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A Comparison of Nonlinear Regression Codes  
 

   Paul Fredrick Mondragon       Brian Borchers 
                      United States Navy  Department of Mathematics 
   China Lake, California         New Mexico Tech                              
                                                                
 
 
Five readily available software packages were tested on nonlinear regression test problems from the NIST 
Statistical Reference Datasets. None of the packages was consistently able to obtain solutions accurate to 
at least three digits. However, two of the packages were somewhat more reliable than the others. 
 
Key words: nonlinear regression, Levenberg – Marquardt, NIST StRD 
 
 

Introduction 
 
The goal of this study is to compare the 
nonlinear regression capabilities of several 
software packages using the nonlinear regression 
datasets available from the National Institute of 
Standards and Technology (NIST) Statistical 
Reference Datasets (National Institute of 
Standards and Technology [NIST], 2000). 
 The nonlinear regression problems were 
solved by the NIST using quadruple precision 
(128 bits) and two public domain programs with 
different algorithms and different 
implementations; the convergence criterion was 
residual sum of squares (RSS) and the tolerance 
was 1E-36. Certified values were obtained by 
rounding the final solutions to 11 significant 
digits. Each of the two public domain programs, 
using only double precision, could achieve 10 
digits of accuracy for every problem. 
(McCullough, 1998). 
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The software packages considered in this study 
are: 
 
1. MATLAB codes by Hans Bruun Nielsen 
(2002). 
2. GaussFit (Jeffreys, Fitzpatrick, McArthur, & 
McCartney, 1998). 
3. Gnuplot (Crawford, 1998). 
4. Microsoft    Excel    (Mathews    &   Seymour, 
(1994). 
5. Minpack (More, Garbow, & Hillstrom, 1980). 
 
 Hiebert (1981) compared 12 Fortran 
codes on 36 separate nonlinear least squares 
problems. Twenty-eight of the problems used by 
Hiebert are given by Dennis, Gay, and Welch 
(1977) with the other eight problems given by 
More, Garbow, and Hillstrom, (1978).  In their 
paper, More et al. (1978) used Fortran 
subroutines to test 35 problems. These 35 
problems were a mixture of systems of nonlinear 
equations, nonlinear least – squares, and 
unconstrained minimization. We are not aware 
of any other published studies in which codes 
were tested on the NIST nonlinear regression 
problems.  
 

Methodology 
 
Following McCullough (1998), accuracy is 
determined using the log relative error (LRE) 
formula, 
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where q is the value of the parameter estimated 
by the code being tested and c is the certified 
value. In the event that q = c exactly then qλ  is 

not formally defined, but we set it equal to the 
number of digits in c. It is also possible for an 
LRE to exceed the number of digits in c; for 
example, it is possible to calculate an LRE of 
11.4 even though c contains only 11 digits. This 
is because double precision floating point 
arithmetic uses binary, not decimal arithmetic. 
In such a case, qλ  is set equal to the number of 

digits in c. Finally, any qλ less than one is set to 

zero. 
 Robustness is an important 
characteristic for a software package. In terms of 
accuracy, there is concern with each specific 
problem as individuals. Robustness, however, is 
a measure of how the software packages 
performed on the problems as a set. In other 
words, there must be a sense of how reliable the 
software package is so there may be some level 
of confidence that it will solve a particular 
nonlinear regression problem other than those 
listed in the NIST StRD.  
 In this sense, robustness may very well 
be more important to the user than accuracy. 
Certainly the user would want parameter 
estimates to be accurate to some level, but 
accuracy to 11 digits is often not particularly 
useful in practical application. However, the 
user would want to be confident that the 
software package they are using will generate 
parameter estimates accurate to perhaps 3 or 4 
digits on most any problem they attempt to 
solve. If, on the other hand, a software package 
is extremely accurate on some problems, but 
returns a solution which is not close to actual 
values on other problems, the user would want 
to use this software package with extreme 
caution. 
 The codes were not compared on the 
basis of CPU time, for the reason that all of 
these codes solve (or fail to solve) all of the 

NIST test problems within a few seconds. CPU 
time comparisons would certainly be of interest 
in the context of problems with many variables, 
or in problems for which the model and 
derivative computations are extremely time 
consuming.  
 A closer look at the various software 
packages chosen for this comparative study 
follows. Some of the packages are parts of a 
larger package, such as Microsoft Excel. In this 
case, the parts of the larger package which were 
used in the completion of this study are 
considered. Others in the set of packages used 
are designed exclusively for solving nonlinear 
least – squares problems. 
 
HBN MATLAB Code 
 The first software package used in this 
study is the MATLAB code written by Hans 
Bruun Nielson (2002). Nielson’s code can work 
with a user supplied analytical Jacobian or it can 
compute the Jacobian by finite differences. The 
Jacobian was calculated analytically for the 
purpose of this study. 
  
GaussFit 
 GaussFit (Jeffreys et al., 1998) was 
designed for astrometric data reduction with data 
from the NASA Hubble Space Telescope. It was 
designed to be a flexible least squares package 
so that astrometric models could quickly and 
easily be written, tested and modified. In this 
study, version 3.53 of GaussFit was used. 
 A unique feature of GaussFit is that 
although it is a special purpose system designed 
for estimation problems, it includes a full-
featured programming language which has all 
the power of traditional languages such as C, 
Pascal, and Fortran. This language possesses a 
complete set of looping and conditional 
statements as well as a modern nested statement 
structure. Variables and arrays may be freely 
created and used by the programmer. There is 
therefore no theoretical limit to the complexity 
of model that can be expressed in the GaussFit 
programming language.  
 One of the onerous tasks that faces the 
implementer of a least squares problem is the 
calculation of the partial derivatives with respect 
to the parameters and observations that are 
required in order to form the equations of 
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condition and the constraint equations. GaussFit 
solves this problem automatically using a built-
in algebraic manipulator to calculate all of the 
required partial derivatives. Every expression 
that the user’s model computes will carry all of 
the required derivative information along with it. 
No numerical approximations are used.  
  
Gnuplot 
 Gnuplot (Crawford, 1998) is a 
command-driven interactive function plotting 
program capable of a variety of tasks. Included 
among these tasks are plotting both two- or 
three-dimensional functions in a variety of 
formats, computations in integer, floating point, 
and complex arithmetic, and support for a 
variety of operating systems. 
 The ‘fit’ command can fit a user-defined 
function to a set of data points (x,y) or (x,y,z), 
using an implementation of the nonlinear least-
squares Marquardt – Levenberg algorithm. Any 
user-defined variable occurring in the function 
body may serve as a fit parameter, but the return 
type of the function must be real.  
 For this study, gnuplot version 3.7 
patchlevel 3 was used. Initially, gnuplot 
displayed only approximately 6 digits in its 
solutions to the estimation of the parameters. 
The source code was modified to display 20 
digits in its solutions. For the purposes of this 
study, FIT_LIMIT was set to 1.0e-15, with the 
default values for the other program parameters.  
 
Microsoft Excel 
 Microsoft Excel is a multi-purpose 
software package. As only a small part of its 
capabilities were used during the process of this 
study, discussion of Excel is limited to its 
‘Solver’ capabilities. The Excel Solver function 
is a self-contained function in that all of the data 
must be located somewhere on the spreadsheet. 
The Solver allows the user to find a solution to a 
function that contains up to 200 variables and up 
to 100 constraints on those variables. A Quasi-
Newton search direction was used with 
automatic scaling and a tolerance of 1.0e-15. 
(Mathews & Seymour, 1994). 
 
 
 
 

MINPACK 
 Minpack (More et al., 1980) is a library 
of Fortran codes for solving systems of 
nonlinear equations and nonlinear least squares 
problems. Minpack is freely distributed via the 
Netlib web site and other sources. The 
algorithms proceed either from an analytic 
specification of the Jacobian matrix or directly 
from the problem functions. The paths include 
facilities for systems of equations with a banded 
Jacobian matrix, for least squares problems with 
a large amount of data, and for checking the 
consistency of the Jacobian matrix with the 
functions. 
 For the problems involved in this study 
a program and a subroutine had to be written. 
The main program calls the lmder1 routine. The 
lmder1 routine calls two user written subroutines 
which compute function values and partial 
derivatives. 

 
Results 

 
The problems given in the NIST StRD dataset 
are provided with two separate initial starting 
positions for the estimated parameters. The first 
position, Start 1, is considered to be the more 
difficult because the initial values for the 
parameters are farther from the certified values 
than are the initial values given by Start 2. For 
this reason, one might expect that the solutions 
generated from Start 2 to be more accurate, or 
perhaps for the algorithm to take fewer 
iterations. It is interesting to note that in several 
cases the results from Start 2 are not more 
accurate based upon the minimum LRE 
recorded. 
 The critical parameter used in the 
comparison of these software packages is the 
LRE as calculated in (1). The number of 
estimated parameters for these problems range 
from two to nine. It was decided that it would be 
beneficial for the results table to be as concise as 
possible, yet remain useful. As a result, after 
running a particular package from both starting 
values, the LRE for each estimated parameter 
was calculated. The minimum LRE for the 
estimated parameters from each starting position 
was then entered into the results table.  
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Table 1.  Minimum Log Relative Error of Estimated Parameters. 

 
Problem Start Excel Gnuplot GaussFit HBN Minpack 
 
  1 4.8 5.8              10.0  11.0 7.7   
Misra1a 
  2 6.1 5.8  10.0  10.3 7.7   
 
  1 4.2 4.9  7.4  10.6 2.4   
Chwirut2 
  2 4.6 4.9  8.6  9.1 2.4  
 
  1 4.0 4.2  8.0  10.3 7.5   
Chwirut1 
  2 4.9 4.3  8.5  10.1 7.5   
 
  1 0.0 3.9  0.0  4.9 3.3   
Lanczos3 
  2 0.0 3.9  7.9  5.1 3.3   
 
  1 4.7 5.1  8.7  6.9 8.0   
Gauss1 
              2 4.6 5.1  8.6  6.9 3.3  
 
 
  1  4.5 4.9  0.0  6.8 7.8   
Gauss2 
  2  4.4 4.9  0.0  6.8 7.2   
 
  1  4.6 5.1  NS  10.2 6.6   
DanWood 
  2  4.7 5.1  NS  8.7 6.6   
 
  1 4.4 5.8  0.0  10.9 2.7   
Misra1b 
  2 6.4 5.8  9.7  11.0 2.5   
 
  1 1.0 4.8  7.4  10.3 6.2   
Kirby2 
  2 1.9 4.9  7.9  10.4 6.2 
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Problem Start Excel Gnuplot GaussFit HBN Minpack 
  
               1 0.0 4.0  0.0  9.5 NS   
Hahn1 
  2 0.0 4.0  0.0  9.7 NS   
 
  1 0.0 0.0  0.0  0.0 0.0   
Nelson 
  2 0.0 0.0  1.4  0.0 0.0   
 
  1 0.0 NS  NS  0.0 7.6   
MGH17 
  2 1.4 3.7  NS  0.0 7.5   
 
  1 0.0 10.0  0.0  4.9 4.3   
Lanczos1 
  2 0.0 10.0  10.0  5.8 4.3   
 
  1 0.0 5.4  0.0  5.7 3.5   
Lanczos2 
  2 0.0 5.4  9.1  5.3 3.5 
 
  1 4.3 4.8  9.2  6.5 2.4   
Gauss3 
  2 4.1 5.0  9.1  6.5 2.4   
 
  1 0.0 5.9  0.0  10.8 7.6   
Misra1c 
  2 0.0 5.9  10.0  10.2 7.6   
 
  1 5.2 5.8  0.0  11.0 7.6   
Misra1d 
  2 4.4 5.9  8.9  11.0 7.6   
 
  1 3.5 4.1  8.7  4.0 0.0   
Roszman1 
  2 0.0 5.1  8.6  4.0 0.0   
 
  1 0.0 1.6  3.7  6.5 0.0   
ENSO 
  2 0.0 2.2  3.7  6.6 0.0 
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Problem Start Excel Gnuplot Gaussfit HBN Minpack 
 

 1 0.0 3.6  0.0  5.0 6.3   
MGH09 
  2 5.0 3.6  0.0  5.2 6.4   
 
  1 1.7 3.2  0.0  7.8 0.0   
Thurber 
  2 1.5 4.4  6.4  7.5 0.0   
 
  1 0.0 4.5  NS  9.7 0.0   
BoxBOD  
  2 5.6 3.8  NS  8.6 9.1   
 
  1 5.3 4.2  8.0  10.3 7.1   
Rat42 
  2 5.2 4.1  8.3  11.2 7.1 
 

 1 0.0 NS  0.0  0.0 10.8   
MGH10 
  2 0.0 4.4  0.0  0.0 11.0   
 
  1 0.0 0.0  0.0  8.1 0.0   
Eckerle4 
  2 5.1 4.8  8.3  7.2 1.2   
 
  1 0.0 NS  NS  0.0 6.9   
Rat43 
  2 3.2 2.6  NS  1.3 7.0   
 
  1 0.0 6.4  NS  3.7 0.0   
Bennett5 
  2 0.0 6.7  NS  3.7 1.5 
 
Notes: NS – Software package was unable to generate any numerical solution. A score of 
0.0 implies that the package returned a solution in which at least one parameter was accurate 
to less than one digit. 
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 An entry of 0.0 in the results table is 
given if a software package generated estimates 
for the parameters but the minimum LRE was 
less than 1.0. For example if the minimum LRE 
was calculated to be 8.0e-1, rather than entering 
this, a 0.0 was entered. This practice was 
followed in an effort to be consistent with 
established practices (McCullough, 1998). If a 
software package did not generate a numerical 
estimate for the parameters, then an entry of 
‘NS’ is entered into the results table. 
 
Accuracy 
 As stated in the introduction, the 
accuracy of the solutions was evaluated in terms 
of the log relative error (LRE) using equation 
(1). Essentially the LRE gives the number of 
leading digits in the estimated parameter values 
that correspond to the leading digits of the 
certified values. Again, it should to be noted that 
the values given in the results table are the 
minimum LRE values for those problems. In 
other words, if a problem has five parameters to 
be estimated and four of the parameters are 
estimated accurately to seven digits, but the fifth 
is only accurate to one digit, it is reasonable to 
say that the problem was not accurately solved. 
On the other hand, if all five parameters were 
estimated to at least five digits, then one could 
feel confident that the package had indeed 
solved the problem. 
 Nielsen’s MATLAB code had an 
average LRE score of 6.8 for the problems. For 
the problems this package was able to solve, the 
starting position did not seem to be of much 
importance. In fact, it is quite interesting that for 
several problems the LRE generated using the 
first set of initial values is larger than the LRE 
generated using the second set of initial values. 
This is interesting because the second set of 
initial values is closer to the certified values of 
the parameter estimates. Of the twenty-three 
problems that the parameters were estimated 
correctly to at least two digits, the average LRE 
was 7.96. This shows us that the accuracy of the 
estimated parameters was very high on those 
problems which this package effectively solved. 
 GaussFit had an average LRE score of 
4.9. Unlike Nielsen’s MATLAB code, GaussFit 
was very dependent upon the initial values given 
to the parameters. On eight of the problems 

GaussFit was unable to estimate all of the 
parameters to even one digit from the first 
starting position. From the second starting 
position GaussFit was able to estimate all of the 
parameters to over six digits correctly. This 
seemingly high dependence upon the starting 
values is a potential problem when using 
GaussFit for solving these nonlinear regression 
problems. There is no guarantee that one can 
find a starting value which is sufficiently close 
to the solution for GaussFit to effectively solve 
the problem. 
 Gnuplot has an average LRE score of 
4.6. While this is actually lower than the average 
LRE score for GaussFit, gnuplot is not so 
heavily dependent upon the starting position in 
order to solve the problem. Rather, much like 
Nielsen’s code, gnuplot seems quite capable of 
accurately estimating the parameter values to 
four digits whether the starting position is close 
or far from the certified values. 
 Microsoft Excel did not solve these 
problems well at all. The average LRE score for 
Excel is 2.32. Excel did perform reasonably well 
on the problems with a lower level of difficulty. 
For the eight problems with a lower level of 
difficulty the average LRE was 4.18. While 
these are probably reasonable results for these 
problems, we can see that for the problems with 
a moderate or high level of difficulty Excel did 
very poorly. Such results as this would cause 
one to have serious questions as to Excel being 
able to solve any particular least squares 
regression problem. 
 The Minpack library of Fortran codes 
also performed poorly on these particular 
problems. The average LRE for the twenty-six 
problems that Minpack did solve is 4.51. 
Minpack was significantly less accurate than the 
other packages on four of the problems, 
Misra1b, ENSO, Thurber, and Eckerle4. On the 
other hand, Minpack was considerably more 
accurate on the MGH10 problem. Minpack did 
not seem to be overly dependent upon starting 
position as in only two of the problems was 
there a significant difference in the minimum 
LRE for the different starting positions. 
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Robustness 
 Although the accuracy to which a 
particular software package is able to estimate 
the parameters is an important characteristic of 
the package, the ability of the package to solve a 
variety of nonlinear regression problems to an 
acceptable level of accuracy is perhaps more 
important to the user. Most users would like to 
have confidence that the particular software 
package in use is likely to estimate those 
parameters to an acceptable level of accuracy. 
 What is an acceptable level of accuracy? 
Such a question as this might elicit a variety of 
responses simply depending upon the nature of 
the study, the data, the relative size of the 
parameters, and many other variables which may 
need to be considered. For the purposes of this 
study we will consider an acceptable level of 
accuracy to be three digits. In Table 2, the 
various software packages are compared by the 
number (and percentage) of the problems which 
they were able to estimate the parameters 
accurately to at least three digits from either 
starting position. 

Here, N is the number of problems 
which the package accurately estimated the 
parameters to at least three digits. P is the 
percentage of the problems which the package 
accurately estimated the parameters to at least 
three digits. 

It can easily be seen here that as far as 
the robustness of the packages is concerned 
there   are   two    distinct    divisions.   Nielsen’s 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

MATLAB code, and Gnuplot were both able to 
attain the 3 digit level of accuracy for over 80% 
of the problems. GaussFit, Excel, and Minpack, 
on the other hand were able to attain that level of 
accuracy on less than 65% of the problems. 

 
Conclusion 

 
The robustness of the codes tested in this study 
is surprisingly poor. In many cases, the results 
were quite accurate from one starting point, and 
completely incorrect from another starting point.  
In some cases the codes failed with an error 
message indicating that no correct solution had 
been obtained, while in other cases an incorrect 
solution was returned without warning. 
 Although some problems seemed to be 
easy for all of the codes from all of the starting 
points, there were other problems for which 
some codes easily solved the problem while 
other codes failed. In general, when reasonably 
accurate solutions were obtained, the solutions 
were typically accurate to five digits or better.   

It is suggested that users of these and 
other packages for nonlinear regression would 
be well advised to carefully check the results 
that they obtain. Some obvious strategies for 
checking the solution include running a code 
from several different starting points and solving 
the problem with more than one package.   
 
 
 

 
Table 2. Comparison of Robustness 

  Package   N      P(%) 

  Gnuplot   24   88.89% 

  Nielsen’s MATLAB Code 23   85.19% 

  GaussFit   17   62.96% 

  Minpack   17   62.96% 

  Excel    15   55.56% 
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