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CHAPTER 1 BACKGROUND 

The Histone Code 
 
 Chromatin architecture is a key determinant in the regulation of gene expression, and this 

architecture is strongly influenced by post–translational modifications of histones.1, 2 Histone 

protein tails contain lysine residues that interact with the negative charges on the DNA 

backbone. These lysine-containing tails, consisting of up to 40 amino acid residues, protrude 

through the DNA strand, and act as a site for post-translational modification of chromatin, 

allowing alteration of higher order nucleosome structure.3 Multiple post-translational 

modifications of histones mediate remodeling of chromatin, with acetylation being the best 

characterized process.4 Transcriptional repression is associated with specific CpG island DNA 

methylation and recruitment of histone deacetylases (HDACs) to gene promoters that cooperate 

in the silencing of specific genes.5, 6 Normal mammalian cells exhibit an exquisite level of control 

of chromatin architecture by maintaining a balance between histone acetyltransferase (HAT) 

and HDAC activity.7  

 In cancer, CpG island DNA promoter hypermethylation in combination with other 

chromatin modifications, including decreased activating marks and increased repressive marks 

on histone proteins 3 and 4, have been associated with the silencing of tumor suppressor 

genes.8 The important role of promoter CpG island methylation and its relationship to covalent 

histone modifications has recently been reviewed.9 As was mentioned above, the N-terminal 

lysine tails of histones can undergo numerous posttranslational modifications, including 

phosphorylation, ubiquitination, acetylation and methylation.4, 10, 11 Lysine methylation on 

histones can signal transcriptional activation or repression, depending on the specific lysine 

residue involved.12-14 All known histone lysine methyltransferases contain a conserved SET 

methyltransferase domain, and it has been shown that aberrant methylation of histones due to 

SET domain deregulation is linked to carcinogenesis.15 Histone methylation, once thought to be 
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an irreversible process, has recently been shown to be a dynamic process regulated by the 

addition of methyl groups by histone methyltransferases and removal of methyl groups from 

mono- and dimethyllysines by lysine specific demethylase 1 (LSD1), and from mono-, di, and 

trimethyllysines by specific Jumonji C (JmjC) domain-containing demethylases.10, 11, 16, 17 

Additional demethylases in the JmjC demethylase class are continuing to be identified.18, 19 

Recent evidence suggests that LSD1 is required for maintenance of global DNA methylation,20 

indicating that the LSD1-mediated demethylation is a general mechanism for transcriptional 

control.  

Lysine Specific Demethylase 
 
Relevance 

Studies suggest that LSD1 hyperactivity plays an important role in the development of 

cancer by promoting aberrant silencing of tumor suppressor genes. LSD1 co-localizes with the 

androgen receptor in normal human prostate and in prostate tumors,21 where it interacts with 

the androgen receptor in vitro and in vivo, and stimulates androgen-receptor-dependent 

transcription. Conversely, knockdown of LSD1 protein levels in these tumors abrogates 

androgen-induced transcriptional activation and cell proliferation.21 It has been suggested that 

LSD1 is a prognostic marker in prostate cancer.22 High levels of LSD1, nuclear expression of 

the FHL2 co-activator, high Gleason score and grade, and very strong staining of nuclear p53 

correlate significantly with relapse of prostate carcinoma during follow-up. Thus LSD1 and 

nuclear FHL2 may serve as novel biomarkers predictive for aggressive prostate carcinogenesis 

and point to a role of LSD1 and FHL2 in constitutive activation of AR-mediated growth signals.23 

In neuroblastoma, siRNA knockdowns of LSD1 decreased cellular growth, induced expression 

of differentiation-associated genes, and increased histone 3 lysine 4 (H3K4) methylation. LSD1 

inhibition using monoamine oxidase inhibitors resulted in an increase of global H3K4 

methylation and growth inhibition of neuroblastoma cells in vitro, and reduced neuroblastoma 

xenograft growth in vivo. Thus, LSD1 is involved in maintaining the undifferentiated, malignant 
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phenotype of neuroblastoma cells, and inhibition of LSD1 reprograms the transcriptome of 

neuroblastoma cells and inhibits neuroblastoma xenograft growth.24 These data provide a clear 

indication that LSD1 has emerged as a valid antitumor target. Notably, Huang et al. 

demonstrated that his novel LSD1 inhibitors work synergistically with the current clinical 

chemotherapeutic agent 5-azacytadine to inhibit tumor growth better than when the agents are 

used independently. 25  

History 

LSD1 was identified in part because its C-terminal domain shares significant sequence 

homology with the amine oxidases acetylpolyamine oxidase (APAO) and spermine oxidase 

(SMO).10, 26 Several groups have identified amines, guanidines or similar analogues that act as 

selective inhibitors of these amine oxidases.26-32 Bi et al. reported the synthesis of a novel series 

of (bis)guanidines and (bis)biguanides33 that are potent antitrypanosomal agents in vitro, with 

IC50 values as low as 90 nM. Because of their structural similarity to guanidine-based inhibitors 

of APAO and SMO, studies were undertaken to determine whether these agents were inhibitors 

of LSD1, and whether this inhibition had any influence on selected chromatin marks in tumor 

cells. Nine of the 13 compounds tested were found to inhibit LSD1 activity by >50% at 1 µM, 

with compounds 1c and 2d producing the most dramatic effects.34 The most potent inhibitor, 2d, 

exhibited non-competitive kinetics at concentrations up to 2.5 mM. A 48 hr exposure of HCT116 

human colon carcinoma cells to increasing concentrations of analogue 2d produced significant 

global increases in both monomethyl H3K4 (H3K4me1) and dimethyl H3K4 (H3K4me2), while 

not affecting global dimethyl histone3 lysine 9 (H3K9me2) levels, which is a known repressive 

mark. These compounds also induced the re-expression of multiple, aberrantly silenced genes 

important in the development of colon cancer, including members of the secreted frizzle-related 

proteins (SFRPs) and the GATA family of transcription factors. SFRPs have been proposed as 

tumor suppressor factors based on it’s loss in patient tumors.35 GATA transcription factors have 

been found to regulate tumor differentiation and suppress tumor dissemination.36 
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Physical Properties and Active Site 
 
 The X-ray structure and mechanism of LSD1 have been reported.37 The LSD1 polypeptide 

chain (MW 110 kDa) tertiary structure contains three distinct structural domains: the tower 

domain, the SWIRM domain and the FAD binding/oxidase domain. The tower domain, 

connected directly to the catalytic site, is thought to be a platform for the binding of 

transcriptional factors in the CoRest38, 39 complex. Binding of CoRest to LSD1 enhances the 

ability of LSD1 to demethylate histone lysine residues.40 In addition to CoRest, LSD1 binds to 

the protein factor BHC80, which inhibits the demethylation process, and to the androgen 

receptor, which has been proposed to alter LSD1 substrate specificity such that it demethylates 

mono- and dimethyl histone 3 lysine 9 and acts as a transcriptional activator.21 The LSD1 

SWIRM domain41 is typical of other such domains found in proteins involved in chromatin 

remodeling,42 and is potentially the site of DNA binding. The oxidase domain has two functional 

lobes, one for binding the FAD cofactor, and another for substrate binding. The FAD 

binding/oxidase domain is intimately bound to the SWIRM domain through a series of 

hydrophobic interactions, and point mutations that disrupt these interactions greatly reduce 

catalytic activity. The LSD1 active site binds the substrate lysine residue, as well as ~20 

adjacent amino acids residues in the histone tail. LSD1 catalysis is an FAD-dependent oxidative 

demethylation that most likely proceeds through a protonated imine intermediate.43 The Km for 

H3K4me2 has been determined to be 30 mM10 . 

Existing work on inhibition of LSD1 
 

Histone 3 dimethyllysine 4 (H3K4me2) is a transcription-activating chromatin mark that is 

found at gene promoters.44, 45 LSD1 catalyzes the oxidative demethylation of H3K4me1 and 

H3K4me2; this transformation is an enzymatic reaction associated with transcriptional 

repression.10 Demethylation of this mark by LSD1 may prevent expression of tumor suppressor 

genes important in human cancer.34 Thus, LSD1 has emerged as a target for the development 

of a new class of antitumor drugs that act as epigenetic modulators.46  
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 A few existing classes of compounds have been shown to act as inhibitors of LSD1. The 

active site structure of LSD1 has significant sequence homology to monoamine oxidases A and 

B (MAO A and B), and to N1-acetylpolyamine oxidase (APAO) and spermine oxidase (SMO).10, 

47, 48 It has been shown that classical MAO inhibitors phenelzine and tranylcypromine inhibit 

demethylation by the recombinant LSD1/CoRest complex, and increase global levels of 

H3K4me2 in the P19 embryonal carcinoma cell line.47, 48 The synthetic substrate analogue 

aziridinyl-K4H31-21 reversibly inhibited LSD1 with an IC50 of 15.6 mM, while propargyl-K4H31-21 

produced time-dependent inactivation with a Ki of 16.6 mM.43 Propargyl-K4H31-21 was later 

shown to inhibit LSD1 through formation of a covalent adduct with the enzyme-bound FAD flavin 

cofactor.48, 49 McCafferty et al. described the synthesis of a series of trans-2-

arylcyclopropylamine analogues that inhibit LSD1 with Ki values between 188 and 566 mM.50 

These analogues were 1-2 orders of magnitude more potent against MAO A and MAO B, with 

the exception of one. Ueda et al. identified small molecule tranylcypromine derivatives that are 

selective for LSD1 over MAO-A and MAO-B,51 and Binda et al. described similar 

tranylcypromine analogues that exhibited selectivity between LSD1 and the newly identified 

histone demethylase LSD2.52 Taken together, these data suggest that potent and selective 

inhibitors for the homologous flavin-dependent amine oxidase LSD1 can be designed and 

synthesized. 

Because of the promising cellular effects of 2d, the synthesis and evaluation of 

additional analogues was proposed. To access a library of more diverse analogues related to 

2d, the published syntheses of Bi et al.33 was adapted to produce a series of 31 isosteric 

(bis)alkylureas or (bis)alkylthioureas 3-31 (Table 2.1) and these analogues were evaluated for 

the ability to inhibit LSD1 and induce increases in global H3K4me2 in vitro. The central 

hypothesis of the research described in this thesis is that compounds that inhibit LSD1 can be 

identified and developed for the treatment of human cancer. The work described within, includes 

structure activity relationship (SAR) experiments designed to optimize the structure of the two 
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lead inhibitors of LSD1 (bis)guanidine 1c and (bis)biguanide 2d. In the current work, four 

different structural classes of analogues were examined: symmetrically and unsymmetrically 

alkylated polyamino(bis)guanidines, polyamino(bis)ureas, and polyamino(bis)thioureas.  
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CHAPTER 2 CHEMISTRY 

2.1 Polyamino(bis)ureas and Polyamino(bis)thioureas 

Table 2.1 Structures and effect of 1c, 2d, and 3-35 on LSD1 activity in vitro. Percent of LSD1 
activity remaining was determined following treatment with 10 µM of each test compound as 
determined by the luminol-dependent chemiluminescence method (NA = not active). 

 

Structure Compound 
% LSD1 
Activity 

Remaining 

4 HCl 
1c NA 

4 HCl 

2d 17 

2 HCl 
3 75 

2 HCl 
4 50 

2 HCl 
5 49 

2 HCl 
6 40 

2 HCl 
7 NA 

N
H

N
H

N
H

N
H

N
H

N
H

N
H3C

H3C
N

CH3

CH3

N
H

N
H

N
H

N
H

NH NH

N
H

N
H

N
H

N
H

NH NH

N
H

N
H

H
N

H
N

S

N
H S

H
N

N
H

N
H

H
N

H
N

O

N
H O

H
N

N
H

N
H

H
N

H
N

O

N
H O

H
N

N
H

N
H

H
N

H
N

S

N
H S

H
N

N
H

N
H

N
H

N
H

O

N
H

O

N
H



	   8 

	  

2 HCl 
8 79 

2 HCl 
9 90 

2 HCl 
10 36 

2 HCl 
11 96 

2 HCl 
12 92 

2 HCl 

13 52 

2 HCl 
14 66 

2 HCl 
15 60 

2 HCl 
16 51 

N
H

N
H

H
N

H
N

O

N
H O

H
N

N
H

N
H

H
N

H
N

S

N
H S

H
N

N
H

N
H

N
H

N
H

S

N
H

S

N
H

N
H

N
H

N
H

N
H

O

N
H

O

N
H

N
H

N
H

N
H

N
H

O

N
H

O

N
H

N
H

N
H

N
H

N
H

S

N
H

S

N
H

N
H

N
H

N
H

N
H

O

N
H

O

N
H

N
H

N
H

N
H

N
H

O

N
H

O

N
H

N
H

N
H

N
H

N
H

O

N
H

O

N
H



	   9 

	  

2 HCl 
17 NA 

2 HCl 
18 36 

2 HCl 

19 93 

2 HCl 

20 92 

2 HCl 

21 75 

2 HCl 

22 89 

2 HCl 

23 52 

2 HCl 

24 77 

2 HCl 

25 20 

N
H

N
H

N
H

N
H

S

N
H

S

N
H

N
H

N
H

N
H

N
H

S

N
H

S

N
H

N
H

N
H

N
H

N
H

O

N
H

O

N
H

N
H

N
H

N
H

N
H

S

N
H

S

N
H

N
H

N
H

H
N

H
N

O

H
N

O

N
H

N
H

N
H

H
N

H
N

S

H
N

S

N
H

N
H

N
H N

H
N
H

O

N
H

O

N
H

N
H

N
H N

H
N
H

S

N
H

S

N
H

N
H

N
H

N
H

N
H

S

N
H

S

N
H



	   10 

	  

2 HCl 

26 17 

2 HCl 

27 25 

2 HCl 

28 51 

2 HCl 

29 34 

2 HCl 

30 29 

 

31 NA 

 

32 NA 

 

33 NA 

 

34 NA 

N
H

N
H

H
N

H
N

S

N
H

S

H
N

N
H

N
H

N
H

N
H

S

N
H

S

N
H

N
H

N
H

N
H

N
H

N
H

N
H

S S

N
H

N
H

N
H

H
N

H
N

H
N

S

S

N
H

N
H

N
H

N
H

N
H

N
H

S S

N
H

N
H

N
H

N
H

N
H

NN

N
H

4HCl

N

N
H

N
H

N
H

N
H

N

N
H

N
H

4HCl

N

N
H

N
H

N
H

N
H

N
H

N
H

N
4HCl

N
H

N
H

N
H

N
H

N
H

NN

N
H

4HCl



	   11 

	  

 

35 NA 

  

N
H

N
H

N
H

N
H

N
H

NN

N
H

4HCl



	   12 

	  

Scheme 2.1 Synthesis of Polyamino(bis)ureas and Polyamino(bis)thioureas 3-30 
	  

 

Preparation of compounds 3-30 depended on the commercial availability of the 
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43n  R = benzyl, X = S, n = 1
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43s  R = ethyl, X = S, n = 1
43t  R = 3,3-(diphenyl)propyl, X = O, n = 1
43u  R = 3,3-(diphenyl)propyl, X = S, n = 1
43v  R = 3,3-(diphenyl)propyl, X = O, n = 2
43w  R = 3,3-(diphenyl)propyl, X = S, n = 2
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43y  R = 3,3-(diphenyl)propyl, X = S, n = 5
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43aa  R = 2,2-(diphenyl)ethyl, X = S, n = 2
43bb  R = 2,2-(diphenyl)ethyl, X = S, n = 1
43cc  R = 1,1-(diphenyl)methyl, X = S, n = 1
43dd  R = 1,1-(diphenyl)methyl, X = S, n = 2
43ee  R = 1,1-(diphenyl)methyl, X = S, n = 5
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molecules 41a-c, as shown in Scheme 2.1. The appropriate diamine 38a, 38b or 38c was 

(bis)cyanoethylated (acrylonitrile, EtOH, reflux) to afford the corresponding (bis)cyano 

intermediates 39a-c. The central nitrogens in 39a-c were then N-Boc protected ((Boc)2O, 

CH2Cl2/Aq. NaHCO3)53 to form 40a-c, and the cyano groups were reduced (Raney Ni) to yield 

the desired diamines 41a-c.33, 54 Compounds 41a-c were then reacted with the appropriate 

isocyanates or isothiocyanates 42d-z, 42aa-ee, 35c and 37a-c55 to produce the corresponding 

protected (bis)ureas or (bis)thioureas 43d-z and 43aa-ee, followed by acid removal of the N-Boc 

protection groups (HCl in EtOAc)53 to afford the desired urea or thiourea products 3-30.  

Importantly, the syntheses described in Scheme 2.1 can be adapted to produce a wide 

variety of analogues with chemical diversity in the length of the alkyl chains, and in the terminal 

alkyl- or aralkyl substituents. 

2.2. Symmetrically Alkylated Polyamino(bis)guanidines 31-35 
 

Scheme 2.2 Synthesis of symmetrically alkylated polyamino(bis)guanidines 31-35 
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Using a procedure adapted by Percival et al.56 S-Methyl-N,N'-dialkylisothiuronium 

iodides 45 were prepared by the interaction  of  the commercially available N,N'-dialkylthioureas 

44 and methyl iodide in ethyl alcohol. All of the S-Methyl-N,N'-dialkylisothiuronium iodides 45 

were recovered in crystalline form. Compounds 31-35 were prepared by refluxing .5 eq of 

commercially available N,N'-bis(3-aminopropyl)-1,3-propanediamine 46 and S-Methyl-N,N'-

dialkylisothiuronium iodides 45 in ethyl alcohol. Compounds 31-35 were recovered in crystalline 

form.  

2.3 Unsymmetrically Alkylated Polyamino(bis)guanidines, Polyamino(bis)ureas and 
Polyamino(bis)thioureas  
 

Scheme 2.3 Synthesis of unsymmetrically alkylated polyamino(bis)guanidines, 
polyamino(bis)ureas and polyamino(bis)thioureas 

 

 

We have begun to optimize reaction conditions for the synthesis of the unsymmetrical 

analogues outlined in Scheme 2.3. We have successfully isolated gram quantities of the 

intermediate following step 4.  
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CHAPTER 3 BIOLOGICAL EVALUATION 

3.1 Polyamino(bis)ureas and Polyamino(bis)thioureas 
 

As previously observed, compound 2d at 10 µM reduced LSD1 activity by 82.9%. 

Among the 31 urea and thiourea isosteres 3-30, six compounds were essentially inactive (i.e. 

produced <20% inhibition), while 11 analogues (ureas 4 and 5, thioureas 6, 10, 18, 25, 26, 27, 

29, and 30) reduced LSD1 activity by 50% or greater at 10 µM concentration (Table 2.1). 

The three most effective LSD1 inhibitors, compounds 25-27, were chosen for additional 

studies as outlined below. Subsequent experiments were conducted in the Calu-6 human 

anaplastic non-small cell lung carcinoma line because it has a highly reproducible response to 

epigenetic modulation, and because it is known that various tumor suppressor genes are 

silenced in this line. In order for synthetic analogues to be effective at the cellular level, any 

observed decreases in cellular LSD1 activity should be accompanied by an increase in global 

H3K4me1 and H3K4me2 content. Thus, the ability of compounds 25, 26 and 27 to produce 

increases in global H3K4me1 and H3K4me2 levels was measured as previously described. The 

results of these studies are shown in Figure 3.1. At 24 hours, analogues 25 and 27 produced 

significant increases in both H3K4me1 (Figure 3.1, Panel A) and H3K4me2 (Figure 3.1, Panel 

B), while analogue 26 induced a significant increase in H3K4me1, but decreased the relative 

amount of H3K4me2. A similar pattern was observed at 48 hours (Figure 3.1, Panels C and D). 

Compound 25 produced the most dramatic increases in H3K4me1 and H3K4me2 at both 24 

and 48 hours. The reduction in H3K4me2 and corresponding increase in H3K4me1 by 26 at 

both 24 and 48 hours cannot be readily explained, and is the subject of continuing investigation. 

However, this anomalous finding seems to correlate with the observed cytotoxicity of 26 (Figure 

3.3). 
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Figure 3.1 Effect of compounds 25−27 on the expression of global H3K4me1 and H3K4me2. 
Calu-6 human anaplastic nonsmall cell lung carcinoma cells were treated with a 10 µM 
concentration of 25, 26, or 27 for 24 h (A,B) or 48 h (C,D) as described in Materials and 
Methods. (A,C) Global H3K4me1 expression and (B,D) global H3K4me2 expression. 
Proliferating cell nuclear antigen (PCNA) was used as a loading control. Shown are Western 
blot images from a single representative experiment performed in triplicate. Relative protein 
expression levels were determined by quantitative Western Blot analysis using the Odyssey 
infrared detection system shown as bar graphs. The results represent the mean of three 
treatments ± SD. The protein expression level for control samples was set to a value of 1. 
 
 

These data strongly suggest that intracellular inhibition of LSD1 by 25-27 leads to 

significant increases in methylation at the H3K4 chromatin mark. It is noteworthy that in HCT116 

human colon tumor cells, compounds 25-27 all produced at least a 2-fold increase in global 

H3K4me2, with the most effective analogue being compound 25.  



	   17 

	  

The ability of compounds 25-27 to induce the re-expression of aberrantly silenced tumor 

suppressor genes in vitro was next measured using the Calu-6 human lung carcinoma cell line. 

The tumor suppressor genes SFRP2 and GATA4 were chosen because they are known to be 

under expressed in human lung cancer, and because they are thought to play a role in 

tumorigenesis when silenced. Thus, the genes coding for these proteins are well-documented 

LSD1 targets. Cells were treated for 24 hours with either a 5 or 10 µM concentration of 25, 26 or 

27, after which the levels of secreted frizzle-related protein 2 (SFRP2), a soluble modulator of 

Wnt signaling, and the zinc-finger transcription factor GATA4, were determined by quantitative 

PCR (qPCR).  The results of these studies are shown in Figure 3.2. All three compounds 

produced increases in SFRP2 expression that appeared to be dose dependent for 25 and 27 

(Figure 3.2 A). Compound 27 produced the largest increase in SFRP2 expression at 10 µM 

(4.8-fold increase). Compounds 25 and 26 did not produce significant increases in GATA4 

levels at 5 and 10 µM (Figure 3.2 B), and compound 27 induced a 1.3-fold increase in GATA4 

mRNA at 10 µM, and had no significant effect at 5 µM (Figure 3.2 B). The increase in GATA4 

mRNA caused by 10 µM 27 is reproducible, but is not statistically significant (P  > 0.05). 

 
 

Figure 3.2 Effect of compounds 25−27 on the re-expression of secreted frizzle-related protein 2 
(SFRP2, (A)) and the transcription factor GATA4 ((B)) mRNA. Calu-6 human anaplastic 
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nonsmall cell lung carcinoma cells were treated with either a 5 or 10 µM concentration of 25, 26, 
or 27 for 24 h. cDNA was then synthesized from mRNA, amplified and measured by qPCR. 
Each data point is the average of three determinations that differed in all cases by 5% or less. 
 
  The (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium) (MTS) reduction assay was used to determine the effects of compounds 25-27 on 

cell viability in the Calu-6 cell line. Cells were treated with increasing concentrations of each test 

compound for 96 hours prior to measurement of cell viability, and growth inhibition (GI50) values 

were then determined from the resulting dose-response curve. Compounds 25, 26 and 27 

produced moderate reduction in cell viability, with GI50 values of 10.3, 38.3 and 9.4 µM, 

respectively (Figure 3.3). 

 

 

Figure 3.3 Effect of compounds 25−27 on Calu-6 human anaplastic nonsmall cell lung 
carcinoma cell viability as measured by standard MTS assay. Cells were treated with increasing 
concentrations of each test compound for 96 h prior to measurement of cell viability. %NT refers 
to the percent of viable cells remaining at time T (96 h) as compared to the number of cells 
seeded,N0. Each data point is the average of three determinations that differed in all cases by 
5% or less. 
 
3.2 Symmetrically Alkylated Polyamino(bis)guanidines 31-35 
 

Based on the activity of lead compound 1c, analogues 31-35 were synthesized and 

evaluated (Table 2.1). The LSD1 inhibitory activity of these compounds was unremarkable, and 
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had only modest effects on global H3K4me2 levels. After 48 h. exposure, 5 µM compound 32 

produced a 2.3 fold increase in the level of H3K4me2 in the KG1a hematopoietic cell line, but 

not in HL60 human promyelocytic leukemia cells. Compound 33 caused a 1.6-fold increase in 

H3K4me2 in the KG1a line at 10 µM, and did not affect H3K4me2 levels in the HL60 line. 

Compounds 31, 34, and 35 had no effect in either cell line (Figure 3.4).  
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A. KG1a Hematopoietic cell line  
 

 
 

B. HL60 human promyelocytic leukemia cells 
 

 
 
Figure 3.4 Effect of compounds 1c and 31-35 on the expression of global H3K4me2. KG1a and 
HL60 cells (A,B) were treated with 5 and 10 µM concentration of compound for 24 h. and 48 h. 
as described in Materials and Methods. Proliferating cell nuclear antigen (PCNA) was used as a 
loading control. Relative protein expression levels were determined by quantitative Western Blot 
analysis using the Odyssey infrared detection system shown as bar graphs. 
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CHAPTER 4 DISCUSSION 

4.1 Polyamino(bis)ureas and Polyamino(bis)thioureas 

Compounds 3-30 were synthesized using pathways that are facile and relatively 

inexpensive, and that can be used to introduce chemical diversity into the resulting urea and 

thiourea analogues, thus making them suitable for generation of a library of related ureas and 

thioureas. Our initial series of guanidine and biguanide derivatives 34 represented the first novel 

small molecule inhibitors of LSD1 with potential for development as therapeutic agents. The 

current studies suggest that replacement of the imine NH functionality of the terminal guanidine 

in 1c with oxygen or sulfur is an allowable isosteric change, and active analogues in both the 

urea and thiourea series were identified (Table 2.1). However, the sulfur isosteric replacement is 

likely more acceptable, since the 8 best LSD1 inhibitors (6, 10, 18, 25-27, 29, and 30) were all 

thioureas. A more bulky aromatic substituent on the terminal nitrogen, as in 25-27, 29 and 30 

appears to impart greater activity than the smaller alkyl or benzyl substituents found in 6, 10 and 

18.  There did not appear to be predictable differences in activity between analogues with 3, 4 

or 7 carbon central chains, suggesting that this parameter may not have a great influence on 

inhibition of the enzyme. This is especially apparent among 25-27 (terminal N-substituent = 2,2-

diphenylethyl), which have 7, 4 and 3 carbon central regions, respectively, but vary in activity by 

less than 5%. However, by contrast, among compounds 28-30 (terminal N-substituent = 1,1-

diphenylmethyl), inhibitory potency did appear to be proportional to the length of the internal 

carbon chain. Additional analogues will need to be synthesized and evaluated to generate a 

more accurate set of structure/activity relationships for this series of compounds. 

The inhibitory effects of 25-27 on LSD1 (Table 2.1), combined with the observed 

methylation levels at the H3K4 chromatin mark (Figure 3.1 A-D) strongly suggest that LSD1 is 

inhibited in the Calu-6 tumor cell line, resulting in increases in the substrates H3K4me1 and 

H3K4me2. The anomolous reduction in H3K4me2 at 24 and 48 hours caused by 26 are 

unexpected, and have yet to be explained. In addition, the effects of 25-27 on other histone 
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demethylases, including LSD2,57 the Jumonji C (JmjC) domain-containing demethylases10, 11, 16, 

17 and the recently discovered JmjC demethylasee PHF8 58, 59 need to be determined.  

Compounds 25-27 were next evaluated for the ability to induce the re-expression of 

SFRP2 and GATA4 mRNA, as determined by qPCR from treated Calu-6 human lung carcinoma 

cells. In the case of SFRP2, all three analogues induced increases of the protein between 1.3- 

and 4.8-fold (Figure 3.2). These increases appeared to be dose-dependent, except in the case 

of 26, which induced same level of SFRP2 expression at both 5 and 10 µM. The order of 

potency in this regard was 27 > 26 > 25. Compound 27 produced 1.3-fold increase in GATA4 

expression at 10 µM that was not statistically significant, and 25-27 at all other concentrations 

produced no effect on GATA4 mRNA. The observed increases in SFRP2 re-expression 

following treatment with 25-27, and the increase in GATA4 re-expression induced by 10 µM 27, 

are consistent with the previously reported effects of the parent compound 2d 34. The disparity 

in the ability of 25-27 to induce SFRP2 expression, but not GATA4 expression, suggests that 

LSD1 inhibition may have variable effects at different gene promoters.  

As discussed above, compounds 25-27 proved to be only moderately cytotoxic in the 

Calu-6 non-small cell lung carcinoma line in vitro. Compounds 25 and 27 produced the most 

prominent reduction in cell viability, exhibiting GI50 values of 10.3 and 9.4 µM, respectively. 

These values are comparable to the GI50 value for other epigenetic modulators, such as the 

polyaminohydroxamic acid and polyaminobenzamide HDAC inhibitors developed in our 

laboratory 60, 61, and the parent compound 2d. In addition, these GI50 values are in the range of 

the histone deacetylase (HDAC) inhibitor MS-275, as measured in three colon tumor cell lines 

62. Compound 26 was significantlty less cytotoxic, exhibiting a GI50 value of 38.3 µM. Our data 

suggests that decreases in H3K4me2 at 24 and 48 hours and/or minimal effects on the re-

expression of SFRP2 and GATA4 by 26 could account for this reduced cytotoxicity. It is 

important to note that epigenetic modulators such as those mentioned above are generally used 

in combination with traditional cytotoxic agents, and serve to restore the ability of transformed 
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cells to undergo apoptosis 63. As such, cytotoxicity is less of an issue, as long as the compound 

produces epigenetic effects in tumor cells that can be exploited by traditional cytotoxic agents. 

We have recently shown that the LSD1 inhibitor 2d alone has little effect in vivo on tumor cell 

growth in an HCT116 human colon carcinoma mouse xenograft model, but acts synergistically 

to limit tumor growth in combination with the DNA methyltransferase inhibitor 5-azacytidine 25. 

Additional studies are now being conducted to determine whether isosteres of 2d such as 25-27 

also produce a synergistic effect on tumor cell growth in vivo. Additional biological studies, as 

well as the synthesis and evaluation of additional LSD1 inhibitors in this and other compound 

libraries, is an ongoing effort in our laboratory.  

4.2 Symmetrically Alkylated Polyamino(bis)guanidines 31-35 
 

Based on the activity of lead compound 1c, we synthesized and evaluated analogues 

31-35 (Table 2.1). The LSD1 inhibitory activity of these compounds was unremarkable, and had 

only modest effects on global H3K4me2 levels (Figure 3.4). Analogues of 1c in which all 4 

terminal nitrogens were alkylated had low activity against purified LSD1. It is possible that 

electrostatic binding to the enzyme requires one unsubstituted heteroatom on the terminal 

guanidine. We prepared a second batch of 1c for additional studies, and found that it did not 

produce the same results as the original sample, which was at least 3 years old. Thus there is 

some question about the structure of 1c, in that it may be a metabolite producing the effect 

rather than the parent compound. This hypothesis is supported by our results from compounds 

31-35. However, a separate report indicates that 1c produces the same effects on H3K4me2 

that we observed, albeit in another cell system 64. This manuscript does not provide details on 

the source or chemical identity of the 1c used in their study.  

4.3 Unsymmetrically Alkylated Polyamino(bis)guanidines, Polyamino(bis)ureas and 

Polyamino(bis)thioureas   

We have developed an extensive library of LSD1 inhibitors that display promise as anti-

tumor agents, however, we have only a limited scope of structure activity relationships (SAR) of 
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this class of compounds. To help elucidate the pharmacophore of our existing compounds, we 

have begun to optimize reaction conditions for the synthesis of the unsymmetrical analogues 

outlined in Scheme 2.3. We have successfully isolated gram quantities of the intermediate 

following step 4 in Scheme 2.3. We expect this class of compounds will provide structural 

insight on features that are determinant to ligand affinity. Specifically, we expect to determine if 

two functionalized moieties appended to a polyamine backbone is critical to LSD1 inhibitory 

activity. The goal is to ultimately use SAR to develop agents of this class with increased 

antitumor activity.  
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CHAPTER 5 EXPERIMENTAL 

5.1 Methods 

5.1.1 Synthesis 

All reagents and dry solvents were purchased from Aldrich Chemical Co. (Milwaukee, 

WI), Sigma Chemical Co. (St. Louis, MO), or Acros Chemical (Chicago, IL) and were used 

without further purification except as noted below. Pyridine was dried by passing it through an 

aluminum oxide column and then stored over KOH. Triethylamine was distilled from potassium 

hydroxide and stored in a nitrogen atmosphere. Methanol was distilled from magnesium and 

iodine under a nitrogen atmosphere and stored over molecular sieves. Methylene chloride was 

distilled from phosphorus pentoxide, and chloroform was distilled from calcium sulfate. 

Tetrahydrofuran was purified by distillation from sodium and benzophenone. Dimethyl 

formamide was dried by distillation from anhydrous calcium sulfate and was stored under 

nitrogen. Preparative scale chromatographic procedures were carried out using E. Merck silica 

gel 60, 230−440 mesh. Thin layer chromatography was conducted on Merck precoated silica 

gel 60 F-254. Ion exchange chromatography was conducted on Dowex 1 × 8−200 anion 

exchange resin. Compounds 41a−c were synthesized as previously described. 

All 1H and 13C NMR spectra were recorded on a Varian Mercury 400 mHz spectrometer, 

and all chemical shifts are reported as δ values referenced to TMS or DSS. Infrared spectra 

were recorded on a Jasco FT-IR spectrophotometer and are referenced to polystyrene. In all 

cases,1H NMR, 13C NMR, and IR spectra were consistent with assigned structures. Mass 

spectra were recorded on a Kratos MS 80 RFA (EI and CI) or Kratos MS 50 TC (FAB) mass 

spectrometer. Prior to biological testing, target molecules 3−30 were determined to be 95% pure 

or greater by HPLC chromatography using an Agilent series 1100 high-performance liquid 

chromatograph fitted with a C18 reversed-phase column. 

5.1.2 Expression, Purification, and Demethylase Assay of Recombinant Proteins 
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Full-length human LSD1 cDNA was subcloned into the pET15b bacterial expression 

vector (Novagen, Madison, WI) in frame with an N-terminal 6× HIS-tag and transformed into the 

BL21(DE3) strain of Escherichia coli. Following selection, expression and purification of 

recombinant LSD1 protein were performed as previously described. Briefly, expression of 

LSD1-HIS protein was induced by 1 mM IPTG for 6 h at 25 °C. The HIS-tagged protein was 

purified using Ni-NTA affinity purification resin and column as recommended by the 

manufacturer (Qiagen, Valencia, CA). Bound protein was eluted by imidazole and the eluate 

was dialyzed in PBS at 4 °C. Enzymatic activity of LSD1 was examined using luminol-

dependent chemiluminescence to measure the production of H2O2, as previously described. In 

brief, LSD1 activity was assayed in 50 mM Tris, pH 8.5, 50 mM KCl, 5 mM MgCl, 5 nmol 

luminol, and 20 µg/mL horseradish peroxidase with the indicated concentrations of H3K4me2 

(1−21 aa) peptide as substrate. The integral values were calibrated against standards 

containing known concentrations of H2O2, and the activities expressed as pmols H2O2/mg 

protein/min.  

5.1.3 Western Blotting 

Cytoplasmic and nuclear fractions were prepared for Western blot analysis using the 

NE-PER nuclear and cytoplasmic extraction kit (Pierce, Rockford, IL). Primary antibodies 

against H3K4me1 and H3K4me2 were from Millipore. The pCNA monoclonal antibody was 

purchased from Oncogene Research Products (Cambridge, MA). Dye-conjugated secondary 

antibodies were used for quantification of Western blot results using the Odyssey infrared 

detection system and software (LI-COR Biosciences, Lincoln, NE). 

5.1.4 RNA Isolation and qPCR 

RNA was extracted using TRIzol reagents (Invitrogen, Carlsbad, CA). First-strand cDNA 

was synthesized using SuperScript III reverse transcriptase with an oligo(dT) primer 

(Invitrogen). qPCR was performed using the following primers: SFRP2 sense, 5′AAG CCT GCA 

AAA ATA AAA ATG ATG; SFRP2 antisense, 5′TGT AAA TGG TCT TGC TCT TGG TCT 
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(annealing at 57.4 °C); GATA4sense, 5′GGC CGC CCG ACA CCC CAA 

TCT; GATA4 antisense, 5′ ATA GTG ACC CGT CCC ATC TCG (annealing at 64 °C). qPCR 

was performed in a MyiQ single color real-time PCR machine (Bio-Rad, Hercules, CA) with 

GAPDH as an internal control. 

5.1.5 Determination of Cell Viability 

Calu-6 human anaplastic nonsmall cell lung carcinoma cells were maintained in culture 

using RPMI medium plus 10% fetal bovine serum. For the (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) reduction assay, 4000 

cells/well were seeded in 100 µL medium in a 96-well plate and the cells were allowed to attach 

at 37 °C in 5% CO2 for one day. The medium was aspirated and cells were treated with 100 µL 

of fresh medium containing appropriate concentrations of each test compound. The cells were 

incubated for 4 days at 37 °C in 5% CO2. After 4 days, 20 µL of the MTS reagent solution 

(Promega CellTiter 96 Aqueous One Solution cell proliferation assay) was added to the 

medium. The cells were incubated for another 2 h at 37 °C under 5% CO2 environment. 

Absorbance was measured at 490 nm on a microplate reader equipped with SOFTmax PRO 4.0 

software to determine the cell viability. 

Synthetic H3K4me2 peptides were purchased from Millipore (Billerica, MA). Calu-6 cells 

were maintained in RPMI medium, supplemented with 10% fetal bovine serum (Gemini Bio-

Products, Woodland, CA) and grown at 37 °C in 5% CO2 atmosphere. 

5.2 Synthetic Procedures and Spectral Analysis 
 
5.2.2 (Bis)urea and (Bis)thioureas 

3,3-Diphenylpropylisocyanate (35c) 

A 4.24 g (0.020 mol) portion of 3,3-diphenylpropylamine was dissolved in 90 mL of dry toluene 

in a 250 mL round-bottomed flask under a nitrogen atmosphere, and triphosgene (2.98 g, 0.010 

mol) was added to the reaction mixture. The reaction mixture was heated under reflux for 5 h 

and then cooled to room temperature, at which time an additional 0.5 g of triphosgene was 
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added. The reaction was then stirred for an additional 18 h at room temperature. During this 

time, the formation of product was monitored by TLC using hexane:ethyl acetate (3:1). When 

the reaction was complete, activated charcoal (0.50 g) was carefully added into reaction mixture 

to decolorize the solution, which was stirred for 30 min and filtered. The filtrate was 

concentrated under reduced pressure to give a light pale-yellow semisolid. A 100 mL portion 

ofn-hexane/ethyl ether(1:1 ratio) was then added, and the mixture was stirred for 15 min. The 

solution was filtered and concentrated to afford 4.23 g of viscous material. The crude product 

was purified by flash chromatography on silica gel eluted with dichloromethane to furnish 3,3-

diphenylpropylisocyanate 35c as a white solid (1.31 g, 28% yield). 1H NMR (CDCl3): δ 

7.38−7.10 (m, 10H, Ar-H), 4.09 (t, 1H, J = 7.2 Hz, CHPh2), 3.27 (t, 2H, J = 6.4 Hz, CH2NCS), 

2.36 (m, 2H, CH2CH2). 13C NMR (CDCl3): δ 143.69, 128.94, 128.01, 126.85 (Ar-C), 48.14, 

41.51, 36.87 (CH and CH2). 

General Procedure for Preparation of Isothiocyanates 37a−c 

3,3-Diphenylpropylisothiocyanate (37c) 

In a 250 mL round-bottomed flask under a nitrogen atmosphere, 3,3-

diphenylpropylamine 34c(2.10 g, 0.010 mol) was dissolved in 40 mL of freshly distilled THF, 

3.64 g (5.0 mL, 0.036 mol) of triethylamine was added, and the mixture was cooled to 5 °C in an 

ice bath. Carbon disulfide (0.76 g, 0.96 mL, 0.10 mol) was then added to the reaction mixture 

via syringe over 20 min. Following addition of carbon disulfide, the mixture was stirred an 

additional 30 min, warmed to room temperature, and allowed to stir a further 2 h. A 1H NMR of 

an aliquot (after removing the solvent in vacuo) indicated that conversion to the dithiocarbamate 

salt 36c was complete. 1H NMR (DMSO-d6): δ 8.46 (t, 1H, NH), 7.34−7.12 (m, 8H, Ar-H), 7.06 

(t, 2H, Ar-H), 3.94 (t, 1H, CHPh2), 3.34 (m, 2H, CH2NCS), 3.04 (q, 6H, NCH2CH3), 2.24 (m, 2H, 

CH2CH2), 1.20 (t, 6H, NCH2CH3). 

The reaction mixture from above was recooled in an ice bath, 2.38 g of tosyl chloride (0.012 

mol) was added, and the reaction mixture was allowed to stir for 30 min at 5 °C. It was then 
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warmed to room temperature and stirred for an additional 3 h. The solvent was removed in 

vacuo, the reaction was partitioned between 40 mL of 1.0 N HCl and 150 mL of Et2O, and the 

two-phased mixture was stirred for 10 min. The organic layer was separated and the aqueous 

layer was extracted with a 100 mL portion of Et2O. The combined organic layers was dried over 

Na2SO4 and concentrated to produce a viscous oil that solidified during vacuum drying. The 

product was purified by flash chromatography on silica gel (eluted with CH2Cl2) to give 37c as a 

white solid (1.48 g, 53% based on 34c, TLC Rf: 0.45 (n-hexane/EtOAc, 9:1). 1H NMR (CDCl3): δ 

7.32−7.19 (m, 10H, Ar-H), 4.08 (t, 1H, J = 8.0 Hz, CHPh2), 3.44 (t, 2H, J = 6.8 Hz, CH2NCS), 

2.41 (m, 2H, CH2CH2). 13C NMR (CDCl3): δ 143.17, 129.08, 127.97, 126.99 (Ar-C), 48.12, 

43.66, 35.69 (CH and CH2). 

1,1-Diphenylmethylisothiocyanate (37a) 

Isothiocyanate 37a was prepared from 1,1-diphenylethylamine 34a and carbon disulfide using 

the procedure described above for the synthesis of 37c. The product was isolated as a white 

solid in 70% yield. TLC Rf: 0.90 (n-hexane/MeCO2Et, 4:1). 1H NMR (CDCl3): δ 7.40−7.31 (m, 

10H, Ar-H), 5.99 (s, 1H, CHPh2). 13C NMR (CDCl3): δ 139.43, 129.18, 128.57, 126.85 (Ar-C), 

64.82 (CH). 

2,2-Diphenylethylisothiocyanate (37b) 

Isothiocyanate 37b was prepared from 1,1-diphenylethylamine 34a and carbon disulfide using 

the procedure described above for the synthesis of 37c. The product was isolated as a white 

solid in 87% yield. 1H NMR (DMSO-d6): δ 7.36−7.29 (m, 8H, Ar-H), 7.24−7.20 (t, 2H, J = 7.2 Hz, 

Ar-H), 4.45 (t, 1H, J = 8.0 Hz, CHPh2), 4.34 (d, 2H, J = 7.6 Hz, CH2NCS). 13C NMR (DMSO-d6): 

δ 1 41.64, 129.31, 128.53, 127.67 (Ar-C), 51.18, 48.95 (CH and CH2). 

General Procedure for Preparation of N-Boc Protected (Bis)thioureas 

1,12-Bis-{3-[1-(benzyl)thioureado]}-4,9-[N-(tert-butyl)oxycarbonyl)]-4,9-diazadodecane 

(43d) 
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In a 100 mL round-bottom flask, a 0.3 g portion of 4,9-[N-(tert-butyl)oxycarbonyl)]-4,9-diaza-

1,12-diaminododecane 41b (0.0008 mol) was dissolved in 20 mL of HPLC grade CH2Cl2 under 

a nitrogen atmosphere and the mixture was cooled to 0 °C. A solution of benzylisothiocyanate 

(240 mg, 0.0016 mol) in 5 mL of CH2Cl2 was then added dropwise with stirring, and the reaction 

mixture was allowed to stir at room temperature for 5 h. During this time, the formation of 

product was monitored by TLC (CH2Cl2/MeOH/NH4OH 89:10:1). After completion of the 

reaction, the CH2Cl2 was removed under reduced pressure to produce a viscous colorless oil. 

The crude product was purified by flash chromatography on silica gel eluted with 

CH2Cl2/MeOH/NH4OH (94.5:5:0.5 followed by 89:10:1) to furnish pure 43d (0.46 g, 88% yield) 

as viscous oil. Rf: 0.46 (CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 7.31 (m, 10H, Ar-

H), 6.31 (b, 2H, NH), 4.55 (bs, 4H, NCH2), 3.54 (bs, 4H, NCH2), 3.20 (bs, 4H, NCH2), 3.10 (bs, 

4H, NCH2), 1.65 (bs, 4H, CH2CH2), 1.46 (bs, 4H, CH2CH2), 1.38 (s, 18H, C[CH3]3). 

1,12-Bis-{3-[1-(ethyl)thioureado]}-4,9-[N-(tert-butyl)oxycarbonyl)]-4,9-diazadodecane (43g) 

Compound 43g was prepared from 375 mg of 41b (375 mg, 0.0009 mol) and 

ethylisothiocyanate according to procedure described above for the synthesis of 43d to 

afford 43g (512 mg, 95%) as viscous oil. Rf: 0.52 (CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR 

(CDCl3): δ 7.40 (b, 2H, NH), 6.00 (b, 2H, NH), 3.56 (m, 4H, NCH2), 3.34 (b, 4H, NCH2), 3.26 (b, 

4H, NCH2), 3.12 (b, 4H, NCH2), 1.71 (b, 4H, CH2CH2), 1.50 (bs, 4H, CH2CH2), 1.40 (s, 18H, 

C(CH3)3), 1.20 (t, 6H, J = 7.2 Hz, CH3). 13C NMR (CDCl3): δ 80.36 ([CH3]3C), 46.95, 43.34, 

41.19, 38.12, 28.63, 27.31, 26.16 (CH2), 14.28 (CH3). 

1,12-Bis-{3-[1-(propyl)thioureado]}-4,9-[N-(tert-butyl)oxycarbonyl)]-4,9-diazadodecane 

(43j) 

Compound 43j was prepared from 260 mg of 41b (0.0007 mol) and n-propylisothiocyanate 

according to procedure described above for the synthesis of 43d to afford 43j (380 mg, 96%) as 

viscous oil. Rf: 0.51 (CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ3.50−3.36 (b, 8H, 

NCH2), 3.28−3.20 (m, 8H, NCH2), 3.26 (b, 4H, NCH2) 1.78 (b, 4H, CH2CH2), 1.52 (bs, 4H, 
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CH2CH2), 1.46 (s, 18H, C[CH3]3), 0.73 (t, 6H, J = 7.2 Hz, CH3). 13C NMR (CDCl3): δ80.36 

([CH3]3C), 46.95, 43.34, 41.19, 38.12, 28.63, 27.31, 26.16 (CH2), 14.28 (CH3). 

1,15-Bis-{3-[1-(benzyl)thioureado]}-4,12-[N-(tert-butyl)oxycarbonyl)]-4,12-

diazapentadecane (43k) 

Compound 43k was prepared from 220 mg of 41c (0.0005 mol) and benzylisothiocyanate 

according to procedure described above for the synthesis of 43d to afford 43k (360 mg, 96%) 

as viscous oil. 1H NMR (CDCl3): δ 7.39−7.30 (m, 10H, Ar-H), 4.76 (b, 4H, CH2Ph), 3.46 (b, 4H, 

NCH2), 3.18 (m, 8H, NCH2), 1.52 (b, 4H, CH2CH2), 1.54 (b, 4H, CH2CH2), 1.44 (s, 18H, 

C(CH3)3), 1.28 (b, 6H, CH2CH2). 

1,11-Bis-{3-[1-(benzyl)thioureado]}-4,8-[N-(tert-butyl)oxycarbonyl)]-4,8-diazaundecane 

(43n) 

Compound 43n was prepared from 291 mg of 41a (0.0008 mol) and benzylisothiocyanate 

according to the procedure described above for 43d to afford 43n (373 mg, 73%) as viscous 

oil.Rf: 0.87 (CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 7.35 (m, 10H, Ar-H), 4.58 (bs, 

4H, N-CH2), 3.58 (bs, 4H, N-CH2), 3.21 (b, 4H, N-CH2), 3.10 (b, 4H, N-CH2), 1.72 (b, 6H, 

CH2CH2), 1.40 (s, 18H, C[CH3]3). 

1,11-Bis-{3-[1-(propyl)thioureado]}-4,8-[N-(tert-butyl)oxycarbonyl)]-4,8-diazaundecane 

(43r) 

Compound 43r was prepared from 291 mg of 41a (0.0008 mol) and n-propylisothiocyanate 

according to the procedure described above for 43d to afford 43r (379 mg, 86%) as viscous 

oil.Rf: 0.57 (CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 7.29 (bs, 1H, NH), 6.44 (s, 2H, 

NH), 3.43 (bs, 4H, N-CH2), 3.01−3.15 (b, 12H, N-CH2), 1.61 (bs, 6H, CH2CH2), 1.47 (m, J = 7.2 

Hz, 4H, CH2CH3), 1.31 (s, 18H, C[CH3]3), 0.81 (t, J = 7.2 Hz, 6H, CH2CH3). 

1,11-Bis-{3-[1-(n-ethyl)thioureado]}-4,8-[N-(tert-butyl)oxycarbonyl)]-4,8-diazaundecane 

(43s) 
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Compound 43s was prepared from 291 mg of 41a (0.0008 mol) and ethylisothiocyanate 

according to the procedure described above for 43d to afford 43s (347 mg, 83%) as viscous 

oil.Rf: 0.72 (CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 7.24 (bs, 2H, NH), 6.22 (bs, 

2H, NH), 3.49 (bs, 4H, CH2N), 3.29 (bs, 4H, N-CH2), 3.20 (b, 4H, N-CH2), 3.07 (b, 4H, N-CH2), 

1.62−1.74 (b, 6H, CH2CH2), 1.37 (s, 18H, C[CH3]3), 1.14 (t, 6H, CH2CH3). 

1,11-Bis-{3-[1-(3,3-diphenylpropyl)thioureado]}-4,8-[N-(tert-butyl)oxycarbonyl)]-4,8-

diazaundecane (43u) 

Compound 43u was prepared from 155 mg of 41a (0.0004 mol) and 37c according to procedure 

described above for the synthesis of 43d to afford 43u (290 mg, 81%) as a white solid. Rf: 0.44 

(CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 7.29−7.15 (m, 22H, Ar-H, and NH), 5.88 

(b, 2H, NH), 4.04 (t, 2H, J = 7.6 Hz, CHPh2), 3.53 (b, 4H, NCH2), 3.28 (b, 4H, NCH2), 3.23 (b, 

4H, NCH2), 3.12 (b, 8H, NCH2), 2.36 (q, 4H, J = 8.0 Hz, NCH2), 1.70 (m, 2H, CH2CH2), 1.47 (b, 

4H, CH2CH2), 1.40 (s, 20H, C[CH3]3). 

1,12-Bis-{3-[1-(3,3-diphenylpropyl)thioureado]}-4,9-[N-(tert-butyl)oxycarbonyl)]-4,9-

diazadodecane (43w) 

Compound 43w was prepared from 161 mg of 41b (0.0004 mol) and 37c according to 

procedure described above for the synthesis of 43d to afford 43w (322 mg, 89%) as a white 

solid. Rf: 0.52 (CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 7.25−7.16 (m, 22H, Ar-H, 

and NH), 5.88 (b, 2H, NH), 4.02 (t, 2H, J = 8.0 Hz, CHPh2), 3.17 (b, 8H, NCH2), 3.09 (b, 4H, 

NCH2), 2.37 (q, 4H, J = 7.6 Hz, CH2CH), 1.76−1.65 (m, 8H, CH2CH2), 1.41 (s, 18H, C[CH3]3). 

1,15-Bis-{3-[1-(3,3-diphenylpropyl)thioureado]}-4,12-[N-(tert-butyl)oxycarbonyl)]-4,12-

diazapentadecane (43y) 

Compound 43y was prepared from 178 mg of 41c (0.0004 mol) and 37c according to procedure 

described above for the synthesis of 43d to afford 43y (305 mg, 80%) as a white solid. Rf: 0.57 

(CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 7.28−7.15 (m, 20H, Ar-H), 5.88 (b, 2H, 

NH), 4.02 (t, 2H, J = 8.0 Hz, CHPh2), 3.54 (b, 4H, NCH2), 3.28 (b, 4H, NCH2), 3.23 (b, 4H, 
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NCH2), 3.08 (t, 4H, J = 7.2 Hz, NCH2), 2.36 (q, 4H, J = 7.6 Hz, CH2CH), 1.69 (bs, 4H, CH2CH2), 

1.50 (b, 4H, CH2CH2), 1.40 (s, 18H, C[CH3]3), 1.28 (m, 6H, CH2CH2). 

1,15-Bis-{3-[1-(2,2-diphenylethyl)thioureado]}-4,12-[N-(tert-butyl)oxycarbonyl)]-4,12-

diazapentadecane (43z) 

Compound 43z was prepared from 223 mg of 41c (0.0005 mol) and 37b according to procedure 

described above for the synthesis of 43d to afford 43z (288 mg, 79%) as a white solid. Rf: 0.68 

(CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 7.31−7.19 (m, 20H, Ar-H), 5.75 (b, 2H, 

NH), 4.28 (b, 2H, CHPh2), 4.02 (b, 4H, NCH2), 3.54 (b, 4H, NCH2), 3.25 (b, 4H, NCH2), 3.09 (t, 

4H, J = 7.2 Hz, NCH2), 1.69 (bs, 4H, CH2CH2), 1.49 (b, 4H, CH2CH2), 1.40 (bs, 18H, C[CH3]3), 

1.24 (m, 6H, CH2CH2). 

1,12-Bis-{3-[1-(2,2-diphenylethyl)thioureado]}-4,9-[N-(tert-butyl)oxycarbonyl)]-4,9-

diazadodecane (43aa) 

Compound 43aa was prepared from 161 mg of 41b (0.0004 mol) and 37b according to 

procedure described above for the synthesis of 43d to afford 43aa (295 mg, 84%) as a white 

solid. Rf: 0.60 (CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 7.32−7.20 (m, 20H, Ar-H), 

5.77 (b, 2H, NH), 4.29 (b, 2H, CHPh2), 4.02 (b, 4H, NCH2), 3.56 (bs, 4H, NCH2), 3.26 (bs, 4H, 

NCH2), 3.12 (bs, 4H, NCH2), 1.70 (b, 4H, CH2CH2), 1.48 (b, 4H, CH2CH2), 1.41 (s, 18H, 

C[CH3]3). 

1,11-Bis-{3-[1-(2,2-diphenylethyl)thioureado]}-4,9-[N-(tert-butyl)oxycarbonyl)]-4,9-

diazadodecane (43bb) 

Compound 43bb was prepared from 193 mg (0.0005 mol) of 41b and 37b according to 

procedure described above for the synthesis of 43d to afford 43bb (350 mg, 80%) as a white 

solid. Rf: 0.63 (CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 7.32−7.20 (m, 20H, Ar-H), 

5.77 (bs, 2H, NH), 4.29 (bs, 2H, CHPh2), 4.02 (bs, 4H, NCH2), 3.56 (bs, 4H, NCH2), 3.26 (bs, 

4H, NCH2), 3.12 (t, 4H, J= 7.2 Hz, NCH2), 1.71 (b, 4H, CH2CH2), 1.41 (b, 20H, CH2 and 

C[CH3]3). 
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1,11-Bis-{3-[1-(1,1-diphenylmethyl)thioureado]}-4,8-[N-(tert-butyl)oxycarbonyl)]-4,8-

diazaundecane (43cc) 

Compound 43cc was prepared from 192 mg of 41a (0.0005 mol) and 37a according to 

procedure described above for the synthesis of 43d to afford 43cc as a white solid (350 mg, 

83%), Rf: 0.63 (CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 7.34−7.27 (m, 20H, Ar-H), 

6.43 (d, 2H, J = 5.2 Hz, NCH), 6.02 (b, 2H, NH), 3.52 (d, 4H, J = 5.2 Hz, NCH2), 3.06 (m, 8H, 

NCH2), 1.66 (bs, 6H, CH2CH2), 1.36 (bs, 18H, C[CH3]3). 

1,12-Bis-{3-[1-(1,1-diphenylmethyl)thioureado]}-4,9-[N-(tert-butyl)oxycarbonyl)]-4,9-

diazadodecane (43dd) 

Compound 43dd was prepared from 201 mg of 41b (0.0005 mol) and 37a according to 

procedure described above for the synthesis of 43d to afford 43dd (380 mg, 89%) as white 

solid. Rf: 0.60 (CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 7.40 (b, 2H, NH), 7.34−7.27 

(m, 20H, Ar-H), 6.43 (d, 2H, J = 5.2 Hz, NCH), 6.02 (b, 2H, NH), 3.52 (d, 4H, J = 5.2 Hz, NCH2), 

3.06 (bs, 8H, NCH2), 1.63 (m, 4H, CH2CH2), 1.42 (bs, 4H, CH2CH2), 1.36 (s, 18H, C[CH3]3). 

1,15-Bis-{3-[1-(1,1-diphenylmethyl)thioureado]}-4,12-[N-(tert-butyl)oxycarbonyl)]-4,12-

diazapentadecane (43ee) 

Compound 43ee was prepared from 223 mg of 41c and 37a according to procedure described 

above for the synthesis of 43d to afford 43ee (408 mg, 91%) as a white solid. Rf: 0.77 

(CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 7.45 (b, 2H, NH), 7.33−7.26 (m, 20H, Ar-

H), 6.41 (d, 2H, J = 2.8 Hz, NCH), 6.03 (b, 2H, NH), 3.51 (m, 4H, NCH2), 3.04 (m, 8H, NCH2), 

1.54 (bs, 4H, CH2CH2), 1.45 (b, 4H, CH2CH2), 1.35 (bs, 18H, C[CH3]3), 1.23 (m, 6H, CH2CH2). 

General Procedure for Preparation of N-Boc Protected (Bis)ureas 

1,12-Bis-{3-[1-(benzyl)ureado]}-4,9-[N-(tert-butyl)oxycarbonyl)]-4,9-diazadodecane (43e) 

In a 100 mL round-bottom flask, a 0.35 g portion of 4,9-[N-(tert-butyl)oxycarbonyl)]-4,9-1,12-

diamino-diazadodecane 41b (0.0009 mol) was dissolved in 20 mL of HPLC grade CH2Cl2 under 

a nitrogen atmosphere and the mixture was cooled to 0 °C. A solution of benzylisocyanate 



	   35 

	  

(0.235 g, 0.0018 mol) in 5 mL of CH2Cl2 was then added dropwise with stirring, and the reaction 

mixture was allowed to stir at room temperature for 24 h. During this time, the formation of 

product was monitored by TLC (CH2Cl2:MeOH:NH4OH 89:10:1). When the starting material had 

been consumed, the CH2Cl2 was removed under reduced pressure to afford a viscous colorless 

material. The crude product was purified by flash chromatography on silica gel eluted with 

CH2Cl2:MeOH:NH4OH (97:2.5:0.5 followed by 94.5:5.0:0.5) to furnish pure 43e (0.50 g, 86% 

yield) as viscous oil. Rf: 0.54 (CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 3.20−3.02 

(m, 16H, NCH2), 1.64 (b, 4H, CH2CH2), 1.48 (b, 4H, CH2CH2), 1.43 (s, 18H, C[CH3]3), 1.11 (t, 

6H, J = 6.4 Hz, CH3). 

1,12-Bis-{3-[1-(ethyl)ureado]}-4,9-[N-(tert-butyl)oxycarbonyl)]-4,9-diazadodecane (43f) 

Compound 43f was prepared from 368 mg of 41b (0.0009 mol) and ethylisocyanate according 

to the procedure described above for 43e to afford 43f (480 mg, 96%) as viscous oil. Rf: 0.54 

(CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 3.20−3.02 (m, 16H, NCH2), 1.64 (b, 4H, 

CH2CH2), 1.48 (b, 4H, CH2CH2), 1.43 (s, 18H, C[CH3]3), 1.11 (t, 6H, J = 6.4 Hz, CH3). 

1,15-Bis-{3-[1-(benzyl)ureado]}-4,12-[N-(tert-butyl)oxycarbonyl)]-4,12-diazapentadecane 

(43h) 

Compound 43h was prepared from 230 mg of 41b (0.0005 mol) and benzylisocyanate 

according to the procedure described above for 43e to afford 43h (350 mg, 96%) as viscous 

oil. Rf: 0.50 (CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CD3OD): δ 7.30 (m, 10H, Ar-H), 4.29 (s, 

4H, CH2Ph), 3.21−3.15 (m, 8H, NCH2), 3.12 (t, 4H, J = 7.2 Hz, NCH2), 1.70 (bs, 4H, CH2CH2), 

1.50 (bs, 4H, CH2CH2), 1.44 (s, 18H, C[CH3]3), 1.32 (bs, 6H, CH2CH2). 

1,12-Bis-{3-[1-(propyl)ureado]}-4,9-[N-(tert-butyl)oxycarbonyl)]-4,9-diazadodecane (43i) 

Compound 43i was prepared from 260 mg of 41c (0.0005 mol) and n-propylisocyanate 

according to the procedure described above for 43e to afford 43i (356 mg, 94%) as viscous 

oil. Rf: 0.54 (CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CD3OD): δ 3.22 (m, 8H, NCH2), 3.09 (t, 
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4H, J = 6.4 Hz, NCH2), 3.05 (t, 4H, J = 7.6 Hz, NCH2), 1.70 (b, 4H, CH2CH2), 1.50 (m, 8H, 

CH2CH2), 1.45 (s, 18H, C[CH3]3), 0.90 (t, 6H, J = 7.6 Hz, CH3). 

1,15-Bis-{3-[1-(benzyl)ureado]}-4,12-[N-(tert-butyl)oxycarbonyl)]-4,12-diazapentadecane 

(43l) 

Compound 43l was prepared from 225 mg of 41c (0.0005 mol) and ethylisocyanate according 

to the procedure described above for 43e to afford 43l (280 mg, 94%) as viscous oil. Rf: 0.37 

(CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CD3OD): δ 3.28−3.12 (m, 8H, NCH2), 3.10−3.06 (m, 

8H, NCH2), 1.68 (b, 4H, CH2CH2), 1.54 (b, 4H, CH2CH2), 1.44 (s, 18H, C[CH3]3), 1.30 (b, 6H, 

CH2CH2), 1.08 (t, 6H, J = 7.2 Hz, CH2CH2). 

1,15-Bis-{3-[1-(propyl)ureado]}-4,12-[N-(tert-butyl)oxycarbonyl)]-4,12-diazapentadecane 

(43m) 

Compound 43m was prepared from 225 mg of 41c (0.0005 mol) and propylisocyanate 

according to the procedure described above for 43e to afford 43m (280 mg, 92%) as viscous 

oil. Rf: 0.35 (CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CD3OD): δ 3.25−3.16 (m, 8H, NCH2), 

3.09−3.02 (m, 8H, NCH2), 1.68 (b, 4H, CH2CH2), 1.52 (b, 8H, CH2CH2), 1.44 (s, 18H, C[CH3]3), 

1.30 (b, 6H, CH2CH2), 0.90 (t, 6H, J = 7.2 Hz, CH2CH2). 

1,11-Bis-{3-[1-(ethyl)ureado]}-4,8-[N-(tert-butyl)oxycarbonyl)]-4,8-diazaundecane (43o) 

Compound 43o was prepared from 287 mg of 41a (0.0007 mol) and ethylisothiocyanate 

according to the procedure described above for 43e to afford 43o (245 mg, 62%) as viscous 

oil,Rf: 0.63 (CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 5.59 (bs, 1H, NH), 4.60 (bs, 

1H, NH), 3.08−3.31 (m, 16H, N-CH2), 1.58−1.78 (m, 6H, CH2CH2), 1.43 (s, 18H, C[CH3]3), 1.10 

(t, J = 7.2 Hz, 6H, CH2CH3). 

1,11-Bis-{3-[1-(benzyl)ureado]}-4,8-[N-(tert-butyl)oxycarbonyl)]-4,8-diazaundecane (43p) 

Compound 43p was prepared from 302 mg of 41a (0.0008 mol) and benzylisothiocyanate 

according to the procedure described above for 43e to afford 43p (485 mg, 95%) as viscous 

oil,Rf: 0.63 (CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 7.10−7.30 (m, 10H, Ar-H), 4.20 
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(bs, 4H, PhCH2), 2.98−3.20 (m, 12H, N-CH2), 1.65 (p, 2H, CH2CH2), 1.55 (p, J = 6.4 Hz, 4H, 

CH2CH2), 1.39 (s, 18H, C[CH3]3). 

1,11-Bis-{3-[1-(n-propyl)ureado]}-4,8-[N-(tert-butyl)oxycarbonyl)]-4,8-diazaundecane (43q) 

Compound 43q was prepared from 291 mg of 41a (0.0008 mol) and n-propylisothiocyanate 

according to the procedure described above for 43e to afford 43q (359 mg, 91%) as viscous 

oil.Rf: 0.63 (CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 5.60 (bs, 1H, NH), 4.70 (bs, 

1H, NH), 3.05−3.28 (m, 16H, N-CH2), 1.60−1.78 (m, 6H, CH2CH2), 1.47 (m, J = 7.2, 4H, 

CH2CH3), 1.42 (s, 18H, C[CH3]3), 0.88 (t, J = 7.2 Hz, 6H, CH2CH3). 

1,11-Bis-{3-[1-(3,3-diphenylpropyl)ureado]}-4,8-[N-(tert-butyl)oxycarbonyl)]-4,8-

diazaundecane (43t) 

Compound 43t was prepared from 194 mg (0.0005 mol) of 41a and 35c according to the 

procedure described above for 43e to afford 43t (420 mg, 98%) as a viscous oil. Rf: 0.58 

(CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 7.29−7.15 (m, 20H, Ar-H), 5.50 (b, 2H, 

NH), 3.96 (t, 2H, J = 8.0 Hz, CHPh2), 3.25 (t, 4H, J = 6.4 Hz, NCH2), 3.10 (b, 12H, NCH2), 2.23 

(q, 4H, J= 7.2 Hz, NCH2), 1.72 (b, 2H, CH2CH2), 1.61 (b, 4H, CH2CH2), 1.42 (s, 18H, C[CH3]3). 

1,12-Bis-{3-[1-(3,3-diphenylpropyl)ureado]}-4,9-[N-(tert-butyl)oxycarbonyl)]-4,9-

diazadodecane (43v) 

Compound 43v was prepared from 193 mg of 41b (0.0005 mol) and 35c according to the 

procedure described above for 43e to afford 43v (386 mg, 92%) as viscous oil. 1H NMR 

(CDCl3): δ 7.29−7.13 (m, 22H, Ar-H, and NH), 5.50 (b, 2H, NH), 3.96 (t, 2H, J = 8.0 Hz, CHPh2), 

3.25 (t, 4H, J= 6.4 Hz, NCH2), 3.10 (m, 12H, NCH2), 2.24 (b, 4H, CH2CH2), 1.60 (b, 4H, 

CH2CH2), 1.42 (s, 22H, CH2CH2 and C[CH3]3). 

1,15-Bis-{3-[1-(3,3-diphenylpropyl)ureado]}-4,12-[N-(tert-butyl)oxycarbonyl)]-4,12-

diazapentadecane (43x) 

Compound 43x was prepared from 158 mg of 41c (0.0004 mol) and 35c according to the 

procedure described above for 43e to afford 43x (310 mg, 95%) as viscous oil. Rf: 0.50 
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(CH2Cl2/MeOH/NH4OH, 89:10:1). 1H NMR (CDCl3): δ 7.30−7.12 (m, 20H, Ar-H), 5.50 (b, 2H, 

NH), 4.40 (b, 2H, NH), 3.97 (t, 2H, J = 7.2 Hz, CHPh2), 3.25 (t, 4H, J = 6.4 Hz, NCH2), 3.10 (bs, 

12H, NCH2), 2.26 (q, 4H, J = 8.0 Hz, CH2CH2), 1.60 (bs, 4H, CH2CH2), 1.42 ((s, 18H, C[CH3]3), 

1.24 (bs, 6H, CH2CH2). 

General Procedure for Cleavage of N-Boc Protecting Group 

1,12-Bis-{3-[1-(benzyl)thioureado]}-4,9-diazadodecane (3) 

In a 100 mL round-bottom flask, a 0.4 g portion of 43d (402 mg, 0.0006 mol) was dissolved in 

30 mL of HPLC grade EtOAc under a nitrogen atmosphere, and 4.0 mL of a 1.0 M solution of 

HCl in EtOAc was added. The reaction mixture was allowed to stir at room temperature for 48 h, 

during which time the formation of product was monitored by TLC (CH2Cl2/MeOH/NH4OH 

89:10:1 or 78:20:2). The product precipitated as a white crystalline solid during the course of the 

reaction. When completion of the reaction was confirmed by TLC, the solvent was removed 

under reduced pressure to produce a white powder. The solid product was stirred with 30 mL of 

fresh EtOAc, and the solvent was decanted. The solid so obtained was vacuum-dried to give 

pure 3 as a white solid (315 mg, 95% yield). An analytical sample was obtained by purification 

on silica gel (CH2Cl2:MeOH:NH4OH 89:10:1). 1H NMR (CD3OD): δ 7.32−7.10 (m, 10H, Ar-H), 

4.67 (s, 4H, CH2Ph), 3.71 (t, 4H, J = 5.6 Hz, NCH2), 3.01 (bs, 8H, NCH2), 1.95 (m, 4H, CH2CH2), 

1.78 (bs, 4H, CH2CH2). MS (CI m/z) calcd for C26H40N6S2 [M+.] = 500.28; found 501.4 [M+H]. 

1,12-Bis-{3-[1-(benzyl)ureado]}-4,9-diazadodecane (4) 

Compound 4 was prepared from 480 mg (0.0007 mol) of 43e according to procedure described 

above for the synthesis of 3 to afford 370 mg (94%) of 4 as a white solid. 1H NMR (D2O): δ 7.32 

(m, 4H, Ar-H), 7.26 (m, 6H, Ar-H), 4.22 (s, 4H, CH2Ph), 3.16 (t, 4H, J = 6.4 Hz, NCH2), 2.88 (t, 

4H,J = 7.2 Hz, NCH2), 2.81 (bs, 4H, NCH2), 1.25 (p, 4H, J = 6.4 and 7.2 Hz, CH2CH2), 1.57 (m, 

4H, CH2CH2). 13C NMR (D2O): δ 160.89 (C═O), 139.83, 129.00, 127.45, 126.97 (Ar-C), 46.96, 

45.12, 43.66, 36.44, 26.71, 22.92 (CH2). 

1,12-Bis-{3-[1-(ethyl)ureado]}-4,9-diazadodecane (5) 
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Compound 5 was prepared from 448 mg (0.0008 mol) of 43f according to procedure described 

above for the synthesis of 3 to afford 330 mg (96%) of 5 as a white solid. 1H NMR (D2O): δ 3.15 

(t, 4H, J = 5.6 Hz, N-CH2), 3.05−2.98 (m, 12H, NCH2), 1.79 (p, 4H, J = 7.2 Hz, CH2CH2), 1.71 

(bs, 4H, CH2CH2), 1.01 (t, 6H, J = 7.2 Hz, CH3). 13C NMR (D2O): δ 160.88 (C═O), 47.06, 45.31, 

36.67, 35.27, 26.70, 23.06 (CH2), 14.63 (CH3). 

1,12-Bis-{3-[1-(ethyl)thioureado]}-4,9-diazadodecane (6) 

Compound 6 was prepared from 470 mg (0.0008 mol) of 43g according to procedure described 

above for the synthesis of 3 to afford 314 mg (87%) of 6 as a white solid. 1H NMR (D2O): δ 3.51 

(bs, 4H, NCH2), 3.31 (bs, 4H, NCH2), 3.06 (bs, 4H, NCH2), 1.93 (p, 4H, J = 6.4 Hz, CH2CH2), 

1.75 (bs, 4H, CH2CH2), 1.12 (t, 6H, J = 6.0 Hz, CH3). 13C NMR (DMSO-d6): δ 154.38, 153.98 

(C═O), 47.13, 45.00, 40.92, 26.13, 23.15 (CH2), 13.49 (CH3). 

1,15-Bis-{3-[1-(benzyl)ureado]}-4,12-diazapentadecane (7) 

Compound 7 was prepared from 320 mg (0.0005 mol) of 43h according to procedure described 

above for the synthesis of 3 to afford 250 mg (95%) of 7 as a white solid. 1H NMR (D2O): δ 7.35 

(m, 4H, Ar-H), 7.28 (m, 6H, Ar-H), 4.25 (s, 4H, CH2Ph), 3.18 (t, 4H, J = 5.6 Hz, NCH2), 2.88 (t, 

4H,J = 7.2 Hz, NCH2), 2.81 (t, 4H, J = 8.0 Hz, NCH2), 1.76 (p, 4H, J = 7.2 Hz, CH2CH2), 1.53 (m, 

4H, CH2CH2), 1.26 (bs, 6H, CH2CH2). 13C NMR (D2O): δ 160.91 (C═O), 139.83, 129.01, 127.48, 

126.99 (Ar-C), 47.78, 44.97, 43.68, 36.47, 27.87, 26.71, 25.64, 25.59 (CH2). 

1,12-Bis-{3-[1-(n-propyl)ureado]}-4,9-diazadodecane (8) 

Compound 8 was prepared from 330 mg (0.0006 mol) of 43i according to procedure described 

above for the synthesis of 3 to afford 228 mg (90%) of 8 as a white solid. 1H NMR (D2O): δ 3.14 

(t, 4H, J = 6.4 Hz, NCH2), 3.00−2.95 (m, 12H, NCH2), 1.79 (p, 4H, J = 6.4 Hz, CH2CH2), 1.70 

(bs, 4H, CH2CH2), 1.40 (q, 4H, J = 6.4 Hz, CH2CH2), 0.79 (t, 6H, J = 7.2 Hz, CH3). 13C NMR 

(D2O): δ 160.98 (C═O), 47.05, 45.31, 42.03, 36.67, 26.70, 23.05, 22.82 (CH2), 10.77 (CH3). 

1,12-Bis-{3-[1-(n-propyl)thioureado]}-4,9-diazadodecane (9) 
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Compound 9 was prepared from 350 mg (0.0006 mol) of 43j according to procedure described 

above for the synthesis of 3 to afford 240 mg (86%) of 9 as a white solid. 1H NMR (D2O): δ 3.59 

(b, 4H, NCH2), 3.23 (b, 4H, NCH2), 3.07−3.00 (m, 8H, NCH2), 1.92 (p, 4H, J = 7.2 and 6.4 Hz, 

CH2CH2), 1.75 (b, 4H, CH2CH2), 1.57−1.48 (m, 4H, CH2CH2), 0.85 (t, 6H, J = 7.2 Hz, CH3). 

1,15-Bis-{3-[1-(benzyl)thioureado]}-4,12-diazapentadecane (10) 

Compound 10 was prepared from 340 mg (0.0005 mol) of 43k according to procedure 

described above for the synthesis of 3 to afford 214 mg (77%) of 10 as a white solid. 1H NMR 

(D2O): δ 7.37−7.30 (m, 10H, Ar-H), 4.58 (b, 4H, CH2Ph), 3.58 (b, 4H, NCH2), 3.10−2.80 (m, 8H, 

NCH2), 1.85 (b, 4H, CH2CH2), 1.59 (b, 4H, CH2CH2), 1.32 (b, 6H, CH2CH2). 

1,15-Bis-{3-[1-(ethyl)ureado]}-4,12-diazapentadecane (11) 

Compound 11 was prepared from 255 mg (0.0004 mol) of 43l according to procedure described 

above for the synthesis of 3 to afford 178 mg (89%) of 11 as a white solid. 1H NMR (D2O): δ 

3.16 (t, 4H, J = 7.2 Hz, NCH2), 3.08 (q, 4H, J = 7.6 Hz, NCH2), 2.99 (m, 8H, NCH2), 1.79 (p, 

4H, J = 7.2Hz, CH2CH2), 1.62 (bs, 4H, CH2CH2), 1.32 (s, 6H, CH2CH2), 1.02 (t, 6H, J = 7.2 Hz, 

CH3). 13C NMR (D2O): δ 160.92 (C═O), 47.079, 45.15, 36.67, 35.25, 27.89, 26.69, 25.66 (CH2), 

14.65 (CH3). 

1,15-Bis-{3-[1-(n-propyl)ureado]}-4,12-diazapentadecane (12) 

Compound 12 was prepared from 255 mg (0.0004 mol) of 43m according to procedure 

described above for the synthesis of 3 to afford 180 mg (89%) of 12 as a white solid. 1H NMR 

(D2O): δ 3.16 (t, 4H, J = 5.6 Hz, NCH2), 2.99 (m, 12H, NCH2), 1.79 (p, 4H, J = 7.2 Hz, CH2CH2), 

1.62 (m, 4H, CH2CH2), 1.42 (q, 4H, J = 6.4 Hz, CH2CH2), 1.32 (bs, 6H, CH2CH2), 0.81 (t, 6H, J = 

7.2 Hz, CH3)).13C NMR (D2O): δ 161.03 (C═O), 47.79, 45.14, 42.00, 36.67, 27.89, 26.71, 25.65, 

22.86 (CH2), 10.77 (CH3). 

1,11-Bis-{3-[1-(benzyl)thioureado]}-4,8-diazaundecane (13) 

Compound 13 was prepared from 373 mg (0.0005 mol) of 43n according to procedure 

described above for the synthesis of 3 to afford 302 mg (99%) of 13 as white solid. 1H NMR 
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(DMSO-d6): δ 9.09 (bs, 2H, NH), 8.21 (t, 2H, NH), 8.00 (bs, 2H, NH), 7.20−7.32 (m, 10H, Ar-H), 

4.64 (bs, 4H, N-CH2), 3.48 (bs, 4H, N-CH2), 2.97 (bs, 4H, N-CH2), 2.87 (bs, 4H, N-CH2), 2.02 (p, 

2H, CH2CH2), 1.86 (p, 4H, CH2CH2). 13C NMR (DMSO-d6): δ 128.92, 127.91, 127.45 (Ar-C), 

47.43, 45.30, 44.60, 41.33, 26.37, 23.01 (CH2). 

1,11-Bis-{3-[1-(ethyl)ureado]}-4,8-diazaundecane (14) 

Compound 14 was prepared from 245 mg (0.0005 mol) of 43o according to procedure 

described above for the synthesis of 3 to afford 178 mg (96%) of 14 as white solid. 1H NMR 

(DMSO-d6): δ 9.14 (bs, 2H, NH), 6.00 (bs, 4H, NH), 2.88−3.08 (m, 12H, CH2N), 2.82 (bs, 4H, 

CH2N), 2.02 (bs, 2H, CH2CH2), 1.71 (bs, 4H, CH2CH2), 0.95 (t, J = 7.2 Hz, 6H, CH2CH3). 13C 

NMR (DMSO-d6): δ 159.16 (C═O), 45.25, 44.51, 36.84, 34.80, 27.51, 22.98 (CH2), 16.34 (CH3). 

1,11-bis-{3-[1-(benzyl)ureado]}-4,8-diazaundecane (15) 

Compound 15 was prepared from 485 mg (0.0007 mol) of 43p according to procedure 

described above for the synthesis of 3 to afford 364 mg (99%) of 15 as white solid. 1H NMR 

(DMSO-d6): δ 9.21 (bs, 6H, NH), 7.17−7.30 (m, 10H, Ar-H), 4.19 (s, 4H, N-CH2), 3.08 (bs, 4H, 

N-CH2), 2.94 (bs, 2H, N-CH2), 2.82 (bs, 4H, N-CH2), 2.02 (b, 2H, CH2CH2), 1.74 (b, 4H, 

CH2CH2). 13C NMR (DMSO-d6): δ 159.24 (C═O), 141.49, 128.89, 127.63, 127.20 (Ar-C), 45.27, 

44.53, 43.57, 37.02, 27.45, 22.93 (CH2). 

1,11-Bis-{3-[1-(n-propyl)ureado]}-4,8-diazaundecane (16) 

Compound 16 was prepared from 359 mg (0.0006 mol) of 43q according to procedure 

described above for the synthesis of 3 to afford 303 mg (99%) of 16 as a white solid. 1H NMR 

(DMSO-d6): δ 9.24 (bs, 6H, NH), 2.82−3.06 (m, 16H, N-CH2), 2.04 (b, 2H, CH2CH2), 1.73 (b, 4H, 

CH2CH2), 1.33 (m, J = 7.2 Hz, 4H, CH2CH3), 0.80 (t, J = 7.2 Hz, 4H, CH2CH3). 13C NMR 

(DMSO-d6): δ 159.29 (C═O), 45.22, 44.52, 41.88, 36.97, 27.39, 23.78, 22.92 (CH2), 12.04 

(CH3). 

1,11-Bis-{3-[1-(n-propyl)ureado]}-4,8-diazaundecane (17) 
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Compound 17 was prepared from 379 mg (0.0006 mol) of 43r according to procedure described 

above for the synthesis of 3 to afford 317 mg (99%) of 17 as white solid. 1H NMR (DMSO-d6): δ 

9.46 (b, 2H, NH), 9.16 (b, 2H, NH), 7.82 (b, 2H, NH), 2.85−3.90 (b, 16H, N-CH2), 1.84 (b, 2H, 

CH2CH2), 1.59 (b, 4H, CH2CH2), 1.44 (m, 4H, CH2CH3), 0.85 (t, 6H, CH2CH3). 13C NMR (DMSO-

d6): δ 45.30, 44.58, 26.37, 22.92, 22.71, 22.00 (CH2), 12.10 (CH3). 

1,11-Bis-{3-[1-(ethyl)thioureado]}-4,8-diazaundecane (18) 

Compound 18 was prepared from 347 mg (0.0006 mol) of 43s according to procedure 

described above for the synthesis of 3 to afford 282 mg (99%) of 18 as white solid. 1H NMR 

(DMSO-d6): δ 9.10 (bs, 2H, NH), 7.78 (bs, 2H, NH), 7.70 (bs, 2H, NH), 3.43 (bs, 4H, N-CH2), 

3.32 (bs, 4H, N-CH2), 2.97 (bs, 4H, N-CH2), 2.86 (bs, 4H, N-CH2), 2.02 (b, 2H, CH2CH2), 1.83 

(b, 4H, CH2CH2), 1.02 (t, J = 7.2 Hz, 6H, CH2CH3). 13C NMR (DMSO-d6): δ 45.27, 44.58, 38.83, 

31.99, 26.38, 22.98 (CH2), 15.12 (CH3). 

1,11-Bis-{3-[1-(3,3-diphenylpropyl)ureado]}-4,8-diazaundecane (19) 

Compound 19 was prepared from 400 mg (0.0005 mol) of 43t according to procedure described 

above for the synthesis of 3 to afford 290 mg (86%) of 19 as a white solid. 1H NMR (DMSO-d6): 

δ 9.10 (bs, 4H, NH), 7.27−7.21 (m, 16H, Ar-H), 7.18−7.10 (m, 4H, Ar-H), 3.96 (t, 2H, J = 7.2 Hz, 

CHPh2), 3.02 (t, 4H, J = 6.4 Hz, NCH2), 2.92 (b, 4H, NCH2), 2.84 (t, 4H, J = 7.2 Hz, NCH2), 2.79 

(bs, 4H, NCH2), 2.09 (q, 4H, J = 8.0 Hz, CH2CH2), 1.99 (m, 2H, CH2CH2), 1.69 (m, 4H, 

CH2CH2). 13C NMR (DMSO-d6): δ 159.22 (CO), 145.50, 129.08, 128.28, 126.72 (Ar-C), 48.51, 

45.25, 44.49, 38.77, 36.88, 36.07, 27.45, 22.95 (CH and CH2). 

1,11-Bis-{3-[1-(3,3-diphenylpropyl)thioureado]}-4,8-diazaundecane (20) 

Compound 20 was prepared from 260 mg (0.0003 mol) of 43u according to procedure 

described above for the synthesis of 3 to afford 205 mg (92%) of 20 as a white solid. 1H NMR 

(DMSO-d6): δ 9.10 (b, 4H, NH), 7.91 (b, 2H, NH), 7.32−7.14 (m, 20H, Ar-H), 6.10 (b, 2H, NH), 

4.04 (t, 2H, J = 7.6 Hz, CHPh2), 3.45 (b, 4H, NCH2), 3.24 (b, 4H, NCH2), 2.98 (b, 4H, NCH2), 

2.88 (b, 4H, NCH2), 2.61 (m, 4H, CH2CH2), 2.04 (m, 2H, CH2CH2), 1.85 (m, 4H, CH2CH2). 13C 
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NMR (DMSO-d6): δ 145.36, 129.11, 128.31, 126.78 (Ar−C), 48.62, 45.29, 44.60, 42.80, 41.02, 

34.97, 26.34, 22.96 (CH and CH2). 

1,12-Bis-{3-[1-(3,3-diphenylpropyl)ureado]}-4,9-diazadodecane (21) 

Compound 21 was prepared from 370 mg (0.42 mmol) of 43v according to procedure described 

above for the synthesis of 3 to afford 285 mg (90%) of 21 as a white solid. 1H NMR (DMSO-d6): 

δ 9.00 (bs, 4H, NH), 7.21−7.12 (m, 20H, Ar-H, and NH), 3.96 (t, 2H, J = 7.2 Hz, CHPh2), 3.02 (t, 

4H,J = 6.4 Hz, NCH2), 2.84 (t, 4H, J = 6.4 Hz, NCH2), 2.79 (b, 12H, NCH2), 2.09 (q, 4H, J = 7.2 

Hz, CH2CH2), 1.69 (t, 4H, J = 6.4 Hz, CH2CH2), 1.63 (b, 4H, CH2CH2). 13C NMR (DMSO-d6): δ 

159.27 (C═O), 145.49, 129.08, 128.28, 126.73 (Ar-C), 48.49, 46.50, 45.10, 38.76, 36.88, 36.07, 

27.46, 23.23 (CH and CH2). MS (EI m/z) calculated for C42H56N6O2 [M+·] = 676.45; found 677.40 

[M+H]. 

1,12-Bis-{3-[1-(3,3-diphenylpropyl)thioureado]}-4,9-diazadodecane (22) 

Compound 22 was prepared from 260 mg (0.0003 mol) of 43w according to procedure 

described above for the synthesis of 3 to afford 205 mg (92%) of 22 as a white solid. 1H NMR 

(DMSO-d6): δ 9.02 (bs, 4H, NH), 8.02 (b, 2H, NH), 7.30−7.12 (m, 22H, Ar-H, and NH), 4.03 (t, 

2H, J = 7.6 Hz, CHPh2), 3.43 (bs, 4H, NCH2), 3.23 (bs, 4H, NCH2), 2.85 (b, 8H, NCH2), 2.24 (m, 

4H, CH2CH2), 1.84 (b, 4H, CH2CH2), 1.67 (b, 4H, CH2CH2). 13C NMR (DMSO-d6): δ 145.34, 

129.14, 128.31, 126.79 (Ar-C), 48.58, 46.59, 45.13, 41.18, 34.93, 26.29, 23.26 (CH and CH2). 

1,15-Bis-{3-[1-(3,3-diphenylpropyl)ureado]}-4,12-diazapentadecane (23) 

Compound 23 was prepared from 290 mg (0.0003 mol) of 43x according to procedure 

described above for the synthesis of 3 to afford 225 mg (88%) of 23 as a white solid. 1H NMR 

(DMSO-d6): δ 8.94 (bs, 4H, NH), 7.27−7.21 (m, 16H, Ar-H), 7.13−7.10 (m, 4H, Ar-H), 3.96 (t, 

2H, J = 7.2 Hz, CHPh2), 3.02 (t, 4H, J = 6.9 Hz, NCH2), 2.84 (t, 4H, J = 7.2 Hz, NCH2), 2.77 (bs, 

8H, NCH2), 2.09 (d, 4H, J = 7.2 Hz, CH2CH2), 1.69 (t, 4H, J = 6.4 Hz, CH2CH2), 1.56 (bs, 4H, 

CH2CH2), 1.21 (bs, 6H, CH2CH2). 13C NMR (DMSO-d6): δ 159.35 (C═O), 145.49, 129.07, 
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128.28, 126.72 (Ar-C), 48.49, 47.24, 45.09, 38.75, 36.82, 36.07, 28.55, 27.48, 26.37, 25.91 (CH 

and CH2). 

1,15-Bis-{3-[1-(3,3-diphenylpropyl)thioureado]}-4,12-diazapentadecane (24) 

Compound 24 was prepared from 287 mg (0.0003 mol) of 43y according to procedure 

described above for the synthesis of 3 to afford 230 mg (92%) of 24 as a white solid. 1H NMR 

(DMSO-d6): δ 8.87 (bs, 4H, NH), 7.89 (bs, 4H, NH), 7.32−7.25 (m, 16H, Ar-H), 7.18−7.14 (m, 

4H, Ar-H), 4.10 (b, 2H, CHPh2), 3.44 (b, 4H, NCH2), 3.23 (b, 4H, NCH2), 2.87 (m, 8H, NCH2), 

2.25 (d, 4H, J = 7.6 Hz, CH2CH2), 1.83 (t, 4H, J = 7.2 Hz, CH2CH2), 1.68 (m, 4H, CH2CH2), 1.28 

(b, 6H, CH2CH2). 13C NMR (DMSO-d6): δ 145.37, 129.11, 128.30, 126.70 (Ar-C), 48.61, 47.30, 

45.15, 41.42, 34.93, 28.58, 26.41, 25.94 (CH and CH2). 

1,15-Bis-{3-[1-(2,2-diphenylethyl)thioureado]}-4,12-diazapentadecane (25) 

Compound 25 was prepared from 260 mg (0.0003 mol) of 43z according to procedure described 

above for the synthesis of 3 to afford 201 mg (90%) of 25 as a white solid. 1H NMR (DMSO-d6): 

δ 8.91 (bs, 3H, NH), 7.70 (b, 1H, NH), 7.52 (b, 1H, NH), 7.26 (bs, 16H, Ar-H), 7.16 (bs, 4H, Ar-

H), 4.36 (b, 2H, CHPh2), 4.04 (b, 4H, NCH2), 3.45 (b, 4H, NCH2), 2.78 (b, 8H, NCH2), 1.78 (b, 

4H, CH2CH2), 1.58 (b, 4H, CH2CH2), 1.25 (b, 6H, CH2CH2). 13C NMR (DMSO-d6): δ 181.50 

(C═S), 143.36, 129.16, 128.62, 127.07 (Ar-C), 50.44, 48.78, 47.30, 45.09, 28.59, 26.40, 26.25, 

25.91(CH2). 

1,12-Bis-{3-[1-(2,2-diphenylethyl)thioureado]}-4,9-diazadodecane (26) 

Compound 26 was prepared from 280 mg (0.0003 mol) of 43aa according to procedure 

described above for the synthesis of 3 to afford 214 mg (89%) of 26 as a white solid. 1H NMR 

(DMSO-d6): δ 9.05 (b, 4H, NH), 7.79 (b, 2H, NH), 7.53 (bs, 2H, NH), 7.28 (bs, 16H, Ar-H), 7.14 

(m, 4H, Ar-H), 4.36 (bs, 2H, CHPh2), 4.02 (bs, 4H, NCH2), 3.42 (bs, 4H, NCH2), 2.81 (b, 8H, 

NCH2), 1.80 (bs, 4H, CH2CH2), 1.66 (bs, 4H, CH2CH2). 13C NMR (DMSO-d6): δ 183.29 (C═S), 

143.39, 129.16, 128.63, 127.07 (Ar-C), 50.46, 48.76, 46.57, 45.09, 41.21, 26.25, 23.16 (CH and 

CH2). 
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1,11-Bis-{3-[1-(2,2-diphenylethyl)thioureado]}-4,8-diazaundecane (27) 

Compound 27 was prepared from 330 mg (0.0004 mol) of 43bb according to procedure 

described above for the synthesis of 3 to afford 220 mg (79%) of 27 as a white solid. 1H NMR 

(DMSO-d6): δ 9.13 (b, 4H, NH), 7.77 (bs, 2H, NH), 7.50 (bs, 2H, NH), 7.27 (bs, 16H, Ar-H), 7.16 

(bs, 4H, Ar-H), 4.35 (bs, 2H, CHPh2), 4.04 (b, 4H, NCH2), 3.66 (bs, 4H, NCH2), 3.42 (bs, 4H, 

NCH2), 2.94 (bs, 4H, NCH2), 2.80 (bs, 4H, NCH2), 2.01 (b, 2H, CH2CH2), 1.79 (bs, 4H, 

CH2CH2). 13C NMR (DMSO-d6): δ 183.20 (C═S), 143.38, 129.17, 128.63, 127.07 (Ar-C), 50.45, 

48.68, 46.24, 44.57, 41.05, 26.28, 22.98 (CH and CH2). 

1,11-Bis-{3-[1-(1,1-diphenylmethyl)thioureado]}-4,8-diazaundecane (28) 

Compound 28 was prepared from 335 mg (0.0004 mol) of 43cc according to procedure 

described above for the synthesis of 3 to afford 227 mg (80%) of 28 as a white solid. 1H NMR 

(DMSO-d6): δ 8.90 (b, 4H, NH), 8.29 (b, 2H, NH), 7.40−7.22 (m, 20H, Ar-H), 6.72 (b, 2H, CH), 

4.56 (b, NH), 3.52 (b, 4H, NCH2), 2.97 (m, 8H, NCH2), 2.02 (b, 2H, CH2), 1.87 (b, 4H, 

CH2CH2). 13C NMR (DMSO-d6): δ 183.22 (C═S), 143.43, 129.08, 127.89, 127.56 (Ar-C), 61.28 

(CH), 45.37, 44.59, 41.34, 26.33, 23.00 (CH2). 

1,12-Bis-{3-[1-(1,1-diphenylmethyl)thioureado]}-4,9-diazadodecane (29) 

Compound 29 was prepared from 354 mg (0.0004 mmol) of 43dd according to procedure 

described above for the synthesis of 3 to afford 262 mg (87%) of 29 as a white solid. 1H NMR 

(DMSO-d6): δ 8.95 (b, 4H, NH), 8.30 (bs, 2H, NH), 7.30 (m, 20H, Ar-H), 6.72 (b, 2H, CHPh2), 

3.51 (b, 4H, NCH2), 2.88 (b, 8H, NCH2), 1.87 (b, 4H, CH2CH2), 1.66 (b, 4H, CH2CH2). 13C NMR 

(DMSO-d6): δ 183.26 (C═S), 143.42, 129.08, 127.89, 127.57 (Ar-C), 61.30 (CH), 46.60, 45.22, 

41.42, 26.38, 23.28 (CH2). 

1,15-Bis-{3-[1-(1,1-diphenylmethyl)thioureado]}-4,12-diazapentadecane (30) 

Compound 30 was prepared from 390 mg (0.0004 mol) of 43ee according to procedure 

described above for the synthesis of 3 to afford 298 mg (89%) of 30 as a white solid. 1H NMR 

(DMSO-d6): δ 8.90 (b, 4H, NH), 8.35 (b, 2H, NH), 7.30 (bs, 20H, Ar-H), 6.73 (bs, 2H, CHPh2), 



	   46 

	  

3.51 (bs, 4H, NCH2), 2.89 (bs, 4H, NCH2), 2.81 (bs, 4H, NCH2), 1.87 (bs, 4H, CH2CH2), 1.60 

(bs, 4H, CH2CH2), 1.26 (b, 6H, CH2CH2). 13C NMR (DMSO-d6): δ 183.29 (C═S), 143.45, 129.06, 

127.89, 127.55 (Ar-C), 61.30 (CH), 47.32, 45.23, 41.42, 28.59, 26.41, 25.93 (CH2).  
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ABSTRACT 
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The recently discovered enzyme lysine-specific demethylase 1 (LSD1) plays an 

important role in the epigenetic control of gene expression, and aberrant gene silencing 

secondary to LSD1 over expression is thought to contribute to the development of cancer. We 

recently reported a series of (bis)guanidines and (bis)biguanides that are potent inhibitors of 

LSD1, and induce the re-expression of aberrantly silenced tumor suppressor genes in tumor 

cells in vitro. We now report a new series of isosteres that are also potent inhibitors of LSD1. 

These compounds induce increases in methylation at the histone 3 lysine 4 (H3K4) chromatin 

mark, a specific target of LSD1, in Calu-6 lung carcinoma cells. In addition, these analogues 

increase cellular levels of secreted frizzle-related proteins (SFRP) 2 and 5, and transcription 

factor GATA4. These compounds represent an important new series of epigenetic modulators 

with the potential for use as antitumor agents. 
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