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CHAPTER 1 

MOTIVATION AND BACKGROUND  

 A robot can be simply defined as a machine that reduces the dependency of 

humans to accomplish a task which requires precision and caution at times. Over the 

past few decades, robotic architecture has replaced numerous manual operations. 

Robotic systems have become an integral part of the military, automotive and 

medical fields.  An assortment of robotic systems has evolved on par with the 

development of science and technology. Packbot, iRobot 710, iRobot210 SUGV, Micro 

robot and Nano robot, and DaVinci System are a few of the highly developed robotic 

systems with distinct functionalities.  

 Interestingly, different techniques have been coupled with the robots to enhance 

their performance. Many robots are equipped with image guiding tools along with 

different sensors, IMU (inertial measurement units) and GPS which allow for better 

precision, visuals and error correcting mechanisms together with providing their own 

locations. 

 Image guiding tools such as onboard cameras could be used for the 

teleoperation and visual servoing of the robot. This, in turn, could be used for 

surveillance and combat task visual servoing, which can be defined as sending the 

robot to the desired location by clicking on its video feed.  Teleoperation controls the 

robot from a distance by using its camera. A study conducted by Chen [1] on 

teleoperation shows the examinations of various factors that affect human performance 
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like Field of View (FOV) of the camera and the orientation of the robot, while 

teleoperating the robot. The paper also discusses some of the solutions for improvising 

teleoperation by using the audio, haptic display and gesture input controls. 

Teleoperation is a useful feature and the video feed could be used for visual servoing 

suggesting that robots can take on multiple roles. 

Many robots are available that can perform various tasks, such as combat and 

surveillance in different environments. Despite the varied design of the robots, many of 

them have similarities like using cameras and sensors. For example, the Foster-Miller 

TALON is a new military robot that is claimed to be fastest as compared with other 

robots available in military. It has numerous capabilities, ranging from on board 

automatic machine guns to camera and sensors. It is designed for various environments 

and can work in snow, sand or water. 

For complex tasks like performing surveillance this robot has limitation which can 

make teleoperation difficult.  For instance, it does not have visual servoing and 

surveillance. It relies on the EYE DRIVE [2] a recent surveillance robot with panoramic 

vision.  Using four cameras (illuminated by a white or NIR LED) the operator has an 

enhanced view of what is happening around the robot. An additional fifth camera with tilt 

and zoom allows the operator to further investigate a situation. Thus different robots are 

used for different task, but multiple applications can be performed using the same robot. 

 Many robots have cameras, and sensors, that can be used for surveillance tasks 

as well as attack purposes also. Thus a single robot provides the capability for multiple 

operations with ease. It is not necessary to change the robot for every application.  
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 Sufficient research could provide a typical camera enabled robot with, 

surveillance features and or a visual servoing-controlling algorithm for analysis or for 

combat purposes. Furthermore, it could enable an aerial robot with a camera to track a 

ground based robot. 

This thesis project encompasses the development of software for controlling a 

single ground vehicle using an aerial camera view or the onboard camera view of the 

robot. Various capabilities like teleoperation and “point and go” control algorithm are 

implemented on the ground robot in this research. Teleoperation is controlling the robot 

from a distance by using its camera view and “point and go” sends the robot to a 

desired location using the onboard or aerial camera views. 

   According to Fong and Thorpe [3] teleoperation is vital for human robot 

communication. Teleoperation is required, so that a robot can perform well in various 

surrounding environments. Their study describes various teleoperation of a UAV 

(Unmanned Aerial Vehicle), UGV (Unmanned Ground Vehicle) and Underwater 

Vehicles. It also describes the various interfaces used for the teleoperation of these 

various vehicles. Teleoperation has achieved a level where stereoscopic displays and 

simulations are used for driving the robot. A study conducted by Chen [4] at US Army 

Research Laboratory tested the use of 3D stereoscopic display to drive the robot, 

providing an indirect but realistic view. In their experiment they were using 3D glasses 

to drive the robot rather than directly viewing on the site. 

 The field of telerobotics is also playing a huge role in surgeries. According to 

Ballantyne [5] laparoscopic surgery could be enhanced by using and modifying the 
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existing imaging techniques to use 3D views. Ballantyne used a AESOP arm as it 

simulates the human hand and optimizes the ergonomics of the operating positions. A 

robot having the teleoperation capabilities could be used for various tasks like de-mining 

operations [6], cleaning a nuclear plant [7] or locating and handling hazardous material. 

 Teleoperation could be enhanced if some other capabilities could be added to it, 

such as “point and go” capabilities using an aerial camera view as well as an onboard 

camera view. The “point and go” control mechanism could be implemented using 

several different methods. For this research augmented reality and correlation tracking 

were used to implement various schemes of “point and go” algorithms to control the 

ground vehicle. 

Azuma [8] presented a survey on the field of Augmented Reality. In his paper he 

briefly describes the various applications of Augmented Reality ranging from Military 

usage to the Operation Theater. He also discussed how Augmented Reality works and 

highlighted some of its weaknesses while proposing some solutions on the drawback. 

1.1 BACKGROUND 

1.1.1 Augmented Reality 

 Augmented Reality (AR) is a technique that helps to connect the physical world 

with the virtual world. There is a significant difference between Augmented Reality and 

Virtual Reality. Virtual Reality is a computer simulated physical world that transforms the 

real world to the virtual world, whereas AR places the virtual world with the physical 

world. According to Milgram and Zhai [9], in the human-robot team, humans are not 

accurate, but the robots are accurate [10]. In their paper [9] they propose an ARGOS 



                                                                    
 

                                                        5 
 

(Augmented Reality through Graphics Overlay on Stereovideo system that was shown 

to overcome operator visual limitations. 

Augmented Reality provides a platform for teleoperation and achieves various 

benefits by overcoming various limitations.  It can also be incorporated with advanced 

algorithms like SIFT (Scale Invariant Feature Transform) [11] and SURF (Speeded Up 

Robust Feature). It has also been used with object detection and 3D reconstruction, and 

Monte Carlo Localization [12] (a localization technique in which the position of the robot 

can be determined by the use of the 3D maps). 

 Augmented Reality is a system which detects a marker’s position and orientation 

in the camera coordinate system. Thus it can act like a tracking sensor for various 

applications. Also it is reliable and operable unless and until the marker is not in the field 

of view or the lighting condition are drastic. The figure below provides an example of the 

common marker of Augmented Reality. 

 

Figure 1: An example of Augmented Reality Marker. 

Various 3D objects can be visualized on these markers using an Augmented 

Reality view. The 3D objects become part of the 3D environment and can be viewed on 
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the screen when the marker is detected by the Augmented Reality system. The 

following figure shows a virtual cube on an AR marker. 

 

Figure 2: Augmented Reality View form the aerial robot seen by the operator. 

 The Augmented Reality view is shown in above figure. As soon as the object is 

visible it denotes that the Augmented Reality system is active and dynamic tracking 

data such as orientation, position and coordinates of the marker are available. 

1.1.2 Correlation Tracking  

Visual Servoing [13] also known as Vision Based Robot control, is used for 

controlling the motion of a robot using its camera. The operator is not required to be 

present in the environment in which the robot is working. It could be remote controlled at 

a distance using its camera view.  The applications of visual servoing could be simply 

surveillance or even in combat situations. 

3D Cube 
generated by AR 
on the maker 
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 According to Wood [24] Correlation is a process which assesses the similarity 

between two images also it uses the highest frequency content. Correlation tracking is 

an algorithm that can track an assigned goal point in a camera’s view. It can be used in 

video image processing to track a point from frame to frame. Correlation tracking uses a 

digital image which provides a direct measure of the similarity between two images.  

Correlation tracking works in the following manner. First a point is assigned on a video 

frame. The value of the pixel is stored and tracking starts. The pixel value is checked on 

a frame-by-frame basis and the value is tracked from each frame. If there is low 

correlation the frame is discarded and a new frame is fetched thus keeping track of the 

point assigned. 

For this research the correlation tracker tracks the goal point using a foveal 

kernel [14]. The implementation of the correlation tracker was developed by Turing 

Associates Inc. [14] as part of a research grant from the US Army. 

Kernel and Convolution: 

 Kernel is a matrix of pixels, and it acts like a filter. The matrix could be of any 

size, it is used as an operator during the image convolution. The kernel is applied to 

each and every pixels of the image. The structure of the matrix will erode certain feature 

on the image for example if the kernel is a diagonal matrix, then the diagonal features of 

the image will be eroded. The weights are distributed accordingly for the filter to extract 

that feature. 

 Convolution in mathematical terms could be defined as, the mathematical 

operation on two functions and resulting into the new function that is the third function 
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that could be visualized as the modified version of one of the functions. There are 

various types of convolutions viz. circular convolution and circular discrete convolution. 

 The kernels are set prior to the convolution so that it can highlight specific 

features of the image. The kernel works like a spatial filter each of them are made for 

specifically set to the set spatial frequency for convolution that is intended to be 

highlighted. There are various types of kernel like Gaussian blur, Laplace etc. Each has 

a different structure of the matrix and it will work on the image accordingly. 

 An example of Laplace kernel is given below: 

                      [
   
    
   

] [25]                           (1.1) 

 After applying this filter to the image the following results could be seen on the 

image. The Laplace kernel works as an edge extractor or detector which will extract the 

edges from the image.       

 
 

Figure 3: Implementation of Laplacian Kernel on the image. 

         RGB Image          Gray Image  Image after applying kernel 
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 For edge detection using Laplacian it is necessary to convert the RGB image to 

gray scale image or binary image and then the filter could be applied on it. The above 

figure shows the RGB image converted into gray scale image and the edges detected 

from the image after applying the Laplace kernel to it. 

 In the same fashion the foveal kernel works. The structure of the kernel is 

designed in such a manner that it is sampled densely at the center and less densely to 

the periphery. The following image shows the visualization of foveal kernel. 

 

Figure 4: An example of Foveal Kernel which is used by the Correlation Tracking for tracking a 

point.  This method is used in Aim 3 for the “point and go” operations from the ground robot’s 

camera view. (Image Used With Permission of Shawn Hunt [14]) 

 The correlation tracker uses the Multiple Resolution Progressive Alignment 

(MRPA). The expansion of the kernel is a progressive alignment. A gain is applied to 

the expansion factor for the incoming image or test image at time t+1 and not the 

reference image at time t. The center point in the kernel is tracked by the correlation 

tracker. 
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 As the operator clicks on the image this kernel is applied and the point is tracked 

on the frame by frame basis. The following figure shows the flow chart of the Correlation 

Tracking  algorithm starting from the frame capture up to the tracking of the points  

 

Figure 5: Flowchart of Correlation Tracking. 

 The above flowchart provides a detailed description of Correlation Tracking. The 

algorithm starts by capturing a frame. If the frame capture is successful it proceeds to 
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the next step and where the user sets up the tracking points. The tracking points are the 

pixel values (goal point) that are assigned by the user by clicking on the screen. 

 The tracking points are again checked to ensure that the capture is successful. If 

so the tracking is ready to start at that particular point/ pixel value. If it is unsuccessful 

tracking is aborted and the algorithm ends. 

 If the tracking point setup is successful it will proceed to actually tracking the 

point/ pixel on a frame-by-frame basis. If the tracker successfully tracks the point in all 

frames the tracking remains active. Occasionally, due to a change in the environment of 

the scene, the correlation between the frames might be too low. In this case the frames 

are discarded. New frames will be acquired to continue the process of the tracking. 

 The tracking might be aborted due to low light or scaling and rotation of the 

objects being tracked. However it can resume when the algorithm acquires better 

conditions for operation. Thus correlation tracking can be used to track objects in an 

environment and to match the image frame by frame for feature tracking.   

1.1.3 Significance                    

      The goal of this project is to provide the framework for tracking and movement 

capability of a ground robot using different camera views (e.g. on-board camera or 

aerial camera). Various algorithms are implemented including a point-and-go capability 

and movement directed from aerial camera views.  

 These capabilities will help the operator monitor the ground vehicle and send 

information about the desired location by using the aerial view of the camera or by using 

the onboard camera view from the robot. Additionally, the aerial robot (simulated with a 
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robot arm holding a camera) will autonomously track the ground vehicle. This research 

provides a framework of tracking the robot together with sending it to the desired 

locations.  This research can be extended for potential use in military or surveillance 

applications, where guiding and sending robots to the chosen locations is crucial.        

1.1.4 Related Work  

 The research has three aims. The first aim is to track a ground robot using an 

aerial view. According to Morris [15] a group of UAVs (Unmanned Aerial Vehicles) can 

conduct cooperative tracking of ground vehicles. They proposed various approaches in 

which a group of UAVs perform a range of tasks such as escorting a convoy, signaling 

alerts on the path, tracking single ground vehicles and deciding between friendly and 

unknown/enemy vehicles.  

Ariyur and Fregene [16] proposed an autonomous tracking of the ground vehicle 

using UAVs. They proposed a model and also use waypoints, which were applied on 

the wings of the UAV for tracking of the ground vehicle. A waypoint is a physical 

reference which is used for different purpose of the navigation. 

 The above studies use some type of sensor information for their accuracy and 

consistency. An alternative approach is proposed in this research using an Augmented 

Reality system which is capable of providing position and orientation information. An AR 

system offers additional capabilities when compared to sensors alone.  Because AR 

systems are based on a marker that allows minor changes in the orientation or location 

to be detected.  
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 In the first aim of the project, a ground robot will be tracked and followed by a 

simulated aerial robot (robot arm). So in the Tracking system, an AR approach is used 

in which a camera is kept on the aerial robot and a marker is kept on the ground robot. 

The aerial robot will autonomously adjust itself with the help of AR and keep tracking the 

ground robot.  AR Toolkit is a software package that helps to build the Augmented 

Reality applications. The idea of using the AR system for tracking is significant because 

it can be applied to any aerial vehicle which has a camera on it.  Additionally it can be 

applied to any aerial vehicle for autonomous tracking of the ground vehicle. The 

applications generated through AR software are a blend of the virtual objects in the 

video stream of the real world.  AR assists by adding 3D objects into the real scene. 

 The second aim of this research is to implement “point and go” using the aerial 

camera view.  Previously, Lee [17], proposed a “point and go” system for multiple robots 

using the aerial camera view. He developed “point and go” algorithm based on the 

camera coordinates and video coordinate. Additionally, the system uses the information 

of the markers placed on the robot.  His system was a simple model where the aerial 

camera provides an aerial view and an operator has to click on the incoming video feed 

from the aerial camera. Therefore the robot can be moved to the desired location from a 

teleoperated position. A limitation of this system is that it is camera dependent, and the 

camera has to be static all the time.  Thus, if the camera moves when the operator 

clicks, then the robot loses a frame of reference and will move to an incorrect location.  

Since the scene is changed, the camera coordinates have to be re-registered.  This 

thesis will extend this work by adding a frame of approach was required to make the 

system well optimized and accurate without depending on the camera. The main feature 
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which makes this system better and different from the previous system is: 1) It uses the 

world coordinate system 2) A two marker approach is implemented and 3) It is a camera 

independent system. Thus, even if the camera moves or the camera lost its focus, the 

ground vehicle will move to the desired location without depending on the camera. 

The two marker approach is implemented in the system one marker is used as a 

reference marker, and it acts like a landmark of the system and other marker is kept on 

the robot which is related to that reference marker. The world coordinates and other 

information for the robot are set on the reference marker. The other marker will work 

according to the reference marker. Thus by using the two marker approach, the system 

is camera independent and unaffected by camera movement as long as the reference 

marker is visible in the AR view. 

The third aim of the thesis is to control the robot from an on-board camera view. 

An approach that has been implemented to this “point and go” system is correlation 

tracking [14].  Recently, Hunt [14], proposed a “point and go” on the Packbot using the 

Correlation Tracking developed by Turing Associates LLC. In his research he has 

provided the capability of “point and go” to the Packbot, using its onboard camera, 

odometer and other sensors available on it. The system was based on Visual Servoing. 

It was using the data from the sensors and odometer of the Packbot for its location in 

the field. As the correlation tracking works on the camera coordinate system, it can be 

applied to map the world coordinates system with the camera coordinate. 

If the point is defined in the world coordinate, it can be tracked through camera 

coordinate. When the camera moves, the scene changes but the correlation tracking 
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will help to keep the selected point in the same coordinates where it was selected on 

the screen. By this a direct relation can be established between the world and camera 

coordinates which can increase the accuracy of the entire system. 

Additionally, he was using a single point Correlation tracking for the “point and 

go”. The idea behind this is that when the operator clicks on the video the pixel value of 

the click is stored and a tracking is turned on, so even if the robot moves the clicked 

point will always be tracked through video feed and the robot could be sent in that 

direction where it is directed through the onboard camera view. 

Inspired from this research an aim three was designed that is Teleoperation and 

“point and go” using the onboard camera view. The “point and go” capability was 

implemented on SRV-1 which could complete this architecture. This system is different 

with the previous one in thee respects 1) A “point and go” was implemented to the robot 

(SRV-1) which is  accessible to everyone 2) Multiple point Correlation Tracking was 

implemented 3) No sensors or odometers are used and 4) A pure Visual Servoing 

approach is used. 

Multiple Point correlation tracker approach was used and suggested for the 

estimation of time to go to the destination by using the output of the multiple point 

correlation tracker, by Markham [18]. According to this study, an accurate and cheaper 

alternative could be available using the multiple correlation Tracker for approximating 

the time required to move the airborne vehicle from the initial position to the destination 

position without using radar to estimate time. 
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The use of the Multiple Point Tracking in this research is for the calculation of the 

distance between the robot and the destination position which is clicked. These points 

are not only used for the calculation of the distance, but also the distance calculated 

from them could be used as stopping matrices for the robot.  As the system is not using 

the sensors or odometer data, a multiple point correlation tracking is used as the 

alternative for the system thus making the entire system purely Visual Servoing based. 

A capability of (1) using the aerial and camera views to send the robot to a 

desired location (2) providing autonomous tracking through the aerial robot (3) “point 

and go” control via an on-board camera to control the ground vehicle can make remote 

teleoperation very efficient and accurate. Thus an entire structure is defined through this 

research for controlling the ground vehicle using the various camera views. 

All the aims are interrelated.  The “point and go” can use the view from the aerial 

camera, the robot can also be guided using its on-board view and the robots can be 

followed by an aerial robot.  

1.3 System Architecture 

The entire architecture and the relationship between the three aims are shown in 

the following figure: 
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Figure 6: System Architecture encompassing the three aim of Thesis, Aim1: Tracking of ground 

robot using the aerial robot, Aim 2: The aerial camera view being used for “point and go”, Aim 3: 

Visual servoing by using the ground robot’s onboard camera view. 
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1.2 Outline of Dissertation  

The second chapter details specific Aim 1 of the research and various component 

of the system. The third chapter provides information about the specific Aim 2 of the 

research and explains how the aim is achieved and evaluated using efficiency testing. 

The fourth chapter presents details on specific Aim 3 and discusses about the algorithm 

and the testing of its component. The fifth chapter provides conclusion drawn from the 

research and it also discusses some future work that could enhance the system. 
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CHAPTER 2 

TRACKING THE GROUND ROBOT USING AN AERIAL ROBOT 

2.1 Introduction 

This chapter discusses my first aim, which is focused on the use of aerial camera 

view, to track a ground robot. The idea behind this is to build a tracking system in which 

the ground robot can be tracked from any aerial robot that has a camera on it. The 

ground robot is tracked with a marker on it.  In this way, wherever the robot moves on 

the ground, it will be autonomously tracked by the aerial robot (as long as the marker is 

visible). 

Tracking of the ground robot is very important in combat and surveillance. This is 

useful for the operator to obtain updated information from the environment and the 

location of the ground robot using an aerial view.  The operator can send the robot to 

different places or can receive detailed information of the specific place from the ground 

robot. 

A novel approach has been implemented in this research for tracking the ground 

robot. An Augmented Reality system is used to track the robot using the information of 

the marker kept on the ground robot. Augmented Reality is powerful system which is 

implemented in various fields from medical to military fields [8]. As various systems rely 

on the sensor information, it can be crucial to control or navigate the system on failure 

of these sensors. AR system surpasses potential problem with sensor failure because 
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as long as the marker is visible the system is active and can provide the data from the 

marker like orientation and position. 

To demonstrate this, a setup was built in which a camera is mounted on the arm 

of an AESOP 3000 robot and SRV-1 is used as a ground robot. An algorithm was 

written, in which AESOP takes commands through a serial (RS-232) port and an 

Augmented Reality system is used to track the marker kept on the SRV-1.This chapter 

explains the entire architecture with its all components, used to achieve the Tracking 

system. The system level flow chart is shown in following figure. 

 

Figure 7: System-level flow chart of Aim 1. This system allows the ground robot to always be kept in the field 

of view of the aerial robot. 
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The overview of the system is given in the above figure. It shows the system-

level flowchart of the algorithm. Each block in the flowchart provides a step by step 

working of the system, starting from capturing the aerial camera view from the aerial 

robot up to moving the aerial vehicle to keep the ground robot in center of field of view. 

2.2 Methods 

This section discusses various hardware components used in the system. It also 

discusses the system setup and the sub aims, which envelopes the entire aim. 

Efficiency testing and results are also discussed in this section together with the solution 

for the limitations are also discussed. 

2.2.1 Hardware Components  

2.2.1.1 AESOP 3000 

AESOP 3000 is a Medical robot developed by Computer Motion. AESOP stands 

for (Automated Endoscopy System for Optimal Processing) It can be used in minimally 

invasive surgery (MIS), endoscopy etc. as it imitates the functions of surgical staff that 

holds and moves the camera operator. 

AESOP is the FDA approved robot for clinical use. It is a voice-controlled robot, 

previously it was used as a camera holder for the laparoscopic camera but since then 

has been used for operating, which required empowering it with the operating tools so 

that it emulates the human hand. The AESOP was then modified and also used as 

replacement of the Zeus robot and was also used in Da Vinci systems. 
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AESOP arm has a six degree of freedom (DOF). The arm could be rotated 

approximately around 300 degrees in X and Y direction. The end effector of the AESOP 

arm has the pan and tilt functionality.  In this research, only 2 degrees of freedom (DOF) 

are used viz. shoulder and elbow joints of the robot are used to emulate the aerial robot.  

 

 

Figure 8: AESOP 3000 was holding a camera on its arm and was used as a simulation of an aerial 

robot. 

2.2.1.2 SRV-1 

SRV-1 [19] is a Wireless Mobile Surveillance Robot with video capability, which 

is connected through a Wi-Fi network and has a C programming interface. It has the 

feature of Tele-operation and can be used for SWARM robotics and surveillance. 
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It supports third party software like RoboRealm, Microsoft Robotic Studio and 

Webots. It has an onboard digital camera with various resolutions, from 160 × 128 to 

1280 × 1024 pixels. It is also equipped with laser pointers that can be used as a 

distance sensor and WLAN 802.11b/g. 

 

                                             

Figure 9: SRV-1 used in the Thesis as the Ground robot. 

The SRV-1 has many useful features like full access to source code and 

schematics (General Public License).  It can be used for full autonomous operations, 

Teleoperational mode, and has compatibility with a C interpreter, Linux 2.6.   

2.2.1.3 LOGITECH QUICKCAM ORBIT AF  

A Logitech Quickcam is used for the Tracking System, which is the most 

important component in the project. This camera is chosen for the research for many 

reasons: it has a Carl Zeiss lens, 2.0 megapixel sensor, and a motor for movement of 

the camera, which has autofocus capabilities [20]. 

Camera 
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Figure 10: LOGITECH QUICKCAM ORBIT AF camera used for aerial view and was kept on the 

AESOP arm [20]. 

The feature like good lens of the camera is required because it is resilient to the 

change of light conditions and can capture more data in a pixel. The higher resolution is 

required because the quality of the image is good compared to previous versions like 

VGA (Video Graphic Array) or 1.5 megapixel sensor and also it is generally available in 

all the cameras.  

2.2.2 SYSTEM SETUP 

 A Logitech camera was fixed on the arm of the AESOP robot and an AR marker 

was put on the SRV- 1. A motion control board was used for controlling the AESOP 

arm. 

 The SRV-1 was controlled through Wi-Fi and an augmented reality system was 

used to track the robot using the marker on it. Also a serial interface was used to control 
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the AESOP arm. A custom built motion control board shown in figure [11], created by 

Lee [17], was used in this research. 

 The AESOP arm allowed for  two degrees of freedom (DOF) provided from the 

shoulder and elbow joints. The system uses two joints via the elbow joint and the 

shoulder joint of the AESOP arm. The shoulder joint was used to track the robot at 

positions the elbow joint is unable to reach. 

 

Figure 11: Here, the camera is held by the Aesop arm, and it tracks a ground robot pattern. 
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2.2.3 Sending Commands to AESOP via RS232 

The serial program communicates with AESOP 3000 through an RS232 port 

which is located on its Motion Control Board. The AESOP arm can be moved by 

assigning encoder counts to different motors to move along the X and Y axes. The 

actual process is to first convert movements into the encoder count and then command 

the motion controller board to move the joint to that required count. 

 

 

 

Figure 12: Custom built Motion Control Board for sending command to AESOP arm [17]. 

The ASCII commands to control the robot movement are defined in following 

manner as shown in the following table 

 
 
 
 

Ports for sending 
commands to 
Aesop Arm. 

RS232 Port 
for connection 
with computer 
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COMMANDS EXPLAINATION 

  PRX Position Relative for X axis 

PRY Position Relative for Y axis 

 

Table 1: Commands used to move the AESOP arm 

PRX and PRY: The Position Relative for X axis is for the elbow joint, and the 

Position Relative for the Y axis is for the shoulder joint of AESOP. So if the value of 

PRX is a positive count it will move in a counterclockwise direction; conversely, if PRX 

is negative it will move in a clockwise direction. The PRY behaves the same way. This 

movement is used for compensating the robot movement in a forward or backward 

direction in such a manner that the ground robot is in the field of view. The following 

figure shows the AESOP arm and its movement. 

 

AESOP ARM 

                                    

        ELBOW MOVEMENT                                                           SHOULDER MOVEMENT 

Figure 13: AESOP Arm Movement. 

Elbow Joint 

Shoulder Joint 
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Once this mechanism of commands was tested, it was implemented in the 

algorithm of the tracking system. A function was created in the algorithm which 

calculates the encoder counts and sends them to the serial port. The motion controller 

receives the commands and moves the AESOP accordingly. The major issue faced 

here was how to compute the correct encoder counts in order to track the ground robot. 

Also, the position of the SRV-1 has to be known (via the tracking markers) as it has no 

sensors or odometer in it as discussed in previous section. In order to get the position of 

the SRV-1, AR is used. As discussed previously Augmented Reality helps to connect 

the virtual world to the real world. AR has a provision to find the position and orientation 

of the marker. AR computes the orientation and position of the marker and one can get 

the X, Y and Z position and range of the marker in world coordinate system.  

The following figure shows the X,Y,Z coordinates  and range of the marker. The 

range of the marker is distance between the marker and the camera in camera 

coordinate system. 

 

Figure 14:  X, Y, Z Positions obtained from the marker in the Augmented Reality System. The 

command prompt window shows the reading of the marker at its position. 

X=-13.53 Y: -83.11 Z: 1158.36 
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Range of the marker is calculated using the following formula. 

Range=√                                     (3.1) 

This data of the marker is used for the calculation of the encoder counts for the 

AESOP arm. The X position of the marker is input into the function which is built to 

calculate the number of encoder counts for the elbow joint of the AESOP. The 

calculation is performed by multiplying the X position of the marker with the value which 

in turn forms an encoder count. The data of the encoder counts are sent to the AESOP 

so it can move accordingly.  

2.2.4 Inverse Kinematics of the AESOP arm 

To keep the ground robot in the center of the view it is necessary to implement 

an inverse kinematics to the AESOP elbow/shoulder joints. The idea behind this 

implementation is to compensate the movement of elbow joint. This is because the 

SRV-1 can move greater than 180 degrees with respect to the AESOP’s position and 

could go out of focus. To overcome this problem, inverse kinematics was implemented 

so that when the SRV-1 goes out of view, the shoulder joint will move accordingly. This 

keeps the ground robot in the visual field of the camera. 

 Inverse kinematics is a calculation of the angle of the different joints of the robot 

to keep the desired arm in a specific position and orientation. One way to implement the 

inverse kinematics in the algorithm is by using the Jacobian Transpose Method given by 

equation below, 
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       ⃗ [21]               (3.2) 

 A problem with using this method was that an extensive, mathematical 

computation was required, before producing the data for the encoder count. This could 

make the algorithm slower and unnecessary complicated. To overcome this problem, a 

simple solution was required. This was achieved through an analysis of how the arm of 

AESOP moves, how much it moves, and in which directions. 

 The simple solution was developed by using the Y position of the marker. The Y 

position of the marker is input into the function which is built to calculate the number of 

encoder counts for the shoulder joint of the AESOP. And after the calculation, that data 

of counts are send to the AESOP so thus it can move accordingly. The results were 

promising, as the ground robot moves in Y direction, the AESOP shoulder shown the 

effects. It moved backward and forward respectively to keep the ground robot in the 

field of view. 

 This solution is then included into the algorithm, by creating a function which 

directly takes the values of the Y position of the marker. After calculation, it converts 

them in to the encoder counts and then sends the count to the shoulder motor of the 

AESOP. 

Correction was required to move the arm perfectly, such that it keeps tracking the 

robot while keeping the robot in the center of the field of view.  The value which is 

multiplied to Y position of the marker in the function was tested and changed up to it 

reacts properly with Y direction movement of ground robot. So now all the parts of the 
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Tracking system were tested individually.  The next step was to create an algorithm that 

coordinates the system together. 

2.2.5 Adding Serial Communication to the Augmented Reality system 

 As mentioned in the background section Augmented Reality (AR) program can 

help to combine the physical world with the virtual world. So an algorithm was built in 

which AR could be used to identify a marker on the SRV-1. 

 With the help of AR the range of the SRV-1 can be detected and it’s X, Y, Z 

positions are obtained in camera coordinate system. As the SRV-1 moves around the 

camera mounted on the arm, the SRV-1 is detected by the marker, and the robot arm 

moves to follow the SRV-1 

 When the serial program was ready for communication, it was time to combine 

them into a single algorithm. An idea of creating a client-server program was also taken 

into consideration. But the client-server program was not yielding the real-time tracking 

of the SRV-1, as the data coming from the server takes some time to go through the 

client program and also to pass through the serial communication. 

 To overcome this required bringing the serial communication into the AR 

program. So a new challenge was faced, that is, where to implement the serial port 

program in AR as the AR program have two main functions. The first function is a main 

loop, for the initialization of various software modules, such as GLUT and video capture. 

GLUT is an OpenGL Utility Toolbox that is helpful for various input/output operations. 

For example it is used to perform various keyboard monitoring and mouse input 

function. It is also employed to draw 3D objects on the marker like cubes and teapots. 
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The other function is a loop for capturing the next frame of video, detecting the marker’s 

position and computing the transformation between the camera and the marker. 

 The serial communication must be active all the time and also must be initialized 

first, so that the communication is ready to go. Thus the serial code was kept with the 

rest of initialization code so it was ready at the start of the program. 

 Once the serial communication was added to the AR system the next task was to 

use SDL (Simple Direct Media Layer) for communication of SRV-1. SDL is a free cross-

platform multimedia development API, which can be used for games and multimedia 

applications. A Wi-Fi communication could be established using the SDL, to 

communicate with SRV-1.Before moving to it, first the entire combined algorithm was 

tested with the SRV-1 with the marker on it.  The SRV-1 was driven by its console [19], 

shown in the figure.  

 

Figure 15: SRV-1 Console by Surveyor [19]. 
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The test result was encouraging and AESOP was reacting according to the 

movement of the SRV-1, it was tracking the SRV-1. So to complete the system it was 

also required to have the SDL, which could command and control the SRV-1.So the 

SDL program was introduced to the combined serial and AR algorithm. 

 The SDL program must be initialized and closed every time so as to keep the 

connections active and to communicate with the new packets from the SRV-1. So it was 

kept in the main loop and in addition a MovementCommand.cpp file was created for 

commanding the SRV-1 for the movement.  

 After writing   MovementCommand.cpp it was included into main algorithm and again 

checked for the proper operation. Now the SRV-1 is controlled and AESOP was 

commanded through the single program using the AR software. 

 The movement of AESOP was checked on the X and Y axis by moving the SRV-

1 in X and Y directions, so that to ensure whether SRV-1 was in the middle of the video 

frame. The AESOP was working as per expectation and working autonomously with 

accordance to SRV-1. 

 It was necessary to apply a dead zone in the system, because a minute change 

in the marker position, affects the position of the arm and it becomes unstable and 

shakes. To overcome this, a dead zone spanning a certain number of camera pixels 

was created.  The idea was to make a zone or a box of equal pixel values like 40×40 or 

50×50 pixels, such that if the marker is inside that particular region the arm does not 

move at all. Also it could help to keep the marker in the center of the view. 
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 The values of the marker position are analyzed and an area of 100×100 pixels 

was created accordingly for the dead zone, in such a manner that it work like a linear 

proportional controller to the dead zone. The AESOP arm keeps on readjusting itself as 

long as it comes inside the dead zone. 

2.2.6 Testing and Results  

An efficiency and accuracy test has been performed to evaluate the system’s 

performance. Since the AESOP arm moves in the radius of 180 degrees, a test platform 

was created. Different points were set up with different lengths to test the tracking 

system. The following figure shows the working envelope of the AESOP and the 

different points which are selected for the testing. Table 2 shows various points selected 

for the test, the distance between two points in inches and the distance travelled by 

AESOP arm to track the SRV-1. 

 

 

Figure 16: Test Platform setup for testing of the tracking system. The A,B,C are the points setup 

arbitrarily for measuring the difference between the distance covered by the ground robot vs. 

AESOP arm moved for tracking it. 

0˚ 
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180˚ 
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with Camera 
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Points Distance (inches) Aesop moved (inches) 

A-B 8 7 

A-C 20 19 

D-E 10 9 

D-C 15 14 

D-F 25 24 

 

Table 2: Efficiency test table to shows the distance covered by the AESOP vs SRV-1 moved 
between two points. 

From the above result table it is concluded that the AESOP arm is an inch behind 

the center of the ground robot.  The total length from camera to the endpoint of the 

AESOP arm is 1 inch; also the length of the dead zone of 100×100 pixels created for 

the SRV-1 is also approximately 1 inch. The results seems to be promising ensuring 

that the tracking system is working perfectly as expected, also the ground robot 

remained at the center of the camera view which shows that the dead zone created was 

also working as expected. 

 The length from the camera to the endpoint of the AESOP arm and the length of 

the dead zone in inches compensate the required reading between the ground robot 

moved and the aerial robot moved. It is clear from the test that the ground robot is 

tracked by the aerial robot and it is always at the center of the field of view of the 

camera. 
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 The results of the test of the tracking system show that it was successful. The 

AESOP arm was able to autonomously track the SRV-1 when it was in the field of view 

of the camera. Also the arm kept on moving until the ground robot was in the center of 

the video screen. As desired the arm adjusted itself in the X and Y axes to ensure the 

ground robot always remained in the center. Thus the aim of tracking the ground robot 

using the AR system was fulfilled. 

2.2.7 Discussions  

2.2.7.1 Limitations Encountered and Solution 

 A major limitation encountered with this tracking system was that the AESOP 

arm’s movement was not optimized according to the SRV-1.The speed of SRV-1 is 

much faster than the movement of the arm and hence, the SRV-1 could move out of the 

field of view of the camera without detection. This problem could be fixed by making 

changes in the firmware of motion control board and also by reducing the speed of the 

motors of the SRV-1. 

Just to mention the problem is isolated with this AESOP, SRV-1 hardware 

combination, and this is not a generally in surmountable problem with the approach. 
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CHAPTER 3 

POINT AND GO USING AERIAL CAMERA VIEW 

3.1 Introduction 

This aim is focused on sending the ground robot to the desired location using the 

view from a simulated aerial camera residing on the arm of AESOP 3000. The idea 

behind this project is that the operator or user will command the ground robot by 

viewing and clicking on the video feed available from the camera which is kept on the 

aerial robot.  The ground robot will go to the clicked screen position and stop  and wait 

for the next command from the operator. To achieve this aim, a test bed was built in 

which a camera is mounted on arm of AESOP 3000 which is used as an aerial robot 

and SRV-1 is used as a ground robot. 

Figure 16 refers to the overall strategy for achieving this aim. In this system, an 

Augmented Reality system of patterns with two markers is used for tracking purposes.  

One marker is fixed on the SRV-1 with respect to the reference marker. Also a Simple 

Direct Media Layer (SDL) is used to communicate with and move the SRV-1. 

Two markers are used in the algorithm, one for setting the World Coordinates 

and other one to reside on the SRV-1 for local coordinates. This configuration allows for 

a reference marker and frees the camera system to be movable.  

The system level flow chart is given below. It shows the system-level flowchart of 

the algorithm. Each block in the flowchart provides a step by step working of the 
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system, starting from capturing the aerial camera view from the aerial robot up to 

moving the ground robot to the clicked destination point. 

 

Figure 17: System-level flow chart for Aim2. Here the user has the aerial view from the camera 

attached to the Aesop arm, he clicks on the video feed, and this system calculates where to move 

the selected robot and the robot is commanded to move. 

3.2 Methods 

3.2.1 The AR System and the relationship between the two markers. 

As a related work [17] discussed in the previous section it was necessary to 

design a system that is robust, independent and precise enough to work in different 



                                                                    
 

                                                        39 
 

conditions. Before starting to work on the aim, the system was required to work 

independent of the orientation or position of the camera. For example, if the camera 

moves the ground robot must go to the chosen location regardless to the position or 

orientation of the camera. 

To overcome this problem a solution was developed with the help of a reference 

marker created with the AR system.  The reference marker provides us an efficient 

platform to perform this task as the transformation between two markers and the 

camera system is known. The AR system has the capability of tracking multiple markers 

at the same time and it computes the position and orientation of all the markers. 

 

Figure 18: AR Coordinate System showing Marker Coordinate and the screen coordinates and 
how it is observed in the system. Note here that the marker’s coordinate in the real world is knows 
both in the camera’s coordinate system and also in the observed screen coordinates.  Tangential 
and radial distortions parameters are also incorporated for accuracy. Figure adapted from [23]. 
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Therefore a reference marker is setup in such a manner that even if the camera 

moves or changes its position, as long as the reference marker is visible the ground 

robot can be directed to the desired position. 

    

           Reference Marker                                                    SRV-1 Marker  

Figure 19: Markers Used. 

 These are the two markers which are used in the system. Marker A’s position is 

tracked relative to the “Hiro” marker, therefore as long as the Hiro marker is visible the 

SRV-1 can move to the desired location, because the movement computed is relative 

the Hiro marker. Hence, the reference marker acts as a global coordinate system for the 

whole system and the other marker is affixed to the ground robot. Thus as long as the 

reference marker along with the marker on the SRV-1 is visible, the entire system will 

work regardless of the cameras position and orientation. 

3.2.1.1 World Coordinate System: 

The world coordinates are the coordinate that represent the real physical 

coordinate that are associated with the particular object.  
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In this case the world coordinates of the marker A is related to reference marker 

(Hiro) in the physical world. The camera coordinates have just X, Y coordinates in it 

there is no Z coordinate in camera coordinate system. 

  

 

Figure 20: World/ Marker Coordinates of the Pattern in Augmented Reality System. 

 The above figure describes the axes of the world coordinate system. The WY is 

Y coordinate of the marker. The WX is the X coordinate of the marker. The WZ always 

points towards camera. It is used for measuring the distance of the marker from the 

camera when the “glUnProject” function is used. The “glUnProject” function is used to 

convert the screen coordinates to the world coordinates. It is required because when 

the operator clicks on the video feed on the screen, the camera coordinates must be 

converted to the world coordinate, so the system remains in the same coordinate 

system. 

 So per the figure, if the direction of the marker is changed in either the clockwise 

or counter clockwise direction, the coordinate system moves respectively. So the 

WY 

WX 

 

WZ 
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reference marker is always kept still, as it acts as the base of the world coordinate 

system for the system. Thus the world coordinate system remains constant.     

  

                         Normal View                                                      AR View 

Figure 21: Classification of Two Views the normal view shows, the normal view of the Markers 

from the camera and the Augmented Reality view shows the 3D objects on the Marker projected 

by the Augmented Reality system. 

Thus, the various data like orientation and position of the referenced marker “A” 

can be evaluated using the “Hiro” marker and all the data can be calculated with respect 

to the “Hiro” marker. 

The relation.c is available in the AR Toolkit, which is used as a template for 

this algorithm. The program uses two markers and also has a transformation and other 

code for the two markers. This code is selected as it is a perfect code to start with and it 

can be further enhanced for various purposes as it will be discussed in next section. 
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3.2.2 Acquiring World Coordinates based on Reference Marker  

 Thus, the various data like orientation and position of the referenced 

marker “A” can be evaluated using the “Hiro” marker and all the data can be calculated 

with respect to the “Hiro” marker. 

The relation.c, which is available in the AR Toolkit, is used as a template for 

the algorithm. The program uses two markers and also has a transformation and other 

code for the two markers. This code is selected as it is a perfect code to start with and it 

can be further enhanced for various purposes as it will be discussed in next section. 

3.2.2.1 Projection and its types 

A projection transform is used to convert the 3 dimension object into the 2 

dimension that can then be displayed on the camera coordinate system. As the camera 

coordinate system doesn’t have the z axis. There are two types of Projections viz 

Perspective and Orthographic.  The Perspective Projection is in general the projection 

that has the X, Y and Z coordinates. Thus it can project the 3 dimension objects to the 2 

dimension, therefore it is useful fort the real-time applications and gaming. Whereas the 

Orthographic Projection does not have the z axis. Thus in turn it cannot render the 3 

dimensional objects to 2-dimensional screen. 

The following code is used to acquire the world coordinate from the marker. 
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 The output is shown in the below figure after applying this snippet to the 

algorithm. The command window displays the world coordinate of the “HIRO” marker. 

The coordinate readings changes slightly (< ~0.2 cm) due to lighting conditions of the 

environment and error in the computation of the transform.   

 

 

Figure 22: World / Marker Coordinate Representation. 

 

Patt _Trans is the Marker or Marker transformation with respect to the camera. 

“patt_trans[0][3]”is for X coordinate, “patt_trans[1][3] ”is for Y coordinate and 

“patt_trans[2][3]” is for Z coordinate. It is computed by the AR toolkit. A tricky part here 

is that there are two markers in the system and if the following code is applied for 

getting the world coordinates then the information of both the markers are displayed. To 

get the marker information individually, it is necessary to find a solution as it is the key 

for the project. 

X:-47.3942  
Y:-39.159 
Z: 1140.26043 
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Both the markers are defined into the structure called “OBJECT_T” and the 

various related data like transformation of it and marker name are defined into this 

structure as data members. The variable (object) of the structure is defined as “object”. 

The idea behind doing this is to retrieve the information according to marker. So the 

information of the marker could be retrieved using the object element 1 or 2. So to get 

the information of the specific marker, the corresponding element number is used.   The 

following code is an example of how to get the X and Y coordinate of the marker which 

is kept as the second element of the structure array: 

 

 The “object[1].trans” is the transformation of the robot marker, and 

“object[0].trans” is the transformation of the reference marker. An inverse of 

transformation of the reference marker to the other marker will give the transformation 

of marker 2 in marker 1’s coordinate system. 

 

Figure 23: Values of World/Marker Coordinates. 

 The above figure shows the 12 elements of the transformation matrix available 

from the inverse transformation of the two markers.  Since the system must be in 

reference coordinates, it is require to acquire the world coordinates of the robot marker 

to get the exact position of the robot in real world. So a function “GLunProject” was 

developed and it can convert the camera coordinates into the world coordinate system. 
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 To get the world coordinate of the robot marker it is required to click on the 

marker, preferably near its center.  The user also has to click on the destination point. At 

this point, the algorithm has the information of the robot marker in world coordinates 

with respect to reference marker.  

 Thus the system is a two-click system which can send the robot to the desired 

location.  it is required to click on the robot marker and then on the desired destination. 

When the robot stops at the previously clicked position the operator just has to click on 

new location and the robot will move there. The requirement for the two click system 

was that the clicked destination position is retrieved from the camera coordinates in 

terms of world coordinate using “GLunProject” function. The position of the robot could 

be retrieved from the robot marker, but it does not set with the destination position 

obtained from the function. 

3.2.2.2 Calculating the Distance and Angles between Two Points 

It is necessary to obtain a distance between the two points as it will be used for initiating 

the movement and also how much to move the robot and stop. As there is a two click 

system, the distance between the robot and the clicked point can be computed using 

the following Euclidean distance formula  

        √(     )
  (     )

            (4.1) 

 The above equation provides a distance between the two points. Once this 

distance is available it can be used for measuring the distance between the robot and 

the clicked position.  
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 The angle between two points can be acquired by simple coordinate 

geometry. The angle can be calculated using the origin. Let the origin be at (0, 0). The 

geometry can be represented as:   

 

Figure 24: Distance between two linear points. 

 R(x, y) is the location of the robot and the P(x, y) is the location of the destination 

point. Here the origin is defined as the center of the robot marker. The angle is 

calculated using the following equation: 

             
(     )

(     )
      ⁄          (4.2) 

The arc tangent of the x and y coordinates of two points, in this case the position 

of the robot and the desired location, is multiplied by     ⁄  to calculate the angle 

between the robot and the desired location. 

The screen coordinates of the robot are converted into the world coordinates 

before the angle is calculated to ensure that the system is in world coordinate. After the 
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angles are calculated the angle is offset using the quadrant division with respect to the 

marker. 

 

 

Figure 25: Division of the Robot Marker into Quadrants to get Orientation of the robot. 

 The above figure shows how the marker is divided into four quadrants. After the 

angle is calculated it is necessary to adjust the values of the angle according to the 

quadrants, so that the computed angle is accurate. To obtain an accurate angle a 

conditional statement is used to add the appropriate value to the computed angle based 

on the quadrant containing the point. If the destination click is in first quadrant then the 

angle is not modified, if the click is in second quadrant 90˚ is added to the angle. 

 After the angle is summed with the appropriate quadrant dependent value, the 

angle is ready to be used for comparing it with the orientation of the robot marker. It is 

required to compare it with the orientation because the position of the destination 
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clicked point is to be determined, in such a way that the robot will always move straight 

to the clicked position 

3.2.3 Acquiring the Orientation of Robot Marker based on the Reference 

Marker 

 As the angle is calculated based on the destination position to go, it was 

necessary to know the orientation of the robot for example if the click is at 45 degrees 

and the orientation of the robot might be at 330 degrees, then it is necessary to move 

the robot around 40 to 45 degrees such that it could then travel straight to the clicked 

position. 

 To achieve this it is necessary to analyze, how the transformation matrix works. 

The transformation matrix is a 4×4 matrix. It has 16 elements in it. The 4th row of the 

matrix has 0’s and also has 1 in it. So always the 4th row and is discarded and the 

matrix is viewed as 3×4 matrix. So the total 12 elements are to be considered for the 

answer of orientation. 

                     [

       
       
        
    

]                 (4.3) 

4×4 Transformation Matrix 

 A 4×4 transformation matrix is shown above. So a 3×4 matrix is generated 

discarding the 4th row and columns which is shown below 
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                  [
       
       
       

]                (4.4) 

3×4 Transformation Matrix Extracted from 4×4 Transformation Matrix 

 It is required to concentrate on this matrix, to get the orientation from it. A 

solution was searched to calculate the orientation from the transformation matrix. The 

Euler angles and rotational matrix have the answer for it. 

3.2.3.1 Euler Angles: 

 Euler angles are the angle which defines the orientation of the rigid body. They 

can describe the orientation in the Euclidean’s Space. They signify that any orientation 

could be accomplished by rotating any of the X, Y or Z axes. To achieve the rotations, it 

is required to convert the matrix to the rotational matrix and then the elements of the 

matrix will be moved around and the rotation is achieved. 

So it was required to have a study of rotational matrix, which elements are 

required to be move and also how to use them in AR.As the transformation matrix is 

known, it is required to analyze which axis is required to be moved. 
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                                                     Figure 26: Rotation of the Axis. 

 To determine the axis, the concept of frustum was considered and the Y axis was 

chosen to move so a swapping of the elements are undertook. The 3×4 matrix is 

decomposed to 3×3 matrix, as this 9 elements represent the axis, the elements 10, 11 & 

12 are replaced with 20, 21 & 22 as shown in the below matrices. 

 

                    [
      
      
      

]                (4.5) 

3×3 Transformation Matrix Extracted from 3×4 Transformation Matrix 

                   [
       
      
      

]              (4.6) 

Rearranged 3×3 Transformation Matrix Extracted  

Z 

Y 

X 

Z’ 

X’ 

Y’ 
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In the rotational matrix the elements of the matrix are move. In our case the 

elements of the Transformation Matrix, are required to be moved to satisfy Euler 

Angles. After the concept was clear which elements to move it was time to implement it. 

An empty 3×3 rotational matrix is generated and the values are swapped 

accordingly. Then the orientation is obtained using the following snippet. 

 

 

 

 The “arGetAngle” function takes the rotational matrix and three variables in it. 

The values returned from this function are than examined for the orientation. It is 

required to multiply these values by      ⁄  to get the angle of orientation. After an in 

depth analysis of all three values returned value of variable “a” contains the accurate 

orientation of the robot marker with respect to reference marker. 

 As the whole system is dependent on the reference variable thus the values are 

available according to the orientation of the reference marker.  We can get the robot 

marker reference with respect to the reference marker thus making the entire system 

camera independent.  
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3.2.3.2 Test for the Robustness of Orientation Calculation 

The following figure shows the orientation of the robot marker which is 

represented as a cone in AR view and also it represents the robot. 

 

Figure 27: Representation of Orientation of Robot with respect to Reference Marker. 

 

 The above picture shows the orientation of the robot according to the reference 

marker. The orientation reading is highlighted it is 92.09˚ in this view. The camera is 

moved to the different location to check whether any changes in the orientation 

readings. 

 The following figure shows the change in the orientation of the camera and also 

the camera is moved at different angle. The reading of the orientation is not changed it 

is 92.50˚.  

Orientation: 92.0937
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Figure 28: Robustness of Orientation Calculation. 

 From previous two pictures it is confirmed that the system is totally camera 

independent and the readings of orientation does not change according to the 

movement of the camera. 

3.2.4 Combining AR and SDL  

 After obtaining the orientation it was time to combine the SDL program with the 

AR program, in such way that any change from AR reading could be captured in SDL as 

discussed in previous section. The commands used for controlling the SRV-1 are 

provided by Surveyor Company for the SRV-1. The commands are encapsulate in the 

following table. 

 

 

Orientation: 92.5001
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Command “8” Move forward 

Command “5” Stop 

Command “4” Move Left 

Command “6” Move Right 

 

Table 3: Commands for SRV-1 

 As per the table Command “8” is used for moving the SRV-1 forward, so after the 

orientation is available, a conditional statement is generated and the value of orientation 

is compared with the values of angle available. The angle was added with ± 10 degrees 

to move the SRV-1 and to adjust itself with the angle. The Command “4” is used to 

move the robot to move round on its position, such a manner that it adjusts itself with 

the angle and Command “5” is then issued when the angle is ± 8.5 degrees. 

 The requirement for making this adjustment is as the traditional AR system is not 

robust according to the lighting condition of the environment, thus the reading might 

change ± 5 from the original value, and also sometime the camera gets out of focus due 

to change in AR system. To surmount these challenges it is required to keep some 

threshold values, to allow the robot to adjust itself with the AR. As the comparisons get 

over the, robot is ready to move straight to the destined position. So now Command “8” 

is issued to move the robot in straight forward, to the clicked position. 
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 A new challenge was how to stop the robot at the clicked position. The distance 

calculated previously was used for this purpose. A threshold was kept to ensure that the 

robot did not move ahead of the goal point. So different thresholds was tested to stop 

the SRV-1 at desired location, after testing the threshold, a value was selected and 

applied in the code. 

As per the table Command “8” is used for moving the SRV-1 forward, so after the 

orientation is available, a conditional statement is generated and the value of orientation 

is compared with the values of angle available. 

 The angle was added with ± 10 degrees to move to adjust itself with the angle. 

The Command “4” is used to move the robot round on its position, such a manner that it 

adjusts itself with the angle and Command “5” is issued when the angle is ± 8.5 

degrees. 

 The requirement for making this adjustment was, as the traditional AR system is 

not robust according to the lighting condition of the environment, thus the reading from 

the marker might change ± 5 from the original value, and also sometime the camera 

gets out of focus due to change in light conditions and change in the position of ground 

robot. To surmount these challenges it was required to keep some threshold values to 

allow the robot to adjust itself with the AR. 

 As the comparisons of angle versus orientation get over the, robot is ready to 

move straight to the destined position. At that point Command “8” is issued to move the 

robot in straight forward, to the clicked position. 
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 A new challenge was how to stop the robot at click position. So the distance 

calculate previously was used for this purpose. A threshold was kept to ensure that the 

robot does not move ahead of the goal point. 

 So different thresholds was tested to stop the SRV-1 at desired location, after 

testing the threshold, a value was selected and applied in the code. 

3.2.5 Applying Correlation Tracking for point and go. 

 As discussed in previous section correlation tracking can provide a direct 

measure of the similarity between two images. So it could provide an additional 

assurance that even if the camera moves the point where the robot has to go does not 

changes. 

 As the correlation tracking works on the camera coordinate system, it could help 

to map the world coordinates system with the camera coordinate. That is, if the point is 

defined in the world coordinate can be kept track through camera coordinate. So when 

the camera moves, the scene changes but the correlation tracking will help to keep the 

clicked point at same coordinates where it was clicked on screen. Thus a direct relation 

could be accomplished between the world and camera coordinates. 

3.2.5.1 Applying Correlation Tracking to AR system. 

 Before applying the Correlation Tracking to AR it is important, first to perform an 

in-depth analysis for how the AR system captures video frame in the program, and after 

that using the correlation tracking in it. The AR system grabs the video frame through 

Direct X and stores in the data pointer. There is not a direct access to the pointer to 

perform image processing. The data pointer is of type “ARUnit 8 *” is a type that defined 
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in unsigned char format. AR stores the images in different format that is in RGB, BGR, 

and RGBA etc. 

 To fetch these frames from the pointer an OpenCV IPL image is used. A simple 

memory move was used to solve this problem. The idea behind using the OpenCV is it 

is a very useful and powerful tool for the image processing and also once the IPL image 

is available it could be easily accessible and can be used for various purposes like for 

further conversion of the image. 

 First a IPL image was created and the data of the data pointer was moved to 

the IPL image by keeping the width and height same as it was in AR frame. Once this 

memory move was successful, the frame is converted to the OpenCV IPL image. 

 The IPL image is then converted into the 2D Array, to apply the Correlation 

Tracking to it. A function was created which takes the IPL image in it and also takes the 

plane for the conversion. The planes are viz Red, Green, and Blue.  The function goes 

through each and every x and y elements of the image and converts them to 2D Array. 

 The IPL image which was created is passed through this function to create a 

2D Array.  Once this 2D Array is available it is ready for the Correlation Tracking. 

 The idea is to provide a single point correlation tracking to the system. To 

implement the correlation tracking first the Boolean variable is set to true and the 

Constellation Track Wrapper function is called which takes the 2D image and x and y 
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coordinates and starts tracking to that point. Once the Correlation Tracking is applied, 

the image data of OpenCV is send back to the data pointer of the AR and thus 

displayed back over the AR scene. 

3.3 Testing and Results 

 The system was tested for its accuracy and efficiency, the robot was send to 3 

different locations and its Orientation versus Angle was measure. This provides the 

detailed information to determine if the robot is moving accurately at its axis and 

whether it stops at the straight line of its target position. The movement of the robot on 

its axis is focused and prioritized because it is the backbone of the system and it is 

required that it must be accurate. 

   A threshold value was kept of ± 8.6 degrees of the angle. The value was decided 

after different testing conduct on the spherical movement of SRV-1 and stopping 

positions, such that the SRV-1 can then move straight to its clicked destination.  It 

allows the robot to stop accordingly on its axis in such a manner that it always point 

straight towards its clicked destination position. The three different locations are shown 

in the red circle also the test results are shown in the red rectangles in the following 

figures. 
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3.3.1 Test1: Location 1st Quadrant 

Before test of orientation vs. angle. 

 

Figure 29: Initial Condition. 

After test of orientation versus angle. 

 

Figure 30: Change in Orientation after Movement of Robot. 

 From the Figure 28 the orientation of the robot is 76.9952, and after clicking and 

moving the robot to the position from the Figure 29 the angle was calculated as 21.1855  
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 and the orientation of the robot after stopping was 21.9670. This proves that the SRV-1 

has stopped perfectly at the threshold range of ± 8.6 degrees of the angle calculated. 

3.3.2 Test2: Location 3rd Quadrant 

Before test of orientation vs. angle. 

 

Figure 31: Initial Condition. 

After test of orientation vs. angle. 

 

Figure 32: Change in Orientation after Movement of Robot. 
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 From the Figure 30 the orientation of the robot is 131.4813 ˚, and after clicking 

and moving the robot to the position from the Figure 31 the angle was calculated as 

305.4037˚, and the orientation of the robot after stopping was 311.3142 ˚. 

3.3.3 Test3: Location 2nd Quadrant 

Before test of orientation vs. angle. 

 

Figure 33: Initial Condition. 

After test of orientation vs. angle. 

 

Figure 34: Change in Orientation after Movement of Robot. 
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  From the Figure 32 the orientation of the robot is 343.1072, and after clicking and 

moving the robot to the position from the Figure 33 the angle was calculated as 

95.3611, and the orientation of the robot after stopping was 91.8472. 

 The results of the three tests which are shown above is encapsulated in the 

following table 

Orientation  (Before test) Angle Orientation (After test) 

76.9952˚ 21.1855 ˚ 21.9670 ˚ 

131.4813 ˚ 305.4037 ˚ 311.3142 ˚ 

343.1072 ˚ 95.3611 ˚ 91.8472 ˚ 

 

Table 4: Analysis of the Orientation and Angle 

 From the above table it may be concluded that the orientation of the robot is in 

the range of the angle calculated which is ± 8.6 degrees of the angle, thus proving that 

the system is working as expected.  

As per the results of the test it is clear that the robot is moving on its axis and 

stops at the threshold value range. The robot can stop at + 8.6 degrees of the angle 

value or -8.6 degrees of the angle value.  
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3.4 Discussion 

3.4.1 Limitations Encountered and Solution 

One potential problem was evoked through this test that the robot could stop a 

little before or next values of the angle, which may results in an error and causes the 

robot to move little away from the required destination. Also the SRV-1 gets inclined 

when it travels straight at long distances. Slight errors in the angles, can result in large 

distance errors at longer distances. This problem could be overcome by using an 

infrared source, sensors, or an IMU board for the SRV-1 which could give the position of 

the SRV-1 correctly which could be cross checked with augmented reality values and 

thus SRV-1 could be sent to the correct location regardless of the problems. 

 Another problem is encountered is that the camera has an autofocus facility, that 

is not compatible with the augmented reality system.  Since the AR system is based on 

visual information, the auto focus capability poses a problem for the AR working 

properly. Also if the robot moves on the ground or the light is diffracted the autofocus 

feature comes into action and tries to adjust itself which affects the accuracy of the 

system. This problem could be overcome using the camera without autofocus or the 

ability to control the autofocus from the algorithm it could also resolved using perfect 

light conditions, and also though leveling the sensitivity of the camera. 
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CHAPTER 4 

TELEOPERATION AND POINT AND GO USING ONBOARD 

CAMERA VIEW 

4.1 Introduction 

Typical teleportation systems utilize some form of joystick control to move robots 

from remote locations.  This form of control can be time-consuming and cumbersome 

for the user.  For instance, when controlling a robot from an oblique view, the left and 

right movements for the robot can be reversed. This can cause confusion.  Automated 

systems have also been developed, but are not yet sophisticated enough for fully 

manual approaches. The system developed here is considered semi-autonomous.  The 

user still inputs the goal conditions, but, the system automatically maneuvers to the 

desired location. 

Figure [34] shows the system-level flowchart of the algorithm. Each block in the 

flowchart provides a step by step working of the system, starting from capturing the 

onboard camera view from the ground robot up to stopping and resetting the tracking 

points to send the robot to new location. 

The prototype built here is a simple model which is aimed to provide a “point and 

go” capability to a simple ground robot (the SRV-1).  The system uses the robots real-

time video feedback from its onboard camera and is provided a tracking point by the 

user clicking on the screen. Once a goal point is designated, the correlation tracker 

starts tracking the goal point. Another point is a placed a set number of pixels apart.  As 
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the robot is moved towards the tracked point, the distance between the two points 

increase. We use a threshold distance between the two points as our stopping metric.  

As soon as SRV-1 reaches the destination it is kept in a standby mode ready for other 

tasks. It can also be sent to other positions using a reset feature which is implemented 

in the algorithm. Manual control was also provided in the algorithm that increases the 

capability of overall system, as the SRV-1 can be used manually for the surveillance of 

the surrounding environment. Visual Servoing could be then activated to move the SRV-

1 autonomously. 

 

Figure 35: System-level flowchart of Aim 3.  Here, the user has access to the ground robot’s 
onboard camera view.  As the user clicks on the view, a correlation tracking system tracks these 
points.  A control algorithm then moves the robot to the user chosen location. 
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4.2 Methods 

4.2.1 Hardware Setup 

The figure below shows the hardware setup of the system. The SRV-1 is 

connected to the network though a Wi-Fi connection. The SRV-1 provides the video 

feed through its onboard camera to the user interface. The correlation tracking is setup 

and distance is calculated. The movements commands are send back to the SRV-1 via 

the network. Each block is described in details as a module of the methods section 

below. 

 

 

Figure 36: Hardware Setup shows the flow from the various components of the system. 
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4.2.2 Video Feedback from SRV-1 

 Video feedback from the SRV-1 is the most important part of the system. It is 

necessary because it can be used for Teleoperation and also used for “point and go” 

and navigation of the robot. 

 It is necessary to setup the robot first to start communicating with the processing 

server. Therefore the SRV-1 is connected through the Wi-Fi Router, by using the IP 

address and the port number assigned. The SRV-1 is configured and setup to the 

infrastructural mode and an IP address of 192.168.0.9 and port number: 10001 is 

assigned to it. By this the SRV-1 can be connected and used. The SRV-1 is connected, 

by using SDL and SDL NET. First the IP address and Port No is assigned in the global 

variable of the program and the SDL NET is initialized in the main program. 

Two functions were created and used to store and set the video frame received 

from the SRV-1. The SDL is used as follows: (1) it is used to display images; (2) it is 

also the user interface for getting user-selected points. 

 Also a command (”I”) was used, which is a predefined function provided with the 

SRV-1 to grab the frame. Once the frame is grabbed it is set to appropriate frame size 

or resolution and displayed to the user. 

In this program a function is created which is used to connect to the TCP IP 

packets and the image frame is fetched from the socket connection. This function takes 

these arguments 1) TCP Socket, 2) SDL_ Surface **, 3) SDLNet_SocketSet.  

The TCP socket is for connecting to the socket available. The SDL surface used 

for displaying the video frames available from the robot and the SDLNet socketset are 
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used for connecting the socket set for various purposes as it helps to keep the server 

unblocked. A function was created to show the frames on the screen. The following 

snippet  shows that function. 

 

 

 

This function takes the image buffer and displays it on the SDL surface that is the 

output screen. These steps enable the real time video from the robot to start. The 

following figure shows the command window and the video feedback from the SRV-1. 

 

Figure 37: Video Feedback from SRV-1. 

 

Once the video feed is available the SRV-1 can be used for Teleoperational 

mode. It can be used for survillance because the view from the robot is now available. 

As the video feed is available, an operator can perform several operations like moving 
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forward, backward, left and right. The MovementCommand.cpp was integrated with the 

algorithm to provide manual movements to the SRV-1 using the SDL events.Table 5 

shows various key functions to command the SRV-1. 

UP Arrow Key Move forward 

DOWN Arrow Key Stop 

LEFT Arrow Key Move Left 

RIGHT Arrow Key Move Right 

 

Table 5: Commands to Move SRV-1 using the algorithm 

 

4.2.3 Correlation Tracking Setup and Distance Calculation 

 When the user clicks on the screen indicating the location to which the robot 

should move, tracking points appear on the screen (see Figure 37). Tracking points are 

just the rectangles that show up when operators clicks on the video feed or the screen. 

A multiple point correlation tracking structure was setup because this “point and go” 

system is a purely visual based system and also the SRV-1 is not equipped with 

specialized sensors, odometers or IMU devices. Thus it was required to setup a multiple 

point system which can be used for various purposes like measuring the distance and 

calculating a stopping metric.  
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When the operator clicks on the screen, the two rectangles of green and white 

color show up on the screen. These rectangles are tracking points which are set using 

correlation trackers. 

In this system a simple correlation technique provided by Turing Associates [14] 

is used. A drawback of this Correlation Technique is that it is not robust with the 

different light conditions and changes according to different frames. 

To setup a correlation tracking in the program a CorrelationTracker.h file 

along with a  correlation tracker library file are required to be added. Also a 

configuration setting file is also required to be kept in the corresponding directory of the 

system. 

          To add the correlation tracking to the algorithm, it is first required to convert the 

video frame in the image and store it. The next and most important step is to convert 

this image to a 2D Array. The requirement of converting the image to a 2D array 

ensures that each element is represented by a pixel value. 

After converting the image into a 2D array it is stored for further processing. A 

Boolean flag was created and initialized to true. This Boolean variable will help to 

enable further process and if it is false the loop end. Also a wrapper function was 

created which takes as input the 2D array of the image and the pixel coordinate of the 

track point. This function is declared in CorrelationTracker.h file and it is pointing 

to the correlation tracker Class. This function enables the tracking by assigning the pixel 

value and the image as its parameter. 
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After successfully execution of the function, the system draws the tracked points 

by generating SDL rectangles of height and width of 4 pixels? Once they are connected, 

it shows up on the screen which is displayed to the operator (See Figure 37). It is 

required to have another tracking point for which to compare the distance to so, another 

rectangle is generated and tracked. This is also a provision to generate the other point 

while computing the relative position to the first point. So another tracking point is 

generated at the right side of the previous one, to achieve the multiple point correlation 

tracking. After all the above inputs, the algorithm is able to track the points in the video 

frame, using nearby tracking features to the original points. 

 

                               TRACKING PT LEFT     TRACKING PT RIGHT 

 

Figure 38: Once the user selects a set of points in the video view, the correlation tracker tracks 
these points in every video frame. 
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The above figure shows the two points, which are SDL rectangles as discussed 

above. These green and white rectangles indicate that the tracking is active. 

 These points remain static at their scene positions under ideal lighting conditions. 

However, they move or change when bad lighting and other background conditions are 

encountered. The main feature is that the points move near to each as the SRV-1 

moves away from the target, and move apart when the SRV-1 moves closer. Hence, 

depending on the position and movement of the tracked points, the movement of the 

SRV-1 can be ascertained.  This movement is related to the field of view of the camera 

and the relative position of the robot to the originally tracked points. Again, the algorithm 

works well in ideal conditions, but fails if lighting is altered. Hence, algorithm robustness 

is an area of future work.  

The importance of two tracking points is that, they play a lead role for calculating 

distance between the SRV-1 and the destination. These points move away from each 

other as the SRV-1 moves near to the destination. A threshold pixel distance needs to 

be determined. In order to determine a good stopping distance, a calibration of the 

required distance needs to be mapped to the pixel distance needs to be performed. 

Hence, the algorithm will stop the SRV-1 when the distance between the two points has 

reached a preset tolerance.  The stopping threshold was calculated after various testing 

and a value was generated which is equal to distance×1.3. The value was determined 

by multiplying various values with distance versus the stoppage of SRV-1 from the goal 

point. After in depth testing the threshold value was selected as 1.3. 

. 
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The distance is calculated using Euclidean Distance Formula  

               √(     )
  (     )

          (5.1) 

The values of the coordinates of point1 and point 2 are stored in the variables, 

and the distance is calculated using the above formula. The following figure shows the 

output, after enabling the tracking, as well as the coordinates of the point and the 

distance between two points.  Again, once the threshold distance is reached, the SRV-1 

is commanded to stop. 

 

Figure 39: Here you can see that the Correlation Tracking is actively computing the distance 
between the two points. 

 

4.2.4 SRV-1 Movement Commands 

 After setting up the tracking points the next task is to move the robot to the 

desired location. The commands provided by the Surveyor Company, for the SRV-1 is 

used for this task. Command “8” is used for moving the robot forward.  Conditional 
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statements are generated to first checked to ensure that tracking has been activated. If 

the tracking is activated and the points are within the pre-specified tolerance, then the 

appropriate stop command is issued to the SRV-1.  If not, the SRV-1 continues to move 

forward autonomously. 

 An SDL mouse event is required to sense the mouse in the algorithm and  so a 

trigger was generated for initiating the movement and then an appropriate check loop 

was generated which checks for the tracking activation and also for the mouse event. If 

both of these are true it initiates the movement.   

 Once the SRV-1 starts to move forward it was required to issue a stop command 

when it is near to the clicked location. Here the previous calculation of the distance was 

taken into consideration and a stopping threshold is created so a threshold is created. It 

is compared with the original value of the distance. When the threshold is less than or 

equal to the distance a stop command could be issued to the robot. Command “5” was 

used to stop the SRV-1.  

The figure below shows the output when the SRV-1 reaches its destination. The 

command window shows that it is comparing the threshold value with the original 

distance. The “Dstop” is the threshold value and “Distance” is the original distance 

calculated from the two points. Once the distance is greater than the Dstop the SRV-1 is 

stopped.  In this window, notice that the calculated distance is 28cm where is the Dstop 

threshold is 26.  This triggers a stop of the SRV-1.  
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Figure 40: Once the distance between the two points is at a predetermined threshold, the robot 
automatically stops at the destination. 

 

After the SRV-1 stops, it could be moved with maual commands  and assigned to 

a different location. Tracking could be reset and it could be send to a new location.  

In order to reset the tracking, a  “z”  key on the keyboard ,was assigned for the 

resetting of tracking.The user or operator  has to press “z” and click once on the new 

location and again “z” and click on the desired location, to reset both the points to the 

desired location. When the “z” is pressed, the user is notified on the screen asking for 

“Give me the new Point”. So now, the user has to click on the new location and the 

tracking points will be set to that location. The following figure shows that the tracking is 

reset after stopping, which is shown in the previous figure. 
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Figure 41: Now, a new set of tracking points can be selected. Reseting of  tracking points. 

 The following snippet shows how the tracking is reset. The reset is a function 

which points to the tracker class, as we have two points the tracking must be reset of 

both the points. The “SDLK_z” is the key event of SDL. 

 

 

 

4.3 Testing and Result 

  After the system was created, an in-depth analysis and testing was 

performed to ascertain the potential problems of the system.  This analysis could also 

lead to system-level efficiencies that could be implemented. During the testing a major 

problem that was encountered with respect to normal correlation tracking was the 
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lighting condition. Poor lighting conditions drastically affected the performance of the 

tracking system. In addition, the system was affected by sensitive to scaling and rotation 

of the objects.  

 A test was conducted to see whether the correlation tracking reacts according to 

the light conditions. So the SRV-1 was sent from a bright contrast/ well lit area to a low-

contrast dark area to gauge the effects of low lighting. 

 

 

Figure 42: Change in tracking point’s value. 

 From the above figure [42] it could be perceive that the tracking was started at 

the pixel values (139, 85) for the left tracking point and (159, 84) for the right tracking 

point. It can be concluded from the figure that the tracking points get disperse and 

changes. Thus rapid fluctuations in the pixel value were encountered. The fluctuations 

and unstable computation can also be visualized on the video as it is keeps on 

changing. Note on the figure that the values changed up to (112, 63) for the left tracking 

point and (126,88) for the right tracking point. The tracking then resets and as the 

tracker knows the values of the pixel it tried to set them at the same position, but the 

Tracking Pt Right (159, 84) 
Tracking Pt Left (139, 85) 
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SRV-1 was moved further to see the reaction of the low light which is shown in the 

following figure[42]. 

 

 

Figure 43: Tracking point changed from the initial point. 

 

 The above figure [43] shows the SRV-1 was moved farther darker place to see 

whether the tracker resets to the normal position, but due to the normal correlation 

tracking it cannot get back to its starting position and ended at the pixel values (160, 66) 

for the left tracking point and (171,90) for the right tracking point, which is way different 

from the initial value ie (139, 85) for the left tracking point and (159, 84) for the right 

tracking point 

 To verify that the correlation tracking is working and to gage its efficiency, the 

SRV-1 was moved from bright region to the left to the low light place.  

Tracking Pt Right (171, 89) 

Tracking Pt Left (160, 66) 
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Figure 44: Correlation Tracking Resuming with change in environment. 

It is clear from the above figure that as the SRV-1 moves to the stable/good light 

conditions the tracking starts to work correctly, resetting itself automatically to the 

previous pixel values (139, 84) for the left tracking point and (159,84) for the right 

tracking point respectively as shown in figure[42].Thus, it is concluded from the test that 

the tracking system works when near ideal lighting conditions are present.  

4.4 Discussion 

 After the overall testing of the systems some potential problems were 

encountered. The correlation tracking does not properly work in low light conditions and 

it is sensitive to the rotation and scaling of the objects. Scaling of the object means 

shrinking or stretching of objects that occurs when the robot moves towards objects on 

different terrains as the objects may stretch or shrink while moving nearer to the object. 

 This problem could be solved using the customized correlation tracking as per 

the application and the sensitivity to light, scaling and rotating of objects could be coped 

up by changing the algorithm as per the requirement. 

Tracking Pt Left (139, 84) 

Tracking Pt Right (159, 84) 
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 The sensitivity of the light could be controlled by various methods including (1) 

interfacing the algorithm with the camera controls so that the scene could be better 

controlled (2)through an improved algorithm with filtering and image processing that 

enhances the images, or (3) template matching could be introduce to scale the objects 

nearby in the scene. 

 Also the SRV-1 could be enhanced using its stereovision camera capability and 

also an IMU (Inertial Measurement Unit) on-board.  In addition, light sensors could help 

the system to know the position and different light conditions of the environment thus 

change certain image parameters dynamically. IMU board could be directly attached 

with the main board of SRV-1 which could help the operator to know the position of the 

robot and to estimate the distance required. 
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CHAPTER 5 

CONCLUSION, DISCUSSIONS AND FUTURE WORK 

5.1 Conclusion  

 In broad terms, the research covered in this thesis implemented the novel 

approach of tracking a ground robot using an aerial vehicle with the assistance of 

augmented reality. This dissertation has extended the previous work of Lee [17] (a 

“point and go” using aerial camera view), to provide independence from a static camera. 

This work also demonstrated the use of a two marker approach that could have a 

broader impact on applications with multiple robots. In addition, this research also 

extended the previous work of Hunt [14] (a “point and go” control algorithm using 

onboard camera view), to support robots without specialized location sensor. This work 

has shown that, the system can work using only visual servoing, allowing to control the 

robot to be controlled solely from its camera view. This chapter will also summarize all 

the aims of this research.  

A tracking system was developed for the ground robot using the augmented 

reality. The AESOP robotic arm is used to emulate an aerial vehicle with a camera, 

which tracks the ground robot using the camera. 

 The camera view from the aerial vehicle can be used to direct the robot to a 

desired location using, a “point and go” control algorithm. A two marker augmented 

reality system enables the ground robot, to be sent to the selected location even if the 

camera’s position and orientation changes due to movement of  the aerial vehicle. 
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 Furthermore the ground robot can be directed to the desired location using its 

onboard camera view. Thus complete architecture has been established that allows the 

ground robot to be controlled through onboard and aerial camera views while being, 

tracked using the aerial vehicle. 

5.2 Future Work 

 An unmanned aerial vehicle and AR Drone could be used as an aerial vehicle to 

track the ground robot. The AR Drone is a recent augmented reality enabled Wi-Fi 

quadrocopter manufactured by Parrot. It has a camera mounted on its bottom that could 

be used to track the ground robot, and it has the ability to hover in the stable position. 

 

Figure 45: AR Drone, Wi-Fi quadrocopter manufactured by Parrot [22]. 
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 In addition marker-less augmented reality tracking could be used which would 

allow tracking of the robot without an affixed marker. To implement this AR Toolkit could 

be replaced with AR Toolkit plus which provides this capability and many other. A stereo 

vision camera could be used for the aerial vehicle or for the SRV-1 to provide a wide 

field of view as well as the 3D measurements. Thus it could be add on to any system 

that uses it. 

 

 

Figure 46: Stereo Vision system for SRV-1 [19]. 

 

 Infrared sensor, proximity sensors or inertial measurement unit (IMU) could be 

equipped on the SRV-1 to enhance the camera based “point and go” control 

capabilities. This could help to improve the estimates of the robot’s, its distance from the 
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target and its heading. The data could be compared with the AR derived data to validate 

the accuracy of the system. 

 Furthermore the correlation tracking algorithm could be enhanced to make it 

more resilient to low light and scaling or rotation of the object. Thus it could work better 

in low light conditions and react better to fast ground vehicle movements. The entire 

architecture for controlling a single ground vehicle using aerial and onboard camera 

views could also be used for swarm robotics. 

SWARM robotics can be defined as a group of robots performing different tasks 

collectively. The task may include intelligence or behavior. By this the multiple robots 

could be commanded to perform the same task. A single robot from the group could be 

sent to the desired location and rest of them could be deviated to that location using the 

data from that robot. 
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Appendix A: C++ SNIPPET FOR SERIAL COMMUNICATION 

Serial Communication program used for communicating with AESOP 3000 robot. 

 

  



                                                                    
 

                                                        87 
 

 Appendix B: “GLunProject” FUNCTION 

 “GlunProject” function for converting screen coordinate to the world coordinate. 
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Controlling a ground vehicle using only onboard and aerial camera views, can be 

a tedious task, as it is challenging for the operator to estimate information about the 

robots location and orientation using only these view. However the visual data can be 

sufficient for computerized calculation of this information even in the absence of other 

sensors. This approach is of interest to the military because the use of passive sensors 

instead of active sensors (e.g. LIDAR) would be easier and more reliable and would not 

give off detectable signatures.   

The goal of this research was to control a ground vehicle using onboard and 

aerial camera views. No other sensors like an Infrared camera or IMU were used to 

track the robot. In addition an augmented reality-based tracking capability was 

developed for the ground robot using an aerial vehicle. Analysis and efficiency testing 

was conducted on the implemented tracking and control algorithms demonstrating that 
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the ground vehicle can be tracked by the aerial robot using augmented reality. Moreover 

the augmented reality control system enabled the ground vehicle to be accurately 

directed to different locations using the onboard and aerial camera views. Although the 

research used a specific robotic platform the Surveyor SRV1, the concept can be 

implemented on any other ground vehicle or potentially be applied to a swarm of robots.   
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