
Wayne State University
DigitalCommons@WayneState

Wayne State University Dissertations

1-1-2010

Asymptotic Properties Of Markov Modulated
Sequences With Fast And Slow Time Scales
Son Luu Nguyen
Wayne State University

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Nguyen, Son Luu, "Asymptotic Properties Of Markov Modulated Sequences With Fast And Slow Time Scales" (2010). Wayne State
University Dissertations. Paper 182.

http://digitalcommons.wayne.edu?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/182?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F182&utm_medium=PDF&utm_campaign=PDFCoverPages


ASYMPTOTIC PROPERTIES OF MARKOV MODULATED SEQUENCES

WITH FAST AND SLOW TIME SCALES

by

SON LUU NGUYEN

DISSERTATION

Submitted to the Graduate School,

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2010

MAJOR: MATHEMATICS

Approved by:

———————————————————–
Advisor Date

———————————————————–

———————————————————–

———————————————————–



DEDICATION

To my grandmother

ii



ACKNOWLEDGEMENTS

It is a pleasure to thank those who made this dissertation possible.

I do not have enough words to express my deepest gratitude to my advisor, Pro-

fessor George Yin, who introduces me to the beautiful world of stochastic processes,

proposes me exciting problems, teaches me lots of attractive topics in maths, and

constantly helps as well as encourages me for all 5 years I study at Wayne Sate Uni-

versity. This dissertation would not have been completed without his guidance and

endless support.

I am taking this opportunity to thank Professor Rafail Khasminskii, Professor

Boris Mordukhovich, Professor Tze Chien Sun, and Professor Le Yi Wang for serving

in my committee.

I am grateful to Professor Nguyen H. V. Hung, who recommended me to Wayne

State University and helped me a lot when I worked in Vietnam.

I owe my thanks to Ms. Mary Klamo, Ms. Patricia Bonesteel, Professor Chenggui

Yuan, Dr. Chao Zhu, Professor Choon-Jai Rhee, Professor John Breckenridge, Mr.

James Veneri, and Ms. Tiana Fluker, who have made available their support in a

number of ways, and to Professor Rafail Khasminskii, Professor Alex Korostelev,

Professor Bertram Schreiber, Professor Nguyen Duy Tien, Professor Nguyen Huu

Du, and Professor Dang Hung Thang, who have contributed to my solid knowledge

in Probability and Stochastic Processes Theory.

I would like to share this moment with my family. I am indebted to my parents,

my sister and grandmothers for their unconditional and unlimited love and support

iii



since I was born. My special gratitude goes to my wife for her love, encouragement

and sharing with me everything.

Finally, but not least, I would like to express my appreciation to the entire De-

partment of Mathematics for their hospitality and services. I enjoyed the warm and

friendly atmosphere in the department, and I appreciated the support I received dur-

ing my study at Wayne State University.

iv



TABLE OF CONTENTS

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction 1

2 Preliminaries 8

2.1 Two-time Scale Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

2.1.1 Recurrence Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Ergodic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

2.2 Mixing Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Weak Convergence 15

3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

3.2 Weak Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Tightness of (zε(·), αε(·)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Uniqueness of Solution to the Martingale Problem . . . . . . . . . . . . .28

3.2.3 Characterization of the Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Ramifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Proof of Proposition 3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Strong Approximation 52

4.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

v



4.2 Strong Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

4.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Proofs of Technical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

4.3.1 Proof of Proposition 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 Proof of Proposition 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.3 Proof of Proposition 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Further Remarks 87

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Autobiographical Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

vi



1

1 Introduction

This dissertation concerns Markov modulated random sequences. It focuses on the

asymptotic behavior of suitably scaled processes. Our motivation stems from a wide

variety of applications in communication networks, stochastic hybrid systems, queue-

ing systems, control and optimization, economic systems, production planning, ac-

tuarial science, and financial engineering. Owing to the increasing complexity of the

real-world applications, one is often forced to deal with large-scale systems. Due to

the uncertainty of the random environment, there is a growing interest in modeling,

analysis, and optimization of large-scale systems using an additional random factor

in addition to the usual dynamic systems. In the past few years, increasing and

resurgent efforts have been devoted to treating regime-switching processes; see for

example, [2, 25, 26] for communication networks, [3] for computer models, [19, 20, 27]

for queueing systems, [9] for stochastic hybrid systems, [1] for option pricing un-

der random environment, [8] for economic systems, [24] for state aggregations, [26]

for wireless communications, and [29] for Markowitz’s portfolio optimization under

Markov modulation.

To further our understanding, we focuses on the study of non-Markov random se-

quences in discrete time in which the primary sequence is modulated by a switching

process. The modulating force, representing random environment and other stochas-

tic factors, is modeled by a Markov chain αk with a finite state space M with all

states being recurrent. We are concerned with asymptotic properties of the process
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{X(k, αk)}, where for each α ∈ M, {X(k, α)} is the primary random sequence, and

αk is a Markov chain. To visualize the movement of the resulting random sequence,

suppose for instance, initially, the Markov chain resides in a state α. It sojourns in

that state for an exponentially distributed random duration until time τ1, the first

jump time of αk. The process takes the form {X(k, α) : 0 ≤ k < τ1}. Then at τ1, the

chain switches to a new state β 6= α and stays there for a random duration until τ2 the

second jump time. During this period, the process becomes {X(k, β) : τ1 ≤ k < τ2}

and so on.

Because of the practical needs, the underlying Markov chain often has a large

state space (i.e., |M|, the cardinality ofM, is large). Apparently, corresponding to a

large state spaceM, there are large number of sequences {X(k, α)} to be considered

(in fact |M| sequences). The complexity becomes a real issue. It is important to

reduce the complexity. We note that although the Markov chain has a large number

of states, the transition rates among different states are not the same. A typical

situation is that transitions among some of the states are changing rapidly, whereas

others are varying slowly. The state space can often be split into smaller subspaces

such that within each subspace the transitions are about the same rate, and from one

subspace to another, the transitions happen relatively rarely. Such a model is known

as having nearly completely decomposable structure [3, 24] in the literature. From a

mathematical point of view, it can be setup as a two-time-scale model. A systematic

study of the related Markovian models has been taken recently [28].

For the random sequences under consideration, there are two main issues. The
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first one is not much structure of the sequence {X(k, αk)} is known. The second

one is that as alluded to in the previous paragraph, for a large |M|, there are |M|

sequences of {X(k, α) : α ∈M} to be dealt with. Suppose the state spaceM admits

the representation M = M1 ∪M2 ∪ · · · ∪Ml0 so that Mi for i = 1, . . . , l0 can be

considered as subspaces, where theMi’s are not isolated. There are weak interactions

among theMi’s, andM is not completely decomposable but only “nearly completely

decomposable.” The precise form of transition probabilities will be specified later.

In this dissertation, we examine the random sequence {X(k, αk)} and aim to

reveal the intrinsic features of the underling processes. The sequences of interest

are formulated as two-time-scale processes to achieve the goal of reduction of com-

plexity. Under suitable conditions, we obtain invariance principles in the sense of

weak convergence. There are many well-known treaties of weak convergence methods

for stochastic processes and their applications. These include techniques based on

operator semigroup convergence theorems for Markov processes, martingale charac-

terization of limit processes, and representation of the limit as solutions of stochastic

equations; for example, [7], [15], [21], and many references therein. Here, we use

a martingale averaging approach. Due to the interactions of the switching compo-

nents, the primary process and the modulating process are intertwined and tangled

together, which makes the existing results not directly applicable to our problem.

However, using stochastic analysis techniques and by careful examination of the un-

derlying processes, we are able to overcome the difficulties and to obtain the desired

results. Dealing with mixing type processes, we carry out careful analysis for the
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coupled system. There are really two averages are involved. One is the average of the

two-time-scale Markov chain leading to a reduced Markov chain with a much smaller

state space, and the other is an average of the mixing process leading to diffusion

processes. However, the primary sequences and the modulating sequence are inter-

twined making the averaging analysis a nontrivial task. In the literature, effort has

been made to treat evolution of systems in random media; see for example [14] and

references therein. In this reference, semi-Markov processes in general Banach spaces

are treated. In our setup, the primary sequence is non-Markov. The limit does not

have a Gaussian distribution but Gaussian mixtures.

Using two-time scales in the formulation, we introduce a small parameter ε > 0

into the transition probabilities so as to highlight the different rates of transitions.

Thus, we can write the Markov chain as αεk and write the sequence as X(k, αεk). The

significance of our results can be illustrated from the following example. Considered

an optimal control problem. Let Γ be a compact set of a multi-dimensional Euclidean

space, and u(·) = {u(x, α) ∈ Rd ×M} be a function such that u(x, α) ∈ Γ for all

(x, α) ∈ Rd ×M. Then u(·) is said to be an admissible control and the collection of

all such functions is denoted by A, termed admissible control set. We wish to find

the optimal control of

J(x, α, u(·)) = Ex,α

∞∑
k=0

(1− βε)kL(Xk, α
ε
k, u(·)),

where 0 < β < 1 is a discount factor, L(x, α, u) is a suitable cost function, and

X(0, αε0) = (x, α). This is an analogue of the so-called Markov decision process; see
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[28, Chapter 8]. However, the process X(k, αεk) is non-Markov. We only assume that

for each α, {X(k, α)} is mixing, and {αεk} is a discrete Markov chain with nearly

completely decomposable structure. Due to the lack of structure of the process, the

problem is difficult to solve. The near decomposability however enables us to write

M =M1 ∪M2 · · ·Ml0 .

That is, we decompose the state space into subspaces although these subspaces are not

isolated but weakly connected. Using the idea of aggregation, we lump the states of

the Markov chain in eachMi into one state for i = 1, . . . , l0 to get an aggregate process

αεk. Corresponding to this, we consider a new sequence {X(k, αεk)}. Effectively, we

use a single sequence {X(k, i)} as a representative for the sequences {X(k, α)} for

all α ∈ Mi. Using the idea to be resented in this paper, it can be shown that this

new sequence leads to a limit under suitable interpolations. Then one may construct

optimal control of the limit process and use it to that of the original system leading to

a near-optimal strategy. Similar approach may be taken to treat related optimization

problems. Note that the original modulating Markov chain has a large state space,

which renders the optimization problem computationally infeasible, whereas the limit

process uses aggregated states with a much less computation needed. The original

coupled sequence has little structure known to us and is difficult to handle. The

limit process, however, is a switching diffusion with a well-defined operator. Thus,

it is relatively easier to treat the associated limit system. Denote the original state

space and the state space of the limit by M and M, respectively. If |M| � |M|, a
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substantial reduction of computational complexity will be achieved when one treats

control and optimization problems.

Next, we consider the case that the Markov chain is ergodic, but has a large

number of states (i.e., the cardinality |M| is large). Owing to ergodicity, for certain

optimization problems, instead of treating each sequence {X(k, i)} independently, we

can consider an effective sequence, namely, the average with respect to the ergodic

measure of all the states. The message is that we can replace the large number

of sequences {X(k, i) : i = 1, . . . , |M|} by an aggregated average, whose precise

definition will be given later. To facilitate the use of the average mentioned above,

and dealing with many optimization problems, one frequently needs to answer an

important question after the replacement mentioned above. The question is how

good the approximation is. To answer the question, one needs to provide precise error

bound. IN the next part of our work in this dissertation, under simple conditions,

we establish strong approximation results for a centered and scaled sequence, which

justifies the replacement and ascertains the error bounds.

The rest of the dissertation is arranged as follows. Chapter 2 begins with the

two-time scale formulation and mixing property. Chapter 3 presents the precise for-

mulation of the problem under consideration and takes up the weak convergence issue

under a simplified setup. Careful analysis is provided leading to the desired limit sys-

tem. Further results and ramifications will be also presented in this chapter. To

facilitate the reading, a section is given at the end of the chapter to provide the proof

of a technical result. Chapter 4 develops strong approximation for the sequence of
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interest. The coupling of the mixing random process X(k, i) and the Markov chain

αk, makes the analysis difficult. We divide our task of analysis into several subtasks

and use step-by-step approximation to reach our goal. In addition, an example of

an optimization problem is provided as a demonstration. The proofs of a number

of technical results are gathered and placed in the last section of Chapter 4. A few

further remarks are made in Chapter 5.
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2 Preminaries

This chapter is devoted to the two-time scale Markov chains and the concept of φ−

mixing. In what follows, we first focus on asymptotic properties of Markov chains

with two-time scale and then present some useful inequalities for mixing random

variables.

2.1 Two-time Scale Formulation

Let (Ω,F , P ) be a probability space. Throughout this dessertation, we use C to

denote a generic positive constant with the convention CC = C and C+C = C used.

2.1.1 Recurrence Case

Let ε > 0 and αεk be a time-homogeneous Markov chain on (Ω,F , P ) with state space

M containing m0 states and transition matrix Pε = P + εQ, where P = (pij) is

a transition probability matrix and Q = (qij) is a generator of a continuous-time

Markov chain (i.e., pij ≥ 0 and
∑m0

j=1 p
ij = 1; qij ≥ 0 for i 6= j and

∑m0

j=1 q
ij = 0 for

each i). Assume that the state space M can be written as

M = {s11, . . . , s1,m1} ∪ {s21, . . . , s2,m2} ∪ · · · ∪ {sl01, . . . , sl0,ml0}

=M1 ∪M2 ∪ · · · ∪Ml0 ,
(2.1)

with m0 = m1 + m2 + · · · + ml0 and P = diag[P 1, P 2, . . . , P l0 ], where P i, i ≤ l0,

are also transition matrices themselves. The subspace Mi for each i = 1, 2, . . . , l0,

consists of recurrent states belonging to the ith ergodic class. We also assume that

for i ≤ l0, P i is irreducible and aperiodic.
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Let pεk be the probability vector pεk = (P (αεk = sij)) ∈ R1×m0 , and νi the stationary

distribution corresponding to the transition matrix Pi. Assume that pε0 = (P (αε0 =

sij)) = p0 and define an aggregated process αεk of αεk by

αεk = i if αεk ∈Mi for i = 1, . . . , l0, α
ε(t) = αεk for t ∈ [εk, ε(k + 1)).

Before proceeding further, we present a result on asymptotic expansions of the

probability vector pεk and the k-step transition matrix (Pε)
k as well as the aggregated

process. Part (a) and (b) can be found in [28, Theorem 4.1], whereas part (c) is in

[28, Theorem 4.3].

Proposition 2.1. The following assertions hold:

(a) For the probability distribution vector pεk ∈ R1×m0 we have

pεk = θ(εk)diag(ν1, . . . , νl0) +O(ε+ λk) (2.2)

for some λ with 0 < λ < 1, where θ(t) = (θ1(t), . . . , θl0(t)) ∈ R1×l0 satisfies

dθ(t)

dt
= θ(t)Q, θ(0) = p01̃l,

where

Q = diag(ν1, . . . , νl0)Q1̃l, 1̃l = diag(1lm1 , . . . , 1lml0 ), 1ll = (1, . . . , 1)′ ∈ Rl×1.

(2.3)

(b) For k ≤ T/ε with some fixed T , the k-step transition matrix (Pε)
k satisfies

(Pε)
k = Φ(εk) + εΦ̂(εk) + Ψ(k) + εΨ̂(k) +O(ε2), (2.4)
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where

Φ(t) = 1̃lΘ(t)diag(ν1, . . . , νl0),
dΘ(t)

dt
= Θ(t)Q̄, Θ(0) = I. (2.5)

Moreover, Φ(εk) and Φ̂(εk) are uniformly bounded in [0, T ] and Ψ(k) and Ψ̂(k)

decay exponentially, i.e., |Ψ(k)| + |Ψ̂(k)| ≤ Kλk for some K > 0 and some

0 < λ < 1.

(c) The aggregated process αε(·) converges weakly to α(·) that is a continuous-time

Markov chain generated by Q.

Remark 2.2. (i) In view of the asymptotic expansion, we have (Pε)
k = Φ(εk)+O(ε+

λk).

(ii) The matrix Ψ(k) is selected so that Φ(0) + Ψ(0) = I and Ψ(k) = Ψ(0)(P )k.

In view of (2.5),

Ψ(k) = diag
(
(Im1 − 1lm1ν

1)(P 1)k, . . . , (Iml0 − 1lml0ν
l0)(P l0)k

)
, (2.6)

where Imi is the mi×mi identity matrix. Thus Ψ(k) is again of block-diagonal form.

Taking this into account, the fact that limε→0 θi1i2(εk) = 0 for i1 6= i2, 1 ≤ i1, i2 ≤ l0

(where Θ(t) = (θi1i2(t))) implies

lim
ε→0

P (αεk = si2j2|αε0 = si1j1) = 0 (2.7)

for all 1 ≤ i1 6= i2 ≤ l0, 1 ≤ j1 ≤ mi1 , 1 ≤ j2 ≤ mi2 .

(iii) For k = 0, . . . , T/ε, i = 1, . . . , l0, j = 1, . . . ,mi, denote πε,ijk = ε
∑k−1

l=0

(
I(αεl =
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sij)− νijI(αεl = i)
)
. Then by [28, Theorem 4.5], we have

sup
0≤k≤T/ε

E|πε,ijk |
2 = O(ε) and sup

0≤k≤T/ε
E
[
ε

k−1∑
l=0

∣∣∣I(αεl = sij)− νijI(αεl = i)
∣∣∣]2

= O(ε)

(2.8)

for i = 1, . . . , l0, j = 1, . . . ,mi.

2.1.2 Ergodic Case

Let ε > 0 and αεk be a time-homogeneous Markov chain on (Ω,F , P ) with state space

M = {1, 2, . . . ,m} and transition matrix

P ε = P + εQ, (2.9)

where P = (pij) is a transition probability matrix and Q = (qij) is a generator of

a continuous-time Markov chain (i.e., pij ≥ 0 and
∑m

j=1 p
ij = 1; qij ≥ 0 for i 6= j

and
∑m

j=1 q
ij = 0 for each i). Suppose that P is irreducible and aperiodic with the

stationary distribution denoted by ν = (ν1, ν2, . . . , νm) ∈ R1×m. Denote by pεk the

probability vector pεk = (P (αεk = 1), · · · , P (αεk = m)) ∈ R1×m. Assume that the initial

probability pε0 is independent of ε, i.e., pε0 = p0 = (p1
0, p

2
0, . . . , p

m
0 ). Before proceeding

further, we present a result on asymptotic expansions of the probability vector pεk

and the k-step transition matrix (P ε)k. The following lemma is a special case of

Proposition 2.1.

Lemma 2.3. Assume that P in (2.9) is irreducible and aperiodic. Then the following

assertions hold:
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(a) For the probability distribution vector pεk, for some λ with 0 < λ < 1,

pεk = ν +O(ε+ λk). (2.10)

(b) For k ≤ T/ε and some fixed T , the k-step transition matrix (P ε)k satisfies

(P ε)k = Φ + εΦ̂(εk) + Ψ(k) + εΨ̂(k) +O(ε2), (2.11)

where Φ = (1, 1, . . . , 1)′(ν1, ν2, . . . , νm), Φ̂(t) is uniformly bounded in [0, T ], and

Ψ(k) and Ψ̂(k) satisfy |Ψ(k)|+ |Ψ̂(k)| ≤ Kλk for some K > 0 and 0 < λ < 1.

Remark 2.4. (i) Denote Fαεn = σ{αεk : 0 ≤ k ≤ n} for n = 0, 1, . . . From the above

lemma, there exists a constant C not depending on ε, k, l such that for k ≥ l ≥ 0,

|P (αεk = i)− νi| ≤ C(ε+ λk),

|P (αεk = i|αεl = j)− νi| ≤ C(ε+ λk−l),

|E(I[αεk = i]− νi
∣∣Fαεl )| ≤ C(ε+ λk−l).

(2.12)

(ii) In view of (2.10) and (2.11), for positive integers p > k and i, j ∈M,

P
(
αεp = j, αεk = i

)
= P

(
αεp = j

∣∣αεk = i
)
P
(
αεk = i

)
=
[
νj + ψij(p− k)

]
νi +O

(
ε+ λk

)
.

Hence

E
[
I(αεk = i)− νi

][
I(αεp = j)− νj

]
= νiψij(p− k) +O

(
ε+ λk

)
. (2.13)

Similarly, for i, j ∈M, i 6= j,

E
[
I(αεk = i)− νi

]2
= νi(1− νi) +O

(
ε+ λk

)
,

E
[
I(αεk = i)− νi

][
I(αεk = j)− νj

]
= −νiνj +O

(
ε+ λk

)
.

(2.14)
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(iii) Note that Ψ(k) and Ψ̂(k) above decay exponentially. Because P is irreducible

and aperiodic, P has an eigenvalue 1 with multiplicity 1 and all other eigenvalues are

inside the unit circle. Thus the λ in the assertion is related to the largest norm of the

non-unity eigenvalue. The fact of λ < 1 yields the geometric or exponential decay.

2.2 Mixing Sequences

In our study, we will work with mixing processes. For two sub-σ-fields A,B of F

denote φ(A,B) = supA∈A,B∈B,P (A)>0

∣∣P (B|A) − P (B)
∣∣. Recall that a sequence (Xk :

k ∈ Z) is φ-mixing (or uniform mixing) if φ(n) → 0 as n → ∞ where the uniform

mixing measure function φ(n) is defined by

φ(n) = sup
k∈Z

φ
(
σ(. . . , Xk−1, Xk), σ(Xk+n, Xk+n+1, . . .)

)
.

The term uniform mixing is taken from [17], [6] and [7], and the mixing rate is modeled

after [7, Proposition 2.6].

Remark 2.5. For convenience, we present three mixing inequalities, which will be

used frequently in what follows.

Suppose that (Xk : k ∈ Z) is a φ-mixing sequence with mixing measure φ(n),

X ∈ σ(. . . , Xk−1, Xk) and Y ∈ σ(Xk+n, Xk+n+1, . . .) such that ‖X‖p and ‖Y ‖q < ∞

with p, q ≥ 1, 1/p + 1/q = 1, where ‖ · ‖p and ‖ · ‖q are the usual lp and lq-norms

respectively (e.g., ‖X‖p =
(
E|X|p

)1/p
). Then the following inequalities hold:

∣∣EXY − EXEY ∣∣ ≤ 2φ(n)1/p‖X‖p‖Y ‖q, (2.15)

∥∥E(Y |σ(. . . , Xk−1, Xk))− EY
∥∥
p
≤ 2φ(n)1/q‖Y ‖p. (2.16)
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Inequality (2.15) is given in [17, Lemma 1.2.8, p.11] and inequality (2.16) is a special

case of [7, Proposition 2.6, p.349]. For convenience, we also present here another

inequality, which is a consequence of (2.16), and the Liapunov inequality

E
∣∣E(Y |σ(. . . , Xk−1, Xk))− EY

∣∣ ≤ 2φ(n)1/q‖Y ‖p. (2.17)
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3 Weak Convergence

3.1 Formulation

Let (Ω,F , P ) be a probability space. Recall that we will use C to denote a generic

positive constant with the convention CC = C and C + C = C used.

Let ε > 0 and αεk be a time-homogeneous Markov chain on (Ω,F , P ) with state

space M containing m0 states and transition matrix Pε = P + εQ, where P = (pij)

is a transition probability matrix and Q = (qij) is a generator of a continuous-time

Markov chain (i.e., pij ≥ 0 and
∑m0

j=1 p
ij = 1; qij ≥ 0 for i 6= j and

∑m0

j=1 q
ij = 0 for

each i). Assume that the state space M can be written as

M = {s11, . . . , s1,m1} ∪ {s21, . . . , s2,m2} ∪ · · · ∪ {sl01, . . . , sl0,ml0}

=M1 ∪M2 ∪ · · · ∪Ml0 ,
(3.1)

with m0 = m1 + m2 + · · · + ml0 and P = diag[P 1, P 2, . . . , P l0 ], where P i, i ≤ l0,

are also transition matrices themselves. The subspace Mi for each i = 1, 2, . . . , l0,

consists of recurrent states belonging to the ith ergodic class. We also assume that

(A1) For i ≤ l0, P i is irreducible and aperiodic.

Let pεk be the probability vector pεk = (P (αεk = sij)) ∈ R1×m0 , and νi the stationary

distribution corresponding to the transition matrix Pi. Assume that pε0 = (P (αε0 =

sij)) = p0 and define an aggregated process αεk of αεk by

αεk = i if αεk ∈Mi for i = 1, . . . , l0, α
ε(t) = αεk for t ∈ [εk, ε(k + 1)).
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In this section, we setup the problem in a simplified form, namely, within eachMi

for i = 1, . . . , l0, there corresponds to only one sequence {X(k, i)}. This will facilitate

the analysis in the next section.

For each i ≤ l0, let {X(k, i)} be a wide-sense (or covariance) stationary sequence

of Rd-valued random variables on (Ω,F , P ) with X(k, i) = (X1(k, i), . . . , Xd(k, i)) ∈

Rd, and {(X(k, 1), . . . , X(k, l0)) : k ∈ Z} is an Rl0×d-valued wide-sense stationary

sequence. We assume the following conditions hold.

(A2) The sequence {(X(k, 1), . . . , X(k, l0)) : k ∈ Z} is independent of {αεk}, and is

φ-mixing with mixing measure denoted by φ(·) such that

EX(k, i) = 0, E|X(k, i)|2(1+δ) ≤ C, ∀ k ≥ 1; i = 1, . . . , l0, (3.2)

for some δ > 0 and C > 0 not depend on k, i, and

∞∑
n=0

φ(n)
δ

1+δ <∞. (3.3)

To proceed, denote FXk = σ{X(l, i) : l ≤ k, i = 1, . . . , l0}, Fα
ε

k = σ{αεl : l ≤ k}.

Define

zεk =
√
ε
k−1∑
l=0

X(l, ᾱεl ) =
√
ε
k−1∑
l=0

l0∑
i=1

X(l, i)I(αεl = i), (3.4)

zε(t) =
√
ε

bt/εc−1∑
j=0

X(j, ᾱεj), (3.5)

where I(A) is the usual indicator function for the event A, and bt/εc denotes the

integer part of the real number t/ε. We are interested in the weak convergence of
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the process zε(t). It will be shown in the next section that (zε(·), αε(·)) converges

weakly to a switching diffusion process (z(·), α(·)), which is the unique solution of the

martingale problem associated with the following operator

Lf(x, i) =
1

2

d∑
j1=1

d∑
j2=1

aj1j2(i)
∂2f(x, i)

∂xj1∂xj2
+Qf(x, ·)(i), (3.6)

where

A(i) = (aj1j2(i)) = EX(0, i)X ′(0, i) +
∞∑
k=1

[
EX(k, i)X ′(0, i) + EX(0, i)X ′(k, i)

]
,

(3.7)

for i = 1, 2, . . . , l0 and the matrix Q is given in (2.3).

Remark 3.1. From (3.2), Cauchy-Schwartz and Liapunov inequalities, there exists a

constant C that does not depend on k, l, j, i such that

‖Xj(k, i)Xj(l, i)‖1+δ, ‖Xj(k, i)‖2(1+δ), ‖Xj(k, i)‖ 2(1+δ)
1+2δ

≤ C. (3.8)

Next, we will state a proposition that is needed in our proof. Its proof can be

found in [15] (see also [16, Chapter 7]).

Proposition 3.2. Let {xεk} be a d-dimensional stochastic process in discrete time

and xε(·) be its piecewise constant interpolation on the interval [εk, εk + ε). Suppose

that

(a) (xε(·)) is tight in D([0, T ),Rd) and xε(0)⇒ x0.

(b) The martingale problem with operator L has a unique solution x(·) in D([0, T ),Rd)

for each initial condition.
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(c) For each g(·) ∈ C2
0 , there exists a sequence (gε(·)) such that

(c1) gε(·) is a constant on each interval [εk, εk + ε), which is measurable (at

εk) with respect to σ(xεj : j ≤ k),

(c2) sup
0≤k≤T/ε,ε

E|gε(εk)|+ sup
0≤k≤T/ε,ε

1

ε
E
∣∣∣E(gε(εk + ε)|xε1, . . . , xεk)− gε(εk)

∣∣∣ <∞,

and as ε→ 0 with εk → t,

(c3) E|gε(εk)− g(xε(εk))| → 0,

(c4) E
∣∣∣E(gε(εk + ε)|xε1, . . . , xεk)− gε(εk)

ε
− Lg(xε(εk))

∣∣∣→ 0.

Then xε(·) converges weakly to x(·), the unique solution to the martingale problem

with operator L and initial condition x0.

Remark 3.3. If Gεk is a σ-field such that σ(xε1, . . . , x
ε
k) ⊂ Gεk for k = 1, 2, . . . ; ε > 0

then

|E(gε(εk + ε)|xε1, . . . , xεk)− gε(εk)| ≤ E[|E(gε(εk + ε)− gε(εk)|Gεk)||xε1, . . . , xεk].

Thus,

(c2’) sup
0≤k≤T/ε, ε

E|gε(εk)| + sup
0≤k≤T/ε, ε

1

ε
E
∣∣∣E(gε(εk + ε) | Gεk) − gε(εk)

∣∣∣ < ∞

implies (c2);

(c4’) E
∣∣∣E(gε(εk + ε)|Gεk)− gε(εk)

ε
− Lg(xε(εk))

∣∣∣→ 0 implies (c4).
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3.2 Weak Convergence

This section presents the main result of this chapter. To obtain the desired weak

convergence, we use martingale problem formulations. It requires the verification

of tightness of the underlying sequence in an appropriate function space, which is

given in Proposition 3.4. Then in the second step, we show that the martingale

problem associated with a limit operator has a unique solution, which is stated in

Proposition 3.9. The third part of the proof is to characterize the limit process in

Theorem 3.10. In the process of obtaining the desired result, a number of technical

complements are formulated as lemmas and propositions. They are interesting in

their own right. We divide this section into several subsections in accordance with

the aforementioned tasks.

3.2.1 Tightness of (zε(·), αε(·))

We aim to obtain the tightness of (zε(·), αε(·)) here. The main result of this section

is the following proposition.

Proposition 3.4. The process (zε(·), αε(·)) is tight.

We shall prove this proposition by means of establishing a series of lemmas. Owing

to Proposition 2.1, it suffices to work with zε(·). Recall that

FXk = σ{X(l, i) : l ≤ k, i = 1, . . . , l0}, Fαεk = σ{αεl : l ≤ k}.

Let

F εt = σ(zε(s) : 0 ≤ s ≤ t), Gεk = FXk ∨ Fα
ε

k .
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Then it follows that F εt ⊂ Gεbt/εc = FXbt/εc ∨Fα
ε

bt/εc. To obtain the tightness we need to

verify for each T > 0 and t ≤ T ,

lim
h→0

lim sup
ε→0

E sup
0≤s≤h

E(|zε(t+ s)− zε(t)|2|F εt ) = 0, (3.9)

and

lim
K→∞

lim sup
ε→0

P
(

sup
0≤t≤T

|zε(t)| ≥ K
)

= 0, for each T > 0, (3.10)

respectively (see [15, Theorem 3, p. 47]). We proceed to prove these in the rest of

this section.

Lemma 3.5. For each T > 0 and any 0 < t ≤ T , (3.9) holds.

Proof. By the Cauchy-Schwartz inequality,

|zε(t+ s)− zε(t)|2 =
d∑
j=1

|zεj (t+ s)− zεj (t)|2

=
d∑
j=1

∣∣∣√ε b(t+s)/εc−1∑
k=bt/εc

l0∑
i=1

Xj(k, i)I(αεk = i)
∣∣∣2

≤ l0

d∑
j=1

l0∑
i=1

∣∣∣√ε b(t+s)/εc−1∑
k=bt/εc

Xj(k, i)I(αεk = i)
∣∣∣2.

(3.11)
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By the independence of {X(k, i)} and {αεk},

E
(∣∣∣√ε b(t+s)/εc−1∑

k=bt/εc

Xj(k, i)I(αεk = i)
∣∣∣2∣∣∣FXbt/εc ∨ Fαεbt/εc)

= ε

b(t+s)/εc−1∑
k=bt/εc

E
(
X2
j (k, i)I(αεk = i)

∣∣∣FXbt/εc ∨ Fαεbt/εc)
+2ε

∑
bt/εc≤k<l<b(t+s)/εc

E
(
I(αεk = i, αεl = i)Xj(k, i)Xj(l, i)

∣∣∣FXbt/εc ∨ Fαεbt/εc)
= ε

b(t+s)/εc−1∑
k=bt/εc

P
(
αεk = i

∣∣∣Fαεbt/εc)E(X2
j (k, i)

∣∣∣FXbt/εc)
+2ε

∑
bt/εc≤k<l<b(t+s)/εc

P
(
αεk = i, αεl = i

∣∣∣Fαεbt/εc)E(Xj(k, i)Xj(l, i)
∣∣∣FXbt/εc)

≤ ε

b(t+h)/εc−1∑
k=bt/εc

E
(
X2
j (k, i)

∣∣∣FXbt/εc)+ 2ε
∑

bt/εc≤k<l<b(t+h)/εc

∣∣∣E(Xj(k, i)Xj(l, i)
∣∣∣FXbt/εc)∣∣∣

:= γε,j,i(h).

(3.12)

Since the inequality (3.12) holds for any s with 0 ≤ s ≤ h and F εt ⊂ FXbt/εc ∨ Fα
ε

bt/εc it

follows from (3.11) that

sup
0≤s≤h

E
(
|zε(t+ s)− zε(t)|2

∣∣F εt ) = sup
0≤s≤h

E
[
E
(
|zε(t+ s)− zε(t)|2

∣∣∣FXbt/εc ∨ Fαεbt/εc)∣∣∣F εt ]
≤ E

(
γε(h)

∣∣F εt ),
(3.13)

where γε(h) = l0
∑d

j=1

∑l0
i=1 γε,j,i(h).

On the other hand,

Eγε,j,i(h) = ε

b(t+h)/εc−1∑
k=bt/εc

EX2
j (k, i) + 2ε

∑
bt/εc≤k<l<b(t+h)/εc

E
∣∣∣E(Xj(k, i)Xj(l, i)

∣∣∣FXbt/εc)∣∣∣.
(3.14)

Recall that EXj(k, i) = EXj(l, i) = 0. Thus, by the triangle inequality, mixing

inequalities (2.17) with p = 1 + δ and q = 1+δ
δ

, and (2.15) with p = 2(1+δ)
1+2δ

and
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q = 2(1 + δ),

E
∣∣∣E(Xj(k, i)Xj(l, i)

∣∣∣FXbt/εc)∣∣∣
≤ E

∣∣∣E(Xj(k, i)Xj(l, i)
∣∣∣FXbt/εc)− EXj(k, i)Xj(l, i)

∣∣∣
+E
∣∣∣EXj(k, i)Xj(l, i)− EXj(k, i)EXj(l, i)

∣∣∣
≤ 2φ

(
k − b t

ε
c
) δ

1+δ ‖Xj(k, i)Xj(l, i)‖1+δ

+2φ(l − k)
1+2δ

2(1+δ)‖Xj(k, i)‖2(1+δ)‖Xj(k, i)‖ 2(1+δ)
1+2δ

≤ C
[
φ
(
k −

⌊ t
ε

⌋) δ
1+δ

+ φ(l − k)
δ

1+δ

]
.

(3.15)

In the last inequality, we have used (3.8) and the facts that φ(k) ≤ 1 for all k ≥ 1

and 1+2δ
2(1+δ)

> δ
1+δ

.

Note that EX2
j (k, i) ≤ C. Thus, by (3.14) and (3.15),

Eγε,j,i(h) ≤ εC
⌊h
ε

⌋
+ εC

∑
bt/εc≤k<l<b(t+h)/εc

[
φ
(
k −

⌊ t
ε

⌋) δ
1+δ

+ φ(l − k)
δ

1+δ

]
≤ Ch+ εC

∑
0≤k<l≤bh/εc

[
φ(k)

δ
1+δ + φ(l − k)

δ
1+δ

]
= Ch+ 2εC

bh/εc∑
k=1

(⌊h
ε

⌋
− k
)
φ(k)

δ
1+δ ≤ Ch+ 2Ch

∞∑
k=1

φ(k)
δ

1+δ ≤ Ch,

(3.16)

where C is a constant not depending on ε, j, i. We have used (3.3) to obtain the last

inequality. By (3.13) and the definition of γε(h),

lim
h→0

lim sup
ε→0

E sup
0≤s≤h

E
(
|zε(t+ s)− zε(t)|2

∣∣F εt )
≤ lim

h→0
lim sup
ε→0

Eγε(h) = lim
h→0

lim sup
ε→0

l0

d∑
j=1

l0∑
i=1

Eγε,j,i(h)

≤ lim
h→0

lim sup
ε→0

l0

d∑
j=1

l0∑
i=1

Ch = 0.

(3.17)

This proves the lemma. 2

To proceed, we verify (3.10). In dealing with dynamic systems, one often uses

a truncation device to verify (3.10). That is one works with a truncated process
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and obtain its tightness and weakly limit and then let the truncation bounds grow

to conclude the weak convergence of the untruncated sequence. Here we handle the

sequence directly without using truncation. The verification of (3.10) is provided in

the next three lemmas.

Lemma 3.6. Under (A1) and (A2),

lim
K→∞

lim sup
ε→0

max
S⊂{0,1,...,bT/εc−1}

P
(∣∣∣∑

k∈S

X(k, αεk)
∣∣∣ ≥ K√

ε

)
= 0. (3.18)

Proof. By the Markov inequality, for each i = 1, . . . , l0, and S ⊂ {0, 1, . . . , bT/εc−1},

P
(∣∣∣∑

k∈S

X(k, i)I(αεk = i)
∣∣∣ ≥ K

l0
√
ε

)
≤ εl20
K2

E
∣∣∣∑
k∈S

X(k, i)I(αεk = i)
∣∣∣2

≤ εl20
K2

d∑
j=1

[∑
k∈S

EX2
j (k, i) + 2

∑
k,l∈S, k<l

|E(Xj(k, i)Xj(l, i))|
]
.

(3.19)

Note that EXj(k, i) = EXj(l, i) = 0, so by (2.15) with p = 2(1+δ)
1+2δ

and q = 2(1 + δ),

we have

|E(Xj(k, i)Xj(l, i))| ≤ 2φ(l − k)
1+2δ

2(1+δ)‖Xj(k, i)‖2(1+δ)‖Xj(l, i)‖ 2(1+δ)
1+2δ

≤ Cφ(l − k)
1+2δ

2(1+δ) ,

(3.20)

where we have used (3.8) in the last inequality. Since EX2
j (k, i) ≤ C by assumption

(A2), it follows from (3.19) and (3.20) that

P
(∣∣∣∑

k∈S

X(k, i)I(αεk = i)
∣∣∣ ≥ K

l0
√
ε

)
≤ εdl20

K2

[
C|S|+ 2C

∑
k,l∈S k<l

φ(l − k)
1+2δ

2(1+δ)

]
≤ εdl20C|S|

K2

[
1 +

∞∑
n=1

φ(n)
1+2δ

2(1+δ)

]
≤ εdl20C|S|

K2

[
1 +

∞∑
n=1

φ(n)
δ

1+δ

]
≤ εdl20C|S|

K2
,

(3.21)
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where |S| denotes the cardinality of the set S and (3.3) is used to get the last in-

equality. Therefore,

P
(∣∣∣∑

k∈S

X(k, αεk)
∣∣∣ ≥ K√

ε

)
≤

l0∑
i=1

P
(∣∣∣∑

k∈S

X(k, i)I(αεk = i)
∣∣∣ ≥ K

l0
√
ε

)
≤ εdl30C|S|

K2
.

(3.22)

In view of (3.22) and the fact that |S| ≤ T
ε

for all S ⊂ {0, 1, . . . , bT/εc − 1},

lim
K→∞

lim sup
ε→0

max
S⊂{0,1,...,bT/εc−1}

P
(∣∣∣∑

k∈S

X(k, αεk)
∣∣∣ ≥ K√

ε

)
≤ lim

K→∞
lim sup
ε→0

max
S⊂{0,1,...,bT/εc−1}

εdl30C|S|
K2

= 0.

(3.23)

The lemma is thus proved. 2

To proceed, we need the following Lemma, whose proof can be found in [17]

Lemma 2.2.7.

Lemma 3.7. Let {Yk, k ≥ 1} be a φ-mixing sequence and η a real number with

0 < η < 1. Suppose that there exists an integer p, 1 ≤ p ≤ n, a number A > 0 such

that

φY (p) + max
p≤i≤n

P
(
|Zn − Zi| ≥ A

)
≤ η, (3.24)

where Zn = Y1 +Y2 +· · ·+Yn and φY (·) is the mixing measure function of the sequence

{Yk}. Then, for any a ≥ 0 and b ≥ 0 we have

P
(

max
1≤i≤n

|Zi| ≥ a+ A+ b
)
≤ 1

1− η

[
P
(
|Zn| ≥ a

)
+ P

(
max
1≤i≤n

|Yi| ≥
b

p− 1

)]
. (3.25)

Lemma 3.8. Under (A1) and (A2),

lim
K→∞

lim sup
ε→0

P
(

max
0≤l≤bT/εc−1

∣∣∣ l∑
k=0

X(k, αεk)
∣∣∣ ≥ K√

ε

)
= 0. (3.26)



25

Proof. In order to prove (3.26), it suffices to show that for each δ > 0 there exist

K0 = K(δ) and ε0 = ε(δ) such that

P
(

max
0≤l≤bT/εc−1

∣∣∣ l∑
k=0

X(k, αεk)
∣∣∣ ≥ K0√

ε

)
< δ, ∀ ε < ε0. (3.27)

Fix i ∈ {1, . . . , l0}. For each S ⊂ {0, 1, . . . , bT/εc − 1}, denote

Ωi
S =

{
For 0 ≤ k ≤ bT

ε
c − 1, I(αεk = i) = 1 if and only if k ∈ S

}
.

It is clear that if S1 and S2 are two different subsets of {0, 1, . . . , bT/εc− 1} then Ωi
S1

and Ωi
S2

are disjoint. Moreover, Ω = ∪S⊂{0,1,...,bT/εc−1}Ω
i
S. Therefore,

P
(

max
0≤l≤bT/εc−1

∣∣∣ l∑
k=0

X(k, i)I(αεk = i)
∣∣∣ ≥ K

l0
√
ε

)
=

∑
S⊂{0,1,...,bT/εc−1}

P
(

max
0≤l≤bT/εc−1

∣∣∣ l∑
k=0

X(k, i)I(αεk = i)
∣∣∣ ≥ K

l0
√
ε

∣∣∣Ωi
S

)
P (Ωi

S)

=
∑

S⊂{0,1,...,bT/εc−1}

P
(

max
0≤l≤bT/εc−1

∣∣∣ ∑
k∈S, k≤l

X(k, i)
∣∣∣ ≥ K

l0
√
ε

∣∣∣Ωi
S

)
P (Ωi

S)

=
∑

S⊂{0,1,...,bT/εc−1}

P
(

max
0≤l≤bT/εc−1

∣∣∣ ∑
k∈S, k≤l

X(k, i)
∣∣∣ ≥ K

l0
√
ε

)
P (Ωi

S).

(3.28)

We have used the independence of {X(k, i) : k ≥ 0} and {αεk} in the last equation.

To proceed, we fix S ⊂ {0, 1, . . . , bT/εc− 1}. By (3.18), for each i = 1, . . . , l0 and

0 < δ1 <
1
2

there exist K1 = K(δ1) and ε1 = ε(δ1) such that

maxeS⊂{0,1,...,bT/εc−1}
P
(∣∣∣∑

k∈eS
X(k, i)

∣∣∣ ≥ K1

3l0
√
ε

)
<
δ1

2
, ∀ ε < ε1. (3.29)

Thus, for S̃ ⊂ {0, 1, . . . , bT/εc − 1} and ε < ε1,

P
(∣∣∣∑

k∈eS
X(k, i)

∣∣∣ ≥ K1

3l0
√
ε

)
<
δ1

2
. (3.30)
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Put N = |S| and choose an integer p such that φ(p) < δ1
2

.

Case 1: N ≤ p. Then we have

P
(

max
0≤l≤bT/εc−1

∣∣∣ ∑
k∈S, k≤l

X(k, i)
∣∣∣ ≥ K

l0
√
ε

)
≤ P

(∑
k∈S

|X(k, i)| ≥ K

l0
√
ε

)
≤ l20ε

K2
E
(∑
k∈S

|X(k, i)|
)2

≤ l20ε

K2
N
∑
k∈S

E|X(k, i)|2

≤ Cl20N
2ε

K2
≤ Cl20p

2ε

K2
≤ 2
(δ1

2
+

C

K2

)
.

(3.31)

Case 2: N > p. We consider the random vectors X(k, i) for k ∈ S and k ≥ bT/εc

and arrange them in increasing order of k. Denote this sequence by Y1, Y2, . . . , YN , . . .

It is clear that the mixing measure of the sequence (say φY (·)) is smaller than that

of the sequence {X(k, i) : k ≥ 1}. That is, φY (n) ≤ φ(n) for each positive integer n.

Taking this fact into account, by the choice of p and (3.30), we get

φY (p) + max
1≤i≤N

P
(
|Zn − Zi| ≥

K1

3l0
√
ε

)
< δ1,

where Zn denotes Y1 + Y2 + · · ·+ Yn. This implies the condition (3.24) of Lemma 3.7

with A = K1

3l0
√
ε

and η = δ1. Hence, by Lemma 3.7 with A = a = b = K
3l0
√
ε
, K ≥ K1,

we obtain

P
(

max
0≤l≤bT/εc−1

∣∣∣ ∑
k∈S, k≤l

X(k, i)
∣∣∣ ≥ K

l0
√
ε

)
= P

(
max

0≤l≤N

∣∣∣ l∑
k=1

Yk

∣∣∣ ≥ K

l0
√
ε

)
≤ 1

1− δ1

[
P
(∣∣∣ N∑

k=1

Yk

∣∣∣ ≥ K

3l0
√
ε

)
+ P

(
max

0≤k≤N
|Yk| ≥

K

3l0(p− 1)
√
ε

)]
≤ 1

1− δ1

[
P
(∣∣∣∑

k∈S

X(k, i)
∣∣∣ ≥ K

3l0
√
ε

)
+ P

(
max

0≤k≤bT/εc−1
|X(k, i)| ≥ K

3l0(p− 1)
√
ε

)]
.

(3.32)
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By (3.32), (3.30), and

P
(

max
0≤k≤bT/εc−1

|X(k, i)| ≥ K

3l0(p− 1)
√
ε

)
≤

∑
0≤k≤bT/εc−1

P
(
|X(k, i)| ≥ K

3l0(p− 1)
√
ε

)
≤ 9l20(p− 1)2ε

K2

∑
0≤k≤bT/εc−1

EX2(k, i)

≤ C

K2
,

we have

P
(

max0≤l≤bT/εc−1

∣∣∣∑k∈S, k≤lX(k, i)
∣∣∣ ≥ K

l0
√
ε

)
≤ 1

1− δ1

(δ1

2
+

C

K2

)
≤ 2
(δ1

2
+

C

K2

)
.

(3.33)

Therefore, from (3.31) and (3.33), forK > K1, ε < ε1 and any set S ⊂ {0, 1, . . . , bT/εc−

1},

P
(

max
0≤l≤bT/εc−1

∣∣∣ ∑
k∈S, k≤l

X(k, i)
∣∣∣ ≥ K

l0
√
ε

)
≤ 2
(δ1

2
+

C

K2

)
. (3.34)

By choosing δ1 = δ
2l0

, εδ = ε0 and K0 > max{K1, 2
√

Cl0
δ
} where C is the constant in

(3.34) we have 2( δ1
2

+ C
K2

0
) < δ

l0
. Hence, from (3.28) and (3.34), for K > K0, ε < ε0,

P
(

max
0≤l≤bT/εc−1

∣∣∣ l∑
k=0

X(k, αεk)
∣∣∣ ≥ K√

ε

)
≤

l0∑
i=1

P
(

max
0≤l≤bT/εc−1

∣∣∣ l∑
k=0

X(k, i)I(αεk = i)
∣∣∣ ≥ K

l0
√
ε

)
≤

l0∑
i=1

∑
S⊂{0,1,...,bT/εc−1}

P
(

max
0≤l≤bT/εc−1

∣∣∣ ∑
k∈S, k≤l

X(k, i)
∣∣∣ ≥ K

l0
√
ε

)
P (Ωi

S)

≤
l0∑
i=1

∑
S⊂{0,1,...,bT/εc−1}

(δ1

2
+

C

K2

)
P (Ωi

S) <
δ

l0

l0∑
i=1

∑
S⊂{0,1,...,bT/εc−1}

P (Ωi
S) = δ.

(3.35)

This gives (3.27) and the Lemma is proved. 2

Consequently, Lemma 3.8 yields (3.10). Combining this with Lemma 3.5, we

obtain Proposition 3.4.



28

3.2.2 Uniqueness of Solution to the Martingale Problem

We state the following result of this section.

Proposition 3.9. The martingale problem associated with the operator L defined by

(3.6) has a unique solution.

Proof. By virtue of Lemma 14.8 of [28], it suffices to verify the uniqueness in distribu-

tion of a solution (z(t), α(t)) of the martingale problem associated with the operator

A for each t ∈ [0, T ]. Consider the characteristic function ϕ̃(x, l) = exp{ι(xλ + sl)},

for each positive integer l, x ∈ R1×d, λ ∈ Rd×1, s ∈ R, and ι2 = −1. Note that xλ

above is just the usual inner product. Define ϕi1i2(t) = E[I(α(t) = i1)ϕ̃(z(t), i2)] for

1 ≤ i1, i2 ≤ l0. Since (z(t), α(t)) is a solution of the martingale problem associated

with the operator L,

ϕi1i2(t)− ϕi1i2(0)−
∫ t

0

{ d∑
j,j0=1

ajj0(i1)(−λjλj0)ϕi1i2(u) +

l0∑
i3=1

q̄i3i1ϕi3i2(u)
}
du = 0,

(3.36)

where ϕi1i2(0) = EI(α(0) = i1)ϕ̃(0, i2). Let ϕ(t) = (ϕi1i2(t), i1, i2 = 1, . . . , l0). Then

(3.36) becomes ϕ(t) = ϕ(0) +
∫ t

0
ϕ(u)G(u)du, where ϕ(0) = (ϕi1i2(0)) and G is a

matrix-valued function defined by the integrand of (3.36). The equation for ϕ(t)

is a linear ordinary differential equation, so it has a unique solution. Thus, ϕ(t)

is uniquely determined. As a result, E exp{ι(z(t)λ + α(t)s)} =
∑l0

i=1 E
(
I(α(t) =

i) exp{ι(z(t)λ+ is)}
)

is uniquely determined for all (λ, s) ∈ Rd×1×R. Therefore the

distribution of (z(t), α(t)) is uniquely determined by the well-known uniqueness and

inversion formula for characteristic functions. 2
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3.2.3 Characterization of the Limit

This subsection is devoted to characterization of the limit. We first state the result,

and then divide the task of proof into sub-tasks.

Theorem 3.10. Assume (A1) and (A2). Then (zε(·), αε(·)) converges weakly to

(z(·), α(·)) such that the limit is the solution of the martingale problem with operator

given by (3.6).

Proof. We use Proposition 3.2 with xεk = (zεk, α
ε
k). For an appropriate function g(·),

define the operator Lε by

Lεg(zεk, α
ε
k) =

1

ε
Eε
k[g(zεk+1, α

ε
k+1)− g(zεk, α

ε
k)], (3.37)

where Eε
k denotes the conditional expectation with respect to Gεk = FXk ∨Fα

ε

k . We will

construct a perturbed test function f ε and show that all conditions in Proposition 3.2

are satisfied. Along this line, we also obtain the representation of the limit operator

and the limit covariance matrix. Hence the desired weak convergence follows.

For each i = 1, . . . , l0, let f(·, i) be any real-valued function with bounded deriva-

tives up to the second order such that the second derivatives are Lipschitz continuous.

Define

f̄(x, α) =

l0∑
i=1

f(x, i)I{α∈Mi}, x ∈ Rd, α ∈M. (3.38)
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Definition (3.38) allows us to replace f(zεk, α
ε
k) by f(zεk, α

ε
k). Denote

ν̂ = diag(ν1, . . . , νl0) ∈ Rl0×m0 ,

χεk = (I{αεk=1}, . . . , I{αεk=l0}) ∈ R1×l0 , χεk = (I{αεk=sij}) ∈ R1×m0 ,

F (x) =


f(x, 1)1lm1

. . .

f(x, l0)1lml0

 ∈ Rm0×1, F (x) =


f(x, 1)

. . .

f(x, l0)

 ∈ Rl0×1.

(3.39)

Note that (P − I)F̄ (x) = 0. Next, we compute εLεf(zεk, α
ε
k). By (3.37),

εLεf(zεk, α
ε
k) = Eε

kf̄(zεk+1, α
ε
k+1)− f(zεk, α

ε
k)

= Eε
k[f(zεk+1, α

ε
k+1)− f̄(zεk+1, α

ε
k)] + Eε

k[f(zεk+1, α
ε
k)− f̄(zεk, α

ε
k)].

(3.40)

By using the Taylor expansion, the second term in the above can be written as

Eε
k[f(zεk+1, α

ε
k)−f̄(zεk, α

ε
k)] =

√
εf̄z(z

ε
k, α

ε
k)X(k, αεk)+

ε

2
X ′(k, αεk)f̄zz(z

ε
k, α

ε
k)X(k, αεk)+e

ε,1
k

(3.41)

where sup0<k≤T/εE|e
ε,1
k | = o(ε). In order to estimate the first term in the last equation

in (3.40), we have

Eε
k(f(zεk+1, α

ε
k+1)− f(zεk, α

ε
k))

=

l0∑
i1=1

mi1∑
j1=1

Eε
k

[ l0∑
i2=1

mi2∑
j2=1

f(zεk+1, si2j2)P (αεk+1 = si2j2|αεk = si1j1)− f(zεk+1, si1j1)
]

×I(αεk = si1j1)

= χεk(Pε − I)Eε
kF (zεk+1) = χεk(P − I + εQ)Eε

kF (zεk+1)

= εχεkQE
ε
kF (zεk+1) = εχεkQE

ε
k[F (zεk) +O(

√
ε)]

= εχεkQF (zεk) + eε,2k = εQf(zεk, ·)(αεk) + eε,2k ,

(3.42)
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where sup0<k≤T/εE|e
ε,2
k | = o(ε). The combination of (3.40), (3.41), and (3.42) yields

εLεf(zεk, α
ε
k) = εQf̄(zεk, ·)(αεk) +

ε

2
X ′(k, αεk)f zz(z

ε
k, α

ε
k)X(k, αεk)

+
√
εf̄z(z

ε
k, α

ε
k)X(k, αεk) + eε,1k + eε,2k .

(3.43)

Denote Ẽk(·) = E(·|Fαεk ) and put

f ε1 (z, i, εk) =
√
εfz(z, i)

(
X(k, i) +

T/ε∑
l=k+1

Eε
kX(l, αεl )

)
,

f ε2 (z, i, εk) = ε

T/ε∑
p=k

T/ε∑
l=p+1

[
Eε
kX
′(l, αεl )fzz(z, i)X(p, αεp)− Ẽε

kX
′(l, αεl )fzz(z, i)X(p, αεp)

]
,

f ε3 (z, i, εk) =
ε

2

T/ε∑
l=k

[
Eε
kX
′(l, αεl )fzz(z, i)X(l, αεl )− Ẽε

kX
′(l, αεl )fzz(z, i)X(l, αεl )

]
,

f ε4 (z, i, εk) = ε

T/ε∑
l=k

Eε
k(χ

ε
l − χ̄εl ν̂)Q1̃lF (zεl ).

(3.44)

Then we have the following proposition, whose proof is long and technical. In order

not to interrupt the flow of presentation, the proof is relegated in an appendix and

placed at the end of the paper. We will use tr(A) to denote the trace of A.

Proposition 3.11. For f εi (·, ·, ·), i = 1, 2, 3, 4 defined above, we have

sup
0≤k≤T/ε

E|f εi (zεk, α
ε
k, εk)| → 0 as ε→ 0 and (3.45)
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εLεf ε1 (zεk, α
ε
k, εk) = ε

T/ε∑
l=k+1

Eε
kX
′(l, αεl )fzz(z

ε
k, α

ε
k)X(k, αεk)−

√
εfz(z

ε
k, α

ε
k)X(k, αεk) + eε,3k ,

εLεf ε2 (zεk, α
ε
k, εk) = −ε

T/ε∑
l=k+1

tr
[
fzz(z

ε
k, α

ε
k)E

ε
kX(l, αεl )X

′(k, αεk)
]

+εtr
[
fzz(z

ε
k, α

ε
k)

T/ε∑
l=k+1

Ẽε
kX(l, αεl )X

′(k, αεk)
]

+ eε,4k ,

εLεf ε3 (zεk, α
ε
k, εk) = −ε

2
X ′(k, αεk)fzz(z

ε
k, α

ε
k)X(k, αεk)

+
ε

2
tr
[
fzz(z

ε
k, α

ε
k)Ẽ

ε
kX(k, αεk)X

′(k, αεk)
]

+ eε,5k ,

εLεf ε4 (zεk, α
ε
k, εk) = −ε(χεk − χεkν̂)QF̄ (zεk) + eε,6k ,

(3.46)

where

sup
0≤k≤T/ε

E|eε,ik | = o(ε) as ε→ 0 for i = 3, 4, 5, 6. (3.47)

To proceed, define

f ε(zεk, α
ε
k, εk) = f̄(zεk, α

ε
k) +

4∑
i=1

f εi (zεk, α
ε
k, εk). (3.48)

Then (3.45) gives

E|f ε(zεk, αεk, εk)− f(zεk, α
ε
k)| = E|f ε(zεk, αεk, εk)− f̄(zεk, α

ε
k)| → 0 (3.49)

as ε→ 0. In addition, according to (3.43) and (3.46), we obtain

Lεf ε(zεk, αεk, εk) = tr
[
fzz(z

ε
k, α

ε
k)

T/ε∑
l=k+1

Ẽε
kX(l, αεl )X

′(k, αεk)
]

+
1

2
tr
[
fzz(z

ε
k, α

ε
k)Ẽ

ε
kX(k, αεk)X

′(k, αεk)
]

+ Q̄f(zεk, ·)(αεk) + ε−1eεk,

(3.50)

where

eεk =
6∑
i=1

eik and sup
0≤k≤T/ε

E|eεk| = o(ε) as ε→ 0. (3.51)
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Next, we show that

lim
ε→0

E|Lεf ε(zεk, αεk, εk)− Lf(zεk, α
ε
k)| = 0. (3.52)

We have

tr
[
fzz(z

ε
k, α

ε
k)

T/ε∑
l=k+1

Ẽε
kX(l, αεl )X

′(k, αεk)
]

=
d∑

j,j0=1

l0∑
i1,i2=1

mi1∑
j1=1

mi2∑
j2=1

T/ε∑
l=k+1

∂2f(zεk, i1)

∂zj∂zj0
P (αεl = si2j2|αεk = si1j1)

×I(αεk = si1j1)EXj0(l, i2)Xj(k, i1).

(3.53)

Note that |EXj0(l, i2)Xj(k, i1)| ≤ Cφ(l − k)
1+2δ

2(1+δ) ≤ Cφ(l − k)
δ

1+δ by (3.20), so the

boundedness of fzz(·) and (3.3) implies that

d∑
j,j0=1

l0∑
i1,i2=1

mi1∑
j1=1

mi2∑
j2=1

∞∑
l=k+1

∣∣∣∂2f(zεk, i1)

∂zj∂zj0
EXj0(l, i2)Xj(k, i1)

∣∣∣ <∞.
Taking this into account and recall from (2.7) that limε→0 P (αεl = si2j2|αεk = si1j1) = 0

for 1 ≤ i1 6= i2 ≤ l0, k < l, it follows that

lim
ε→0

E
∣∣∣ d∑
j,j0=1

∑
1≤i1 6=i2≤l0

mi1∑
j1=1

mi2∑
j2=1

T/ε∑
l=k+1

∂2f(zεk, i1)

∂zj∂zj0
P (αεl = si2j2|αεk = si1j1)I(αεk = si1j1)

×EXj0(l, i2)Xj(k, i1)
∣∣∣ = 0.

Therefore,

lim
ε→0

E
∣∣∣tr[fzz(zεk, αεk) T/ε∑

l=k+1

Ẽε
kX(l, αεl )X

′(k, αεk)
]

−
d∑

j,j0=1

l0∑
i=1

mi∑
j1,j2=1

T/ε∑
l=k+1

∂2f(zεk, i)

∂zj∂zj0
P (αεl = sij2|αεk = sij1)

×I(αεk = sij1)EXj0(l, i)Xj(k, i)
∣∣∣ = 0.

(3.54)
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Again, because of (2.7), limε→0

∑mi
j2=1 P (αεl = sij2|αεk = sij1) = 1. Thus,

lim
ε→0

E
∣∣∣ d∑
j,j0=1

l0∑
i=1

mi∑
j1,j2=1

T/ε∑
l=k+1

∂2f(zεk, i)

∂zj∂zj0
P (αεl = sij2 |αεk = sij1)I(αεk = sij1)EXj0(l, i)Xj(k, i)

−
d∑

j,j0=1

l0∑
i=1

∞∑
l=k+1

∂2f(zεk, i)

∂zj∂zj0
I(αεk = i)EXj0(l, i)Xj(k, i)

∣∣∣ = 0.

(3.55)

By (3.54), (3.55), and the stationarity,

lim
ε→0

E
∣∣∣tr[fzz(zεk, αεk) T/ε∑

l=k+1

Ẽε
kX(l, αεl )X

′(k, αεk)
]

−
d∑

j,j0=1

l0∑
i=1

∞∑
l=1

∂2f(zεk, i)

∂zj∂zj0
I(αεk = i)EXj0(l, i)Xj(0, i)

∣∣∣
= lim

ε→0
E
∣∣∣tr[fzz(zεk, αεk) T/ε∑

l=k+1

Ẽε
kX(l, αεl )X

′(k, αεk)
]

−
l0∑
i=1

tr
[
fzz(z

ε
k, i)

∞∑
l=1

EX(l, i)X ′(0, i)
]
I(αεk = i)

∣∣∣ = 0.

(3.56)

Similarly,

lim
ε→0

E
∣∣∣tr[fzz(zεk, αεk)Ẽε

kX(k, αεk)X
′(k, αεk)

]
−

l0∑
i=1

tr
[
fzz(z

ε
k, i)EX(0, i)X ′(0, i)

]
I(αεk = i)

∣∣∣ = 0.

(3.57)

Therefore, (3.52) follows from (3.6), (3.7), (3.50), (3.55), (3.57), and the factEX(l, i)X ′(0, i) =

EX(0, i)X ′(l, i).

Next, by the mixing inequality (3.3) and the moment condition (3.2), the same

argument as above yields

sup
0≤k≤T/ε,ε

E|Lεf ε(zεk, αεk, εk)| <∞. (3.58)

Hence, by (3.49), (3.52), and (3.58), conditions (c)(1), (c)(2′), (c)(3), and (c)(4′)

in Proposition 3.2 are satisfied. On the other hand, by virtue of Propositions 3.4 and
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3.9, the conditions (a) and (b) are fulfilled. So the proof of the theorem follows by

Proposition 3.2 and the Remark 3.3. 2

Remark 3.12. As given in Remark 2.2 (iii), αε(·) converges weakly to α(·), a Markov

chain generated by Q. Define a stochastic process

z̄(t) =

∫ t

0

σ(α(s))dw(s), (3.59)

where w(·) is a standard Brownian motion and σ(i)σ′(i) = A(i) with A(·) is given

in (3.7). Then for each i = 1 . . . , l0, for any f(·, i) that is a real-valued function

with bounded derivatives up to second order and with Lipschitz continuous second

derivatives, f(z(t), α(t))−
∫ t

0
Lf(z̄(s), α(s))ds is a martingale. Therefore, (z(·), α(·))

is a solution of the martingale problem associated with operator L. In view of Propo-

sition 3.9, the uniqueness of the martingale problem with operator L implies that

(z(·), α(·)) has same distribution as that of (z(·), α(·)).

3.3 Ramifications

In this section, we obtain further results and ramifications as a consequence of the

previous sections. These results are in the light of reduction of computational com-

plexity. It indicates that we can aggregate the Markovian states in an appropriate

way so that the aggregated process is much easier to deal with. For the original

sequence, we have to deal with |M| sequences {X(l, sij)}, whereas in the aggregated

process, we need only examine |M| sequences.

Label the state space M as M = {s11, . . . , s1m1} ∪ · · · ∪ {sl01, . . . , sl0ml0}. Let
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{(X(k, α), α ∈ M) : k ∈ Z} be a wide-sense stationary sequence of R|M|×d-valued

random variables on (Ω,F , P ). Thus, compared to Section 2, we have a total of |M|

sequences to deal with. We replace (A2) by the following condition.

(A2’) The sequence {(X(k, α), α ∈M) : k ∈ Z} is independent of the Markov process

{αεk}, and is φ-mixing with mixing measure denoted by φ(·). Moreover, assume

that there exists δ > 0 and a constant C that does not depend on k and α such

that

EX(k, α) = 0, E|X(k, α)|2(1+δ) ≤ C, ∀ k ≥ 1; α ∈M, (3.60)

and (3.3) holds.

Aggregating the Markov states in eachMi into one state leads to the definition of

the following centered and scaled sequences associated with the aggregated Markov

states:

ẑεk =
√
ε
k−1∑
l=0

l0∑
i=1

mi∑
j=1

X(l, sij)[I(αεl = sij)− νijI(αεl = i)], ẑε(t) = ẑεk, t ∈ [εk, εk + ε).

(3.61)

Using the techniques presented in the last section, we can establish the following

results. The detailed proof is omitted.

Theorem 3.13. Assume (A1) and (A2’). The process (ẑε(·), αε(·)) converges weakly

to (ẑ(·), α(·)) such that the limit is the solution of the martingale problem with operator

given by

Lf(x, i) =
1

2

d∑
j1=1

d∑
j2=1

âj1j2(i)
∂2f(x, i)

∂xj1∂xj2
+Qf(x, ·)(i), i = 1, 2, . . . , l0, (3.62)
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where Â(i) = (âj1j2(i)) and

Â(i) =

mi∑
j=1

{
νij(1− νij)EX(0, sij)X

′(0, sij)

+
∞∑
k=1

νijψij,ij(k)
[
EX(0, sij)X

′(k, sij) + EX(k, sij)X
′(0, sij)

]}

+
∑

1≤j1<j2≤mi

{
∞∑
k=1

[
νij1ψij1,ij2(k)

[
EX(0, sij1)X

′(k, sij2) + EX(k, sij2)X
′(0, sij1)

]
+ νij2ψij2,ij1(k)

[
EX(0, sij2)X

′(k, sij1) + EX(k, sij1)X
′(0, sij2)

]]
− νij1νij2

[
EX(0, sij1)X

′(0, sij2) + EX(0, sij2)X
′(0, sij1)

]}
.

(3.63)

Remark 3.14. As a special case, we consider a Markov chain αεk with transition

probability matrix given by Pε = P + εQ, where P is irreducible and Q is a generator

of a continuous-time Markov chain. That is, the states of the Markov chain belong

to one weakly irreducible class. Assume that M = {1, 2, . . . ,m} and for each k ≥ 0,

i ∈ M, X(k, i) ∈ Rd and is wide-sense stationary mixing. This is a consequence of

the main result. Define

Ẑε
k =
√
ε
k−1∑
l=0

m∑
i=1

X(l, i)[I(αεl = i)− νi], Ẑε(t) = Ẑε
k, t ∈ [εk, εk + ε), (3.64)

where ν = (ν1, . . . , νm) is the stationary distribution associated with the transition

matrix P . Then it can be shown that under conditions (A1) and (A2’) with the mod-

ification mentioned above, Ẑε(·) converges weakly to Ẑ(·), a d-dimensional Brownian
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motion with mean zero and covariance Σt where

Σ =
m∑
i=1

[
νi(1− νi)EX(0, i)X ′(0, i) +

∞∑
k=1

νiψ
ii(k)

[
EX(0, i)X ′(k, i) + EX(k, i)X ′(0, i)

]]
+

∑
1≤i<j≤m

{
∞∑
k=1

[
νiψ

ij(k)
[
EX(0, i)X ′(k, j) + EX(k, j)X ′(0, i)

]
+ νjψ

ji(k)
[
EX(0, j)X ′(k, i) + EX(k, i)X ′(0, j)

]]
− νiνj

[
EX(0, i)X ′(0, j) + EX(0, j)X ′(0, i)

]}
.

(3.65)

In addition to the process (ẑε(t), αε(t)), we may define

z̃εk =
√
ε
k−1∑
l=0

l0∑
i=1

mi∑
j=1

X(l, sij)I(αεl = sij) =
√
ε
k−1∑
l=0

X(l, αεl ), z̃
ε(t) = z̃εk, t ∈ [εk, εk + ε),

zεk =
√
ε
k−1∑
l=0

l0∑
i=1

mi∑
j=1

X(k, sij)ν
ijI(αεl = i), zε(t) = zεk, t ∈ [εk, εk + ε),

(3.66)

where bt/εc denotes the integer part of the real number t/ε.

Remark 3.15. Under the conditions of Theorem 3.13, we establish the following

results.

(i) (z̃ε(·), αε(·)) converges weakly to (z̃(·), α(·)) such that the limit is the solution

of the martingale problem with operator given by

Lf(x, i) =
1

2

d∑
j1=1

d∑
j2=1

ãj1j2(i)
∂2f(x, i)

∂xj1∂xj2
+Qf(x, ·)(i), i = 1, 2, . . . , l0 (3.67)
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where

Ã(i) =
(
ãj1j2(i)

)
=

mi∑
j=1

νijEX(0, sij)X
′(0, sij) +

mi∑
j1,j2=1

∞∑
k=1

νij1
(
νij2 + ψij1,ij2(k)

)
×
[
EX(0, sij1)X

′(k, sij2) + EX(k, sij2)X
′(0, sij1)

]
.

(3.68)

(ii) (zε(·), αε(·)) converges weakly to (z(·), α(·)) such that the limit is the solution

of the martingale problem with operator given by

Lf(x, i) =
1

2

d∑
j1=1

d∑
j2=1

aj1j2(i)
∂2f(x, i)

∂xj1∂xj2
+Qf(x, ·)(i), i = 1, 2, . . . , l0 (3.69)

where

A(i) = (aj1j2(i)) = EX(0, i)X
′
(0, i) +

∞∑
k=1

[
EX(k, i)X

′
(0, i) + EX(0, i)X̄ ′(k, i)

]
,

(3.70)

X(k, i) =
∑mi

j=1 X(k, sij)ν
ij and the matrix Q is given in (2.3).

These results illustrate the aggregation and associated limit results from a slightly

different angle.

Example 3.16. a, Let ε > 0 and αεk be a time-homogeneous Markov chain with the

state spaceM =M1∪M2 = {s11, s12}∪{s21, s22} and transition matrix Pε = P+εQ

with

P = diag[P 1, P 2] =



1
2

1
2

0 0

1
4

3
4

0 0

0 0 1
7

6
7

0 0 2
7

5
7


, Q =



−3 1 1 1

1 −3 1 1

1 1 −3 1

1 1 1 −3


.
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Then ν1 = (1
3
, 2

3
), ν2 = (1

4
, 3

4
) and

(P 1)k =

 1
3

+ 2
3·4k

2
3
− 2

3·4k

1
3
− 1

3·4k
2
3

+ 1
3·4k

 , (P 2)k =

 1
4

+ 3
4·(−7)k

3
4
− 3

4·(−7)k

1
4
− 1

4·(−7)k
3
4

+ 1
4·(−7)k

 .

By (2.3) and (2.6),

Q =

−2 2

2 −2

 , Ψ(k) =



2
3·4k

−2
3·4k 0 0

−1
3·4k

1
3·4k 0 0

0 0 3
4·(−7)k

−3
4·(−7)k

0 0 −1
4·(−7)k

1
4·(−7)k


.

Let {(X(k, 1), X(k, 2)) : k ≥ 0} and {(X(k, s11), X(k, s12), X(k, s21), X(k, s22)) : k ≥

0} be two sequences of m-dependent, wide-sense stationary random variables in Rd

satisfying the conditions (A2) and (A2’) respectively. Denote

zε(t) =
√
ε

bt/εc−1∑
j=0

X(j, ᾱεj), ẑε(t) =
√
ε

bt/εc−1∑
l=0

2∑
i=1

2∑
j=1

X(l, sij)[I(αεl = sij)−νijI(ᾱεl = i)].

Then, by Theorems 3.10 and 3.13, (zε(·), ᾱε(·)) and (ẑε(·), ᾱε(·)) respectively converge

weakly to (z(·), ᾱ(·)) and (ẑ(·), ᾱ(·)) such that the limits are the solutions of the

martingale problems with operators respectively given by

Lf(x, i) =
1

2

d∑
j1=1

d∑
j2=1

aj1j2(i)
∂2f(x, i)

∂xj1∂xj2
+Qf(x, ·)(i),

L̂f(x, i) =
1

2

d∑
j1=1

d∑
j2=1

âj1j2(i)
∂2f(x, i)

∂xj1∂xj2
+Qf(x, ·)(i),

whereA(i) = (aj1j2(i)) = EX(0, i)X ′(0, i)+
∑∞

i=1

[
EX(k, i)X ′(0, i)+EX(0, i)X ′(k, i)

]
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and Â(i) = (âj1j2(i)), i = 1, 2 with

Â(1) =
2

9
E
[
X(0, s11)X ′(0, s11) +X(0, s12)X ′(0, s12)

−X(0, s11)X ′(0, s12)−X(0, s12)X ′(0, s11)
]

+
m∑
k=1

2

9 · 4k
E
[
X(0, s11)X ′(k, s11) +X(k, s11)X ′(0, s11)

+X(0, s12)X ′(k, s12) +X(k, s12)X ′(0, s12)−X(0, s11)X ′(k, s12)

−X(k, s12)X ′(0, s11)−X(0, s12)X ′(k, s11)−X(k, s11)X ′(0, s12)
]
,

Â(2) =
3

16
E
[
X(0, s21)X ′(0, s21) +X(0, s22)X ′(0, s22)

−X(0, s21)X ′(0, s22)−X(0, s22)X ′(0, s21)
]

+
m∑
k=1

3

16 · (−7)k
E
[
X(0, s21)X ′(k, s21) +X(k, s21)X ′(0, s21)

+X(0, s22)X ′(k, s22) +X(k, s22)X ′(0, s22)−X(0, s21)X ′(k, s22)

−X(k, s22)X ′(0, s21)−X(0, s22)X ′(k, s21)−X(k, s21)X ′(0, s22)
]
.

b, Let αεk be a time-homogeneous Markov chain with the state space M = {1, 2}

and transition matrix Pε = P + εQ =

1
2

1
2

1
4

3
4

 + ε

−3 3

3 −3

. Then ν = (1
3
, 2

3
).

By (2.6), Ψ(k) =

 2
3·4k

−2
3·4k

−1
3·4k

1
3·4k

. Let {(X(k, 1), X(k, 2)) : k ≥ 0} be a sequence

of m-dependent, wide-sense stationary random variables in Rd satisfying conditions

(A2). Denote Ẑε(t) =
√
ε
∑bt/εc−1

l=0

∑2
i=1X(l, i)[I(αεl = i) − νi]. By Remark 4.2,

Ẑε(·) converges weakly to Ẑ(·), a d-dimensional Brownian motion with mean zero

and covariance Σt where

Σ =
2

9
E
[
X(0, 1)X ′(0, 1) +X(0, 2)X ′(0, 2)−X(0, 1)X ′(0, 2)−X(0, 2)X ′(0, 1)

]
+

m∑
k=1

2

9 · 4k
E
[
X(0, 1)X ′(k, 1) +X(k, 1)X ′(0, 1) +X(0, 2)X ′(k, 2) +X(k, 2)X ′(0, 2)

−X(0, 1)X ′(k, 2)−X(k, 2)X ′(0, 1)−X(0, 2)X ′(k, 1)−X(k, 1)X ′(0, 2)
]
.
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3.4 Proof of Proposition 3.11

The proof is divided into several steps. Each step is formulated as a claim.

Step 1: sup0≤k≤T/εE|f εi (zεk, α
ε
k, εk)| → 0 for i = 1, . . . , 4.

(1) sup0≤k≤T/εE|f ε1 (zεk, α
ε
k, εk)| → 0. By Cauchy-Schwartz inequality and the

boundedness of the first derivative of f ,

E|f ε1 (zεk, α
ε
k, εk)| ≤

√
εE
[
|fz(zεk, αεk)|

∣∣∣ T/ε∑
l=k

Eε
kX(l, αεl )

∣∣∣]
≤
√
εCE

∣∣∣ T/ε∑
l=k

Eε
kX(l, αεl )

∣∣∣ ≤ √εC d∑
j=1

E
∣∣∣ T/ε∑
l=k

Eε
kXj(l, α

ε
l )
∣∣∣

≤
√
εC

d∑
j=1

T/ε∑
l=k

E|Eε
kXj(l, α

ε
l )|.

(3.71)

By the independence of {Xj(k, i)} and {αεk},

E|Eε
kXj(l, α

ε
l )| = E

∣∣∣ l0∑
i=1

Eε
k(Xj(l, i)I(αεl = i))

∣∣∣
= E

∣∣∣ l0∑
i=1

E
(
Xj(l, i)I(αεl = i)

∣∣∣FXk ∨ Fαεk )∣∣∣
= E

∣∣∣ l0∑
i=1

E
(
Xj(l, i)

∣∣FXk )E(I(αεl = i)
∣∣Fαεk )∣∣∣

≤
l0∑
i=1

E
∣∣E(Xj(l, i)

∣∣FXk )∣∣E∣∣E(I(αεl = i)
∣∣Fαεk )∣∣

≤
l0∑
i=1

E
∣∣E(Xj(l, i)

∣∣FXk )∣∣.

(3.72)

Note that EXj(l, i) = 0, so by the inequality (2.17) with p = 1 + δ and q = 1+δ
δ

,

E
∣∣E(Xj(l, i)

∣∣FXk )∣∣ ≤ 2φ(l − k)
δ

1+δ ‖Xj(l, i)‖1+δ ≤ Cφ(l − k)
δ

1+δ . (3.73)

Next, from (3.71), (3.72), and (3.73), we have

E|f ε1 (zεk, α
ε
k, εk)| ≤

√
εC

d∑
j=1

T/ε∑
l=k

l0∑
i=1

φ(l − k)
δ

1+δ ≤
√
εC

∞∑
n=0

φ(n)
δ

1+δ = C
√
ε. (3.74)



43

The last identity follows from the assumptions (A2). Since the inequality (3.74) holds

for all k with 0 ≤ k ≤ T/ε, we get sup0≤k≤T/εE|f ε1 (zεk, α
ε
k, εk)| → 0 as desired.

(2) sup0≤k≤T/εE|f ε2 (zεk, α
ε
k, εk)| → 0 as ε→ 0.

For j, j0 = 1, . . . , d we have

∣∣∣ T/ε∑
p=k

T/ε∑
l=p+1

[
Eε
kXj(l, α

ε
l )Xj0(p, α

ε
p)− Ẽε

kXj(l, α
ε
l )Xj0(p, α

ε
p)
]∣∣∣

=
∣∣∣ T/ε∑
p=k

T/ε∑
l=p+1

l0∑
i1=1

l0∑
i2=1

[
E
(
Xj(l, i1)Xj0(p, i2)I(αεl = i1)I(αεp = i2)

∣∣∣FXk ∨ Fαεk )
−E
(
Xj(l, i1)Xj0(p, i2)I(αεl = i1)I(αεp = i2)

∣∣∣Fαεk )]∣∣∣
=
∣∣∣ T/ε∑
p=k

T/ε∑
l=p+1

l0∑
i1=1

l0∑
i2=1

[
E
(
Xj(l, i1)Xj0(p, i2)

∣∣∣FXk )− EXj(l, i1)Xj0(p, i2)
]

×E
(
I(αεl = i1)I(αεp = i2)

∣∣∣Fαεk )∣∣∣
≤

T/ε∑
p=k

T/ε∑
l=p+1

l0∑
i1=1

l0∑
i2=1

∣∣∣E(Xj(l, i1)Xj0(p, i2)
∣∣∣FXk )− EXj(l, i1)Xj0(p, i2)

∣∣∣.
(3.75)

Since l > p ≥ k, by the mixing inequality (2.17) with p = 1 + δ and q = 1+δ
δ

,

E
∣∣∣E(Xj(l, i1)Xj0(p, i2)

∣∣∣FXk )− EXj(l, i1)Xj0(p, i2)
∣∣∣

= E
∣∣∣E(E(Xj(l, i1)|FXp )Xj0(p, i2)

∣∣∣FXk )− E(E(Xj(l, i1)|FXp )Xj0(p, i2)
)∣∣∣

≤ 2φ(p− k)
δ

1+δ ‖E(Xj(l, i1)|FXp )Xj0(p, i2)‖1+δ.

(3.76)

Next, by the mixing inequality (2.16) with p = 2(1 + δ), q = 2(1+δ)
1+2δ

,

‖E(Xj(l, i1)|FXp )− EXj(l, i1)‖2(1+δ) ≤ 2φ(l − p)
1+2δ

2(1+δ)‖Xj(l, i1)‖2(1+δ)

≤ 2φ(l − p)
δ

1+δ ‖Xj(l, i1)‖2(1+δ).
(3.77)

We have used the fact δ
1+δ

< 1+2δ
2(1+δ)

in the last inequality. Note that EXj(l, i1) = 0,
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so by (3.76), Cauchy-Schwartz inequality and (3.77) we obtain

E
∣∣∣E(Xj(l, i1)Xj0(p, i2)

∣∣∣FXk )− EXj(l, i1)Xj0(p, i2)
∣∣∣

≤ 2φ(p− k)
δ

1+δ ‖E(Xj(l, i1)|FXp )‖2(1+δ)‖Xj0(p, i2)‖2(1+δ)

≤ 4φ(p− k)
δ

1+δφ(l − p)
δ

1+δ ‖Xj(l, i1)‖2(1+δ)‖Xj0(p, i2)‖2(1+δ)

≤ Cφ(p− k)
δ

1+δφ(l − p)
δ

1+δ .

(3.78)

The constant C in the last inequality does not depend on l, p, i1, i2, j, j0 because of

(3.2). Since
∑∞

k=0 φ(k)
δ

1+δ <∞, it follows from (3.75) and (3.78) that

E
∣∣∣ T/ε∑
p=k

T/ε∑
l=p+1

[
Eε
kXj(l, α

ε
l )Xj0(p, α

ε
p)− Ẽε

kXj(l, α
ε
l )Xj0(p, α

ε
p)
]∣∣∣

≤
T/ε∑
p=k

T/ε∑
l=p+1

l0∑
i1=1

l0∑
i2=1

E
∣∣∣E(Xj(l, i1)Xj0(p, i2)

∣∣∣FXk )− EXj(l, i1)Xj0(p, i2)
∣∣∣

≤ C

T/ε∑
p=k

T/ε∑
l=p+1

l0∑
i1=1

l0∑
i2=1

φ(p− k)
δ

1+δφ(l − p)
δ

1+δ

≤ Cl20

( ∞∑
l=0

φ(l)
δ

1+δ

)( ∞∑
p=1

φ(p)
δ

1+δ

)
≤ C.

(3.79)

By the boundedness of fzz(·, ·), (3.79) implies

sup
0≤k≤T/ε

E|f ε2 (zεk, α
ε
k, εk)| = O(ε)→ 0 as ε→ 0.

(3) sup0≤k≤T/εE|f ε3 (zεk, α
ε
k, εk)| → 0 as ε → 0. This can be done by using the

argument of Step 1 (2).

(4) sup0≤k≤T/εE|f ε4 (zεk, ᾱ
ε
k, εk)| → 0 as ε → 0. The assertion is directly implied

by the boundedness of f and the virtue of (2.8).

Step 2: Claim: (3.46) and (3.47) hold. This step is divided into four sub-steps as

follow.
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(1) Claim:

εLεf ε1 (zεk, α
ε
k, εk) = ε

T/ε∑
l=k+1

Eε
kX
′(l, αεl )fzz(z

ε
k, α

ε
k)X(k, αεk)−

√
εfz(z

ε
k, α

ε
k)X(k, αεk)+eε,3k

(3.80)

where eε,3k satisfies (3.47) with i = 3. We have

εLεf ε1 (zεk, α
ε
k, εk) = Eε

kf
ε
1 (zεk+1, α

ε
k+1, εk + ε)− f ε1 (zεk, α

ε
k, εk)

=
√
ε

T/ε∑
l=k+1

Eε
k

[(
fz(z

ε
k+1, α

ε
k+1)− fz(zεk+1, α

ε
k)
)
X(l, αεl )

]
+
√
ε

T/ε∑
l=k+1

Eε
k

[(
fz(z

ε
k+1, α

ε
k)− fz(zεk, αεk)

)
X(l, αεl )

]
−
√
εfz(z

ε
k, α

ε
k)X(k, αεk).

(3.81)

To proceed, we evaluate first two terms in the last equation of (3.81). First, since

zεk+1 is F εk -measurable, we have

Eε
k

[(
fz(z

ε
k+1, α

ε
k+1)− fz(zεk+1, α

ε
k)
)
X(l, αεl )

]
= Eε

k

[(
f z(z

ε
k+1, α

ε
k+1)− f z(zεk+1, α

ε
k)
)
X(l, αεl )

]
=

l0∑
i3=1

mi3∑
j3=1

l0∑
i2=1

mi2∑
j2=1

l0∑
i1=1

mi1∑
j1=1

Eε
k

[
I(αεk = si1j1 , α

ε
k+1 = si2j2 , α

ε
l = si3j3)

×
(
f z(z

ε
k+1, si2j2)− f z(zεk+1, si1j1)

)
X(l, i3)

]
=

l0∑
i3=1

mi3∑
j3=1

l0∑
i2=1

mi2∑
j2=1

l0∑
i1=1

mi1∑
j1=1

P
(
αεl = si3j3

∣∣αεk+1 = si2j2
)
P
(
αεk+1 = si2j2

∣∣αεk = si1j1
)

×I(αεk = si1j1)
(
f z(z

ε
k+1, si2j2)− f̄z(zεk+1, si1j1)

)
E
(
X(l, i3)

∣∣FXk ).
(3.82)

Observe that if i1 = i2 then f̄z(z
ε
k+1, si2j2) − f z(zεk+1, si1j1) = 0. In case i1 6= i2, by

noting that Pε = P +εQ, we get P
(
αεk+1 = si2j2

∣∣αεk = si1j1
)
≤ Cε, where the constant

C could be chosen as the maximum of the absolute values of all entries of Q. Taking
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this and the boundedness of f z(·, ·) into account, it follows from (3.82) that

∣∣∣Eε
k

[(
fz(z

ε
k+1, α

ε
k+1)− fz(zεk+1, α

ε
k)
)
X(l, αεl )

]∣∣∣ ≤ Cε

l0∑
i3=1

d∑
j=1

∣∣E(Xj(l, i3)
∣∣FXk )∣∣.

(3.83)

Thus, by inequality (3.73), we have

√
εE
∣∣∣ T/ε∑
l=k+1

Eε
k

[(
fz(z

ε
k+1, α

ε
k+1)− fz(zεk+1, α

ε
k)
)
X(l, αεl )

]∣∣∣
≤ ε
√
εC

T/ε∑
l=k+1

l0∑
i=1

d∑
j=1

E
∣∣E(Xj(l, i)

∣∣FXk )∣∣
≤ ε
√
εCl0d

T/ε∑
l=k+1

φ(l − k)
δ

1+δ ≤ ε
√
εCl0d

∞∑
n=1

φ(n)
δ

1+δ ≤ ε
√
εC.

(3.84)

Next, note that all norms in Rd are equivalent, so, since the second derivatives of f

are bounded and Lipschitz continuous, for z, z′ ∈ Rd and i = 1, 2, . . . , l0, |fzz(z, i) −

fzz(z
′, i)|∞ ≤ min{C,C|z − z′|1}. Here, for a matrix A = (aij), | · |∞ is taken to

be |A|∞ = maxi,j |aij| and |z|1 is the usual 1-norm, |z|1 =
∑d

j=1 |zj|. Noting that

zεk+1 − zεk =
√
εX(k, αεk), by a Taylor expansion,

∣∣∣√ε T/ε∑
l=k+1

Eε
k

[(
fz(z

ε
k+1, α

ε
k)− fz(zεk, αεk)

)
X(l, αεl )

]
− ε

T/ε∑
l=k+1

Eε
kX
′(l, αεl )fzz(z

ε
k, α

ε
k)X(k, αεk)

∣∣∣
=
∣∣∣[(fz(zεk+1, α

ε
k)− fz(zεk, αεk)

)
−
√
εX ′(k, αεk)fzz(z

ε
k, α

ε
k)
]√

ε

T/ε∑
l=k+1

Eε
kX(l, αεl )

∣∣∣
≤ εC

l0∑
i1=1

l0∑
i2=1

|X(k, i1)|1 min{1,
√
ε|X(k, i1)|1}

T/ε∑
l=k+1

∣∣E(X(l, i2)
∣∣FXk )∣∣1

≤ ε5/4C

l0∑
i1=1

l0∑
i2=1

|X(k, i1)|1
T/ε∑
l=k+1

∣∣E(X(l, i2)
∣∣FXk )∣∣1

+εC

l0∑
i1=1

l0∑
i2=1

|X(k, i1)|1I
(
|X(k, i1)|1 > ε−1/4

) T/ε∑
l=k+1

∣∣E(X(l, i2)
∣∣FXk )∣∣1.

(3.85)
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By Hölder inequality, for j, j0 = 1, . . . , d and i1, i2 = 1, . . . , l0,

E
∣∣Xj(k, i1)E

(
Xj0(l, i2)

∣∣FXk )∣∣ ≤ ‖Xj(k, i1)‖ 2(1+δ)
1+2δ

∥∥E(Xj0(l, i2)
∣∣FXk )∥∥2(1+δ)

≤ Cφ(l − k)
δ

1+δ ‖Xj(k, i1)‖ 2(1+δ)
1+2δ

‖Xj0(l, i2)‖2(1+δ)

≤ Cφ(l − k)
δ

1+δ .

(3.86)

We have used the inequality (3.77) in the second inequality together with the fact

that ‖Xj(k, i1)‖ 2(1+δ)
1+2δ

and ‖Xj0(l, i2)‖2(1+δ) are bounded in the last one. Therefore,

ε5/4CE

l0∑
i1=1

l0∑
i2=1

|X(k, i1)|1
T/ε∑
l=k+1

∣∣E(X(l, i2)
∣∣FXk )∣∣1

≤ ε5/4Cl20d
2

∞∑
n=1

φ(n)
δ

1+δ ≤ Cε5/4.

(3.87)

Similarly, by Hölder inequality, for j, j0 = 1, . . . , d and i1, i2 = 1, . . . , l0,

E
∣∣∣Xj(k, i1)I

(
|X(k, i1)|1 > ε−1/4

)
E
(
Xj0(l, i2)

∣∣FXk )∣∣∣
≤ ‖Xj(k, i1)‖2(1+δ)

∥∥I(|X(k, i1)|1 > ε−1/4
)∥∥

1+δ
δ

∥∥E(Xj2(l, i2)
∣∣FXk )∥∥2(1+δ)

≤ Cφ(l − k)
δ

1+δP
(
|X(k, i1)|1 > ε

−1
4

) δ
1+δ

≤ Cφ(l − k)
δ

1+δ ε
δ

4(1+δ)E
d∑

j1=1

|Xj1(k, i1)| ≤ Cφ(l − k)
δ

1+δ ε
δ

4(1+δ) .

(3.88)

We have used the Chebyshev’s inequality in the third line above. Therefore,

CE

l0∑
i1=1

l0∑
i2=1

|X(k, i1)|1I
(
|X(k, i1)|1 > ε−1/4

) T/ε∑
l=k+1

∣∣E(X(l, i2)
∣∣FXk )∣∣1

≤ Cε1+ δ
4(1+δ)

∞∑
n=1

φ(n)
δ

1+δ ≤ Cε1+ δ
4(1+δ) .

(3.89)

By (3.85), (3.87), and (3.89), we have

E
∣∣∣√ε T/ε∑

l=k+1

Eε
k

[(
fz(z

ε
k+1, α

ε
k)− fz(zεk, αεk)

)
X(l, αεl )

]
−ε

T/ε∑
l=k+1

Eε
kX
′(l, αεl )fzz(z

ε
k, α

ε
k)X(k, αεk)

∣∣∣
≤ C

(
ε

5
4 + ε1+ δ

4(1+δ)
)
.

(3.90)
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Thus (3.80) and (3.47) for i = 3 follows from (3.81), (3.84) and (3.90).

(2) Claim:

εLεf ε2 (zεk, α
ε
k, εk) = −ε

T/ε∑
l=k+1

tr
[
fzz(z

ε
k, α

ε
k)E

ε
kX(l, αεl )X

′(k, αεk)
]

+εtr
[
fzz(z

ε
k, α

ε
k)

T/ε∑
l=k+1

Ẽε
kX(l, αεl )X

′(k, αεk)
]

+ eε,4k ,

(3.91)

where eε,4k satisfies (3.47) with i = 4.

We have

εLεf ε2 (zεk, α
ε
k, εk)

= Eε
kf

ε
2 (zεk+1, α

ε
k+1, εk + ε)− f ε2 (zεk, α

ε
k, εk)

= εEε
ktr
[(
f̄zz(z

ε
k+1, α

ε
k+1)− f̄zz(zεk+1, α

ε
k)
) T/ε∑
p=k+1

T/ε∑
l=p+1

[
Eε
k+1X(l, αεl )X

′(p, αεp)

−Ẽε
k+1X(l, αεl )X

′(p, αεp)
]]

+εtr
[(
f̄zz(z

ε
k+1, α

ε
k)− f̄zz(zεk, αεk)

) T/ε∑
p=k+1

T/ε∑
l=p+1

[
Eε
k+1X(l, αεl )X

′(p, αεp)

−Ẽε
k+1X(l, αεl )X

′(p, αεp)
]]

−ε
T/ε∑
l=k+1

tr
[
fzz(z

ε
k, α

ε
k)E

ε
kX(l, αεl )X

′(k, αεk)
]

+εtr
[
fzz(z

ε
k, α

ε
k)

T/ε∑
l=k+1

Ẽε
kX(l, αεl )X

′(k, αεk)
]
.

(3.92)

To proceed, we evaluate the first two terms in the last equation of (3.92). Similar to
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(3.82), for k < p < l ≤ T/ε, we have

εEε
ktr
[(
f̄zz(z

ε
k+1, α

ε
k+1)− f̄zz(zεk+1, α

ε
k)
)[
Eε
k+1X(l, αεl )X

′(p, αεp)− Ẽε
k+1X(l, αεl )X

′(p, αεp)
]]

=

l0∑
i4=1

mi4∑
j4=1

l0∑
i3=1

mi3∑
j3=1

l0∑
i2=1

mi2∑
j2=1

l0∑
i1=1

mi1∑
j1=1

εI(αεk = si1j1)

×P (αεk+1 = si2j2|αεk = si1j1)P (αεp = si3j3|αεk+1 = si2j2)P (αεl = si4j4|αεp = si3j3)

×tr
[(
f̄zz(z

ε
k+1, si2j2)− f̄zz(zεk+1, si1j1)

)[
E
(
X(l, i4)X ′(p, i3)

∣∣FXk )− EX(l, i4)X ′(p, i3)
]]
.

(3.93)

The same argument as what follows (3.82) gives

ε
∣∣∣Eε

ktr
[(
f zz(z

ε
k+1, α

ε
k+1)− f̄zz(zεk+1, α

ε
k)
)[
Eε
k+1X(l, αεl )X

′(p, αεp)− Ẽε
k+1X(l, αεl )X

′(p, αεp)
]]∣∣∣

≤ ε2C

l0∑
i3,i4=1

d∑
j,j0=1

∣∣E(Xj(l, i4)Xj0(p, i3)
∣∣FXk )− EXj(l, i4)Xj0(p, i3)

∣∣.
(3.94)

Similar to (3.79) in Step 1 (2), we get

T/ε∑
p=k+1

T/ε∑
l=p+1

E
∣∣E(Xj(l, i4)Xj0(p, i3)

∣∣FXk )− EXj(l, i4)Xj0(p, i3)
∣∣ ≤ C. (3.95)

Therefore, by (3.94) and (3.95),

E
∣∣∣εEε

ktr
[(
f zz(z

ε
k+1, α

ε
k+1)− f̄zz(zεk+1, α

ε
k)
) T/ε∑
p=k+1

T/ε∑
l=p+1

[
Eε
k+1X(l, αεl )X

′(p, αεp)

−Ẽε
k+1X(l, αεl )X

′(p, αεp)
]]∣∣∣ ≤ Cε2d2l20 = Cε2.

(3.96)

Next, note that by boundedness and Lipschitz condition of fzz(·), |f zz(zεk+1, α
ε
k) −

f̄zz(z
ε
k, α

ε
k)|∞ ≤ C min{1,

√
ε|X(k, αεk)|1}, where |A|∞ = maxi,j |aij| for A = (aij) and
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|z|1 = |z1|+ |z2|+ · · ·+ |zd| for z ∈ Rd. Thus,

E
∣∣∣εtr[(f̄zz(zεk+1, α

ε
k)− f̄zz(zεk, αεk)

)
×

T/ε∑
p=k+1

T/ε∑
l=p+1

[
Eε
kX(l, αεl )X

′(p, αεp)− Ẽε
k+1X(l, αεl )X

′(p, αεp)
]]∣∣∣

≤ εC
d∑

j,j0=1

l0∑
i1,i2,i3=1

T/ε∑
p=k+1

T/ε∑
l=p+1

E
{

min{1,
√
ε|X(k, i1)|1}

×
∣∣∣[E(Xj(l, i3)Xj0(p, i2)

∣∣FXk )− EXj(l, i3)Xj0(p, i2)
]∣∣∣}

≤ εC
d∑

j,j0=1

l0∑
i1,i2,i3=1

T/ε∑
p=k+1

T/ε∑
l=p+1

∥∥min{1,
√
ε|X(k, i1)|1}

∥∥
1+δ
δ

×
∥∥∥[E(Xj(l, i3)Xj0(p, i2)

∣∣FXk )− EXj(l, i3)Xj0(p, i2)
]∥∥∥

1+δ
.

(3.97)

We have just used Hölder inequality in the last inequality with p = 1+δ
δ
, q = 1 + δ. By

using (2.16) with p = 1 + δ and q = 1+δ
δ

, instead of (2.17) in (3.76), similar argument

to (3.77), (3.78) and (3.79) yields

T/ε∑
p=k+1

T/ε∑
l=p+1

∥∥∥[E(Xj(l, i3)Xj0(p, i2)
∣∣FXk )− EXj(l, i3)Xj0(p, i2)

]∥∥∥
1+δ
≤ C (3.98)

where C does not depend on ε and k. Since
∥∥min{1,

√
ε|X(k, i1)|1}

∥∥
1+δ
δ

→ 0 as

ε→ 0, it follows from (3.97) and (3.98) that

sup
0≤k<T/ε

E
∣∣∣εtr[(f zz(zεk+1, α

ε
k)− f̄zz(zεk, αεk)

)
×

T/ε∑
p=k+1

T/ε∑
l=p+1

[
Eε
kX(l, αεl )X

′(p, αεp)− Ẽε
k+1X(l, αεl )X

′(p, αεp)
]]∣∣∣ = o(ε).

(3.99)

Thus, (3.91) and (3.47) with i = 4 are implied by (3.92), (3.96), and (3.99).

The following statement is obtained by the same argument as in Step 2 (2).
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(3) The following assertion holds:

εLεf ε3 (zεk, α
ε
k, εk) = −ε

2
X ′(k, αεk)fzz(z

ε
k, α

ε
k)X(k, αεk)

+
ε

2
tr
[
fzz(z

ε
k, α

ε
k)Ẽ

ε
kX(k, αεk)X

′(k, αεk)
]

+ eε,5k

(3.100)

where eε,5k satisfies (3.47) with i = 5.

Finally, by direct computation we obtain the following result.

(4) εLεf ε4 (zεk, α
ε
k, εk) = −ε(χεk − χεkν̂)QF (zεk) + eε,6k where eε,6k satisfies (3.47) with

i = 6. This concludes the proof of the proposition. 2
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4 Strong Approximation

4.1 Formulation

Suppose that (Ω,F , P ) is a probability space. We may assume without loss of general-

ity that the probability space accommodates all the random variables and processes of

our interest. Throughout this chapter, we use C to denote a generic positive constant

with the convention CC = C and C + C = C used.

Let ε > 0 and αεk be a time-homogeneous Markov chain on (Ω,F , P ) with state

space M = {1, 2, . . . ,m} and transition matrix

P ε = P + εQ, (4.1)

where P = (pij) is a transition probability matrix and Q = (qij) is a generator of

a continuous-time Markov chain (i.e., pij ≥ 0 and
∑m

j=1 p
ij = 1; qij ≥ 0 for i 6= j

and
∑m

j=1 q
ij = 0 for each i). Suppose that P is irreducible and aperiodic with the

stationary distribution denoted by ν = (ν1, ν2, . . . , νm) ∈ R1×m. Denote by pεk the

probability vector pεk = (P (αεk = 1), · · · , P (αεk = m)) ∈ R1×m. Assume that the initial

probability pε0 is independent of ε, i.e., pε0 = p0 = (p1
0, p

2
0, . . . , p

m
0 ).

For each i ∈ M, let {X(k, i)} be a wide-sense stationary sequence of real-

valued random variables on (Ω,F , P ) such that {(X(k, 1), X(k, 2), . . . , X(k,m)) : k ∈

Z} is an Rm-valued wide-sense stationary sequence. We assume that the sequence

{(X(k, 1), X(k, 2), . . . , X(k,m)) : k ∈ Z} is independent of the Markov process {αεk}

and is φ-mixing.
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Denote

X(k) =
m∑
i=1

νiX(k, i), (4.2)

where for each i ∈ M, {X(k, i)} is independent of αεk. That is, X(k) can be viewed

as an average of {X(k, i): i ∈ M} with respect to the stationary measure ν. It can

be seen (see Remark 4.2) that {X(k, αεk)} is φ-mixing. Thus it is ergodic, and as a

result,

ε

bt/εc−1∑
k=0

[X(k, αεk)−X(k)] = ε

bt/εc−1∑
k=0

m∑
i=1

[I{αεk=i} − νi]X(k, i)→ 0 as ε→ 0

in probability and also with probability one, where bzc denotes the integer part of the

real number z. Such a result is of interest to many applications in discrete optimiza-

tion, manufacturing, and wireless communication; see [26, 28] and references therein.

The practical implication is that we can “replace” the complex stochastic process by

its limit or average in an appropriate sense. How close is this approximation? With

more effort, we can further show that

Xε(t) =
√
ε

bt/εc−1∑
k=0

[X(k, αεk)−X(k)] converges weakly to a Brownian motion B(·),

(4.3)

with appropriate covariance as ε → 0. What can we say about the rate of con-

vergence of the process Xε(·)? What is the almost sure behavior of the underlying

process? These questions are our focus in this chapter. We are interested in the al-

most sure behavior of the sequence Xε(t) defined in (4.3). We aim to find the strong

approximation of (4.3).
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Denote

FXn = σ{(X(k, 1), X(k, 2), . . . , X(k,m)) : k ≤ n},

φX(n) = sup
N∈Z

φ
(
σ(X(k, i) : k ≤ N, i ∈M), σ(X(l, i) : l ≥ N + n, i ∈M)

)
.

We pose the following conditions.

(A) – P is irreducible and aperiodic.

– {αεk} is independent of {X(k, i) : k ∈ Z, i ∈M}.

– {(X(k, 1), X(k, 2) . . . , X(k,m)) : k ∈ Z} is an Rm-valued wide-sense sta-

tionary, φ-mixing sequence with mean 0 and mixing measure given by

φX(n) < C/n
4
3

(1+β) for some positive constants C and β.

– supk,iE|X(k, i)|4 <∞.

Remark 4.1. The proof of our main result is based on the mixing property of the

sequences {αεk}. Under the conditions of Lemma 2.3, the finite state space, and

the transition probability (4.1), for sufficiently small ε, the {αεk} are φ-mixing with

exponential mixing rates. In fact, by virtue of [5, Equation (2.2), p.173] and the

ergodicity of P , there exists a number n0 such that all entries of P n0 are positive.

Thus, by the continuity with respect to ε, for ε > 0 small enough, all entries of (P ε)n0

are bounded below by a positive number not depending on ε. Denote the bound by q.

This implies that P ε is ergodic with the unique ergodic distribution νε = (νε1, . . . , ν
ε
m).

By using the result in [5, equation (2.2), p.173], |pε,ij(n) − νεj | ≤ (1 − mq)
n
n0
−1

,

∀i, j = 1, . . . ,m, where pε,ij(n) = P (αεn = j|αε0 = i). From this, we can show that

{αεk} is mixing with exponential rate. Moreover, if φαε(n) is the mixing measure of

αεk then there is a positive number λ0 < 1 such that φαε(n) < λn0 .
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Remark 4.2. By [6, Theorem 1, p.4] and the independence of {X(k, i)} and {αεk},

the sequence {[I{αεk=i} − νi]X(k, i)} is φ-mixing with the mixing measure φε(n) ≤

φX(n) +φαε(n). In addition, by Remark 4.1 and condition (A), there is a constant C

independent of ε such that φε(n) ≤ C/n
4
3

(1+β). Therefore, without lost of generality,

we can suppress the superscript ε in the mixing function φε(n).

4.2 Strong Approximation

This section is devoted to obtaining strong approximation results. We use the idea

of a step-by-step approximation, which is inspired by the approach used in [27].

Nevertheless, the actual techniques are quite different since continuous-time Markov

chains are considered in [27], whereas in our case, discrete-time sequences are treated.

Moreover, in addition to the modulating Markov chain, there are a number of random

sequences {X(k, i) : i ∈ M} as well. To obtain the desired result, we use a blocking

technique, which is originally appeared in [23]. This approach enables us to effectively

“partition” the sequences. Recall the definition of Ψ(k) = (ψij(k)) ∈ Rm×m given by

(2.11). We are in a position to present the main result.

4.2.1 Main Results

Theorem 4.3. Assume that condition (A) holds. Then there exist a constant θ > 0

and a (possibly non-standard) Brownian motion W̃ (t) with EW̃ (t) = 0 and E[W̃ (t)]2 =



56

σ2t where

σ2 =
m∑
i=1

[
EX(0, i)2νi(1− νi) + 2

∞∑
k=1

EX(0, i)X(k, i)νiψii(k)
]

+
∑

1≤i<j≤m

{
2
∞∑
k=1

[
νiψij(k)EX(0, i)X(k, j) + νjψji(k)EX(k, i)X(0, j)

]
−2νiνjEX(0, i)X(0, j)

}
(4.4)

such that

sup
0≤t≤T

∣∣∣Xε(t)− W̃ (t)
∣∣∣ = o(εθ) a.s. (4.5)

Remark 4.4. (i) Equation (4.5) is understood to be in the sense that

lim
ε→0+

sup0≤t≤T

∣∣∣Xε(t)− W̃ (t)
∣∣∣

εθ
= 0 a.s.

It will be seen in the proof that we can select any positive number θ such that

0 < θ < min{1/8, β/4}, where β is given in condition (A). For instance, we can

choose 0 < θ < 1/8 if β = 1/2. In this case, the condition for mixing rate is

φX(n) < Cn−2 for some constant C. Then

sup
0≤t≤T

|Xε(t)− W̃ (t)| = o(ε1/8) a.s.

Due to the modulating Markov chains and the mixing processes used, the rate is slower

than the classical rate for a single i.i.d. sequence with zero mean and bounded fourth

moments which is o(ε1/4) obtained directly by using the usual Skorohod embedding

method. This is expected because of a family of random sequences is considered and

they are correlated by the Markov chain. This also hints the rate of the Markov

modulated sequence to be a product of rate of convergence of the scaled occupation



57

meausre for the Markov chain αεk (see [28, Chapter 4]) and that of the sequence

{X(k, i)} for a fixed i ∈M.

(ii) If one deals with a single mixing process, and if one is only interested in getting

error bounds for a fixed t, then much sharper results are possible. We refer the reader

to [17] for a discussion of the related results. The difficulty of our problem is: The

sequences under consideration, in particular, the mixing rates depend not only on n

but also on ε. Thus effectively, we have to deal with “double arrays” rather than a

“single” sequence. This makes the estimates much more difficult resulting in lower

rate of convergence compared to the classical results for a single sequence.

Proof of Theorem 4.3. To facilitate the presentation, the proof is divided into four

steps.

Step 1. Approximate Xε(t) by a martingale Mε(t) defined in (4.6). The main result

of this step is given in Proposition 4.5.

Choose l > 1, which will be used in the subsequent development. For each ε we

divide the series
∑

j

∑m
i=1[I(αεj = i) − νi]X(j, i) into several blocks with the size of

each block being approximately ε−1/l. Define

Zε,n =
√
ε

bn/ε1/lc−1∑
j=b(n−1)/ε1/lc

m∑
i=1

[I(αεj = i)− νi]X(j, i), n ≥ 1,

F̃ εn = Fαεbn/ε1/lc−1 ∨ F
X
bn/ε1/lc−1, n ≥ 1.

It is clear that Zε,n is F̃ εn-measurable. Define Yε,1 = Zε,1 and

Yε,n =
2n−1∑
j=n

[
E(Zε,j|F̃ εn)− E(Zε,j|F̃ εn−1)

]
, n ≥ 2.
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Then Yε,n is also F̃ εn-measurable. Moreover, E(Yε,n|F̃ εn−1) = 0 for all n ≥ 2. Define

Mε,n =
∑n

j=1 Yε,j, n ≥ 1, Mε(t) = Mε,bt/ε(l−1)/lc 0 ≤ t ≤ T. (4.6)

We can show that (Mε,n, F̃ εn) is a martingale. To proceed, approximate Xε(t) by

Mε(t). The result on uniform approximation is presented next.

Proposition 4.5. If θ < 1
4
− 1

4l
, then

sup
0≤t≤T

∣∣∣Mε(t)−Xε(t)
∣∣∣ = o(εθ) a.s. (4.7)

Proof of Proposition 4.5. For each n ≥ 2,

Mε,n =
n∑
j=1

Yε,j =
n∑
j=1

Zε,j +
2n−1∑
j=n+1

E(Zε,j|F̃ εn)−
n−1∑
j=1

E(Zε,2j + Zε,2j+1|F̃ εj ).

Therefore,

Mε,bt/ε(l−1)/lc = X
ε,
⌊
bt/ε(l−1)/lc

ε1/l

⌋ +

2bt/ε(l−1)/lc−1∑
j=bt/ε(l−1)/lc+1

E
(
Zε,j|F̃ εbt/ε(l−1)/lc

)

−
bt/ε(l−1)/lc−1∑

j=1

E
(
Zε,2j + Zε,2j+1|F̃ εj

)
.

(4.8)

This yields that

sup
0≤t≤T

|Mε(t)−Xε(t)| = sup
0≤t≤T

∣∣∣Mε,bt/ε(l−1)/lc −Xε,bt/εc

∣∣∣
≤ sup

0≤t≤T

∣∣∣X
ε,
⌊
bt/ε(l−1)/lc

ε1/l

⌋ −Xε,bt/εc

∣∣∣+ sup
0≤t≤T

∣∣∣ 2bt/ε(l−1)/lc−1∑
j=bt/ε(l−1)/lc+1

E
(
Zε,j|F̃ εbt/ε(l−1)/lc

)∣∣∣
+ sup

0≤t≤T

∣∣∣ bt/ε(l−1)/lc−1∑
j=1

E
(
Zε,2j + Zε,2j+1|F̃ εj

)∣∣∣.
(4.9)
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To estimate the left-hand side, by virtue of (4.9), it suffices to examine each term on

the right-hand side. The estimates of these terms are presented in Proposition 4.6.

The result is stated next, and its proof is relegated to Section 4.3 to maintain the

continuity of the flow of presentation.

Proposition 4.6. There exists a constant C independent of ε such that

(i)

P
(

sup
0≤t≤T

∣∣∣ 2bt/ε(l−1)/lc−1∑
j=bt/ε(l−1)/lc+1

E
(
Zε,j|F̃ εbt/ε(l−1)/lc

)∣∣∣ ≥ εθ
)
≤ Cε1+ 1

l
−4θ, (4.10)

(ii)

P
(

sup
0≤t≤T

∣∣∣ bt/ε(l−1)/lc−1∑
j=1

E
(
Zε,2j + Zε,2j+1

∣∣∣F̃ εj )∣∣∣ ≥ εθ
)
≤ Cε

1
2
−θ, (4.11)

(iii)

P
(

max
0≤t≤T

∣∣∣X
ε,
⌊
bt/ε(l−1)/lc

ε1/l

⌋ −Xε,bt/εc

∣∣∣ ≥ εθ
)
≤ Cε1− 1

l
−4θ. (4.12)

Now we can complete the proof of Proposition 4.5. It follows from (4.9), (4.10),

(4.11), and (4.12) that

P
(

sup
0≤t≤T

∣∣∣Mε,bt/ε(l−1)/lc −Xε,bt/εc

∣∣∣ ≥ εθ
)

≤ P
(

sup
0≤t≤T

∣∣∣X
ε,
⌊
bt/ε(l−1)/lc

ε1/l

⌋ −Xε,bt/εc

∣∣∣ ≥ εθ

3

)
+P
(

sup
0≤t≤T

∣∣∣ 2bt/ε(l−1)/lc−1∑
j=bt/ε(l−1)/lc+1

E
(
Zε,j|F̃ εbt/ε(l−1)/lc

)∣∣∣ ≥ εθ

3

)

+P
(

sup
0≤t≤T

∣∣∣ bt/ε(l−1)/lc−1∑
j=1

E
(
Zε,2j + Zε,2j+1|F̃ εj

)∣∣∣ ≥ εθ

3

)
≤ C

(
ε1− 1

l
−4θ + ε1+ 1

l
−4θ + ε

1
2
−θ
)
≤ Cε1− 1

l
−4θ.

(4.13)

If θ < 1
4
− 1

4l
, then θ̃ = 1− 1

l
− 4θ > 0, and

P
(

sup
0≤t≤T

∣∣∣Mε,bt/ε(l−1)/lc −Xε,bt/εc

∣∣∣ ≥ εθ
)
≤ Cε

eθ. (4.14)
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Let εn = n−2/eθ. Then from (4.14),

∞∑
n=1

P
(

sup
0≤t≤T

∣∣∣M
εn,bt/ε(l−1)/l

n c −Xεn,bt/εnc

∣∣∣ ≥ εθn

)
<∞.

The Borel-Cantelli lemma implies that

sup
0≤t≤T

∣∣∣M
εn,bt/ε(l−1)/l

n c −Xεn,bt/εnc

∣∣∣ ≤ O(εθn) a.s.

According to the choice of εn and (4.8), (4.7) follows. 2

In view of Proposition 4.5, to prove (4.5), it suffices to show that there exists a

standard Brownian motion W (t) such that

sup
0≤t≤T

∣∣∣Mε(t)−W (σt)
∣∣∣ = o(εθ) a.s. (4.15)

for some θ > 0 with σ defined in (4.4).

Note that Mε(t) = Mε(kε
(l−1)/l) if k ≤ t

ε(l−1)/l < k + 1. Hence

sup
0≤t≤T

∣∣∣Mε(t)−W (σt)
∣∣∣ ≤ max

1≤k≤b T

ε(l−1)/l
c

∣∣∣Mε(kε
(l−1)/l)−W (σkε(l−1)/l)

∣∣∣
+ sup

0≤k≤b T

ε(l−1)/l
c

sup
kε(l−1)/l≤t≤(k+1)ε(l−1)/l

∣∣∣W (σkε(l−1)/l)−W (σt)
∣∣∣.

(4.16)

The estimate of the first term on the left-hand side of (4.16) is obtained in step 3,

whereas the last term in (4.16) is dealt with in step 4. We next give the formula of σ

and prepare for step 3.

Step 2. Preliminary estimates. The following lemma gives the representation of σ.

Its proof is deferred until Section 4.
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Proposition 4.7. If β̄ < β̂ = min{1, β} then there exists a constant C such that for

each n ≥ 1,

∣∣∣ 1
n
E
[ n∑
k=1

m∑
i=1

[I(αεk = i)− νi]X(k, i)
]2

− σ2
∣∣∣ ≤ C(ε+ n−β̄), (4.17)

where σ2 is given by (4.4).

Recall that Mε(kε
(l−1)/l) = Mε,k and (Mε,k, F̃ εk) is a martingale. By virtue of the

martingale version of the Skorohod representation theorem (see [11, Theorem A.1,

p.269]), there exist nonnegative random variables τε,k such that{
Mε(kε

(l−1)/l), k = 1, . . . ,
⌊ T

ε(l−1)/l

⌋}
=
{
W
(
ε(l−1)/l

(
τε,1 + τε,2 + · · ·+ τε,k

))
, k = 1, · · · ,

⌊ T

ε(l−1)/l

⌋}
in distribution,

(4.18)

with W (·) being a standard Brownian motion.

Now, let F εk = σ(Yε,1, Yε,2, . . . , Yε,k). Let Gε0 be the trivial σ-field and let Gεk be

the σ-field generated by F εk and σ(W (t) : 0 ≤ t ≤ ε(l−1)/l
∑k

i=1 τε,i). Again, from [11,

Theorem A.1, p.269]), we have τε,k is Gεk-measurable. Moreover,

E[ε(l−1)/lτε,k] = EY 2
ε,k for k ≥ 1, (4.19)

and

E
(
ε(l−1)/lτε,k

∣∣∣Gεk−1

)
= E

(
Y 2
ε,k

∣∣∣F εk−1

)
, for k = 1, . . . ,

⌊
T

ε(l−1)/l

⌋
. (4.20)

We have the following estimates. The proofs are given in Section 4.3.

Proposition 4.8. (i) If 0 < θ < 1
2
− 1

2l
, then

max
0≤k≤bT/ε(l−1)/lc

∣∣∣ε(l−1)/l

k∑
j=1

[
τε,j − E(τε,j|Gεj−1)

]∣∣∣ = o(εθ) a.s. (4.21)
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(ii) If 0 < θ < 1
2
− 1

2l
, then

max
0≤k≤bT/ε(l−1)/lc

∣∣∣ k∑
j=1

[
Y 2
ε,j − E(Y 2

ε,j|F εj−1)
]∣∣∣ = o(εθ) a.s. (4.22)

(iii) If 0 < θ < 1
2l

, then

max
0≤k≤bT/ε(l−1)/lc

∣∣∣ k∑
j=1

[Y 2
ε,j − Z2

ε,j]
∣∣∣ = o(εθ) a.s. (4.23)

(iv) If θ < 1
2
− 1

2l
, then

max
1≤k≤bT/ε(l−1)/lc

∣∣∣ k∑
j=1

[
Z2
ε,j − EZ2

ε,j

]∣∣∣ = o(εθ) a.s. (4.24)

(v) Let β̂ = min{β, 1}. If θ <
bβ
l
, then

max
1≤k≤bT/ε(l−1)/lc

∣∣∣ k∑
j=1

EZ2
ε,j − kε(l−1)/lσ2

∣∣∣ = o(εθ) a.s. (4.25)

where σ is defined by (4.4).

Step 3. Estimate |Mε(kε
(l−1)/l)−W (σkε(l−1)/l)|. The result is stated in the following

proposition.

Proposition 4.9. For any 0 < θ < min{1
4
− 1

4l
, 1

4l
, β

2l
},

max
1≤k≤b T

ε(l−1)/l
c

∣∣∣Mε(kε
(l−1)/l)−W (σkε(l−1)/l)

∣∣∣ = o(εθ) a.s. (4.26)
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Proof. From (4.20) and the triangle inequality,

max
0≤k≤bT/ε(l−1)/lc

∣∣∣ε(l−1)/l

k∑
j=1

τε,j − kε(l−1)/lσ2
∣∣∣

≤ max
0≤k≤bT/ε(l−1)/lc

∣∣∣ε(l−1)/l

k∑
j=1

[
τε,j − E(τε,j|Gεj−1)

]∣∣∣
+ max

0≤k≤bT/ε(l−1)/lc

∣∣∣ k∑
j=1

[
Y 2
ε,j − E(Y 2

ε,j|F εj−1)
]∣∣∣+ max

0≤k≤bT/ε(l−1)/lc

∣∣∣ k∑
j=1

[Y 2
ε,j − Z2

ε,j]
∣∣∣

+ max
0≤k≤bT/ε(l−1)/lc

∣∣∣ k∑
j=1

[
Z2
ε,j − EZ2

ε,j

]∣∣∣+ max
1≤k≤bT/ε(l−1)/lc

∣∣∣ k∑
j=1

EZ2
ε,j − kε(l−1)/lσ2

∣∣∣.
(4.27)

By (4.27), (4.21), (4.22), (4.23), (4.24), and (4.25), for 0 < θ < min{1
2
− 1

2l
, 1

2l
,

bβ
l
}

with β̂ = min{β, 1},

max
0≤k≤bT/ε(l−1)/lc

∣∣∣ε(l−1)/l

k∑
j=1

τε,j − kε(l−1)/lσ2
∣∣∣ = o(εθ) a.s. (4.28)

Thus, it follows from (4.28) and [4, Theorem 1.1.1] that

sup
0≤k≤bT/ε(l−1)/lc

∣∣∣W(ε(l−1)/l
(
τε,1 + · · ·+ τε,k

))
−W

(
kε(l−1)/lσ2

)∣∣∣
≤ sup

0≤s≤σ2T

sup
0≤h≤εθ

∣∣∣W (s+ h)−W (s)
∣∣∣ = O

(
εθ/2 log1/2

(1

ε

))
a.s.

(4.29)

Since min{1
4
− 1

4l
, 1

4l
, β

2l
} = 1

2
min{1

2
− 1

2l
, 1

2l
,

bβ
l
}, the proof follows from (4.29) and

(4.18). 2

Step 4. Estimate |W (σkε(l−1)/l)−W (σt)|.

Proposition 4.10. For any θ < l−1
2l

, we have

sup
0≤k≤b T

ε(l−1)/l
c

sup
kε(l−1)/l≤t≤(k+1)ε(l−1)/l

∣∣∣W (σkε(l−1)/l)−W (σt)
∣∣∣ = o(εθ). (4.30)
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Proof. Using [4, Theorem 1.1.1],

lim
ε→0

sup
0≤k≤b T

ε(l−1)/l
c

sup
kε(l−1)/l≤t≤(k+1)ε(l−1)/l

∣∣∣W (σkε(l−1)/l)−W (σt)
∣∣∣

(
2σε(l−1)/l log(σ−1ε−(l−1)/l)

)1/2
= 1 a.s.

This implies (4.30). 2

Completion of the Proof of Theorem 4.3. Put θ0 = min{1
2
− 1

2l
, 1

2l
, β
l
}. By

Proposition 4.9, for θ < θ0
2

,

max
1≤k≤b T

ε(l−1)/l
c

∣∣∣Mε(kε
(l−1)/l)−W (σkε(l−1)/l)

∣∣∣ = o(εθ) a.s. (4.31)

On the other hand, by Proposition 4.10, for θ < l−1
2l

,

sup
0≤k≤b T

ε(l−1)/l
c

sup
kε(l−1)/l≤t≤(k+1)ε(l−1)/l

∣∣∣W (σkε(l−1)/l)−W (t)
∣∣∣ = o(εθ). (4.32)

Therefore, by (4.16), for 0 < θ < min{ θ0
2
, l−1

2l
}, we have

sup
0≤t≤T

∣∣∣Mε(t)−W (σt)
∣∣∣ = o(εθ). (4.33)

Since θ0
2
≤ 1

4
− 1

4l
, by Proposition 4.5, for θ < θ0

2

sup
0≤t≤T

∣∣∣Mε(t)−Xε(t)
∣∣∣ = o(εθ) a.s. (4.34)

By (4.33) and (4.34), for 0 < θ < min{ θ0
2
, l−1

2l
},

sup
0≤t≤T

∣∣∣Xε(t)−W (σt)
∣∣∣ = o(εθ). (4.35)

Choose l = 2, then θ0
2

= min{1
8
,

bβ
4
} = min{1

8
, β

4
} < l−1

2l
= 1

4
. Hence, (4.35) holds true

for 0 < θ < min{1
8
, β

4
}. The theorem is thus proved for W̃ (t) = W (σt). 2
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4.2.2 Examples

Example 4.11. For the purpose of demonstration, only a very simple example (a

one dimensional parameter optimization problem) is considered. Suppose that one is

interested in finding the minima of a function J(·) : R 7→ R, in which only the noisy

corrupted observations or measurements ∇J(Θn)+X̌n are available for each n, where

X̌n = X(n, αεn)−X(n) represents the noise, and {X(n, αεn)} and X(n) are as defined

in the beginning of Section 2.2. Not only does the measurement noise include the

usual noise processes, but also there is a switching process representing the random

environment resulting in the regime-switching from one discrete state to another.

To carry out the desired optimization task, we use stochastic approximation meth-

ods. This amount to construct a recursive algorithm of the form

Θn+1 = Θn − ε∇J(Θn) + εX̌n.

Note that for simplicity, we have assumed that ∇J(Θ)+noise is available. If we can

observe only function values with noise, then a noisy finite difference method is needed

for the gradient approximation.

Define Θε(t) = Θn for t ∈ [nε, nε + ε). Suppose that there is a unique Θ∗ (a

unique minimizer of J(·)) such that ∇J(Θ∗) = 0. Then with the mixing condition

proposed together with the Markov chain αn, it can be shown that Θε(· + tε) → Θ∗

as ε→ 0 in probability, where tε →∞ as ε→ 0.

To analyze the rate of convergence, suppose that ∇J(Θ) = H(Θ−Θ∗) +O(|Θ−

Θ∗|2) and H < 0. Note a particular case is that J is quadratic in Θ, and ∇J is linear
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in Θ. Define un = (Θn − Θ∗)/
√
ε. Then under suitable conditions, it can be shown

(see [16, Chapter 10]) that there is an Nε such that E|un|2 = O(ε) for n ≥ Nε. Then

it can be shown that

ubt/εc =
√
ε

bt/εc−1∑
k=0

(1− εH)bt/εc−1−kX̌k + ε3/2

bt/εc−1∑
k=0

(1− εH)bt/εc−1−kO(|uk|2).

Recall that Xε(t) =
√
ε
∑bt/εc−1

k=0 X̌k. Then by Theorem 4.3, sup0≤t≤T |Xε(t)−W̃ (t)| =

o(εθ). Clearly, the dominating part of ubt/εc is

Ubt/εc−1 =
√
ε

bt/εc∑
k=0

(1− εH)bt/εc−1−kX̌k.

Define

U ε(t) = Xε(t)− εH
bt/εc−1∑
k=1

(1− εH)bt/εc−1−kXε(εk).

Roughly, by Theorem 4.3, Xε(·) can be replaced by B(·) with an additional error

of the order o(εθ). Thus Theorem 4.3 will help us to obtain further analyze the

asymptotics of U ε(·).

Example 4.12. As alluded to in the introduction, to reflect the feature of random

environment, random processes Xε(t) is used frequently. Often, one wishes to find

the excursion probability

P ( sup
0≤t≤T

Xε(t) ≥ a) for some a > 0. (4.36)

Such an estimate is not all simple due to the complex structure of the processes.

However, Theorem 4.3 provides us with a viable alternative, namely, to use Xε(t) =

W̃ (t) + o(εθ) a.s. Thus with an error of the order o(εθ), the calculation of (4.36)
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reduces to the use of the excursion of a Brownian motion. First,

P ( sup
0≤t≤T

W̃ (t) ≥ a) =

√
2

πT

∫ ∞
a

exp(−x2/2T )dx.

The last part of the above equation follows from [13, p. 346]. Then Theorem 4.3 tells

use that there is a function κ(ε) satisfying κ(ε) = o(εθ) such that

P ( sup
0≤t≤T

Xε(t) ≥ a)

= P ( sup
0≤t≤T

W̃ (t) ≥ a− κ(ε))

=

√
2

πT

(∫ ∞
a

+

∫ a

a−κ(ε)

)
exp(−x2/2T )dx

=

√
2

πT

∫ ∞
a

exp(−x2/2T )dx+ o(εθ).

4.3 Proofs of Technical Results

This section is divided into three subsections. Each subsection provides the proof

of one proposition. Within a subsection, we organize the results into a number of

lemmas if it is needed.

4.3.1 Proof of Proposition 4.6

As a preparation, we first prove some lemmas.

Lemma 4.13. Let {Un, n ≥ 1} be a φ-mixing sequence, n,N positive integers, 0 ≤

k1 < k2 < · · · < kN integers. Denote Sk(ι) =
∑k+ι−1

j=k Uj for k, ι ≥ 1. Assume that

there exists a positive number η, 0 < η < 1, an integer p, 1 ≤ p ≤ n and a number

A > 0 such that

φ(p) + max
1≤j≤N

max
p≤ι≤n

P
(∣∣∣Skj(n)− Skj(ι)

∣∣∣ ≥ A
)
≤ η.
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Then for any a, b ≥ 0, we have

P
(

max
1≤j≤N

max
1≤ι≤n

∣∣∣Skj(ι)∣∣∣ ≥ a+ A+ b
)

≤ 1

1− η

N∑
j=1

P
(∣∣∣Skj(n)

∣∣∣ ≥ a
)

+
1

1− η
P
(

max
1≤j≤N

max
0≤ι≤n−1

|Ukj+ι| ≥
b

p− 1

)
.

(4.37)

Proof of Lemma 4.13. For 1 ≤ ι ≤ n, 1 ≤ j ≤ N, denote Tj = max1≤ι≤n

∣∣∣Skj(ι)∣∣∣,
Ej =

{
max1≤k<j Tk < a+ A+ b ≤ Tj

}
and

Eι
j = Ej ∩

{
max
1≤k<ι

∣∣∣Skj(k)
∣∣∣ < a+ A+ b ≤

∣∣∣Skj(ι)∣∣∣}.
Then

P
(

max
1≤j≤N

max
1≤ι≤n

∣∣∣Skj(ι)∣∣∣ ≥ a+ A+ b
)

≤
N∑
j=1

{
P
(
Ej ∩ {|Skj(n)| ≥ a}

)
+

n−1∑
ι=1

P
(
Eι
j ∩ {|Skj(n)− Skj(ι)| ≥ A+ b}

)}
.

(4.38)

We have

n−1∑
ι=1

P
(
Eι
j ∩ {|Skj(n)− Skj(ι)| ≥ A+ b}

)
≤

n−p−1∑
ι=1

P
(
Eι
j ∩ {|Skj(ι+ p− 1)− Skj(ι)| ≥ b}

)
+

n−p−1∑
ι=1

P
(
Eι
j ∩ {|Skj(n)− Skj(ι+ p− 1)| ≥ A}

)
+

n−1∑
ι=n−p

P
(
Eι
j ∩ {|Skj(n)− Skj(ι)| ≥ A+ b}

)
≤

n−1∑
ι=1

P
(
Eι
j ∩
{

max
1≤j≤N

max
0≤ι≤n−1

|Ukj+ι| ≥
b

p− 1

})
+

n−p−1∑
ι=1

P (Eι
j)
(
P
(∣∣Skj(n)− Skj(ι+ p− 1)

∣∣ ≥ A
)

+ φ(p)
)

≤ P
(
Ej ∩ { max

1≤j≤N
max

0≤ι≤n−1
|Ukj+ι| ≥

b

p− 1
}
)

+ ηP (Ej).

(4.39)
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Thus,

P
(

max
1≤j≤N

max
1≤ι≤n

∣∣∣Skj(ι)∣∣∣ ≥ a+ A+ b
)

≤
N∑
j=1

P
(
|Skj(n)| ≥ a

)
+ P

(
max

1≤j≤N
max

0≤ι≤n−1
|Ukj+ι| ≥

b

p− 1

)
+ηP

(
max

1≤j≤N
max
1≤ι≤n

∣∣∣Skj(ι)∣∣∣ ≥ a+ A+ b
)
.

(4.40)

This proves the lemma. 2

The following Lemma follows directly from [17, Lemma 2.2.5]

Lemma 4.14. Let {Un, n ≥ 1} be a mixing sequence such that EU
2(1+δ)
n ≤ C and

φ(n) ≤ C
n

for some constant C and δ > 0. Denote Sn =
∑n

j=1 Uj, then there is a

constant C not depending on n such that E|Sn|2(1+δ) ≤ Cn1+δ.

By assumption (A) and Remark 4.2, the mixing sequence Uj =
∑m

i=1[I(αεj =

i) − νi]X(j, i) satisfies all conditions of Lemma 4.14 with δ = 1 and C does not

depend on ε. Thus, the lemma yields the following result.

Corollary 4.15. There exists a constant C that does not depend on ε and n such that

E|Zε,n|4 ≤ Cε2(1−1/l), E|Zε,n|2 ≤ Cε1−1/l. (4.41)

Lemma 4.16. For any n > 0,

E
∣∣∣ 2n−1∑
j=n+1

E(Zε,j|F̃ εn)
∣∣∣4 ≤ Cε2, (4.42)

where C is a constant independent of ε and n.

Proof of Lemma 4.16. By the independence between {αεk} and {X(k, i) : i =

1, . . . ,m; k ∈ Z}, and (2.12), there exists a constant C independent of ε such that for
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any j ≥
⌊

n
ε1/l

⌋
,

E
(

[I(αεj = i)− νi]X(j, i)
∣∣∣F̃ εn) = E

(
[I(αεj = i)− νi]

∣∣∣Fαε⌊
n

ε1/l

⌋
−1

)
E
(
X(j, i)

∣∣∣FX⌊
n

ε1/l

⌋
−1

)
≤ C

(
ε+ λ

j−
⌊

k

ε1/l

⌋
+1
)
E
(
X(j, i)

∣∣∣FX⌊
n

ε1/l

⌋
−1

)
.

(4.43)

Therefore, there exists a constant C independent of ε such that

E
∣∣∣ 2n−1∑
j=n+1

E(Zε,j|F̃ εn)
∣∣∣4 = ε2E

∣∣∣ b
2n−1

ε1/l
c−1∑

j=b n

ε1/l
c

m∑
i=1

E([I(αεj = i)− νi]X(j, i)|F̃ εn)
∣∣∣4

≤ Cε2E
∣∣∣ b

2n−1

ε1/l
c−1∑

j=b n

ε1/l
c

m∑
i=1

(
ε+ λ

j−b n

ε1/l
c+1)∣∣E(X(j, i)|FXb n

ε1/l
c)
∣∣∣∣∣4

≤ Cε6E
∣∣∣ b

2n−1

ε1/l
c−1∑

j=b n

ε1/l
c

m∑
i=1

∣∣E(X(j, i)|FXb n

ε1/l
c)
∣∣∣∣∣4

+Cε2E
∣∣∣ b

2n−1

ε1/l
c−1∑

j=b n

ε1/l
c

m∑
i=1

λ
j−b n

ε1/l
c+1∣∣E(X(j, i)|FXb n

ε1/l
c)
∣∣∣∣∣4.
(4.44)

We have used the elementary inequality (a+b)4 ≤ 8(a4 +b4) for a, b ∈ R in the second

inequality of (4.44). By the Hölder inequality, for 1 ≤ n ≤ T/ε(l−1)/l,

ε6E
∣∣∣ b

2n−1

ε1/l
c−1∑

j=b n

ε1/l
c

m∑
i=1

∣∣E(X(j, i)|FXb n

ε1/l
c)
∣∣∣∣∣4

≤ ε6
(
m
⌊n− 1

ε1/l

⌋)3( b 2n−1

ε1/l
c−1∑

j=b n

ε1/l
c

m∑
i=1

E
∣∣∣E(X(j, i)|FXb n

ε1/l
c)
∣∣∣4) ≤ Cε2.

(4.45)

Also by the Hölder inequality,

ε2E
∣∣∣ b

2n−1

ε1/l
c−1∑

j=b n

ε1/l
c

m∑
i=1

λ
j−b n

ε1/l
c+1∣∣E(X(j, i)|FXb n

ε1/l
c)
∣∣∣∣∣4

≤ ε2
( b 2n−1

ε1/l
c−1∑

j=b n

ε1/l
c

m∑
i=1

λ
j−b n

ε1/l
c+1
)3( b 2n−1

ε1/l
c−1∑

j=b n

εl1/l
c

m∑
i=1

λ
j−b n

ε1/l
c+1
E
∣∣∣E(X(j, i)|FXb n

ε1/l
c)
∣∣∣4) ≤ Cε2,

(4.46)
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where C is a constant independent of ε and n. Thus, (4.42) follows from (4.44),

(4.45), and (4.46). 2

Remark 4.17. (i) As a direct consequence of (4.42), there is a constant C independent

of ε and n such that

E
∣∣∣ 2n−1∑
j=n+1

E(Zε,j|F̃ εn)
∣∣∣2 ≤ Cε. (4.47)

(ii) Similar to the proof of Lemma 4.16, we can show that

E
∣∣∣E(Zε,2n + Zε,2n+1

∣∣∣F̃ εn)∣∣∣2 ≤ C
√
ε

b(2n+1)/ε1/lc−1∑
k=b(2n−1)/ε1/lc

(
ε+ λk−bn/ε

1/lc+1
)
. (4.48)

Proof of Proposition 4.6. (i) By Chebyshev inequality and (4.42) we have

P
(

sup
0≤t≤T

∣∣∣ 2bt/ε(l−1)/lc−1∑
j=bt/ε(l−1)/lc+1

E
(
Zε,j|F̃ εbt/ε(l−1)/lc

)∣∣∣ ≥ εθ
)

= P
(

sup
0≤k≤bT/ε(l−1)/lc

∣∣∣ 2k−1∑
j=k+1

E
(
Zε,j|F̃ εk

)∣∣∣4 ≥ ε4θ
)

≤ ε−4θ

bT/ε(l−1)/lc∑
k=0

E
∣∣∣ 2k−1∑
j=k+1

E
(
Zε,j|F̃ εk

)∣∣∣4

≤ Cε1+ 1
l
−4θ.

(4.49)
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(ii) By the Chebyshev inequality and (4.48),

P
(

sup
0≤t≤T

∣∣∣ bt/ε(l−1)/lc−1∑
j=1

E
(
Zε,2j + Zε,2j+1|F̃ εj

)∣∣∣ ≥ εθ
)

≤ ε−θE
{

sup
0≤t≤T

∣∣∣ bt/ε(l−1)/lc−1∑
j=1

E
(
Zε,2j + Zε,2j+1|F̃ εj

)∣∣∣}
≤ ε−θ

bt/ε(l−1)/lc−1∑
j=1

E
∣∣∣E(Zε,2j + Zε,2j+1|F̃ εj

)∣∣∣
≤ Cε

1
2
−θ
bT/ε(l−1)/lc−1∑

j=1

b(2j+1)/ε1/lc−1∑
k=b(2j−1)/ε1/lc

(
ε+ λk−bj/ε

1/lc
)

≤ Cε
1
2
−θ
(
C +

∞∑
j=1

λ(j−1)/ε1/l
)

≤ Cε
1
2
−θ.

(4.50)

Hence, (4.11) is proved.

(iii) To proceed, we use Lemma 4.13 to carry out certain estimates. To apply

the lemma, denote Uj =
√
ε
∑m

i=1[I(αεj = i) − νi]X(j, i), A = εθ

3
, n =

⌊
1
ε1/l

⌋
+ 1,

N =
⌊

T
ε(l−1)/l

⌋
and kι =

⌊
ι

ε1/l

⌋
for ι = 0, . . . , N . Then {Uj} is a φ-mixing sequence

with the φε defined in Remark 4.1. Note that supj,iE|X(j, i)|4 < ∞, so there exists

a constant C such that E|Uj|4 < Cε2 for each j = 1, 2, . . . By Chebyshev inequality,

P
(

max
0≤j≤bT/εc

∣∣Uj∣∣ ≥ εθ
)
≤
bT/εc∑
j=0

P
(∣∣Uj∣∣ ≥ εθ

)
≤
bT/εc∑
j=0

ε−4θE
∣∣Uj∣∣4 ≤ Cε1−4θ. (4.51)

For k, ι = 1, 2, . . ., denote

Sεk(ι) =
k+ι−1∑
j=k

Uj =
√
ε

k+ι−1∑
j=k

m∑
i=1

[I(αεj = i)− νi]X(j, i).

By Lemma 4.14, E|Sεkj(n)|4 ≤ Cn2ε2. Since n =
⌊

1
ε1/l

⌋
+ 1, by Chebyshev inequality,

P
(∣∣Sεkj(n)

∣∣ ≥ εθ

3

)
≤ 81ε−4θE

∣∣Sεkj(n)
∣∣4 ≤ Cε2−4θ− 2

l .
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Similarly, for ι = 1, 2, . . . , n,

P
(∣∣Sεkj(n)− Sεkj(ι)

∣∣ ≥ εθ

3

)
≤ Cε2−4θ− 2

l .

This implies that there exists a constant C independent of ε, θ, l such that

max
1≤j≤N

max
1≤ι≤n

P
(∣∣Sεkj(n)− Sεkj(ι)

∣∣ ≥ εθ

3

)
≤ Cε2−4θ− 2

l .

Hence, if 2− 4θ − 2
l
> 0, we can choose ε small enough so that

max
1≤j≤N

max
1≤ι≤n

P
(∣∣Sεkj(n)− Sεkj(ι)

∣∣ ≥ εθ

3

)
≤ 1

4
.

By Remark 4.1, φε(p) < 1/4 for some fixed large integer p independent of ε. Therefore,

the condition of Lemma 4.13 is satisfied with p, η = 1
2

and kι, N , n, A are defined

above. Hence, according to Lemma 4.13 with η = 1
2
,

P
(

max
1≤k≤b T

ε(l−1)/l
c

max
1≤j≤b 1

ε1/l
c+1

∣∣∣Sεb k

ε1/l
c(j)
∣∣∣ ≥ εθ

)

≤ 2

b T

ε(l−1)/l
c∑

k=1

P
(∣∣∣Sεb k

ε1/l
c

(
b 1

ε1/l
c+ 1

)∣∣∣ ≥ εθ

3

)
+2P

(
max

1≤k≤b T

ε(l−1)/l
c

max
1≤j≤b 1

ε1/l
c+1

∣∣Ub k

ε1/l
c+j
∣∣ ≥ εθ

3(p− 1)

)

= 2

b T

ε(l−1)/l
c∑

k=1

P
(∣∣∣Sεb k

ε1/l
c

(
b 1

ε1/l
c+ 1

)∣∣∣ ≥ εθ

3

)
+ 2P

(
max

1≤j≤bT
ε
c

∣∣Uj∣∣ ≥ εθ

3(p− 1)

)
≤ 2
⌊ T

ε(l−1)/l

⌋
Cε2−4θ− 2

l + 2Cε1−4θ

≤ Cε1−4θ− 1
l .

(4.52)

In (4.52), we have used (4.51) in the third inequality. Therefore,

P
(

max
0≤t≤T

∣∣∣X
ε,
⌊
bt/ε(l−1)/lc

ε1/l

⌋ −Xε,bt/εc

∣∣∣ ≥ εθ
)
≤ Cε1−4θ− 1

l .

This gives (4.12). 2
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4.3.2 Proof of Proposition 4.7

To prove Proposition 4.7, we need the following lemma.

Lemma 4.18. Let {(X(k, 1), . . . , X(k,m)) : k ≥ 1} be wide-sense stationary, φ-

mixing sequence in Rm. Assume that there exists a constant C such that φ(n) ≤

Cn−
4
3

(1+β) for all n ≥ 1 and that EX(k, i) = 0, E|X(k, i)|4 ≤ 1 ∀k ≥ 1, i = 1, . . . ,m.

Then there exists a constant C such that for each n ≥ 1, 1 ≤ i, j ≤ m,

n
∑
k>n

|EX(1, i)X(k, j)| ≤ Cn1−β. (4.53)

Proof of Lemma 4.18. By means of the mixing inequality (2.15) with p = 4
3
, q = 4,

|EX(1, i)X(k, j)| = |EX(1, i)X(k, j)− EX(1, i)EX(k, j)|

≤ 2φ3/4(k − 1)‖X(1, i)‖4/3‖X(k, j)‖4

≤ Ck−(1+β).

(4.54)

It follows that

n
∑
k>n

|EX(1, i)X(k, j)| ≤ Cn
∑
k>n

k−(1+β) ≤ Cn1−β.

This implies (4.53). 2

Now we are in a position to prove Proposition 4.7.
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Proof of Proposition 4.7. We have

1

n
E
[ m∑
i=1

n∑
k=1

[I(αεk = i)− νi]X(k, i)
]2

=
1

n

m∑
i=1

E
[ n∑
k=1

[I(αεk = i)− νi]X(k, i)
]2

+
2

n

∑
1≤i<j≤m

E

{[ n∑
k=1

[I(αεk = i)− νi]X(k, i)
][ n∑

p=1

[I(αεp = j)− νj]X(p, j)
]}

= I(n, ε) + J(n, ε).

(4.55)

Step a. Compute I(n, ε). For each i ∈M denote

Ii(n, ε) =
1

n

n∑
k=1

E[I(αεk = i)− νi]2EX(k, i)2

+
2

n

n∑
1≤k<p≤n

E
[
[I(αεk = i)− νi][I(αεp = i)− νi]

]
E[X(k, i)X(p, i)]

= I1
i (n, ε) + I2

i (n, ε).

(4.56)

Then I(n, ε) =
∑n

i=1 Ii(n, ε). Since EX2(k, i) = EX2(0, i) ∀ k ≥ 0, by (2.14),

I1
i (n, ε) = νi[1− νi]EX(0, i)2 +O(ε+

1

n
). (4.57)

By (2.13) and the stationarity of the sequence {X(n, i)},

I2
i (n, ε) =

2

n

∑
1≤k<p≤n

[
ψii(p− k)νi +O(ε+ λk)

]
E[X(0, i)X(p− k, i)]. (4.58)

Since
∑∞

k=0 λ
k <∞ and EX(0, i)X(q, i) = O(q−1−β) (by (4.54)),

2

n

∑
1≤k<p≤n

O(ε+ λk)E[X(0, i)X(p− k, i)] =
2

n

n−1∑
q=1

[
E[X(0, i)X(q, i)]

n−q∑
k=1

O(ε+ λk)
]

=
2

n

n−1∑
q=1

[
O(q−1−β)

(
(n− q)O(ε) +O(1)

)]
= O(ε+

1

n
).

(4.59)
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We have used the fact that
∑∞

q=1 q
−1−β < ∞ in the last identity. Next, for the first

term on the right-hand side of (4.58), we have

2

n

∑
1≤k<p≤n

ψii(p− k)νiE[X(0, i)X(p− k, i)]

=
n−1∑
k=1

2(n− k − 1)

n
ψii(k)νiE[X(0, i)X(k, i)]

= 2
∞∑
k=1

ψii(k)νiE[X(0, i)X(k, i)]− 2
∞∑
k=n

ψii(k)νiE[X(0, i)X(k, i)]

−
n−1∑
k=1

2(k + 1)

n
ψii(k)νiO(k−1−β).

(4.60)

Note that νi < 1 and ψii(n) is uniformly bounded, so by Lemma 4.18,

∞∑
k=n

ψii(k)νiE[X(0, i)X(k, i)] = O(n−β).

On the other hand, by the uniform boundedness of ψii(k) again,

n−1∑
k=1

2(k + 1)

n
ψii(k)νiO(k−1−β) =

1

n

n−1∑
k=1

ψii(k)νiO(k−β) =



O(n−1), if β > 1

O(n−1 log n), if β = 1

O(n−β), if β < 1.

(4.61)

In view of (4.60) and (4.61), for β̄ < min{1, β},

2

n

∑
1≤k<p≤n

ψii(p−k)νiE[X(0, i)X(p−k, i)] = 2
∞∑
k=1

ψii(k)νiE[X(0, i)X(k, i)]+O(n−β̄).

(4.62)

By (4.58), (4.59), and (4.62),

I2
i (n, ε) = 2

∞∑
k=1

ψii(k)νiE[X(0, i)X(k, i)] +O(ε+ n−β̄).



77

This equation, (4.56), (4.57), and β̄ < 1 yield

Ii(n, ε) = νi[1− νi]EX(0, i)2 + 2
∞∑
k=1

ψii(k)νiE[X(0, i)X(k, i)] +O(ε+ n−β̄).

Therefore,

I(n, ε) =
m∑
i=1

[
νi[1− νi]EX(0, i)2 + 2

∞∑
k=1

ψii(k)νiE[X(0, i)X(k, i)]
]

+O(ε+ n−β̄).

(4.63)

Step b. Compute J(n, ε). Denote

Jij(n, ε) =
2

n
E
[( n∑

k=1

[I(αεk = i)− νi]X(k, i)
)( n∑

p=1

[I(αεp = j)− νj]X(p, j)
)]
.

Then J(n, ε) =
∑

1≤i<j≤m Jij(n, ε). We can write Jij(n, ε) = J1
ij(n, ε) + J2

ij(n, ε) +

J3
ij(n, ε), where

J1
ij(n, ε) =

2

n

∑
1≤k<p≤n

E
[(
I(αεk = i)− νi

)(
I(αεp = j)− νj

)]
E[X(k, i)X(p, j)],

J2
ij(n, ε) =

2

n

∑
1≤p<k≤n

E
[(
I(αεk = i)− νi

)(
I(αεp = j)− νj

)]
E[X(k, i)X(p, j)],

J3
ij(n, ε) =

2

n

n∑
k=1

E
[(
I(αεk = i)− νi

)(
I(αεk = j)− νj

)]
E[X(k, i)X(k, j)].

Similar to step a,

J1
ij(n, ε) = 2

∞∑
k=1

νiψij(k)E[X(0, i)X(k, j)] +O(ε+ n−β̄),

J2
ij(n, ε) = 2

∞∑
k=1

νjψji(k)E[X(k, i)X(0, j)] +O(ε+ n−β̄),

J3
ij(n, ε) = −2νiνjE[X(0, i)X(0, j)] +O(ε+ n−1).

Therefore,

J(n, ε) =
∑

1≤i<j≤m

{
2
∞∑
k=1

[
νiψij(k)EX(0, i)X(k, j) + νjψji(k)EX(k, i)X(0, j)

]
−2νiνjEX(0, i)X(0, j)

}
+O(ε+ n−β̄).

(4.64)
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From (4.63), (4.64), and (4.55), we obtain (4.17). Note that all the constants involved

in O(·) depend only on β and the constant given by (4.53). Thus the proposition is

proved. 2

4.3.3 Proof of Proposition 4.8

We first establish three lemmas. The first lemma is a consequence of Lemma 4.13;

see also [22]. The proof is omitted.

Lemma 4.19. Let {Uk, k ≥ 1} be a φ-mixing sequence with 0 < η < 1. Suppose that

there exist an integer p with 1 ≤ p ≤ n and a number A > 0 such that

φ(p) + max
p≤i≤n

P
(
|Sn − Si| ≥ A

)
≤ η. (4.65)

Then, for any a ≥ 0 and b ≥ 0, we have

P
(

max
1≤i≤n

|Si| ≥ a+ A+ b
)

≤ 1

1− η
P
(
|Sn| ≥ a

)
+

1

1− η
P
(

max
1≤i≤n

|Ui| ≥
b

p− 1

)
.

(4.66)

Lemma 4.20. There exists a constant C such that for all θ > 0,

P
(

max
0≤j≤bT/ε(l−1)/lc

∣∣∣Z2
ε,j − EZ2

ε,j

∣∣∣ ≥ εθ
)
≤ Cε1− 1

l
−2θ. (4.67)

Proof of Lemma 4.20. According to (4.41), EZ4
ε,j ≤ Cε2− 2

l . Thus,

P
(

max
0≤j≤bT/ε(l−1)/lc

∣∣∣Z2
ε,j − EZ2

ε,j

∣∣∣ ≥ εθ
)
≤
bT/ε(l−1)/lc∑

j=0

P
(∣∣∣Z2

ε,j − EZ2
ε,j

∣∣∣ ≥ εθ
)

≤ ε−2θ

bT/ε(l−1)/lc∑
j=0

E
∣∣∣Z2

ε,j − EZ2
ε,j

∣∣∣2
≤ ε−2θ

bT/ε(l−1)/lc∑
j=0

EZ4
ε,j ≤ Cε1− 1

l
−2θ.

(4.68)

The proof is completed. 2
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Lemma 4.21. Let {Vn} be a φ-mixing sequence satisfying φ(n) ≤ C
n

and EV 4
n ≤ C2

for all n ≥ 1. Denote

Tm(n) =
m+n∑
k=m+1

(
V 2
k − EV 2

k

)
, τ̃(n) = sup

m
‖Tm(n)‖2,

where ‖ · ‖2 denotes the L2 norm. Then for each ρ > 0, there exists a constant

K = K(C, ρ) such that τ̃(n) ≤ K
√
n
(

log 2n
)3+ρ

.

Proof of Lemma 4.21. The proof here is similar to that of [17, Theorem 9.1.1].

Choose d = b2n
/(

log 2n
)2+2ρc. By the triangle inequality,

‖Tm(n)‖2 ≤
∥∥Tm(bn

2
c
)

+ Tm+bn
2
c+d
(
bn

2
c
)∥∥

2
+ 2τ̃(d) + 2τ̃(1). (4.69)

By the definition of τ̃(n),

∥∥Tm(bn
2
c
)

+ Tm+bn
2
c+d
(
bn

2
c
)∥∥2

2
≤ 2τ̃ 2(bn

2
c) + 2E

[
Tm
(
bn

2
c
)
Tm+bn

2
c+d
(
bn

2
c
)]
. (4.70)

Since ETm
(
bn

2
c
)

= ETm+bn/2c+d
(
bn

2
c
)

= 0, by the mixing inequality (2.15),

∣∣∣E[Tm(bn
2
c
)
Tm+bn

2
c+d
(
bn

2
c
)]∣∣∣ ≤ 2

√
ϕ(d)

∥∥Tm(bn
2
c
)∥∥

2

∥∥Tm+bn
2
c+d
(
bn

2
c
)∥∥

2
. (4.71)

Since

∥∥Tm+bn
2
c+d
(
bn

2
c
)∥∥

2
=
∥∥ m+2bn/2c+d∑
k=m+bn/2c+d+1

(V 2
k − EV 2

k )
∥∥

2

≤
m+2bn/2c+d∑

k=m+bn/2c+d+1

∥∥V 2
k − EV 2

k

∥∥
2

=

m+2bn/2c+d∑
k=m+bn/2c+d+1

(
EV 4

k −
(
EV 2

k

)2
) 1

2

≤
m+2bn/2c+d∑

k=m+bn/2c+d+1

(
EV 4

k

) 1
2 ≤ C

⌊n
2

⌋
,

(4.72)
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from (4.71) we have

∣∣∣E[Tm(bn
2
c
)
Tm+bn

2
c+d
(
bn

2
c
)]∣∣∣ ≤ 2

√
ϕ(d)C

⌊n
2

⌋
τ̃
(⌊n

2

⌋)
. (4.73)

By (4.69), (4.70), and (4.73),

‖Tm(n)‖2 ≤ 2τ̃(d) + 2τ̃(1) +
[
2τ̃ 2
(
bn

2
c
)

+ 4
√
ϕ(d)C

⌊n
2

⌋
τ̃
(
bn

2
c
)] 1

2

≤ 2τ̃(d) + 2τ̃(1) +
[
2τ̃ 2
(
bn

2
c
)

+ 4C

√
C

d

⌊n
2

⌋
τ̃
(
bn

2
c
)] 1

2

≤ 2τ̃(d) + 2τ̃(1) +
√

2τ̃
(
bn

2
c
)

+ C

√
2C

d

⌊n
2

⌋
≤ 2τ̃(d) + 2τ̃(1) +

√
2τ̃
(
bn

2
c
)

+

√
C(log 2n)2+2ρ

n

C

2
n

= 2τ̃
(⌊ 2n(

log 2n
)2+2ρ

⌋)
+ 2τ̃(1) +

√
2τ̃
(
bn

2
c
)

+ C3/2
√
n

(log 2n)1+ρ

2
.

Thus,

‖Tm(n)‖2 ≤ 2τ̃
(⌊ 2n(

log 2n
)2+2ρ

⌋)
+ 2τ̃(1) +

√
2τ̃
(
bn

2
c
)

+C3/2
√
n

(log 2n)1+ρ

2
. (4.74)

By induction, we can show from (4.74) that there exists a constant K such that

τ̃(n) ≤ K
√
n
(

log 2n
)3+ρ

.

The proof is completed. 2

Proof of Proposition 4.8. The proof is divided into several steps. (i) Note that

{τε,j − E(τε,j|Gεj−1) : j = 1, 2, . . .} is a martingale difference sequence. Thus, by
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Burkholder’s inequality,

P
(

max
0≤k≤bT/ε(l−1)/lc

∣∣∣ε(l−1)/l

k∑
j=1

[
τε,j − E(τε,j|Gεj−1)

]∣∣∣ ≥ εθ
)

≤ ε2( l−1
l
−θ)E

(
max

0≤k≤bT/ε(l−1)/lc

∣∣∣ k∑
j=1

[
τε,j − E(τε,j|Gεj−1)

]∣∣∣)2

≤ Cε2( l−1
l
−θ)E

( bT/ε(l−1)/lc∑
j=1

[
τε,j − E(τε,j|Gεj−1)

]2)
≤ Cε2( l−1

l
−θ)2

(
E

bT/ε(l−1)/lc∑
j=1

∣∣τε,j∣∣2 + E

bT/ε(l−1)/lc∑
j=1

∣∣∣E(τε,j|Gεj−1)
∣∣∣2).

(4.75)

By Jensen’s inequality, E
∣∣τε,j∣∣2 ≥ E

∣∣∣E(τε,j|Gεj−1)
∣∣∣2. Thus, by (4.19) and (4.75),

P
(

max
0≤k≤bT/ε(l−1)/lc

∣∣∣ε(l−1)/l

k∑
j=1

[
τε,j − E(τε,j|Gεj−1)

]∣∣∣ ≥ εθ
)

≤ Cε−2θ22E

bT/ε(l−1)/lc∑
j=1

∣∣∣ε(l−1)/lτε,j

∣∣∣2 ≤ 4Cε−2θE

bT/ε(l−1)/lc∑
j=1

∣∣∣Yε,j∣∣∣4. (4.76)

Recall that

Yε,n = Zε,n +
2n−1∑
j=n+1

E(Zε,j|F̃ εn)−
2n−1∑
j=n

E(Zε,j|F̃ εn−1).

So, by the Hölder inequality,

E|Yε,n|4 ≤ C
(
E|Zε,n|4 + E

∣∣∣ 2n−1∑
j=n+1

E(Zε,j|F̃ εn)
∣∣∣4 + E

∣∣∣ 2n−1∑
j=n

E(Zε,j|F̃ εn−1)
∣∣∣4), (4.77)

where C = 33 is independent of ε.

By virtue of (4.42),

E
∣∣∣ 2n−1∑
j=n+1

E(Zε,j|F̃ εn)
∣∣∣4 + E

∣∣∣ 2n−1∑
j=n

E(Zε,j|F̃ εn−1)
∣∣∣4 ≤ Cε2.

In addition, by (4.41), E|Zε,n|4 ≤ Cε2(1− 1
l
). Hence, from (4.77) we have E

∣∣Yε,n∣∣4 ≤
Cε2(1− 1

l
), where C is a constant independent of ε. This implies that

Cε−2θE

bT/ε(l−1)/lc∑
j=1

∣∣∣Yε,j∣∣∣4 ≤ Cε−2θE

bT/ε(l−1)/lc∑
j=1

ε2(1− 2
l
) = Cε1−2θ−1/l. (4.78)
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Noting l > 3, if θ < 1
2
− 1

2l
, then 1−2θ− 1

l
> 0. Thus, similar to (4.14) by Borel-Cantelli

lemma, we obtain (4.21).

(ii) (4.22) can be proved by the similar argument to (i).

(iii) Denote Y ∗ε,n = Yε,n − Zε,n. Then

Y ∗ε,n =
2n−1∑
j=n+1

E(Zε,j|F̃ εn)−
2n−1∑
j=n

E(Zε,j|F̃ εn−1)

and

k∑
n=1

[Y 2
ε,n − Z2

ε,n] =
k∑

n=1

[(Zε,n + Y ∗ε,n)2 − Z2
ε,n] =

k∑
n=1

[(Y ∗ε,n)2 + 2Y ∗ε,nZε,n].

Thus,

max
0≤k≤bT/ε(l−1)/lc

∣∣∣ k∑
n=1

[Y 2
ε,n − Z2

ε,n]
∣∣∣

≤ max
0≤k≤bT/ε(l−1)/lc

∣∣∣ k∑
n=1

(Y ∗ε,n)2
∣∣∣+ 2 max

0≤k≤bT/ε(l−1)/lc

∣∣∣ k∑
n=1

Y ∗ε,nZε,n

∣∣∣
≤
bT/ε(l−1)/lc∑

n=1

(Y ∗ε,n)2 + 2

bT/ε(l−1)/lc∑
n=1

∣∣∣Y ∗ε,nZε,n∣∣∣
(4.79)

In view of (4.47),

E
∣∣∣ 2n−1∑
j=n+1

E(Zε,j|F̃ εn)
∣∣∣2 ≤ Cε, E

∣∣∣ 2n−1∑
j=n

E(Zε,j|F̃ εn−1)
∣∣∣2 ≤ Cε.

Therefore,

E
∣∣Y ∗ε,n∣∣2 = E

∣∣∣ 2n−1∑
j=n+1

E(Zε,j|F̃ εn)−
2n−1∑
j=n

E(Zε,j|F̃ εn−1)
∣∣∣2 ≤ Cε,

and

E

bT/ε(l−1)/lc∑
n=1

∣∣Y ∗ε,n∣∣2 ≤ Cε1/l. (4.80)
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Next, by (4.41), EZ2
ε,n ≤ Cε(l−1)/l. Thus, the Cauchy-Schwartz inequality yields

bT/ε(l−1)/lc∑
n=1

E
∣∣Y ∗ε,nZε,n∣∣ ≤ bT/ε(l−1)/lc∑

n=1

(
E
∣∣Y ∗ε,n∣∣2) 1

2
(EZ2

ε,n)
1
2 ≤ C

bT/ε(l−1)/lc∑
n=1

ε
1
2

+ l−1
2l = Cε

1
2l .

(4.81)

Then (4.79), (4.80), (4.81), and the Chebyshev inequality lead to

P
(

max
0≤k≤bT/ε(l−1)/lc

∣∣∣ k∑
n=1

[
Y 2
ε,n − Z2

ε,n

]∣∣∣ ≥ εθ
)

≤ ε−θE
[

max
0≤k≤bT/ε(l−1)/lc

∣∣∣ k∑
n=1

[
Y 2
ε,n − Z2

ε,n

]∣∣∣]
≤ ε−θE

[ bT/ε(l−1)/lc∑
n=1

∣∣Y ∗ε,n∣∣2 + 2

bT/ε(l−1)/lc∑
n=1

∣∣Y ∗ε,nZε,n∣∣]
≤ Cε

1
2l
−θ.

(4.82)

The bound in (4.82) and the Borel-Cantelli lemma imply that for θ < 1
2l

,

max
0≤k≤bT/ε(l−1)/lc

∣∣∣ k∑
j=1

[
Y 2
ε,j − Z2

ε,j

]∣∣∣ = o(εθ) a.s.

Thus (4.23) is proved.

(iv) Similar to the proofs of (i)-(iii), to prove (4.24), our main task is to estimate

the following probability

P
(

max
1≤k≤bT/ε(l−1)/lc

∣∣∣ k∑
j=1

[
Z2
ε,j − EZ2

ε,j

]∣∣∣ ≥ εθ
)
. (4.83)

Observe that this probability is the left-hand side of (4.66) with Uk = Uε,k = Z2
ε,k −

EZ2
ε,k, Sk = Sε,k =

∑k
i=1 Uε,i, n = bT/ε(l−1)/lc and A = a = b = εθ/3. By virtue of

Lemma 4.19 with p = 2 and η = 1/2, to estimate (4.83) it requires to verify (4.65)

and estimate the right-hand side of (4.66).

Since {Uε,k : k ≥ 1} is defined based on blocks of the sequence {[I(αεj = i) −

νi]X(k, i)} with block size approximately b1/ε1/lc , it is also a mixing sequence with
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the mixing measure φεU smaller than that of the sequence {[I(αεj = i) − νi]X(k, i)}.

More precisely, φεU(k) ≤ φε(k(b 1
ε1/l
c − 1)). By Remark 4.2, φεU(2) < 1/4 for ε small

enough.

To complete verifying (4.65), we will use the notations in Lemmas 4.19 and 4.21

to prove that for sufficiently small ε > 0,

max
2≤i≤bT/ε(l−1)/lc

P
(∣∣∣SbT/ε(l−1)/lc − Si

∣∣∣ ≥ εθ

3

)
≤ 1

4
. (4.84)

Denote Vk = Vε,k = ε−
1
2

(1− 1
l
)Zε,k, Tm(i) =

∑m+i
k=m+1(V 2

k −EV 2
k ), τ̃(i) = supm ‖Tm(i)‖2

for m ≥ 0 and i, k ≥ 1. By (4.41), EV 4
k ≤ C for some constant C independent of ε.

On the other hand, the mixing condition in Lemma 4.21 follows by assumption (A),

the remark after Lemma 4.19 and the fact that {Vk} and {Uk} have the same mixing

measure. Thus, according to Lemma 4.21, for any ρ > 0, there exists a constant

K = K(C, ρ) such that

τ̃(n) ≤ K
√
n(log 2n)3+ρ. (4.85)

By noting that Sk − Si = ε1− 1
l Ti(k − i), Chebyshev inequality and (4.85) with n =

bT/ε(l−1)/lc yield,

max
2≤i≤bT/ε(l−1)/lc

P
(∣∣∣SbT/ε(l−1)/lc − Si

∣∣∣ ≥ εθ

3

)
≤ max

2≤i≤bT/ε(l−1)/lc
9ε−2θE

∣∣∣SbT/ε(l−1)/lc − Si
∣∣∣2

≤ 9ε−2θε2− 2
l max

1≤i≤bT/ε(l−1)/lc
E
∣∣∣Ti(⌊ T

ε(l−1)/l

⌋
− i
)∣∣∣2

≤ 9ε2− 2
l
−2θ max

1≤i≤bT/ε(l−1)/lc
τ̃ 2
(⌊ T

ε(l−1)/l

⌋
− i
)

≤ Cε2− 2
l
−2θ
⌊ T

ε(l−1)/l

⌋[
log
(

2
⌊ T

ε(l−1)/l

⌋)]6+2ρ

= Cε1− 1
l
−2θ(log ε)6+2ρ.

(4.86)
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Thus, (4.84) holds for 1− 1
l
−2θ > 0 and sufficiently small positive ε. Since φεU(2) < 1

4

for ε small enough, (4.84) yields

φεU(2) + max
2≤i≤bT/ε(l−1)/lc

P
(∣∣∣SbT/ε(l−1)/lc − Si

∣∣∣ ≥ εθ

3

)
≤ 1

2
, (4.87)

i.e., (4.65) holds for {U ε
k} with n = bT/ε(l−1)/lc, A = a = b = εθ/3, p = 2 and

η = 1/2.

Next, in view of Lemma 4.19 with above notations of {U ε
k}, n, A, a, b, p, and η,

P
(

max
0≤k≤bT/ε(l−1)/lc

∣∣∣ k∑
j=1

[
Z2
ε,j − EZ2

ε,j

]∣∣∣ ≥ εθ
)

≤ 2P
(∣∣∣ bT/ε(l−1)/lc∑

j=1

[
Z2
ε,j − EZ2

ε,j

]∣∣∣ ≥ εθ

3

)
+ 2P

(
max

0≤j≤bT/ε(l−1)/lc

∣∣∣Z2
ε,j − EZ2

ε,j

∣∣∣ ≥ eθ

3

)
.

(4.88)

Similar to (4.86),

P
(∣∣∣ bT/ε(l−1)/lc∑

j=1

[
Z2
ε,j − EZ2

ε,j

]∣∣∣ ≥ εθ

3

)
≤ Cε1− 1

l
−2θ(log ε)6+2ρ. (4.89)

From (4.67),

P
(

max
0≤j≤bT/ε(l−1)/lc

∣∣∣Z2
ε,j − EZ2

ε,j

∣∣∣ ≥ eθ

3

)
≤ Cε1− 1

l
−2θ. (4.90)

Thus, by (4.88), (4.89), and (4.90), we obtain

P
(

max
0≤k≤bT/ε(l−1)/lc

∣∣∣ k∑
j=1

[
Z2
ε,j − EZ2

ε,j

]∣∣∣ ≥ εθ
)
≤ Cε1− 1

l
−2θ(log ε)6+2ρ. (4.91)

By using the Borel-Cantelli lemma as in the proof of Proposition 4.5 we obtain (4.24)

for θ < 1
2
− 1

2l
.

(v) By virtue of (4.17) with n = ε1/l, for all β̄ < min{1, β} there exists a constant
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C that does not depend on ε and k such that for all k ≥ 1,

∣∣∣ε1/lE
[ b k

ε1/l
c−1∑

j=b k−1

ε1/l
c

m∑
i=1

[I(αεj = i)− νi]X(j, i)
]2

− σ2
∣∣∣ ≤ C(ε+ εβ̄/l). (4.92)

Thus, by (4.92) and the formula of Zε,k,

∣∣∣EZ2
ε,k − ε(l−1)/lσ2

∣∣∣ = ε(l−1)/l
∣∣∣E[ε1/l

b k

ε1/l
c−1∑

j=b k−1

ε1/l
c

m∑
i=1

[I(αεj = i)− νi]X(j, i)
]2

− σ2
∣∣∣

≤ Cε(l−1)/l(ε+ εβ̄/l).

(4.93)

Since the constant C is independent of k,

max
1≤k≤bT/ε(l−1)/lc

∣∣∣ k∑
j=1

EZ2
ε,j − kε(l−1)/lσ2

∣∣∣ ≤ bT/ε(l−1)/lc∑
k=1

∣∣∣EZ2
ε,k − ε(l−1)/lσ2

∣∣∣
≤ C(ε+ εβ̄/l).

(4.94)

This proves (4.25). 2
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5 Further Remarks

This work has been devoted to limit results of a class of suitably scaled random

processes modulated by a Markov chain with finite state space. The original processes

are in discrete time. The limit, however, are continuous-time processes. Under simple

conditions, it is demonstrated in Chapter 3 that the limits are switching diffusions.

The main techniques used are weak convergence methods.

Chapter 4 has focused on strong approximation of a suitably scaled sequence of

processes modulated by a Markov chain with the assumption that the Markov chain

is ergodic. Corresponding to a weak convergence result of the centered and scaled

sequence, it ascertains the rate of convergence by means of strong approximation. It

also provides insight for application in networks and systems involving such sequences.

Note that in this chapter, {X(k, i)} is assumed to be a wide-sense stationary sequence.

This condition can be relaxed; non-stationary sequences (e.g., non-stationary mixing

sequences) may be treated, but more work is needed in this direction. The crucial

point is to have sufficiently fast mixing rate.

For future study, Markov chains including transient states can be considered. For

such cases, we will only aggregate states in each recurrent class and leave the transient

states alone. Essentially the same techniques enable us to reach similar conclusions.

Another worthwhile direction is to examine the convergence rates. Furthermore, one

may consider large deviation type estimates and study the associated empirical mea-

sure processes, which are motivated by system identification and tracking randomly
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varying processes under binary-valued and quantized data.

It is conceivable the results obtained here will be useful for carrying out control

and optimization tasks for Markov modulated sequences. Future work may also

be directed to system identifications when the observation sequence is modeled by

Markov modulated processes.
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In this dissertation we investigate asymptotic properties of Markov modulated

random processes having two-time scales. The model contains a number of mixing

sequences modulated by a randomly switching process that is a discrete-time Markov

chain. The motivation of our study stems from applications in manufacturing systems,

communication networks, and economic systems, in which regime-switching models

are used.

This dissertation focuses on asymptotic properties of the Markov modulated pro-

cesses under suitable scaling. Our main effort is devoted to obtaining weak conver-

gence and strong approximation results.



94

AUTOBIOGRAPHICAL STATEMENT

SON LUU NGUYEN

Education

• Ph.D. in Applied Mathematics, December 2010 (expected)
Wayne State University, Detroit, Michigan

• M.A. in Mathematical Statistics, May, 2010
Wayne State University, Detroit, Michigan

• B.S. in Mathematics, June 2002
Hanoi University of Sciences, Vietnam

Awards

1. Outstanding Research Award, Department of Mathematics, Wayne State Uni-
versity, April 2009.

2. Paul Weiss Award in Recognition of Outstanding Achievement in the Ph.D.
Program, Department of Mathematics, Wayne State University, April 2009 and
April 2010.

3. The Karl W. and Helen L. Folley Endowed Mathematics Scholarship, Depart-
ment of Mathematics, Wayne State University, April 2008.

4. Graduate Student Professional Travel Award, Department of Mathematics,
Wayne State University, May 2007 and July 2008.

5. The Thomas C. Rumble Fellowship, Department of Mathematics, Wayne State
University, August 2005 – May 2006.

List of Publications

1. G. Yin, S.L. Nguyen, L.Y. Wang, and C. Xu, Time-inhomogeneous Markov
chains and ergodicity arising from nonlinear dynamic systems and optimization.
Progress in nonlinear analysis research, Nova Sci. Publ., New York, 5–19, 2009.

2. S.L. Nguyen and G. Yin, Asymptotic properties of hybrid random processes
modulated by Markov chains, to appear in Nonlinear Analysis: Theory, Meth-
ods and Applications, 71 (2009), e1638–e1648.

3. S.L. Nguyen and G. Yin, Asymptotic properties of Markov modulated random
sequences with fast and slow time scales, to appear in Stochastics.

4. S.L. Nguyen and G. Yin, Weak convergence of Markov modulated random se-
quences, to appear in Stochastics.

5. S.L. Nguyen and G. Yin, Almost sure error bounds for numerical solutions of
stochastic differential equations, submitted.


	Wayne State University
	DigitalCommons@WayneState
	1-1-2010

	Asymptotic Properties Of Markov Modulated Sequences With Fast And Slow Time Scales
	Son Luu Nguyen
	Recommended Citation



