
R = \begin{cases} \frac{1}{2} e^{-\lambda}, \lambda \geq 0 \\ 1 - \frac{1}{2} e^{-\lambda}, \lambda < 0 \end{cases}
\]

where

\[
\lambda = (\mu_y - \mu_x) / \sigma .
\]

A test procedure is now derived for testing hypotheses about the reliability parameter \(R \); a similar procedure is considered in Ranganathan and Kale (1979) for a 1-sample reliability problem. Because \(P(X < Y) = 1 - R \), it suffices to consider the problem of testing the null hypothesis \(H_0: \frac{1}{2} e^{-\lambda} \geq p_0 \), against the
alternative $H_1: \frac{1}{2} e^{-\lambda} < p_0$, p_0 being a specified value less than 0.5. As these hypotheses are equivalent to $H_0: \lambda \geq -\ln(2p_0)$ against $H_1: \lambda < -\ln(2p_0)$, consider the test statistic $T = (Y_i - X_q) / S_p$. T is a maximal invariant and its distribution depends only on λ. A large value of T would be evidence against H_0. Hence, for an observed value t of T, $P(T > t)$ for $t \geq 0$, $\lambda \geq 0$ is the P-value of the test, a small value of which would indicate sufficient evidence against H_0. In order to get an expression for the P-value, one must first obtain, from the joint density function of p_{lq}, Y, X, the joint probability density function of $q_{XYD} - = p_{S}, \lambda \geq 0$, which then yields the joint density function $p_{SDT} / \lambda = p_{SW} / \lambda$:

$$f(d, s; \delta, \sigma) = \begin{cases} \sum_{i=0}^{q-1} \sum_{j=0}^{l-1} \frac{a(n, q, i)b(m, l, j)e^{m(l, j)\delta}e^{-n(m, j)e^{l(i+1)}\delta}}{\Gamma(n(m, i)+m(l, j))\sigma^{m+1}} & \text{if } d \geq s, s \geq 0 \\ \sum_{i=0}^{q-1} \sum_{j=0}^{l-1} \frac{a(n, q, i)b(m, l, j)e^{-n(m, j)e^{l(i+1)}\delta}}{\Gamma(n(m, i)+m(l, j))\sigma^{m+1}} & \text{if } d < s, s \geq 0 \end{cases}$$

$$f(t, w; \lambda) = \begin{cases} \sum_{i=0}^{q-1} \sum_{j=0}^{l-1} \frac{a(n, q, i)b(m, l, j)e^{m(l, j)\lambda}w^{e^{-n(m, j)e^{l(i+1)}\delta}}}{\Gamma(n(m, i)+m(l, j))} & \text{if } tw \geq \lambda, w \geq 0 \\ \sum_{i=0}^{q-1} \sum_{j=0}^{l-1} \frac{a(n, q, i)b(m, l, j)e^{-n(m, j)e^{l(i+1)}\delta}}{\Gamma(n(m, i)+m(l, j))} & \text{if } tw < \lambda, w \geq 0 \end{cases}$$

The P-value, $P(T > t)$, is obtained from $f(t, w; \lambda)$, $tw \geq \lambda$, $w \geq 0$ as

$$P(T > t) = \sum_{i=0}^{q-1} \sum_{j=0}^{l-1} \left[\frac{a(n, q, i)b(m, l, j)e^{m(l, j)\lambda}w^{e^{-n(m, j)e^{l(i+1)}\delta}}}{\Gamma(n(m, i)+m(l, j))\sigma^{m+1}} \right]$$

Integration by parts yields

$$P(T > t) = \left[\frac{e^{m(l, j)\lambda}}{(1+m(l, j)t)^{n+m}} P(G > \lambda[m(l, j)+1/t]) \right] + P(G < \lambda/t)$$

where G the Gamma random variable with shape parameter $v + 1$.

In many situations the first ordered statistics are available i.e. $q = 1$, $l = 1$ and the above simplifies to

$$P(T > t) = \left[\frac{e^{m\lambda}}{(1+m)^n} P(G > \lambda[1+m]) \right] + P(G < \lambda/t)$$

Point estimators of R for the case $q = 1$, $l = 1$ are considered in Gupta and Gupta (1988) where the maximum likelihood estimator of R is obtained with $T / (m + n)$ as an estimator of λ in the equation for R.

Inference when $\mu_x = \mu_y = \mu$

When $\mu_x = \mu_y = \mu$ but μ is unknown then R reduces to

$$\theta = \frac{\sigma_x}{\sigma_x + \sigma_y}$$
Consider the null hypothesis

\[H_0: \theta \geq q_0 \]

or equivalently

\[H_0: \frac{\sigma_x}{\sigma_y} \geq \frac{q_0}{1-q_0} \]

where \(q_0 \) is a specified probability. \(2S_x/\sigma_x \) and \(2S_y/\sigma_y \) are independently distributed as chi-square with \(2v_x \) and \(2v_y \) degrees of freedom and \(\frac{S_x/(v_x\sigma_x)}{S_y/(v_y\sigma_y)} \) has a F distribution with \(v_x \) and \(v_y \) degrees of freedom. Hence, one can use \(F = \frac{S_x/v_x (1-q_0)}{S_y/v_y q_0} \) as the test statistic.

An estimate of \(\theta \) is \(\hat{\theta} = \frac{S_x}{S_x/v_x + S_y/v_y} \). A \((1-\alpha)\) confidence interval for \(\theta \) is obtainable from the F distribution with \(v_x \) and \(v_y \) degrees of freedom via

\[P(F_l < \frac{S_x/v_x}{S_y/v_y} < F_u) \]

where \(F_l \) and \(F_u \) satisfy \(1-\alpha = P(F_l < F < F_u) \). The confidence interval can be written, after some algebraic manipulation, as

\[
\left(\frac{-\hat{\theta}}{\hat{\theta} + (1-\hat{\theta})F_u}, \frac{-\hat{\theta}}{\hat{\theta} + (1-\hat{\theta})F_l} \right)
\]

When complete samples are available,

\[S_x = \sum_{i=2}^{n} (X_i - X_1), \quad S_y = \sum_{j=2}^{m} (Y_j - Y_1) \]

one of which is slightly different from those used in Bai and Hong (1992). They used

\[\sum_{i=1}^{n} (X_i - \min(X_i,Y_i)) \quad \sum_{j=1}^{n} (Y_j - \min(X_i,Y_i)) \]

instead of \(S_x, \) \(S_y \) respectively and obtained approximate confidence interval based on a mixed beta distribution.

Applications to Related Distributions

Suppose \(X \) and \(Y \) are independent two-parameter exponential random variables and \(\varphi \) is a monotonic function with inverse \(\varphi^{-1} \). Because

\[P(Y < X) = P(\varphi(Y) < \varphi(X)) \]

the tests and confidence bounds developed in the previous sections are also applicable to the variables \(\varphi(X) \) and \(\varphi(Y) \); the results are to be applied after making the transformation, \(\varphi \), to the observations. The results are applicable to the Rayleigh distribution with \(\varphi(X) = \sqrt{2X} \), \(\varphi^{-1}(X) = X^2/2 \) and the Pareto distribution with \(\varphi(X) = \exp(X) \), \(\varphi^{-1}(X) = \ln(X) \).

Numerical example

Suppose a system has two main parts, \(Y \) and \(X \), whose lifetimes are exponentially distributed. Suppose \(m=n=15 \) component parts are put on test simultaneously and the failure times are \(\{106, 108, 109, 113, 116, 126, 127, 132, 138, 141, 147, 164, 185, 202, 285\} \) and \(\{79, 82, 88, 89, 91, 107, 112, 118, 133, 149, 165, 167, 170, 202, 222\} \) for \(Y \) and \(X \) respectively. Then \(l = q = 1, \quad c_i, d_j = 1 \) for \(i = j = 1,2,...,15, \quad t = 0.0193, \quad s_y = 609, \quad s_x = 789, \quad v_x = v_y = 14 \). To test whether system failure may be equally likely due to either part, the test of \(H_0: \lambda \geq 0 \) \((R \geq 0.5)\) against \(H_1: \lambda < 0 \) yields a P-value of 0.0004 which is sufficient evidence that \(X \) is more likely to fail before \(Y \). If instead one is interested to test, say, \(H_0: R = \frac{1}{2}e^{-\lambda} \geq 0.4 \) against \(H_1: R < 0.4 \) then the P-value is 0.011. There is sufficient evidence to reject \(H_0 \); the probability that system failure will be due to \(Y \) is less than 0.4. If, for example, the values 108
and 109 for Y are missing, then one would set \(d_2 = d_3 = 0\) and the recalculated values for the test of \(H_0: R \geq 0.4\) are \(t = 0.0199, s_y = 568\), and \(v_y = 12\) with a P-value equal 0.016.

Conclusion

Tests of hypotheses and confidence bounds for R have been developed for the two-parameter exponential distribution in two cases, namely one involving a common scale parameter and the other a common location parameter. Exact tests for the two cases are derived for situations in which data may be missing or incomplete. Exact confidence bounds for R in the common location case are also proposed and they provide an alternative to the approximate bounds that have been considered in a complete sample situation. Furthermore, these results are applicable to a larger class of distributions which includes the Raleigh and the Pareto distributions.

References

