do i1=1,4
 j(1)=i1
 do i2=1,4
 j(2)=i2
 do i3=1,4
 j(3)=i3
 do i4=1,4
 j(4)=i4
 if (j(1) .eq. j(2) .or. j(1) .eq. j(3) .or. j(1) .eq. j(4)) cycle
 if (j(2) .eq. j(3) .or. j(2) .eq. j(4)) cycle
 if (j(3) .eq. j(4)) cycle
 print*,j(1),j(2),j(3),j(4)
 end do
 end do
 end do
end do

Invited Article

Robert J. Boik, Ben Haaland
Second-Order Accurate Inference on Simple, Partial, and Multiple Correlations

Journal of Modern Applied Statistical Methods

Editor
Shlomo S. Sawilowsky
Evaluation & Research
Wayne State University

Associate Editors
Harvey Keselman
Bruno D. Zumbo
Department of Psychology
University of Manitoba
Measurement, Evaluation, & Research
University of British Columbia

Assistant Editors
Vance W. Berger
Todd C. Headrick
Alan Klockars
Biometry Research Group
Educational Psychology
Educational Psychology
National Cancer Institute
Southern Illinois University
University of Washington

Copyright © 2006 JMASM, Inc.
ISSN: 1538 - 9472/06/$95.00
Quantitative Methods in Education and the Behavioral Sciences: Issues, Research, and Teaching
(sponsored by the American Educational Research Association's Special Interest Group: Educational Statisticians)

Series Editor
Ronald C. Serlin, University of Wisconsin-Madison

Real Data Analysis
Edited by Shlomo S. Sawilowsky, Wayne State University

The invited authors of this edited volume have been prolific in the arena of Real Data Analysis (RDA) as it applies to the social and behavioral sciences, especially in the disciplines of education and psychology. Combined, this brain trust represents 3,247 articles in refereed journals, 127 books published, US $45.3 Million in extramural research funding, 34 teaching and 92 research awards, serve(d) as Editor/Assistant Editor/Editorial Board Member for 95 peer reviewed journals, and provide(d) ad hoc reviews for 362 journals. Their enormous footprint on real data analysis is showcased for professors, researchers, educators, administrators, and graduate students in the second text in the AERA/SIG ES Quantitative Methods series.

Also Available in the AERA SIG/Educational Statistician Series:
Structural Equation Modeling:A Second Course

Published by:
Information Age Publishing Inc., PO Box 4967 Greenwich, CT 06831
Tel: 203-661-7602 Fax: 203-661-7952 URL: www.infoagepub.com
Editorial Board

Subhash Chandra Bagui
Department of Mathematics & Statistics
University of West Florida

J. Jackson Barnette
School of Public Health
University of Alabama at Birmingham

Vincent A. R. Camara
Department of Mathematics
University of South Florida

Ling Chen
Department of Statistics
Florida International University

Christopher W. Chiu
Test Development & Psychometric Rsch
Law School Admission Council, PA

Jai Won Choi
National Center for Health Statistics
Hyattsville, MD

Rahul Dhanda
Forest Pharmaceuticals
New York, NY

John N. Dyer
Dept. of Information System & Logistics
Georgia Southern University

Matthew E. Elam
Dept. of Industrial Engineering
University of Alabama

Mohammed A. El-Saidi
Accounting, Finance, Economics & Statistics, Ferris State University

Felix Famoye
Department of Mathematics
Central Michigan University

Barbara Foster
Academic Computing Services, UT
Southwestern Medical Center, Dallas

Shiva Gautam
Department of Preventive Medicine
Vanderbilt University

Dominique Haughton
Mathematical Sciences Department
Bentley College

Scott L. Hershberger
Department of Psychology
California State University, Long Beach

Joseph Hilbe
Departments of Statistics/ Sociology
Arizona State University

Sin-Ho Jung
Dept. of Biostatistics & Bioinformatics
Duke University

Jong-Min Kim
Statistics, Division of Science & Math
University of Minnesota

Harry Khamis
Statistical Consulting Center
Wright State University

Kallappa M. Koti
Food and Drug Administration
Rockville, MD

Tomasz J. Kozubowski
Department of Mathematics
University of Nevada

Kwan R. Lee
GlaxoSmithKline Pharmaceuticals
Collegeville, PA

Hee-Jeong Lim
Dept. of Math & Computer Science
Northern Kentucky University

Balgobin Nandram
Department of Mathematical Sciences
Worcester Polytechnic Institute

J. Sunil Rao
Dept. of Epidemiology & Biostatistics
Case Western Reserve University

Karan P. Singh
University of North Texas Health
Science Center, Fort Worth

Jianguo (Tony) Sun
Department of Statistics
University of Missouri, Columbia

Joshua M. Tebbs
Department of Statistics
Kansas State University

Dimitrios D. Thomakos
Department of Economics
Florida International University

Justin Tobias
Department of Economics
University of California-Irvine

Dawn M. VanLeeuwen
Agricultural & Extension Education
New Mexico State University

David Walker
Educational Tech, Rsrch, & Assessment
Northern Illinois University

J. J. Wang
Dept. of Advanced Educational Studies
California State University, Bakersfield

Dongfeng Wu
Dept. of Mathematics & Statistics
Mississippi State University

Chengjie Xiong
Division of Biostatistics
Washington University in St. Louis

Andrei Yakovlev
Biostatistics and Computational Biology
University of Rochester

Heping Zhang
Dept. of Epidemiology & Public Health
Yale University

INTERNATIONAL

Mohammed Ageel
Dept. of Mathematics, & Graduate School
King Khalid University, Saudi Arabia

Mohammad Fathwan Al-Saleh
Department of Statistics
Yarmouk University, Irbid-Jordan

Keumhee Chough (K.C.) Carriere
Mathematical & Statistical Sciences
University of Alberta, Canada

Michael B. C. Khoo
Mathematical Sciences
Universiti Sains, Malaysia

Debasis Kundu
Department of Mathematics
Indian Institute of Technology, India

Christos Koukouvinos
Department of Mathematics
National Technical University, Greece

Lisa M. Lix
Dept. of Community Health Sciences
University of Manitoba, Canada

Takis Papaioannou
Statistics and Insurance Science
University of Piraeus, Greece

Nasrollah Saebi
Computing, Information Systems & Math
Kingston University, UK

Keming Yu
Department of Statistics
University of Plymouth, UK
Journal Of Modern Applied Statistical Methods

Invited Articles

<table>
<thead>
<tr>
<th>Pages</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>283 – 308</td>
<td>Robert J. Boik, Ben Haaland</td>
<td>Second-Order Accurate Inference on Simple, Partial, And Multiple Correlations</td>
</tr>
</tbody>
</table>

Regular Articles

<table>
<thead>
<tr>
<th>Pages</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>309 – 316</td>
<td>Rand R. Wilcox</td>
<td>Inferences About The Components Of A Generalized Additive Model</td>
</tr>
<tr>
<td>317 – 322</td>
<td>Markus Neuhäuser, Ludwig A. Hothorn</td>
<td>Maximum Tests Are Adaptive Tests</td>
</tr>
<tr>
<td>323 – 327</td>
<td>Vee Ming Ng</td>
<td>Inference for P(Y<X) For Exponential And Related Distributions</td>
</tr>
<tr>
<td>328 – 331</td>
<td>Sat Gupta, Javid Shabbir</td>
<td>An Alternative to Warner’s Randomized Response Model</td>
</tr>
<tr>
<td>332 – 343</td>
<td>Gibbs Y. Kanyongo</td>
<td>The Influence of Reliability on Four Rules for Determining the Number of Components to Retain</td>
</tr>
<tr>
<td>344 – 346</td>
<td>Marley W. Watkins</td>
<td>Determining Parallel Analysis Criteria</td>
</tr>
<tr>
<td>347 – 355</td>
<td>Leming Qu, Yi-Cheng Tu</td>
<td>Change Point Estimation of Bilevel Functions</td>
</tr>
<tr>
<td>356 – 366</td>
<td>Ayman Baklizi, Amjad AL-Nasser</td>
<td>Large Sample and Bootstrap Intervals for the Gamma Scale Parameter Based On Grouped Data</td>
</tr>
<tr>
<td>367 – 380</td>
<td>B. M. Golam Kibria</td>
<td>Applications of Some Improved Estimators in Linear Regression</td>
</tr>
<tr>
<td>381 – 389</td>
<td>Mohammed Ebrahem</td>
<td>Bootstrap Intervals of the Parameters of Lognormal Distribution Using Power Rule Model and Accelerated Life Tests</td>
</tr>
<tr>
<td>395 – 407</td>
<td>Kung-Jong Lui</td>
<td>Interval Estimation of Risk Difference in Simple Compliance Randomized Trials</td>
</tr>
<tr>
<td>408 – 416</td>
<td>H. E. T. Holgersson</td>
<td>Simulation of Non-normal Auto Correlated Variables</td>
</tr>
</tbody>
</table>
417 – 431 Vicki S. Hertzberg, Fan Xu, Michael Haber Restricted Quasi-independent Model Resolves Paradoxical Behaviors of Cohen’s Kappa

452 – 457 James F. Reed, III AB/BA Crossover Trials - Binary Outcome

458 – 463 Ramalingam Shanmugam, Anwar Hassan, Peer B. Ahmad Correlation Between the Number of Epileptic and Healthy Children in Family Size that Follows a Size-Based Modified Power Series Distribution

463 – 474 Michael B. C. Khoo, S. Y. Sim A Robust Exponentially Weighted Moving Average Control Chart for the Process Mean

475 – 489 M.L.Aggarwal, S.Roy Chowdhury, Anita Bansal, Neena Mital Interaction Graphs for 4r2n-p Fractional Factorial Designs

490 – 494 Kenneth Lachlan, Patric R. Spence Corrections for Type I Error in Social Science Research: A Disconnect Between Theory and Practice

495 – 512 Mammadagha Mammadov, Statistical Methods and Artificial Neural Networks Berna Yazici, Şenay Yolacan, Atilla Aslanargun, Ali Fuat Yüzer, Embiya Ağaoğlu

513 – 528 N. Ismail Abdul Aziz Jemain A Comparison of Risk Classification Methods for Claim Severity Data

529 – 537 Maria D. S. Paraguas, Anton A. Kamil Estimation of Meat Demand System in Malaysia: Model Selection Between the Rotterdam model and the Almost Ideal Demand System (AIDS)

Brief Reports

538 – 541 Michael Wolf-Branigin Supporting and Preparing Future Decision-makers with the Needed Tools
Early Scholars
542 – 550
Betül Kan, Berna Yazıcı
The Individuals Control Chart in Case of Non-Normality

Statistical Software Applications and Review
551 – 566
David A. Heiser
Statistical Tests, Tests of Significance, and Tests of a Hypothesis (Excel)

Algorithms and Code
567 – 574
Todd C. Headrick
JMASM24: Numerical Computing for Third-Order Power Method Polynomials (Excel)

575 – 588
Sikha Bagui, Subhash Bagui
JMASM25: Computing Percentiles of Skew-Normal Distributions (Visual Basic)

Translations, Ephemerals, & Biographies
589 – 592
Shlomo S. Sawilowsky, John L. Cuzzocrea
Joseph Liouville’s ‘Mathematical Works Of Évariste Galois’

593 – 595
John L. Cuzzocrea, Shlomo S. Sawilowsky
Pietro Paoli, Italian Algebraist

JMASM is an independent print and electronic journal (http://tbf.coe.wayne.edu/jmasm), publishing (1) new statistical tests or procedures, or the comparison of existing statistical tests or procedures, using computer-intensive Monte Carlo, bootstrap, jackknife, or resampling methods, (2) the study of nonparametric, robust, permutation, exact, and approximate randomization methods, and (3) applications of computer programming, preferably in Fortran (all other programming environments are welcome), related to statistical algorithms, pseudo-random number generators, simulation techniques, and self-contained executable code to carry out new or interesting statistical methods.

Editorial Assistant: John Cuzzocrea Production Staff: Christina Gase
Internet Sponsor: Paula C. Wood, Dean, College of Education, Wayne State University
STATISTICIANS

HAVE YOU VISITED THE

Mathematics Genealogy Project?

The Mathematics Genealogy Project is an ongoing research project tracing the intellectual history of all the mathematical arts and sciences through an individual’s Ph.D. advisor and Ph.D. students. Currently we have over 80,000 records in our database. We welcome and encourage all statisticians to join us in this endeavor.

Please visit our web site

http://genealogy.math.ndsu.nodak.edu

The information which we collect is the following:
The full name of the individual, the school where he/she earned a Ph.D., the year of the degree, the title of the dissertation, and, MOST IMPORTANTLY, the full name of the advisor(s). E.g., Fuller, Wayne Arthur; Iowa State University; 1959; A Non-Static Model of the Beef and Pork Economy; Shepherd, Geoffrey Seddon

For additions or corrections for one or two people a link is available on the site. For contributions of large sets of names, e.g., all graduates of a given university, it is better to send the data in a text file or an MS Word file or an MS Excel file, etc. Send such information to:

harry.coonce@ndsu.nodak.edu

The genealogy project is a not-for-profit endeavor supported by donations from individuals and sales of posters and t-shirts. If you would like to help this cause please send your tax-deductible contribution to: Mathematics Genealogy Project, 300 Minard Hall, P. O. Box 5075, Fargo, North Dakota 58105-5075E