
Wayne State University
DigitalCommons@WayneState

Wayne State University Dissertations

1-1-2010

Meiotic Dna Re-Replication And The
Recombination Checkpoint
Nicole Ann Najor
Wayne State University

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Najor, Nicole Ann, "Meiotic Dna Re-Replication And The Recombination Checkpoint" (2010). Wayne State University Dissertations.
Paper 180.

http://digitalcommons.wayne.edu?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/180?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F180&utm_medium=PDF&utm_campaign=PDFCoverPages


MEIOTIC DNA RE-REPLICATION AND THE RECOMBINATION CHECKPOINT 
 

by 
 

NICOLE A. NAJOR 
 

DISSERTATION 
 

Submitted to the Graduate School  
 

of Wayne State University 
 

Detroit, Michigan 
 

in partial fulfillment of the requirements  
 

for the degree of  
 

DOCTOR OF PHILOSOPHY 
 

2010 
 

MAJOR: PHARMACOLOGY 
 
Approved by: 
 
 
Advisor     Date 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 ii 

DEDICATION 

 

I dedicate this dissertation to my parents, Hani and Selma, and 

sisters, Roxanne and Sarah. To all of you, I am eternally indebted for your 

unconditional love and support. To my mother and father, who have taught 

me that hard work prevails, I am ten thousand times grateful for your push 

to challenge myself and aspire for great things. Thank you to my sisters, 

who have taught me that despite hardships humor can be the best 

motivational medicine. I am blessed to have a family that consists of my 

best friends. Your unremitting encouragement, support, and love eased 

the process of completing the work herein.  

 



 iii 

ACKNOWLEDGEMENTS 

 

I would like to thank my advisor Dr. George S. Brush for his utmost 

support, guidance, and friendship. Dr. Brush has left a long lasting 

impression on my life and inspired me to be to dedicated towards science. 

His continuous guidance and encouragement has made my graduate 

school experience memorable. 

I also devote my deepest gratitude to the Department of 

Pharmacology and to my committee members, Dr. Nicholas Davis, Dr. 

Stanley Terlecky, Dr. Roy McCauley, and Dr. Miriam Greenberg for their 

positivity, enlightening feedback and constant support.  

Finally, I would like to sincerely thank the graduate students whom 

I’ve forged life-long friendships with. Besides having great scientific 

conversations, thank you for the good times and great laughs, which have 

highlighted my graduate school experience. 

 



 iv 

TABLE OF CONTENTS 

 

Dedication…………...…………………………………………………….……… 

Acknowledgements………………………………………………………………. 

List of Tables ………..…………………………………………………………… 

List of Figures……………………………………………….……………………. 

Chapter 1 “Introduction”………….……………………………………………… 

Chapter 2 “Materials and Methods”………….………………………………… 

Chapter 3 “Meiotic DNA Re-replication Inducible by Mutations of the Cdk1  

       Inhibitor Sic1”………………......................................................... 

Chapter 4 “Links between DNA re-replication and the Recombination  

      Checkpoint”………………………………………………………....... 

Chapter 5 “Discussion”………………………………………………………….. 

References………………………………………………………………………... 

Abstract……………………………………………………………………………. 

Autobiographical Statement…………………………………………………….. 

 

 

 

 

 

 

 

 

ii 

iii 

v 

vi 

1 

29 

 

40 

 

57 

88 

96 

117 

119 



 v 

LIST OF TABLES 

 

Table 1. Haploid yeast strains …………………….……………………….. 30 

Table 2. Diploid yeast strains ………………………….…………………... 31 



 vi 

LIST OF FIGURES 

 
 
Figure 1. Cyclin dependent kinase 1 (Cdk1) and the cyclins it associates 
with during the cell cycle……..………………………………………………..... 
 
Figure 2. Cdk1 partners with certain cyclins to promote proper 
progression through the meiotic program …………………………………….. 
 
Figure 3. Proteins recruited to origins for eukaryotic DNA 
replication…….…………………………………………………………………… 
 
Figure 4. Activation of the pachytene checkpoint……………………………. 
 
Figure 5. A biological pathway that prevents the use of sister chromatids 
as repair during meiosis………………………………………..……………….. 
 
Figure 6. Sic1∆PHA is resistant to degradation……………………………….. 
 
Figure 7. SIC1∆PHA leads to extra rounds of DNA replication……………… 
 
Figure 8. Two copies of HOP1pr-SIC1∆PHA prevent DNA replication and 
re-replication……………………………………………………………………… 
 
Figure 9. DNA re-replication does not require pachytene exit……………… 
 
Figure 10. Comparative Genome Hybridization (CGH) reveals possible 
genome-wide amplification……………………………………………………… 
 
Figure 11. The absence of Pol32, an essential protein for BIR during the 
cell cycle, does not abolish Sic1∆PHA-induced meiotic DNA re-replication... 
 
Figure 12. DNA re-replication can be inhibited by dmc1∆-induced 
checkpoint arrest…………………………………………………………………. 
 
Figure 13. Mec1 participates in checkpoint-induced abolishment of DNA 
re-replication……………………………………………………………………… 
 
Figure 14. Proteins Mek1, Red1, Hop1 function downstream of Dmc1 in 
the prevention of DNA re-replication induced by HOP1pr::SIC1∆PHA ……... 
 
Figure 15. Gene deletions of MEK1, RED1, and HOP1, do not affect 
HOP1pr::SIC1∆PHA-induced DNA re-replication……………………………… 
 
 

 
 
 
 
 
3 
 
 
6 
 
 
9 
 
16 
 
 
21 
 
45 
 
46 
 
 
49 
 
51 
 
 
53 
 
 
55 
 
 
61 
 
 
64 
 
 
66  
 
 
68 
 
 



 vii 

Figure 16. Pch2 participates in checkpoint-induced abolishment of DNA 
re-replication……………………………………………………………………… 
 
Figure 17. Transcriptional repressor of middle sporulation genes, Sum1, 
does not participate in dmc1∆-induced block to DNA re-replication………... 
 
Figure 18. Downstream target of the pachytene checkpoint Swe1 does 
not participate in dmc1∆-induced block to DNA re-replication………………. 
 
Figure 19. Deletion of SWE1 does not induce meiotic DNA re-replication... 
 
Figure 20. Mutations in Swe1 and Sum1 do not bypass dmc1∆-induced 
arrest by DAPI staining………………………………………………………….. 
 
Figure 21. Decreased expression of Sic13myc around the time of mitotic S 
phase. ………………………………………………..…………………………… 
 
Figure 22. Heterozygote SIC113myc reveals no change in endogenous Sic1 
protein level between HOP1pr::SIC∆PHA and HOP1pr::SIC∆PHA with 
dmc1∆. ……………………………………………………………………………. 
 
Figure 23. Homozygote SIC113myc reveals no change in endogenous Sic1 
protein level between HOP1pr::SIC∆PHA and HOP1pr::SIC∆PHA with 
dmc1∆…….…………………………………………………………………......... 
 
Figure 24. Mitotic G1-S DNA damage checkpoint protein Rad9 does not 
participate in the dmc1∆-induced block of meiotic DNA re-replication…...... 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
69 
 
 
72 
 
 
75 
 
76 
 
 
78 
 
 
81 
 
 
 
82 
 
 
 
83 
 
 
85



1 

 

CHAPTER 1 

 

INTRODUCTION 

 

The processes of DNA replication and programmed recombination during 

meiosis must be carried out with careful precision to ensure the generation of 

healthy gametes. Situations of aberrant replication or recombination can lead to 

the loss of genetic information, improper segregation of chromosomes, or 

aneuploidy, which is an abnormal number of chromosomes. Within this 

dissertation, our aim was to better understand the mechanisms that control 

meiotic DNA replication and the links to meiotic recombination. We have 

developed a system in the budding yeast Saccharomyces cerevisiae to induce 

meiotic DNA re-replication, which occurs when a cell participates in more then 

one round of DNA replication. Using our meiotic DNA re-replication phenotype, 

we wanted to uncover the meiotic machinery that would normally prevent this 

event from occurring. We found that inducing a meiotic recombination checkpoint 

(pachytene checkpoint) was able to prevent meiotic DNA re-replication. This 

connection has allowed us to use the pachytene checkpoint as a means to better 

understand meiotic DNA re-replication, and in addition, to use DNA re-replication 

as a means to better understand the pachytene checkpoint. We have uncovered 

new insight into meiotic DNA re-replication and the pachytene checkpoint. 

Understanding these meiotic mechanisms will allow us to better understand how 

aberrations that lead to genetic disorders could occur in the developing gametes.  
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I. The cell cycle and meiosis 

S. cerevisiae contains one major cyclin dependent kinase (CDK) known as 

Cdk1 or Cdc28.  This kinase is known to complex with many types of cyclins to 

regulate progression of the cell cycle.  Its ability to be activated and inactivated 

by associating with cyclins or specialized inhibitors promotes the progression 

from one stage of the cell cycle to the next, which makes this kinase extremely 

important. During the G1-S transition of the cell cycle the CDK inhibitor Sic1 

protein controls Cdk1 when complexed with the B-type cyclins, Clb5 and Clb6 

(Schwob et al., 1994; Schneider et al., 1996; Tyers, 1996). Once the Sic1 is 

removed, Cdk1-Clb5, -6 is active and transitions the cell into S phase where DNA 

synthesis will occur.  When the cell is in transition from S to G2, Cdk1 is 

complexed with Clb3 and Clb4, which is thought to aid in proper spindle 

assembly, and when the cell progresses from G2 to M, Cdk1 is complexed with 

Clb1 and Clb2 (Figure 1).  

The association of Sic1 with Cdk1-Clb5, -6, inactivates these kinase 

complexes (Schwob et al., 1994). Sic1 phosphorylation leads to its degradation 

through ubiquitin-dependent proteolysis, which activates the Cdk1-Clb5, -6 

complexes and allows the cell to enter S phase (Feldman et al., 1997; Skowyra 

et al., 1997; Verma et al., 1997). The Cdk1-G1 cyclin complexes Cdk1-Cln1 and 

Cdk1-Cln2 are responsible for the phosphorylation and subsequent degradation 

of Sic1 (Deshaies, 1997). Once the Cdk1-Clb5, -6 complexes are active they 

additionally contribute to Sic1 destruction and catalyze phosphorylation of 

proteins such as Sld2 and Sld3 that promote DNA replication.  
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Figure 1. Cyclin dependent kinase 1 (Cdk1) and the cyclins it associates 
with during the cell cycle. 
The schematic shows the Cdk1-cyclin complexes required for the cell cycle. The 
inhibitor Sic1 is depicted, which controls the G1 to S transition. Sic1 
phosphorylation at many sites signals its degradation through the ubiquitin 
proteasome pathway. 
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In addition, they act to prevent DNA re-replication (see review (Blow and Dutta, 

2005)).  

DNA replication is not limited to the mitotic cell cycle but must also occur 

in meiosis. Meiosis consists of one round of DNA replication that is the precursor 

to two rounds of chromosome segregation, which will ultimately lead to the 

production of four haploid cells in yeast. In the first round of division (MI), the 

homologous chromosomes pair and separate, which is often termed reductional 

division. During the next division (MII), sister chromatids separate, which is 

termed equational division. Cdk1-Clb5, -6 are required for initiation of meiotic 

DNA replication (Dirick et al., 1998; Stuart and Wittenberg, 1998; Benjamin et al., 

2003), and recombination (Smith et al., 2001; Henderson et al., 2006), as 

opposed to Cdk1-Clb1, -3, -4, complexes which are required for meiotic divisions 

(Grandin and Reed, 1993; Dahmann and Futcher, 1995). Similar to mitosis, Sic1 

binds to and inactivates Cdk1-Clb5 and Cdk1-Clb6 complexes (Dirick et al., 

1998). However, Cdk1-G1 cyclin complexes do not operate in meiosis and, 

therefore, cannot be responsible for meiotic Sic1 degradation (Colomina et al., 

1999). The destruction of Sic1 liberates Cdk1-Clb5 and Cdk1-Clb6 complexes 

(Stuart and Wittenberg, 1998). Cdk1 is not required for Sic1 removal in meiosis 

(Benjamin et al., 2003) suggesting that an undefined protein kinase must be 

catalyzing Sic1 phosphorylation in meiosis.   

Ime2 is a meiosis specific serine-threonine protein kinase required for 

efficient initiation of meiosis (Smith and Mitchell, 1989) that shares some 

structural similarity with Cdk1 (Hunter and Plowman, 1997) but does not require 
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cyclins for activity (Hui et al., 2002). The transcription factor Ime1 stimulates the 

transcription of the early meiotic genes, including IME2 (Mitchell et al., 1990; 

Vershon and Pierce, 2000). It has been shown that Ime2 (Foiani et al., 1996) and 

Cdk1-Clb5, -6 complexes (Dirick et al., 1998) are required for meiotic S phase.  

An ime2∆ mutant has a meiotic entry defect and displays an absence of Sic1 

disappearance (Dirick et al., 1998).  Our lab has shown Ime2 catalyzes 

phosphorylation at a non-Cdk1 consensus site on the protein RPA (Clifford et al., 

2005). In addition, we have shown that Ime2 does not share the same 

phosphorylation profile as Cln2 in vitro using Sic1 as the substrate (Sawarynski 

et al., 2007). These data suggest that during meiosis Ime2 does not 

phosphorylate Sic1 at the same sites as Cdk1-Cln1, -2. This disfavors the 

hypothesis that Ime2 functionally replaces Cdk1-Cln1, -2.  Recently, it was 

shown that Ime2 and Cdk1 can phosphorylate similar substrates, but their kinase 

activities are at distinct sites (Holt et al., 2007). The phosphorylation of Ime2 and 

Cdk1 at distinct sites of substrates might have similar functional consequences 

and might help explain the functional overlap between Cdk1 and Ime2. It has 

also been shown that Ime2 can phosphorylate Sic1 at some Cdk1 sites, but this 

is inefficient to promote the destruction of Sic1 (Sedgwick et al., 2006). 

Therefore, the mechanism of Sic1 disappearance, which allows for entry into 

meiotic S phase, is still in question (Figure 2). 

 

II. Origin-dependent replication 

The activity of Cdk1-Clb5, -6 initiates DNA synthesis, but prior to S phase  
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Figure 2. Cdk1 partners with certain cyclins to promote proper progression 
through the meiotic program.  
The schematic shows the Cdk1-cyclin complexes that aid in the different phases 
of meiosis. Note that the cyclins Cln1, Cln2, and Clb2, which function in mitosis, 
do not function in meiosis.  
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a number of orchestrated events must occur in G1. These events are centered 

on the sites where replication is initiated. Origins define the sites and have 

proven to be important components for understanding the earliest events in DNA 

replication. In yeast, origins are often referred to as autonomously replicated 

sequences (ARS), and are defined by a rich AT consensus sequence, which is 

not seen in any other organism (Theis and Newlon, 1997).  Approximately 200-

400 origins replicate the DNA of the sixteen S. cerevisiae chromosomes 

(Raghuraman et al., 2001; Wyrick et al., 2001). In most species, recruiting the 

replication machinery to the origins on the chromosome regulates DNA 

replication. The DNA replicated from a single origin is termed a replicon (Jacob 

and Brenner, 1963). In eukaryotes, there are many origins along the 

chromosome, and since replication occurs bi-directionally, eventually the 

replicons will join to form a complete genomic duplication.  

The consensus sequence of the ARS is required for the binding of the six-

subunit ATPase complex called the ORC (origin recognition complex) (Bell and 

Stillman, 1992; Diffley and Cocker, 1992; Bell and Dutta, 2002). In G1, ORC 

recognizes and binds to the origin. It then recruits proteins Cdc6 and Cdt1, and in 

cooperation they together load the MCM2-7 (minichromosome maintenance) 

helicase onto the origin to form the pre-RC (pre-replicative complex). Next in S 

phase, Cd1k and Ddk (Dbf4-dependent kinase) function with Sld2,-3 (Tanaka et 

al., 2007; Zegerman and Diffley, 2007), Dpb11, Cdc45, and the GINS complex to 

activate the MCM2-7 helicase. Once activated, the MCM2-7 helicase is thought 

to unwind the DNA to allow for loading of DNA polymerases and initiation of DNA 
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synthesis. The complete mechanism of MCM2-7 activation is still unknown, but it 

is essential that the two proteins Cdc45 and GINS be recruited (Figure 3) (see 

reviews (Fu and Walter, ; Sclafani and Holzen, 2007)).  

 

III. DNA re-replication 

  It is important for a cell to undergo only one round of DNA replication per 

cell cycle or meiotic event, as aneuploidy can lead to cell death or alternatively in 

humans, contribute to other diseases. Mechanisms that prevent DNA re-

replication during the cell cycle have been largely conserved in eukaryotes, with 

some variation through evolution. After DNA replication has initiated, origin re-

licensing must be inhibited to prevent any subsequent rounds of DNA replication. 

This involves inhibition of proteins responsible for origin licensing  (pre-RC 

assembly). Experiments have shown that pre-RC assembly is inhibited by Cdk1 

activity (Dahmann and Futcher, 1995). The events known to occur are Cdk1 

inhibitory phosphorylation of ORC (Nguyen et al., 2001; Vas et al., 2001), Cdk1-

mediated phosphorylation of Cdc6 and its subsequent degradation (Jallepalli and 

Kelly, 1997; Elsasser et al., 1999; Drury et al., 2000), and Cdk1-promoted 

nuclear export of Cdt1 and MCM2-7 (Labib et al., 1999) (Nguyen et al., 2000). All 

these events must occur to prevent DNA re-replication during the cell cycle, and 

they further emphasize that the prevention of DNA re-replication is due to a direct 

inhibition of the proteins required for licensing.  

Prevention of DNA re-replication is equally important in meiosis, but few 

studies have been conducted that define whether the same mechanisms that 
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Figure 3. Proteins recruited to origins for eukaryotic DNA replication  
This schematic shows proteins responsible for origin-dependent replication. Not 
shown is a protein RPA, which is known to bind to single strand DNA and aid in 
the replication process. The pre-RC is formed in G1, and then activated in S 
phase by the combined action of CDK and DDK. 
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prevent mitotic DNA re-replication also prevent meiotic DNA re-replication. There 

are two stages during which re-replication must be blocked in meiotic cells. One 

is between MI and MII, and the other is during the S phase window. 

Understanding how meiotic S phase cells block re-replication is a major focus of 

this dissertation.  

A few groups, including ours, have shown the induction of meiotic DNA re-

replication. Strich et al., 2004 showed that the B-type cyclins Clb1 and Clb5 can 

induce re-replication in meiotic cells when overexpressed by specific promoters, 

and that the spores are viable, haploid, and display normal Mendalian traits. In 

addition, they showed that re-replication was enhanced when additional mutation 

was introduced in proteins involved in the formation of the synaptonemal 

complex (SC). The cells with over replicated DNA produce asci containing up to 

twenty spores, which were termed “multads”. These data suggest that re-

replication control is different in mitotic and meiotic cells because overexpression 

of Clb1 does not cause re-replication during the cell cycle. 

 Rice et al., 2005 were also able to show evidence of meiotic DNA re-

replication. In their system, an activated allele of CDC28, the gene that encodes 

Cdk1, or the deletion of SWE1, the gene that encodes a protein kinase that 

catalyzed inhibitory phosphorylation of Cdk1, was able to complete several 

rounds of meiotic DNA replication. These cells exhibited a phenotype termed 

“multispore”.  They also found that multispore asci required Spo11, a 

transesterase essential for meiotic homologous recombination. This suggests 
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that cells must initiate homologous recombination for the multispore formation to 

occur. 

 

IV. Homologous recombination 

Homologous recombination occurs in both mitosis and meiosis, although 

the purposes are different. In the cell cycle of S. cerevisiae, recombination serves 

to repair DNA damage (Game et al., 1980; Kunz and Haynes, 1981) where sister 

chromatids are the preferred homologs as substrates (Kadyk and Hartwell, 

1992). This is quite different than meiotic recombination, due to the fact that 

homologous recombination in meiosis is a programmed event and it prefers the 

use of homologous chromosomes as substrates. In fact, during meiosis 

mechanisms are in place that prevents the use of sister chromatids as substrates 

(Wan et al., 2004). Programmed meiotic recombination occurs during prophase 

of MI. In meiosis, a primary function of recombination is to ensure proper 

chromosome segregations by establishing a physical connection between 

homologous chromosomes. Meiotic recombination is comprised of tightly 

arranged events in which homologous chromosomes must undergo pairing, 

recombination, and synapsis before they segregate to opposite poles at the first 

meiotic division.  

 

Repair of un-programmed DNA double strand breaks 

 During meiosis, DNA double strand breaks (DSBs) are programmed and 

required for homologous recombination to occur. In mitotic cells, DNA damaging 
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agents such as radiation and different types of chemicals, can elicit DSBs, which 

can lead to cell death or chromosomal abnormalities. Homologous 

recombination, where the sister chromatid is the preferred template, is the 

predominant accurate form of DSB repair mechanism in mitotic cells.  However, 

an alternative mechanism can occur, named break-induced replication (BIR), in 

which strand invasion leads to the formation of a unidirectional DNA replication 

fork and subsequent duplication of an entire chromosome arm (see review 

(McEachern and Haber, 2006)).   

BIR events begins as one ended recombination events for two possible 

reasons: 1) only one end of the DSB is free, or 2) only one of the two strands of 

the DSB succeeded in strand invasion of a homologous chromosome.  BIR is 

also known to play a key role in repair of stalled or broken replication forks 

(Kuzminov, 1995; Seigneur et al., 1998; Michel, 2000), as well as in the 

maintenance of eroding telomeres. Laundblad and Blackburn first demonstrated 

that cells incapable of maintaining chromosome ends by telomerase somehow 

managed to maintain telomere sequence (Lundblad and Blackburn, 1993).  This 

eventually led to the understanding that BIR is involved in telomere elongation 

when telomerase is absent. 

For homologous recombination to occur properly as a repair mechanism in 

mitotic cells, a few critical proteins must be present. Mitotic cells have one major 

protein that catalyzes strand exchange; Rad51. Therefore, if this protein is 

nonfunctional the cell must compensate and choose a different pathway to repair 

DSBs. The cell can turn to BIR to repair the DSB because it can occur in the 
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absence of Rad51. This is actually a common pathway in rad51Δ cells. BIR can 

prime DNA synthesis of the invading strand, and requires Rad52 and Rad59 to 

promote invasion of the 3’ ssDNA end (Cortes-Ledesma et al., 2007), followed by 

the requirement of DNA Polα primase complex and Polδ to initiate new DNA 

synthesis (Lydeard et al., 2007).  The subunit Pol32 of DNA Polδ was found to be 

essential for BIR, which is interesting because it was previously understood to be 

the non-essential subunit of Polδ when functioning in replication and gene 

conversion events (Lydeard et al., 2007).  

 

The events following programmed DNA double strand breaks 

Homologous recombination that occurs in prophase of the first meiotic 

division is initiated form programmed DNA double strand breaks (Szostak et al., 

1983; Sun et al., 1989). Cdk1-Clb5, -6 complexes are required for initiation of 

meiotic recombination (Figure 2) (Smith et al., 2001; Henderson et al., 2006). 

DSBs are processed in a proteinaceous structure, the synaptonemal complex 

(SC), which forms along the meiotic chromosome. The formation of the SC 

depends on recombination, and in turn some aspects of recombination depend 

on the SC (Paques and Haber, 1999). To understand the complexity of how 

DSBs are formed, note that eleven genes are required for DSB formation. These 

include RAD50, SPO11, MRE11, XRS2, MEI14, MER1, MER2, MRE2, REC102, 

REC104, and REC114 (Paques and Haber, 1999). In addition to the eleven 

genes, RED1, HOP1, and MEK1 genes are implicated in the formation of the SC; 

specifically, they are involved in the formation of axial elements between sister 
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chromatids and are required for full levels of meiotic DSBs (Mao-Draayer et al., 

1996; Xu et al., 1997). 

Although there are many genes that have roles in DSBs formation, the 

Spo11 transesterase has been proposed to be the direct protein involved in 

generating DSBs early in meiotic prophase (Keeney et al., 1997).  It is important 

to note that no breaks are observed when any of the eleven genes are deleted 

(Malone et al., 2004).  DSBs occur along several points of the chromatids, after 

which the 5’ ends are resected by a 5’ to 3’ exonuclease, which creates 3’ single 

stranded overhangs on either side of the break (Aylon and Kupiec, 2004; 

Bannister and Schimenti, 2004). 

Rad51 and Dmc1 play a critical role in strand invasion and catalyze 

invasion of the 3’ tails into intact homologous nonsister chromatids (Collins and 

Newlon, 1994; Hunter and Kleckner, 2001). The 3’ overhang also acts as a 

primer for the initiation of DNA synthesis.  This process leads to the formation of 

a double Holliday junction (DHJ) in mid-prophase (Holliday, 1964; Schwacha and 

Kleckner, 1995). Dmc1 was originally identified in a screen for meiotically 

induced genes (Bishop et al., 1992), and when mutated it accumulates DSB 

recombination intermediates and arrests late in meiotic prophase (Bishop et al., 

1992). Rad51 is necessary for both mitotic and meiotic recombination, whereas 

Dmc1 is specific to meiosis. The two proteins are detectable on meiotic 

chromosomes by immunostaining (Bishop et al., 1992; Dresser et al., 1997; 

Shinohara et al., 2000). 
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V. Checkpoint control 

Proper completion of either mitosis or meiosis requires an orderly 

sequence of events.  Many regulatory mechanisms are in place to ensure that 

orderly progression is maintained so that late events follow the early events. In 

1989, Leland Hartwell and Ted Weinert studied these controls in mitosis and 

termed them as ‘checkpoints’. Twenty-one years later, scientists have uncovered 

a number of checkpoints that can regulate distinct stages of the cell cycle and the 

meiotic program (Hartwell and Weinert, 1989). 

 

The pachytene checkpoint 

 In meiosis, more than 200 DSBs are introduced into the genome 

(Hochwagen and Amon, 2006). If cells initiate chromosome segregation before 

programmed meiotic recombination, entire chromosomes or chromosome 

fragments could be lost. The meiotic recombination checkpoint (also known as 

the pachytene checkpoint) delays progression into meiosis until DSBs are 

repaired. This checkpoint operates to prevent chromosome segregation when 

recombination intermediates are present. Many proteins are involved in the 

pachytene checkpoint, which is described below (Figure 4). 

 

a. Dmc1 

When mutants of proteins required for strand invasion, such as DMC1, are 

produced, the recombination/pachytene checkpoint is activated. These mutants 
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Figure 4. Activation of the pachytene checkpoint. 
Unprocessed recombination intermediates by a gene deletion of DMC1 can 
activate the pachytene checkpoint. The three main downstream targets prevent 
exit from pachytene (sub stage of prophase) by manipulating Cdk1 and inhibiting 
middle sporulation genes. Once recombination intermediates are processed, the 
signal is released and cells resume through meiosis. 
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cause the DNA to fail invasion into the homologous chromosome and result in an 

accumulation of large amounts of hypersected DSBs. This will cause a delay in 

prophase I (Bishop et al., 1992; Leu et al., 1998; Gerton and DeRisi, 2002). The 

large amounts of hypersected DNA are coated with Rad51, and it is suggested 

that this nucleoprotein may constitute a signal (Lydall et al., 1996; Shinohara et 

al., 1997).  Mutants in DMC1 cause an arrest in late G2/prophase that requires 

checkpoint genes RAD17, RAD24, and MEC1 (Lydall et al., 1996). 

 

b. Mitotic  checkpoint genes that are also active in meiosis 

 The Rad17, Rad24, and Mec1 proteins were first characterized in the 

context of the mitotic DNA damage checkpoint. In 1996, Lydall et al. showed that 

these same proteins are also involved in the pachytene checkpoint (Lydall et al., 

1996).  By creating double mutants, it was revealed that RAD17, RAD24, and 

MEC1 genes allow dmc1 mutant cells to progress through meiosis.  The RAD17 

gene is a conserved recognition protein that shares structural similarities with the 

proliferating cell nuclear antigen (PCNA).   PCNA forms a homotrimeric ring 

structure around the DNA, and is commonly referred to as the “sliding clamp” that 

recruits polymerases onto the DNA (Thelen et al., 1999).  Two proteins that 

Rad17 commonly associated with are Ddc1 and Mec3 (Paciotti et al., 1998; 

Kondo et al., 1999). The human homolog of this complex is commonly referred to 

as the “9-1-1 complex” (Carballo and Cha, 2007). One function of the complex 

involves a 3’ to 5’ exonuclease activity, which may be required to convert DSBs 
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into a recognizable triggering substrate for a checkpoint response (Zhang et al., 

2001). 

 The Rad17-Ddc1-Mec3 complex interacts with another mitotic DNA 

damage checkpoint protein, Rad24, which contains a clamp loading function that 

may act to load the Rad17-Ddc1-Mec3 PCNA-like complex (Lowndes and 

Murguia, 2000; Venclovas and Thelen, 2000).  In 2001, Zhang et al. proposed 

that Rad24 might function as the initial sensor by binding to the DSB, after which 

the Rad17p sliding complex would be recruited and therefore create a platform 

which allows for downstream signaling (Zhang et al., 2001). 

 Rad24 and the Rad17-Ddc1-Mec3 complex are considered to act 

upstream of Mec1, which was initially described as a mitosis entry checkpoint 

gene I (Weinert, 1992). Recent understanding of its role in meiosis has 

suggested that it is essential for and meiotic chromosomal processes. In fact, 

many meiotic processes that Mec1 is known to be involved in, which include S-

phase progression, recombination, inter-homolog bias, and chromosome 

synapses (Carballo and Cha, 2007).  In addition, Mec1 plays a central role in the 

localization and phosphorylation of many proteins including Mek1 (Roeder and 

Bailis, 2000) and Hop1 (Carballo and Cha, 2007). In the pachytene checkpoint, 

Rad24 and Rad17-Ddc1-Mec3 complex recognize incomplete recombination and 

activate the Mec1 kinase, as in mitosis (Bailis and Roeder, 2000). The active 

kinase then phosphorylates the meiosis specific kinase, Mek1.  
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c. Mek1, Red1, Hop1 

In S. cerevisiae, the meiotic chromosomal proteins Mek1, Red1, and Hop1 

are involved in the pachytene checkpoint. The mutants of these proteins are 

known to have defects in recombination products, but no apparent prophase 

arrest in the mutant cells (Rockmill and Roeder, 1990; Leem and Ogawa, 1992).  

Mek1 is a protein kinase whose phosphorylation requires the initiation of meiotic 

recombination (Bailis and Roeder, 1998), as well as certain proteins known to be 

involved in sensing DNA damage (Rad17, Rad24, and Mec1).  Mek1 exists in a 

complex with two other meiosis specific chromosomal core components, Hop1 

and Red1. RED1 and HOP1 genes encode proteins that are components of axial 

elements (AEs) essential for SC development and production of viable spores 

(Rockmill and Roeder, 1990; Hollingsworth and Ponte, 1997; Smith and Roeder, 

1997). The condensation of the sister chromatids along a protein core generate 

AEs, which are the precursors to the SC (Hollingsworth and Ponte, 1997). Yeast 

two-hybrid analysis and co-immunoprecipitation assays have revealed that Red1 

and Hop1 proteins interact with each other as well as co-localizing with AEs 

(Hollingsworth and Ponte, 1997; Smith and Roeder, 1997; de los Santos and 

Hollingsworth, 1999). The same assays have revealed that Red1 and Mek1 also 

directly interact with each other (Bailis and Roeder, 1998). 

Within the pachytene checkpoint, it is thought that Hop1 binds to DSB 

sites recruiting Red1, after which phosphorylation of Red1 may provide a 

recognition sequence for Mek1 binding (Wan et al., 2004).  Once bound, Red1 is 

required for the phosphorylation of Mek1 (Woltering et al., 2000) by the kinase 
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Mec1 (Bailis and Roeder, 2000).  It is in this way that Red1 acts as an adapter 

protein between Mec1 and Mek1 (Hochwagen and Amon, 2006). Other models 

that have suggested Red1 being a substrate for Mek1 (Roeder and Bailis, 2000), 

but evidence within the field favors the model defined by Wan et al. Recent 

evidence suggests that these proteins operate in the pachytene checkpoint to 

prevent inappropriate repair between sister chromatids  (Figure 5) (Niu et al., 

2007). 

 

d. Pch2 

The protein Pch2 functions in wild type cells and pachytene arrested cells. Until 

this point, we have discussed induction of the pachytene checkpoint through the 

deletion of DMC1. Research has shown that in addition to DMC1, deletion of 

HOP2 or ZIP1 can also activate the pachytene checkpoint (Rockmill and Roeder, 

1991; Bishop et al., 1992; Sym et al., 1993; Leu et al., 1998). Pch2 was originally 

identified in a screen to search for novel genes able to bypass the zip1∆ induced 

checkpoint arrest (San-Segundo and Roeder, 1999). Zip1 is a component of the 

synaptonemal complex.  Previously, little was known about Pch2, but recent 

reports have shown that its functions are beyond being a member of the AAA 

(ATPases associated with diverse cellular activities) family, which is highly 

conserved and involved in a large variety of processes (Beyer, 1997). Pch2 is 

required for the progression of recombination during normal pachytene, because 

the absence of Pch2 reduces and delays progression of crossover and non- 

crossover events (Borner et al., 2008). In zip1∆ pachytene arrested cells, the 
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Figure 5. A biological pathway that prevents the use of sister chromatids as 
repair during meiosis. 
This model shows how Mek1, Red1, and Hop1 prevent the use of sister 
chromatids for repair during meiosis. These proteins are also targeted during the 
pachytene checkpoint to prevent repair of the unprocessed recombination 
intermediates, which initially activated the checkpoint. 
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crossover pathway is blocked, and it is thought that Pch2 keeps the stalled 

recombination complexes intact to persist arrest. But if Pch2 is absent in arrested 

cells, then the recombination complexes can deteriorate, which allows for DNA 

events to progress. Other researches have shown that pch2∆ can bypass dmc1∆ 

arrest, but only about 50% of the cells are able to progress through to the meiotic 

divisions (San-Segundo and Roeder, 1999). Therefore, meiotic arrest by dmc1∆ 

is partially dependent on Pch2.  

 

e. Downstream targets Swe1, Ndt80, and Sum1 

 Swe1 is a kinase that can inhibit Cdk1 by phosphorylation on Tyr19 

(Booher et al., 1993)) and is thought to function in the pachytene checkpoint. 

Mitotically, Swe1 most efficiently inhibits Cdk1 when complexed with Clb2, 

modestly inhibits Cdk1-Clb3, -4, and does not inhibit Cdk1-Clb5 -,6 or Cln 

complexes (Hu and Aparicio, 2005). Swe1 is not required for the DNA damage 

checkpoint (Amon et al., 1992), but it was found to be essential for the 

morphogenesis checkpoint (Lew, 2000) and the pachytene checkpoint (Leu and 

Roeder, 1999). Bud formation requires the polarization of the actin cytoskeleton, 

but when stress perturbs the actin cytoskeleton the morphogenesis checkpoint is 

triggered (Lew and Reed, 1995; McMillan et al., 1998).  The checkpoint turns on 

a cell cycle arrest in G2 by blocking degradation of Swe1 (Sia et al., 1998), and 

inhibiting Mih1, the Cdc25-family phosphatase that de-phosphorylates Cdk1 at 

Tyr19 (Harrison et al., 2001). Many factors go into play in the degradation of 
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Swe1, but, mainly, Swe1 hyper-phosphorylation makes the protein susceptible to 

ubiquitin degradation (Kaiser et al., 1998). 

When activated within the pachytene checkpoint, it is thought that Swe1 

can prevent pachytene exit by its accumulation and phosphorylation, which in 

turn has an inhibitory phosphorylation function on Cdk1 (Leu and Roeder, 1999). 

Although it is unclear which Cdk1-Clb complex Swe1 inhibits to aid in pachytene 

arrest, it is known that exit from pachytene requires Cdk1 (Shuster and Byers, 

1989; Xu et al., 1995) upregulation of Clb1, and to a lesser extent upregulation of 

Clb3, -4 (Grandin and Reed, 1993; Dahmann and Futcher, 1995).  When 

originally defined in the pachytene checkpoint, swe1∆ mutants were found to 

enter meiotic divisions in dmc1∆-induced checkpoint arrested cells as efficiently 

as wild type cells in the YAB36 S.cerevisiae strain background (Leu and Roeder, 

1999). However, others have found that in a different strain background (SK1), 

only 10-30% of swe1∆ mutants bypass the dmc1∆-induced pachytene checkpoint 

and enter meiotic divisions (Pak and Segall, 2002).  

 Another target of the pachytene checkpoint is Ndt80, which is a 

transcriptional activator of approximately 150 middle sporulation genes (MSGs). 

As part of its function, Ndt80 binds to the middle sporulation elements (MSEs) 

located in the promoter region of the MSGs (Chu et al., 1998; Chu and 

Herskowitz, 1998; Hepworth et al., 1998). Ndt80 induces transcription of genes 

required for nuclear divisions (CLB1) and spore formation (SMK1), in addition to 

stimulating transcription of itself (NDT80). In dmc1∆-induced checkpoint cells, 

Ndt80 is inactive and MSGs are not expressed. Activation of the pachytene 
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checkpoint prevents the accumulation and phosphorylation of Ndt80, which 

depends on Ime2 (Tung et al., 2000; Benjamin et al., 2003).  

 The third downstream target of the pachytene checkpoint is Sum1, a 

transcriptional repressor of Ndt80 targets.  Deletion of SUM1 can bypass dmc1∆-

induced arrest (Lindgren et al., 2000; Pak and Segall, 2002).  When cells are 

mitotically dividing, Sum1 represses the expression of many sporulation genes 

(Xie et al., 1999; Pak and Segall, 2002). Sum1 binds MSE sites in the promoter 

regions of MSGs, but its important to note that it does not bind to the MSEs of all 

the MSGs (Xie et al., 1999). Ndt80 and Sum1 can compete for binding at MSEs, 

but small changes in the sequence of the MSE can affect which protein binds 

(Pierce et al., 2003). Some MSE sites are Ndt80-dependent activator sites, and 

some MSE sites are Sum1-dependent repressor sites. Therefore expression 

level of the MSGs is dictated, in part, by the amount of Ndt80 and Sum1 present 

and the affinity of the proteins for the MSE site (Xie et al., 1999). In terms of the 

pachytene checkpoint, it is possible that Sum1 functions to repress the MSGs to 

aid in pachytene arrest. When Sum1 binds to DNA, it recruits other proteins that 

participate in targeted histone deacetylation that represses corresponding genes 

by establishing an inactive chromatin state (Pijnappel et al., 2001; McCord et al., 

2003). 

 

G1-S DNA damage checkpoint 

Just as an accumulation of recombination intermediates activates the 

pachytene checkpoint during meiosis, another checkpoint is activated during the 
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G1 to S transition in response to DNA damage in mitosis. Damage could occur 

as a result of a replication fork collapse, ionizing radiation (IR), chemical 

compounds such as benzo(a)pyrene, or endogenous compounds such as free 

radicals. These inducers can yield DNA double stranded breaks (DSBs) or single 

stranded DNA (ssDNA), which have been shown to initiate the damage signal 

(Garvik et al., 1995).   

The key components of the G1-S DNA damage checkpoint in S.cerevisiae 

are the phosphoinositol-3-related kinases (PIKK) Mec1 and Tel1. The human 

homolog of Mec1 is ATR (ataxia-telangiectasia and Rad3-related), and null 

mutations, which cause a complete inactivation of the gene, have serious health 

consequences. Namely, mutations in ATR are known to contribute to the 

autosomal recessive disorder Seckel syndrome. Patients diagnosed with Seckel 

syndrome, or microcephalic primordial dwarfism, have dramatic microcephaly 

and developmental delay (Goodship et al., 2000). A protein kinase that is 

functionally redundant to Mec1 is Tel1, whose human homolog is ATM (ataxia-

telangiectasia mutated). Mutations in ATM can contribute to ataxia-telangiectasia 

(AT), which is a neurodegenerative disorder with a predisposition to cancer 

(Abraham, 2001). 

Both Mec1 and Tel1 function as signal transducers and do not appear to 

directly recognize DNA damage. Rather, Mec1 and Tel1 recognize specific 

complexes, which have already recognized the initial damage.  When DNA 

damage elicits single strand DNA (ssDNA), the protein RPA (replication protein 

A) binds to ssDNA and triggers the recruitment of the protein kinase Mec1, which 
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causes a series of cascading events (Zou and Elledge, 2003). Tel1 is recruited to 

the DNA by the end-binding Mre11-Rad50-Xrs2 complex (Nakada et al., 2003), 

and is more important for maintaining normal telomere length (Lustig and Petes, 

1986; Ritchie et al., 1999). Another complex that recognizes DNA damage sites 

is the Rad24-Rfc2-5 complex, which in turn helps load the PCNA-like Ddc1-

Mec3-Rad17 complex (S.cerevisiae homologs of the 9-1-1 complex) (Kondo et 

al., 2001; Melo et al., 2001). These complexes load independently of Mec1, but 

are required for functioning of Mec1 (de la Torre-Ruiz et al., 1998). Once all the 

proteins and kinases have been recruited to the DNA damage site, several 

proteins become rapidly phosphorylated in a Mec1/Tel1 dependent manner 

(Lowndes and Murguia, 2000; Abraham, 2001). Some downstream effectors of 

Mec1/Tel1 signaling are the kinases Rad53 and Rad9.   

Once DNA damage has been detected, Mec1/Tel1 are recruited to site 

where they catalyze phosphorylation of Rad9.  First, this hyper-phosphorylated 

form of Rad9 promotes Mec1-Rad53 interaction specifically by Mec1-mediated 

phosphorylation of Rad53 and its subsequent activation (Sweeney et al., 2005). 

Then Rad9 acts a scaffold to facilitate Rad53 auto-phosphorylation (Emili, 1998; 

Sun et al., 1998; Gilbert et al., 2001).  Now active, the protein kinase Rad53 can 

phosphorylate the transcriptional regulator Swi6 during G1 of the cell cycle. This 

will in turn inhibit a transcriptional activator Swi4, required for transcription of G1 

cyclins, causing a G1 arrest until damage can be repaired.  
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VI. Health consequences 

There are many health consequences associated with aberrant DNA 

metabolism and some are associated with cancer.  For example, the DNA 

damage checkpoint described above is abolished in patients with AT (Painter et 

al, 1982). Also, the tumor suppressor gene p53, which can detect DNA damage, 

is mutated in over 50% of solid tumors (Hollstein et al., 1991). As in the cell 

cycle, aberrant DNA metabolism during meiosis can have serious health 

consequences, as illustrated by diseases such as Down’s syndrome resulting 

from misegregation. Errors in DNA replication and recombination during meiosis 

can have equally profound health effects resulting from point mutations, 

chromosomal translocations, and changes in ploidy.  

Specifically, chromosomal translocations have been linked to many types 

of cancer. These events are rearrangements of DNA between non-homologous 

chromosomes. One common type of translocation seen in chronic myelogenous 

leukemia (CML) and acute lymphoblastic leukemia (ALL) is the translocation of a 

region of chromosome 22 to the ABL1 gene of chromosome 9 (Kurzrock et al., 

2003). 

Alternatively recombination between non-allelic DNA segments that share 

high sequence similarity can cause serious health consequences. Usually within 

the chromosome there are regions of low copy repeats (LCRs), which share > 

90% sequence identity over one thousand base pairs.  Within these regions, 

homologous recombination can occur and lead to detrimental effects of the 

developing gametes. Research within this field has yet to answer if NAHR (non-
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allelic homologous recombination) events occur in meiosis or in mitotically 

dividing germ line cells. Regardless, these events lead to many inherited genetic 

disorders. To name a few, Hunter’s Syndrome is a lysosomal storage disease 

caused by the inversion of a portion of IDS (iduronate sulfatase gene), and β-

Thalassaemia is an anaemia caused by the deletion of the β-globin gene (see 

review (Sasaki et al.)). It is clear from these examples that meiotic recombination, 

as well as the DNA replication process that precedes it, must be meticulously 

controlled to avoid the generation of systemic and potentially harmful genetic 

alterations. 
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CHAPTER 2 

 

MATERIALS AND METHODS 

 

I. Strains and Plasmids 

Yeast strains used in this study were in the W303 background (Table 1 

and Table 2).  Plasmids encoding galactose-inducible Sic1 derivatives with HA 

and 6xHis tags at the C–terminus were kindly provided by Raymond Deshaies.  

One version, referred to here as Sic1WTHA, is degraded properly during 

vegetative growth, while the other, referred to here as Sic1ΔPΗΑ, is resistant to 

degradation during vegetative growth due to mutations of multiple Cdk1-targeted 

phosphorylation sites (Verma et al., 1997).  Both proteins contain a T2A 

mutation, while Sic1ΔPΗΑ contains additional T5GP, S33A, and S76A mutations.  

Approximately 1kb DNA regions were PCR amplified with BamHI-tailed primers 

using the following templates: pNH59-2 (Hollingsworth et al., 1990), kindly 

provided by Dr. Jacqueline Segall (University of Toronto), for HOP1pr.  This 

product was inserted upstream of SIC1WTHA and SIC1ΔPHA at the BamHI site in 

the two plasmids, and the sequences of cloned promoters were verified.  The 

resulting plasmids were then digested with Sse8387I (Amersham) or its 

isoschizomer SbfI (New England Biolabs) for integration at the URA3 locus of 

various strains.  All insertions were verified by PCR. A spontaneous revertant of 

the diploid strain containing HOP1pr-SIC1ΔPHA (YGB495) to uracil auxotrophy 

was isolated by counter-selection with fluoro-orotic acid (Toronto Research 



30 

 

Table 1. Haploid yeast strains.  

 
Name Relevant Genotype 
W303 MATa ade2-1 ura3-1 leu2-3,112 his3-11,15 trp1-1 can1-100 
YGB502 MATa ade2-1 ura3-1 leu2-3,112 his3-11,15 trp1-1 can1-100 

SIC113myc::kanMX6 
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Table 2. Diploid yeast strains. 
All yeast strains listed are congenic with YGB138. 
 
Name Relevant Genotype 
YGB138 MATa/α ade2-1/” ura3-1/” leu2-3,112/” his3-11,15/” trp1-1/” can1-

100/” 
YGB495 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 
YGB513 SIC1/SIC113myc::kanMX6 
YGB514 ura3-1/ura3-1::HOP1pr::SICWTHA::URA3 SIC1/SIC113myc::kanMX6 
YGB515 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 SIC1/SIC113myc::kanMX6 
YGB583 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 ndt80∆::kanMX4/” 
YGB604 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 dmc1∆::natR/” 
YGB613 ura3-1/ura3-1::HOP1pr::SICWTHA::URA3 
YGB617 ura3-1::HOP1pr::SIC∆PHA::URA3/” 
YGB672 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 pol32∆::kanMX4/” 
YGB673 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 mek1∆::kanMX4/” 
YGB678 ura3-1/ura3-1::HOP1pr::SICWTHA::URA3 pol32∆::kanMX4/” 
YGB679 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 dmc1∆::natR/” 

mek1∆::kanMX4/” 
YGB687 swe1∆::kanMX4/” 
YGB688 ura3-1/ura3-1::HOP1pr::SICWTHA::URA3 swe1∆::kanMX4/” 
YGB689 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 swe1∆::kanMX4/” 
YGB697 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 dmc1∆::natR/” 

swe1∆::kanMX4/” 
YGB700 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 dmc1∆::natR/” 

pch2∆::kanMX4/” 
YGB703 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 pch2∆::kanMX4 
YGB712 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 hop1∆::kanMX4/” 
YGB713 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 dmc1∆::natR/” 

hop1∆::kanMX4/” 
YGB721 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 red1∆::kanMX4/” 
YGB722 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 dmc1∆::natR/” 

red1∆::kanMX4/” 
YGB757 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 SIC1/SIC113myc::kanMX6 

dmc1∆::natR/” 
YGB758 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 rad9∆::kanMX4/” 
YGB759 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 dmc1∆::natR/” 

rad9∆::kanMX4/” 
YGB764 dmc1∆::natR/” 
YGB765 dmc1∆::natR/” swe1∆::kanMX4/” 
YGB785 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 sum1∆::kanMX4/” 
YGB786 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 dmc1∆::natR/” 

sum1∆::kanMX4/” 
YGB788 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 dmc1∆::natR/” 

mec1∆::LEU2/” sml1∆::kanMX4/” 
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Name Relevant Genotype 
YGB789 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 mec1∆::LEU2/” 

sml1∆::kanMX4/” 
YGB792 dmc1∆::natR/” sum1∆::kanMX4/” 
YGB807 SIC113myc::kanMX6/” 
YGB808 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 SIC113myc::kanMX6/” 
YGB809 ura3-1/ura3-1::HOP1pr::SIC∆PHA::URA3 SIC113myc::kanMX6/” 

dmc1∆::natR/” 
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Chemicals), which indicated loss of the HOP1pr-SIC1ΔPHA element (Boeke et al., 

1984).  For construction of 2X SIC1∆PHA, we inserted the digested SIC1ΔPHA 

plasmid at the URA3 locus of 2 separate haploids. We checked each haploid by 

PCR to ensure integration of one plasmid using primers RS1 (5’ 

tgaaaacctctgacacatgcag 3’) and RS2 (5’ cttgattagggtgatggttcacg 3’). We then 

mated the haploids and performed tests to select for a diploid.  

Deletion mutations were generated in haploids of mating types MATa and 

MATα by site-specific integration of markers PCR-amplified from the genomic 

DNA of previously characterized deletion mutants (Baudin et al., 1993).  Deletion 

mutants produced with a kanMX4 marker were resistant to the drug G418 

(Mediatech Inc.). Where necessary, deletion mutants were switched to natR 

markers using the p4339 plasmid kindly provided by Charles Boone (University 

of Toronto), which allowed for nourseothricin resistance (Werner BioAgents). All 

haploid mutants were verified by PCR. Forward and reverse primers were 

designed that recognized the marker and/or the ORF of the corresponding gene. 

Based on different combinations of forward and reverse primers recognizing the 

marker and/or the ORF of the corresponding gene, we were able to verify 

complete deletion of all genes in this report. Deletion mutants were constructed 

to produce MATa gene of interest∆ and MATα gene of interest∆ SIC1∆PHA that 

were then mated. The resulting diploid strain contained homozygote deletions of 

one of the following genes (MEC1, MEK1, RED1, HOP1, PCH2, SWE1, RAD9, 

SUM1), and was used to test whether the deletion affected our DNA re-

replication phenotype. To test whether the homozygote deletion alleviated our 
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checkpoint block to DNA re-replication, we constructed strains by mating haploid 

deletion mutants MATa gene of interest∆ dmc1∆ with MATα gene of interest∆ 

dmc1∆ SIC1∆PHA. We performed subsequent mating tests to ensure proper 

selection of diploids. We then performed PCR checks, using the same PCR 

primer combinations used to check the haploids. Once the homozygote deletion 

mutant was selected, we were able to analyze its behavior meiotically by 

synchronous sporulation. The ndt80∆ mutant was constructed similarly 

(Sawarynski et al., 2009). 

Heterozygote and homozygote SIC113myc strains were first constructed in 

haploids by the method described in (Longtine et al., 1998). Briefly, the 13myc 

tag was PCR amplified to have regions of homology to the C-terminal end of the 

SIC1 gene using the plasmid pFA6-13myc::kanMX6 (Longtine et al., 1998). Once 

constructed in a haploid (YGB502), we mated with a subset of strains that 

contained other mutations and deletions of interest. We then sporulated the 

diploids and performed a series of tetrad dissections to isolate mating types that 

contained different combinations of mutants, which we could use to generate 

heterozygote and homozygote SIC113myc diploid strains (YGB 513, 514, 515, 757, 

787, 807, 808, 809)   

  

II. Alpha Factor and Synchronous Sporulation 

All yeast incubations were conducted at 30°C. Mitotic growth was 

conducted with rich media (YPD).  To conduct a synchronized mitotic time course 

we diluted a saturated cell population to an OD600 of 0.2 and incubated for 2 hrs 
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at 30°C. Next, the yeast pheromone α factor was added to a final concentration 

of 2.5µM. Cells were incubated for an additional 2 hrs at 30°C, α factor was 

removed by washing with sterile water, and cells were resuspended in fresh YPD 

to conduct a mitotic time course. Aliquots were taken every 15 minutes, up to 75 

minutes, and analyzyed by flow cytometry and SDS-PAGE. 

 Meiosis was induced by starvation based on an established procedure for 

synchronous sporulation (Padmore et al., 1991).  In this method, yeast cells were 

taken from an overnight YPD culture and diluted to an OD600 of 0.2 in YPA media 

(1% yeast extract / 2% peptone / 2% potassium acetate).  They were grown for 

15.5 -16 hrs and then switched to a sporulation medium, SPM, consisting of 

0.3% potassium acetate and 0.02% raffinose supplemented with leucine, 

arginine, and histidine each at 250 µM, tryptophan at 100 µM, and uracil at 50 

µM. Yeast strains were normalized in the SPM medium to the yeast strain with 

the lowest OD600. Aliquots were taken at 0hr and subsequent time points for 2, 4, 

6, 8, 10, 12, 24 hours depending on the experiment. 

  

III. Whole Cell Lysate Preparation and Western Blot Analysis 

Denatured whole-cell extracts were prepared as previously described 

(Kushnirov, 2000). Within individual experiments cells harvested were normalized 

to the same optical density. The following description is based on 2ml aliquot of 

yeast cells. Cells were harvested by centrifugation then stored at -80°C until 

processing. Aliquots were treated with 100-200µl of 0.1N NaOH. Cells were then 

placed on ice for 10 minutes, centrifuged to remove NaOH, and vortexed in 50µl 
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of 1X SDS/PAGE buffer to dissolve the pellets. 1X SDS/PAGE buffer was 

adapted from Laemmli formula (Laemmli, 1970), which contains 2% SDS, 10% 

glycerol, 5% β-mercaptoethanol, 0.002% bromophenol blue. Samples were then 

heated at 95°C for 5 minutes and subjected to SDS/PAGE, and the separated 

proteins were transferred to nitrocellulose membranes (GE Healthcare) in 25 mM 

Tris/192 mM glycine/20% methanol. For most applications, samples were loaded 

onto a 10% SDS-PAGE gel. Primary antibodies included mouse anti-

hemagglutinin monoclonal (HA-11, Covance), rat anti α-tubulin polyclonal 

(Serotec), and mouse anti-myc (Santa Cruz). Signals were generated with IRDye 

800-conjugated goat anti-rat (Rockland), or Alexa Fluor 680 goat anti-mouse 

(Invitrogen) secondary antibodies. Protein bands were visualized with a Li-Cor 

Odyssey infrared imaging system. 

 

IV. RNA Analysis 

For Northern blotting, total RNA was isolated using a kit from Epicentre, 

and then subjected to electrophoresis through a 1.2% agarose gel in 20 mM 

MOPS, pH 7.0 / 5 mM sodium acetate /1 mM EDTA / 0.74% formaldehyde. The 

separated RNA was transferred to Hibond-N+ nylon membrane (Amersham) in 

10X SSC buffer by capillary elution. Probes specific to SIC1 (ORF nucleotides 

305-783), HOP1 (ORF nucleotides 269-778) and ACT1 (277-870) were 

generated by PCR amplification using genomic DNA as a template and then 

labeled with [α−32P] dCTP (PerkinElmer) using a random primer DNA labelling kit 

(Roche). Hybridization was conducted with individual probes overnight at 65°C. 
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Radioactivity was detected through Phosphoimager (GE Healthcare) analysis. 

  

V. DNA Content/Flow Cytometry 

Cells were harvested by centrifugation, resuspended in 70% ethanol and 

stored at 4°C. Aliquots of the fixed cells were washed once with 50 mM Tris–HCl, 

pH 7.5, resuspended in 1 ml of the same buffer, and then treated with 250 µg 

RNase A for 1 hour at 37°C followed by 250 µg proteinase K for 1 h at 37°C. The 

digested samples were incubated with 10X SYBR Green I (Molecular Probes) at 

4°C overnight, sonicated briefly and analyzed by with a FacsCalibur and 

FACSCantoII flow cytometer (BD Biosciences). DNA content histograms were 

generated and analyzed using WinMDI freeware. 

 

VI. Immunofluorescence 

 Cells were collected in 10ml aliquots for DAPI staining. Cells were fixed in 

1ml 50% EtOH and stored at 4°C. The resulting fixed cells were harvested by 

centrifugation at 1400 RPM for 2 min at 4°C. Cells were then washed with 1ml 50 

mM Tris–HCl, pH 7.5 and resuspended in 250µl of the same buffer. The samples 

were sonicated at 5 watts for 5 seconds, and slides were immediately prepared 

by pipeting 4µl of cells and 4µl of VECTAShield Mounting Media containing 4'-6-

diamidino-2-phenylindole (DAPI) (VectorLabs). Cells were quickly mixed with the 

mounting media directly on the slide prior to the addition of the coverslip. The 

mounting media was allowed to harden at room temperature for at least 30 

minutes in the dark. Strains were then analyzed by microscopy (Olympus IX71) 
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under oil emersion and images were taken (Hamamatsu ORCA-ER). We scored 

the number of DAPI-staining bodies by cells that had distinct staining bodies 

(one, two, three, or four bodies). All other cells were not counted. Counts were 

performed blindly and 200 cells were counted per strain. We analyzed the DAPI 

staining of swe1∆ (YGB687), dmc1∆ (YGB764), swe1∆dmc1 (YGB765), and 

sum1∆dmc1∆ (YGB792). These strains, except swe1∆, were constructed by 

selecting for spontaneous revertants, which had lost the HOP1pr::SIC1ΔPHA 

element in the diploid strains dmc1∆SIC1∆PHA, swe1∆dmc1∆SIC1∆PHA, and 

sum1∆dmc1∆SIC1∆PHA by counter-selection with fluoro-orotic acid (Toronto 

Research Chemicals) (Boeke et al., 1984). 

 

VII. Comparative genome hybridization 

Experiments were performed in collaboration with Dr. Grant Brown at the 

University of Toronto. To perform this method we extracted the genomic DNA 

and fragmented with DNase I. Biotin-dUTP was incorporated at the 3’ ends of the 

DNA fragments using terminal deoxynucleotidyl transferase (TdT). Once the 

DNA fragments were biotinylated, they were hybridized to an Affymetrix 

GeneChip®S.Cerevisiae Tiling 1.0R Array. This microarray contains the entire 

yeast genome and is comprised of 3.2 million match/mismatch probe pairs.  In 

addition, the probes are tiled at an average of five base pair resolution. Once the 

hybridization process was complete, the chip was washed and probed with 

streptavidin conjugated to a fluore (streptavidin-phycoerythrin biotinylated anti-

streptavidin antibody). Due to the strong affinity streptavidin has for biotin, there 
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is a high efficiency of binding of biotin to streptavidin. Based on computer 

analysis we were able to detect signal emission of the fluore. The relative 

hybridization intensity at a given location on the array is ideally proportional to the 

relative copy number of those sequences in the genome. 
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 CHAPTER 3 

 

MEIOTIC DNA RE-REPLICATION INDUCIBLE BY MUTATIONS OF THE CDK1 

INHIBITOR SIC1 

 

I. Introduction 

DNA replication must only occur once in mitosis and meiosis to prevent 

genomic instability. During the cell cycle, chromosomes are duplicated in S 

phase then segregated during subsequent M phase. The meiotic program is 

similar in that the DNA is replicated in pre-meiotic S phase, but there are two 

successive divisions, MI and MII, without an intervening S phase.  Homologous 

chromosomes segregate during the first division, MI, also termed the reductional 

division. In the next successive division, MII (equational division), sister 

chromatids segregate to generate four haploid gametes. Programmed 

recombination occurs in prophase of MI and is one process that sets mitosis 

apart from meiosis. This ensures proper chromosome segregation and genetic 

variability between the haploid gametes. Recombination can occur during 

mitosis, and often does, but it functions for repair and the sister chromatids serve 

as the template.  

 The model organism S.cerevisiae has proven to be effective for studying S 

phase in the cell cycle. There is one major cyclin dependent kinase (Cdk1 or 

Cdc28) in yeast that combines with G1 cyclins (Cln) or B-type cyclins (Clb) to 

direct the cell through the cell cycle. As a cell transitions from G1 to S phase, 
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Cdk-Clb5 and Cdk-Clb6 are responsible for initiating DNA replication (Schwob et 

al., 1994). To promote the transition from S to G2, which includes proper spindle 

assembly, Cdk1-Clb3 and Cdk1-Clb4 become active. Finally, Cdk1-Clb1 and 

Cdk1-Clb2 help govern the transition from G2 to M phase. Different types of 

inhibitors hold Cdk-Clns and Cdk-Clbs inactive until the cell is ready for their 

execution at the proper time.  Sic1 is an inhibitor of Cdk1-Clb5, -6, which 

prevents early entry into S phase, and is specific for B-type cyclin-CDK 

complexes (Schwob and Nasmyth, 1993). When Sic1 is phosphorylated by Cdk-

Cln1, -2 it becomes degraded through the ubiquitin pathway, which allows Cdk1-

Clb5, -6 to now become active (Deshaies, 1997). 

During meiosis, Cdk1 and Ime2, a meiosis-specific kinase, catalyze many 

phosphorylation events that allow for proper progression through meiosis. They 

each can phosphorylate the same substrates (Sic1, Cdh1, and components of 

the pre-RC), but the kinases have different consensus phosphorylation sites 

(Clifford et al., 2005; Sedgwick et al., 2006; Holt et al., 2007; Moore et al., 2007) 

(Sawarynski et al., 2007). Cdk1-Cln1,-2 are responsible for the phosphorylation 

and subsequent degradation of Sic1 in mitosis (Deshaies, 1997), but do not 

function in meiosis (Dirick et al., 1998; Colomina et al., 1999). It has been 

proposed that Ime2-dependent degradation of Sic1 can lead to the activation of 

Cdk1 associated with Clb5 and Clb6 (Dirick et al., 1998; Stuart and Wittenberg, 

1998). However, it seems unlikely that Ime2 functionally replaces the Cdk1-Cln1, 

-2 complexes during meiosis, because Cdk1 and Ime2 have different specificities 

(Benjamin et al., 2003; Clifford et al., 2005; Sawarynski et al., 2007). 
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Deletion of the genes encoding CLB5 and CLB6 or inactivation of Cdk1, 

prevents meiotic DNA replication (Dirick et al., 1998; Stuart and Wittenberg, 

1998; Benjamin et al., 2003). This provides evidence that Cdk1-Clb5, -6 

complexes promote meiotic S phase entry, as they do in mitosis.  Also, 

overexpression of Sic1 mutated at residues required for its degradation prevents 

mitotic S and meiotic S phase (Stuart and Wittenberg, 1998; Sedgwick et al., 

2006). Therefore, it seems likely that Cdk1-Clb5, -6 complexes govern meiotic S 

phase, but a different mechanism is responsible for Sic1 destruction.  

Once DNA replication is initiated, it is crucial that the replication machinery 

is prevented from re-initiating DNA replication. Mechanisms that prevent DNA re-

replication have been largely conserved in eukaryotes, with some variation 

through evolution. During mitosis, Cdk1-Clb complexes are responsible for 

preventing DNA re-replication by influencing components of the pre-replication 

complex (pre-RC) (Dahmann and Futcher, 1995). Specific events that have been 

shown to prevent DNA re-replication include inactivation of the origin recognition 

complex (ORC) (Dahmann and Futcher, 1995), export of minichromosome 

complex (MCM) and Cdt1 from the nucleus (Labib et al., 1999; Tanaka et al., 

2007), degradation of Cdc6 (Drury et al., 1997; Elsasser et al., 1999), or a 

physical interaction between Clb5 and the ORC (Wilmes et al., 2004). It is still 

unclear whether these same mechanisms are responsible for prevention of 

meiotic DNA re-replication. Others have shown the induction of meiotic DNA re-

replication through over expression of Clb1 or Clb5 (Strich et al., 2004), an 

activated allele of CDC28, or the deletion of SWE1, the gene that encodes a 
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protein kinase involved in the G2 to M transition prevention of CDK (Rice et al., 

2005). These data would suggest that different mechanisms prevent meiotic DNA 

re-replication.  

 

II. Results 

Meiosis-specific expression of Sic1WTHA and Sic1∆PHA 

In S. cerevisiae, Sic1 is present early in meiosis then becomes degraded 

as the cell enters S phase (Dirick et al., 1998). Certain phosphorylation sites on 

Sic1 mark Sic1 for degradation by the ubiquitin pathway in mitosis, and these 

same phosphorylation sites participate in meiosis (Stuart and Wittenberg, 1998; 

Sedgwick et al., 2006).   Since Cdk1-Cln1, -2 complexes are not active during 

meiosis and Cdk1 activity is not required for the Sic1 destruction in meiosis, we 

sought to further investigate the method of Sic1 destruction in meiosis. We 

designed two versions of Sic1, both of which were placed under the control of the 

meiosis-specific HOP1 promoter (HOP1pr) as well as encoding hemagglutin (HA) 

and 6x histidine tags. The first version of Sic1 we constructed is referred to as 

HOP1pr-SIC1WTHA and is considered our wild type strain because this version of 

Sic1 is properly degraded during mitosis although it contains one mutation at a 

Cdk1 consensus site (T2A). The second version we constructed, HOP1pr-

SIC1ΔPHA, contains the T2A mutation as well as T5GP, S33A, and S76A 

mutations, and it cannot be adequately phosphorylated and subsequently 

signaled for ubiquitin degradation in the cell cycle (Verma et al., 1997). 



44 

 

To analyze the strains containing these constructs, we subjected them to 

starvation to induce meiosis. Protein expression revealed that during earlier time-

points, protein levels between Sic1WTHA and Sic1ΔPHA were relatively similar, 

but as the time points progressed levels of Sic1ΔPHA accumulated to a much 

greater extent then Sic1WTHA (Figure 6A).  To ensure that protein level was not 

due to enhanced transcription, we performed Northern blot analysis (Figure 6B).  

We noted that transcript levels of HOP1pr-SIC1WTHA and HOP1pr-SIC1∆PHA 

were relatively similar, suggesting to us that the Sic1 protein level is regulated 

post-transcriptionally. Northern blot analysis revealed that both SIC1WTHA and 

SIC1∆PHA transcripts were induced from the HOP1pr elements with patterns 

nearly identical to those of the HOP1 transcripts (Figure 6B). Note that recovery 

of 24hr transcripts was inefficient in all 3 strains. 

Next, we wanted to analyze DNA content by flow cytometry (Figure 7).  

These data revealed similar kinetics between parental cells and HOP1pr-

SIC1WTHA; however, the HOP1pr-SIC1ΔPHA strain, exhibited an impressive 

degree of DNA re-replication. As indicated by our flow cytometry analysis, we 

were able to detect cells that had clearly replicated their entire genome two times 

(8C) (Figure 7B).  We also analyzed the 24 hour flow data further by estimating 

the percentage of cells that have DNA content >4C, and found that more than 

half of HOP1pr-SIC1∆PHA cells had larger than 4C DNA content (Figure 7B). In 

summary, we have shown that the same sites required for Sic1 degradation in 

mitosis are also required for meiotic degradation.  
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Figure 6. Sic1∆PHA is resistant to degradation. 
Cells were induced to enter meiosis and analyzed for various parameters over 
time. Comparisons were made between the parental strain (WT; YGB138), 
HOP1pr-SIC1WTHA (YGB613), and HOP1pr-SIC1∆PHA (YGB495) A. Protein 
analysis of the time course. Sic1 and tubulin protein bands were visualized with 
antibodies against HA and tubulin. B. Northern blot from the same time course. 
Transcripts SIC1, HOP1, and ACT1 were analyzed by synthesizing 32P 
radioactive probes labeled. 
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Figure 7. SIC1∆PHA leads to extra rounds of DNA replication. 
A. DNA content was analyzed by flow cytometry for the parental strain (WT; 
YGB138), HOP1pr-SIC1WTHA (YGB613), HOP1pr-SIC1∆PHA (YGB495), which 
were induced to undergo meiosis. 2C signifies a population of cells prior to DNA 
replication, and 4C signifies cells that have completed one round DNA 
replication. B. DNA re-replication can be assessed from the enlarged 24hr 
histograms. Flow analysis of the 24hr histograms were analyzed to estimate the 
percentage of cells that re-replicated in HOP1pr-SIC1∆PHA when compared to 
 WT and HOP1pr-SIC1WTHA.
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and that mutations in our HOP1pr-SIC1ΔPHA strain produced a DNA re-

replication phenotype.  

 

Increasing the expression of Sic1∆PHA blocks DNA replication and any 

subsequent rounds of DNA replication 

It was interesting that this mutated form of Sic1 caused a re-replication 

phenotype, because it was previously reported that SIC1∆PHA arrested and did 

not complete meiotic DNA replication (Stuart and Wittenberg, 1998; Sedgwick et 

al., 2006).  In the previous studies, researchers used a different meiosis-specific 

promoter, IME2pr, so we reasoned this was a possible explanation for our re-

replication phenotype.  IME2pr possibly directs stronger and/or earlier 

expression. We constructed a strain with SIC1∆PHA under the IME2pr. Through 

comparison with the HOP1pr we noted that the level of Sic1∆PHA was increased 

with the IME2pr, and interestingly we saw that DNA re-replication did not occur 

(Sawarynski et al., 2009). In fact, the cells were still mainly in G1, which 

coincided with the previous research that showed cells were unable to complete 

meiotic DNA replication (Stuart and Wittenberg, 1998; Sedgwick et al., 2006).  

A likely explanation for our re-replication phenotype is that the stabilized 

version of Sic1 inhibits Cdk1 at a certain level that allows for re-initiation of DNA 

replication; in a wild type cell, active Cdk would prevent re-initiation, as it does in 

mitosis. We showed that increased expression of SIC1∆PHA, under the IME2pr, 

did not allow for meiotic DNA replication by an accumulation of cells in G1 

(Sawarynski et al., 2009). We next determined if increasing expression by adding 
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an extra copy of HOP1pr-SIC1∆PHA would also prevent DNA re-replication. We 

found that the extra copy increased Sic1∆PHA expression, as expected, and S 

phase was prevented as shown by the accumulation of cells in the 2C peak 

(Figure 8) (Brush and Najor, 2009). The IME2pr data and the 2X HOP1pr-

SIC1∆PHA data suggest that increasing protein expression of a non-degradable 

form of Sic1 lowers Cdk1-Clb5, -6 activity to levels that prevent pre-replication 

complex (pre-RC) assembly, which initiates DNA replication. 

 

Characteristics of SIC1∆PHA-induced meiotic DNA re-replication 

We narrowed the mechanism of DNA re-replication down to two 

possibilities. The first was that DNA re-replication occurred due to a re-initiation 

of origins prior to meiotic divisions. The second was that re-initiation of origins 

was occurring between meiotic divisions, which is suppressed normally in 

meiosis.  

Our DAPI data of HOP1pr-SIC1∆PHA did not display the proper production 

of 4 nuclei staining bodies. Rather, many of the cells had one large staining body, 

which suggested the HOP1pr- SIC1∆PHA strain had undergone multiple rounds of 

DNA replication without nuclear divisions (Sawarynski et al., 2009).  To further 

investigate whether DNA re-replication could occur between meiotic divisions, we 

constructed a deletion mutant that arrests in the pachytene stage of prophase I. 

Ndt80 is a transcriptional activator that turns on many middle sporulation genes 

(Chu and Herskowitz, 1998) required for meiosis. In the absence of Ndt80, cells 

arrest at pachytene and do not enter the meiotic divisions (Xu et al., 1995). The  
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Figure 8. Two copies of HOP1pr-SIC1∆PHA prevent DNA replication and re-
replication. 
Strains HOP1pr-SIC1WTHA (YGB613), HOP1pr-SIC1∆PHA (YGB495), and 2 
copies (2X) HOP1pr-SIC1∆PHA (YGB617) were induced to enter meiosis and 
analyzed for various parameters over time. A. Protein analysis of a time course 
where HA tags were used for Sic1 detection and tubulin levels were analyzed as 
a loading control. B. DNA content was analyzed by flow cytometry. 2C signifies a 
population of cells prior to DNA replication, and 4C signifies cells that have 
completed one round DNA replication. 
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sporulation of ndt80∆ expressing Sic1∆PHA revealed that in the absence of 

Ndt80, cells were still able to undergo multiple rounds of DNA replication by 

analysis of DNA content (Figure 9). These data suggest that DNA re-replication 

is occurring prior to meiotic divisions.   

We sought to investigate all other possibilities that could be responsible 

for the mechanism of meiotic DNA re-replication.  Earlier, we mentioned origin 

dependent replication as a possibility. In this instance, DNA replication would 

initiate at regions of the DNA “licensed” for the replication machinery. There are 

many mechanisms defined in the cell cycle that prevent the “re-licensing” of 

these regions, and therefore would prevent DNA re-replication. For the next step 

in characterizing our DNA re-replication, we sought to determine whether the 

underlying mechanism was due to re-licensing of origins. We suspect that origins 

are involved because full genome equivalents are replicated in these cells. 

However, other mechanisms, such as break-induced replication, can also lead to 

extensive DNA replication. To further investigate this possibility, we performed 

comparative genomic hybridization (CGH), which is a method developed to 

monitor copy number changes on a genomic scale. One can distinguish at 

certain genomic locations if there is a relative increase in DNA copy number, 

since hybridization intensity is proportional to the relative copy number. 

Therefore, if origins were being re-fired, we hoped to detect a two-fold increase in 

DNA copy number in the origin regions relative to neighbors of the origins.  

We examined the 24-hour samples of our re-replication strain, HOP1pr- 

SIC1∆PHA and our wild type version, HOP1pr-SIC1WTHA (Figure 10). We 
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Figure 9. DNA re-replication does not require pachytene exit.  
To investigate whether DNA re-replication occurs prior to pachytene, we 
generated a homozygote deletion of NDT80 with HOP1pr-SIC1∆PHA at the URA3 
locus (YGB583). Synchronous sporulation was performed and aliquots were 
taken to analyze protein levels by SDS-PAGE and DNA content by flow 
cytometry. HA tag was used for Sic1 protein detection, and tubulin protein was 
analyzed as a loading control. 
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anticipated that certain regions near origins might be over-represented if origin 

dependent DNA re-replication were occurring. When comparing both 

microarrays, we found that there was no relative increase at any specific region 

of the DNA (Figure 10B). We could not detect origin enrichment because of the 

extent of DNA re-replication, and that perhaps we will need to use a S phase 

block to see such an effect.  

Although we cannot deduce whether origins had been re-fired, our 

analysis was still able to provide evidence that DNA re-replication was likely 

genome-wide, which was also expected from the flow cytometry data. Since 

every gene and their neighbors were probably re-replicated, CGH did not detect 

any relative difference in gene copy number. To ensure that CGH could detect a 

two-fold increase, we compared our re-replication strain to GBY653, which is a 

strain from the laboratory of Dr. Grant Brown that contains 3 copies of the SUL1 

gene and deletion of the MEC1 gene (Figure 10C). The software was able to 

recognize the differences in gene copy number for SUL1 and MEC1.  Therefore, 

the software is accurate in its analysis and DNA re-replication was not due to 

amplification of certain region of the S.cerevisiae genome.  

Genome-wide re-replication could be due to re-licensing of origins or 

another possibility is break-induced replication (BIR), which mitotically requires 

the protein Pol32.  In this case, DNA re-replication could initiate from DSBs.  In 

meiosis, Spo11 catalyzes programmed DSBs to initiate meiotic recombination, 

but our data shows that a spo11Δ cell still undergoes re-replication (Sawarynski 

et al., 2009).  Therefore, if BIR is the cause of DNA re-replication, the DSBs must  
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Figure 10. Comparative Genome Hybridization (CGH) reveals possible 
genome-wide amplification.  
Snap shots of microarrays used in analysis of (A.) HOP1pr-SIC1∆PHA and (B.) 
HOP1pr-SIC1WTHA   with 24-hour flow data showing DNA content. C. Integrated 
Genome Browser (IGB) software analysis of wild type strain SIC1WTHA vs. re-
replication strain SIC1∆PHA (Comparison II). To display an example where CGH 
is can detect a two-fold change in gene copy number, analysis of a strain 
(GBY653-Dr. Grant Brown), which contained 3 copies of SUL1 and a deletion of 
MEC1, is depicted in Comparison I. Transposons are detectable by CGH, as 
seen in both Comparison I and II. 
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be formed by some other mechanism in our HOP1pr-SIC1ΔPHA mutant. We 

reasoned that HOP1pr-SIC1∆PHA might have some sort of direct impact on the 

DNA that could cause damage. Since Pol32 is required and essential for mitotic 

BIR, we made a deletion mutant of this gene then analyzed the DNA content by 

flow cytometry and protein levels after the sporulation. If BIR were responsible for 

our DNA re-replication phenotype, then the pol32∆ mutant harboring HOP1pr-

SIC1∆PHA should not re-replicate. Our results showed a homozygote deletion of 

POL32 with HOP1pr-SIC1∆PHA went through more than one round of DNA 

replication (Figure 11). If Pol32 is also essential for meiotic BIR, then these data 

suggest BIR is not the mechanism for DNA re-replication.  It is possible that 

Pol32 is not required for BIR in meiosis, and therefore it is still possible that BIR 

could account for our DNA re-replication phenotype. Arguably, there are other 

possible mechanisms that we have not investigated that could account for our 

DNA re-replication phenotype. However, the flow data exhibiting discrete 2n DNA 

content peaks and the CGH data indicate genome-wide DNA re-replication, 

suggesting an origin dependent mechanism.  

 

III. Discussion 

 By generating a non-degradable form of Sic1, we were able to investigate 

DNA re-replication in meiosis.  The DNA was re-replicated due to our choice of 

promoter element, HOP1pr, and copy number of SIC1∆PHA. This suggested 

additional rounds of DNA replication can occur when levels of Cdk1-Clb5, -6 are 

reduced. This was interesting because previous studies showed that the same  
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Figure 11. The absence of Pol32, an essential protein for BIR during the cell 
cycle, does not abolish Sic1∆PHA-induced meiotic DNA re-replication. 
Cells were induced to enter meiosis and analyzed for various parameters over 
time. Comparisons were made between the HOP1pr-SIC1WTHA (YGB613) 
pol32∆ HOP1pr-SIC1WTHA (YGB678), HOP1pr-SIC1∆PHA (YGB495), and pol32∆ 
HOP1pr-SIC1∆PHA (YGB672). Synchronous sporulation was performed and 
aliquots were taken to analyze protein levels by SDS-PAGE and DNA content by 
flow cytometry.  HA tags were used for Sic1 protein detection, and tubulin protein 
was analyzed as a loading control. 
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mutant form of Sic1 did not allow the cells to enter mitotic or meiotic S phase. 

This also suggested that the level of Cdk1 is important to prevent DNA re-

replication. Our current hypothesis is that HOP1pr-SIC1∆PHA lowered Cdk1 

levels to an amount that allowed re-initiation, and that if lowered further (2X 

HOP1pr-SIC1∆PHA or IME2pr-SIC1∆PHA) the cells would arrest and would not 

complete pre-meiotic S phase. Therefore, this suggests that prevention of DNA 

re-replication requires Cdk1 activity. 

We were also able to show that DNA re-replication is occurring prior to 

meiotic divisions by the ndt80∆ mutant. These data suggest that prevention of 

DNA re-replication somehow involves Cdk1-Clb5, -6 complexes, since those are 

known to govern the mechanisms prior to meiotic divisions (i.e. DNA replication 

and recombination). In addition, based on our CGH and flow cytometry data, 

DNA re-replication is genome-wide and most likely due to origin re-firing. DNA re-

replication does not occur as a form of BIR based on our experiments with Pol32. 

Pol32 is known to be essential for mitotic BIR, however, further investigations will 

be required to determine whether Pol32 is also essential for meiotic BIR. In 

summary, this evidence points to Cdk1-Clb5, -6 complexes being responsible for 

the prevention of re-licensing of DNA origins, which is similar to the prevention of 

mitotic DNA re-replication.  
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CHAPTER 4 

 

LINKS BETWEEN DNA RE-REPLICATION AND THE RECOMBINATION 

CHECKPOINT 

 

I. Introduction 

In the organism S.cerevisiae, Cdk1 regulates the progression through the 

mitotic cell cycle and the meiotic program. To regulate meiotic S phase, Cdk1 is 

complexed with the B-type cyclins, Clb5 and Clb6, and a cyclin dependent kinase 

inhibitor, Sic1. Once Sic1 is phosphorylated, it is degraded through ubiquitin-

dependent proteolysis, which activates the Cdk1-Clb5/Clb6 complexes and DNA 

synthesis initiates (Deshaies, 1997; Feldman et al., 1997; Skowyra et al., 1997; 

Verma et al., 1997; Stuart and Wittenberg, 1998). During meiosis, the kinase 

responsible for catalyzing Sic1 phosphorylation is still in question, but evidence 

has pointed to the involvement of both Ime2 and Cdk1 (Sedgwick et al., 2006; 

Sawarynski et al., 2007).  

Following S phase in meiosis, an important regulated and programmed 

process in prophase of MI is meiotic recombination, which ensures genetic 

diversity between the final haploid gametes and is required for proper 

chromosome segregation. Programmed recombination initiates from DSBs 

(Szostak et al., 1983; Sun et al., 1989).  Many genes play a role in DSB 

formation, but the Spo11 transesterase has been proposed to be the direct 

protein involved in the generation of DSBs early in meiotic prophase (Keeney et 
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al., 1997).  The DSBs are processed in a proteinaceous structure, the 

synaptonemal complex (SC), which forms along the meiotic chromosome. After 

the DSBs are formed, the recombinase Dmc1 plays a critical role in strand 

invasion of 3’ tails into intact homologous non-sister chromatids (Collins and 

Newlon, 1994; Hunter and Kleckner, 2001). The crossovers that occur during 

recombination must take place in the SC (Engebrecht et al., 1990; Hollenberg et 

al., 1995).  

If there are any aberrations in recombination or SC formation, a 

checkpoint will arrest the cells in the pachytene stage of prophase I. This 

checkpoint is known as the meiotic recombination checkpoint or the pachytene 

checkpoint. Specifically, defects in recombination by dmc1Δ (Bishop et al., 1992) 

(Leu et al., 1998; Gerton and DeRisi, 2002) or defects in SC formation by zip1Δ 

(Sym et al., 1993) cause arrest through the activation of the pachytene 

checkpoint, which stimulates a kinase cascade with members of this pathway 

described in Chapter 1. The main targets of this checkpoint are the meiosis-

specific transcriptional activator Ndt80 (Chu and Herskowitz, 1998; Hepworth et 

al., 1998; Tung et al., 2000), the transcriptional reppressor Sum1 (Lindgren et al., 

2000), and the Swe1 kinase (Leu and Roeder, 1999). 

Ndt80 is a meiosis-specific transcription factor that activates a large set of 

middle sporulation genes. It binds to the middle sporulation element (MSE) 

located in promoter regions of the many genes required for exit of pachytene and 

progression through meiosis (Chu & herskowitz 1998, Chu S et al 1998-Science, 

Hepworth et al 1998). Sum1 is a transcriptional repressor of NDT80 that binds to 
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the same MSEs (Xie J et al 1999-EMBO).  Swe1 is a kinase that has been 

extensively studied as a main regulator of the G2 to M transition of mitotic cells. 

When activated in mitotic cells, it inhibits Cdk1 by phosphorylation at tyrosine 19 

(Booher et al., 1993; Sia et al., 1998) most efficiently through Cdk1-Clb2 

complexes, and has no effect on Cdk1-Clb5, -6 complexes (Hu and Aparicio, 

2005). Genetic studies have shown that Clb2 is not expressed during meiosis 

(Grandin and Reed, 1993). Within context of the pachytene checkpoint, we have 

yet to understand which Cdk1-Clb complexes Swe1 inhibits to induce arrest. 

 We have shown that meiotic DNA re-replication can be induced by the 

production of a non-degradable form of the Cdk1 inhibitor Sic1 (HOP1pr- 

SIC1ΔPHA) (Sawarynski et al., 2009). In addition, DNA re-replication induced by 

HOP1pr-SIC1∆PHA occurred prior the meiotic divisions, and activation of the 

pachytene checkpoint abolished DNA re-replication. Other groups have shown 

meiotic DNA re-replication with multispore phenotypes. Those phenotypes where 

induced by a homozygous deletion of SWE1 or an activated allele of CDK1 (Rice 

et al., 2005). Also, prior research shows that ectopic overexpression of CLB1 or 

CLB5 produced structures containing more then four spores (Strich et al., 2004). 

Although others have been able to show the induction of meiotic DNA re-

replication, mechanisms that prevent re-replication have not been extensively 

studied in meiosis.  

 Here we show that the pachytene checkpoint can prevent re-replication, 

but not through the targets Swe1, Ndt80 or Sum1. Therefore, we suggest an 
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alternative branch or response of the checkpoint that prevents DNA re-

replication.  

 

II. Results 

DNA re-replication can be inhibited by dmc1∆-induced checkpoint arrest 

Following meiotic DNA replication in S phase, programmed recombination 

occurs in prophase of meiosis I. When origins of replication have fired, a global 

signal prevents DSB formation at all potential sites.  Once the replication fork 

passes, the inhibitory signal at potential DSB sites is abolished allowing for DSB 

formation and consequently programmed recombination (Hochwagen and Amon, 

2006). To determine whether programmed recombination could affect the DNA 

re-replication phenotype associated with HOP1pr-SIC1ΔPHA, we generated 

mutants defective in certain stages of the recombination pathway. We deleted 

genes encoding Spo11 (Sawarynski et al., 2009), a transesterase that catalyzes 

DNA DSBs (Keeney et al., 1997) and Dmc1, a meiosis-specific recombinase that 

catalyzes strand exchange (Bishop et al., 1992), in a strain containing HOP1-

SIC1ΔPHA (Figure 12A). The homozygous deletion of SPO11 did not affect the 

DNA re-replication phenotype (Sawarynski et al., 2009), but strikingly the 

homozygous deletion of DMC1 completely abolished the re-replication peaks 

seen by flow cytometry (Figure 12A). We also performed Western blot analysis of 

the deletion strains to ensure that the lack of DNA re-replication in the dmc1Δ 

strain was not due to the absence of Sic1ΔPHA expression (Figure 12A).   
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Figure 12. DNA re-replication can be inhibited by dmc1∆-induced 
checkpoint arrest. 
A. DNA content and protein were analyzed by flow cytometry and by SDS-PAGE 
of HOP1pr-SIC1∆PHA (YGB495) cells and HOP1pr-SIC1∆PHA with dmc1∆ 
(YGB604) cells, which were induced to undergo meiosis. HA tags were used to 
detect Sic1 protein. Tubulin protein was used as a loading control. 2C signifies a 
population of cells prior to DNA replication, and 4C signifies cells that have 
completed one round DNA replication.  B. Methodology of dissecting the dmc1∆-
induced pachytene checkpoint responsible for preventing SIC1∆PHA-induced 
DNA re-replication. The genes of the corresponding proteins, which we 
considered might play a role in the dmc1∆-induced abolishment of DNA re-
replication are denoted by xxx∆. 
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These results indicate that the recombination intermediates produced by a 

dmc1Δ mutant inhibit extra rounds of DNA re-replication associated with 

Sic1ΔPHA expression.  We also produced double homozygous gene deletions for 

SPO11 and DMC1 with HOP1pr-SIC1ΔPHA background. Our reasoning was that 

if dmc1Δ were responsible for the inhibition of DNA re-replication, deletion of a 

gene upstream of Dmc1 should negate the dmc1Δ phenotype.  We, therefore, 

expected the reconstitution of DNA replication in a spo11Δ and dmc1Δ mutant, 

and in fact this is what we observed (Sawarynski et al., 2009). We speculated 

that there were two possible mechanisms by which the dmc1Δ mutant could 

inhibit DNA re-replication. One possibility was that dmc1Δ in a HOP1pr-SIC1ΔPHA 

background strain produced recombination intermediates that were physically 

impossible to replicate.  Another possibility was that dmc1∆-induced the 

pachytene checkpoint signal that inhibited DNA re-replication. To distinguish 

between these possibilities, we turned our attention to the protein Rad17, which 

is downstream of Dmc1 in the pachytene checkpoint. We generated double 

homozygous gene deletions of RAD17 and DMC1 with HOP1pr-SIC1∆PHA and 

found that DNA re-replication was restored. Originally, checkpoints were defined 

through mutations that allow a late event to occur without the completion of an 

early event (Hartwell and Weinert 1989). Our results indicate that Rad17 is a 

checkpoint protein involved in the dmc1Δ-mediated inhibition of the DNA re-

replication phenotype, which would not normally occur after recombination 

(Sawarynski et al., 2009).  
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Our next sets of experiments were designed to elucidate the checkpoint 

pathway responsible for the inhibition of meiotic DNA re-replication. We 

employed the same strategy as described above for Rad17.  We generated 

homozygote gene deletion mutants for genes encoding proteins we were 

interested in testing in a background that contained a homozygote deletion of 

DMC1 with HOP1-SIC1∆PHA (Figure 12B). 

  

Mec1 participates in checkpoint-induced abolishment of DNA re-replication 

First we investigated at MEC1, which is an ortholog of mammalian 

ATR/ATM. In addition to its extensive role in the DNA damage checkpoint 

pathway, Mec1 is also required for meiotic arrest, along with Rad17 and Rad24, 

in the meiotic recombination checkpoint (Lydall et al., 1996). MEC1 deletion 

mutants are lethal; however, an additional mutation in SML1 will suppress the 

lethality. We found that the absence of Mec1 and Sml1 in a dmc1∆ and HOP1pr-

SIC1∆PHA strain was able to re-constitute DNA re-replication (Figure 13A). We 

also performed Western blot analysis of the deletion strains to ensure the change 

in phenotype was not due absence of Sic1ΔPHA expression. To ensure the 

deletion mutants did not have an effect on the DNA re-replication phenotype 

alone, we made control strains that contained homozygote deletions of MEC1 

and SML1 but had wild type DMC1 (mec1∆ sml1∆ SIC1∆PHA), and found that the 

deletions did not have an affect on our re-replication phenotype (Figure 8B). 

These data indicated that Mec1 participated in the checkpoint-induced 

abolishment of DNA re-replication. 
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Figure 13. Mec1 participates in checkpoint-induced abolishment of DNA re-
replication. 
A. DNA content was analyzed by flow cytometry and protein was analyzed by 
SDS-PAGE of strains harboring HOP1pr-SIC1∆PHA with homozygous deletion of 
DMC1 (YGB604) and strains with the additional gene deletions of MEC1 and 
SML1 (YGB788) that were induced to undergo meiosis. B. A control strain 
containing HOP1pr-SIC1∆PHA with gene deletions MEC1 and SML1 (YGB789) 
was generated to ensure gene deletions did not effect HOP1pr-SIC1∆PHA-
induced DNA re-replication (YGB495). HA tags were used to detect Sic1 protein, 
and tubulin protein was used as a loading control.  
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Proteins Mek1, Red1, Hop1 function downstream of Dmc1 in the prevention 

of DNA re-replication induced by SIC1∆PHA 

Next, we decided to look at the proteins Mek1, Red1, and Hop1, which are 

the meiotic axial element (AE) proteins. These proteins are important in ensuring 

that crossovers occur between homologous chromosomes and not between 

sister-chromatids (Schwacha and Kleckner, 1995; Thompson and Stahl, 1999; 

Wan et al., 2004). Specifically, Mek1 kinase activity is required after DSB 

formation for preventing DMC1-independent DSB repair (Wan et al., 2004). It is 

thought that Hop1 binds to sites where DSBs will form, and recruits Red1. Then 

phosphorylated Red1 complexes with Mek1, which is then activated by 

phosphorylation and can further catalyze phosphorylation of other proteins to 

inhibit DSB repair using sister chromatids as substrates (Wan et al., 2004).  To 

see whether these proteins also participated in the dmc1∆-induced DNA re-

replication block, we made homozygote deletion mutants in diploid strains of the 

genes MEK1, RED1, and HOP1. We found that in the absence of Mek1, Red1, or 

Hop1 in strains with dmc1∆ and HOP1pr-SIC1∆PHA, DNA re-replication was re-

constituted when compared to dmc1∆ with HOP1pr-SIC∆PHA alone (Figure 14). 

We also performed Western blot analysis of the deletion strains to ensure the 

change in phenotype was not due absence of Sic1ΔPHA expression (Figure 14). 

Therefore, these proteins also participate in the dmc1∆-induced abolishment of 

DNA re-replication. To ensure the deletion mutants did not have an effect on the 

DNA re-replication phenotype alone, we made control strains that were 

homozygote deletions for MEK1, RED1, HOP1 with HOP1pr-SIC1∆PHA (mek1∆ 



66 

 

 
 
 
 
 
 
 
 
Figure 14. Proteins Mek1, Red1, Hop1 function downstream of Dmc1 in the 
prevention of DNA re-replication induced by HOP1pr::SIC1∆PHA. 
A. Strains harboring HOP1pr-SIC1∆PHA with a homozygous gene deletion of 
DMC1 (YGB604) and additional homozygous gene deletions of MEK1 (YGB679), 
RED1 (YGB722), and HOP1 (YGB713) were induced to undergo meiosis. DNA 
content was analyzed by flow cytometry and protein was analyzed by SDS-
PAGE. HA tags were used to detect Sic1 protein, and tubulin protein was used 
as a loading control. 
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SIC1∆PHA, red1∆ SIC1∆PHA, and hop1∆ SIC1∆PHA), and found that the deletion 

mutants did not have an affect on our re-replication phenotype (Figure 15).  

 

Pch2 participates in checkpoint-induced abolishment of DNA re-replication 

Other proteins participate in the pachytene checkpoint, but their exact 

roles are yet to be defined. Pch2 is a part of a group of genes that encode 

chromatin-silencing factors, and was found to be essential for the pachytene 

checkpoint (San-Segundo and Roeder, 1999). Originally discovered as a protein 

that could bypass zip1∆-induced pachytene arrest (San-Segundo and Roeder, 

1999), it is thought that Pch2 keeps recombination complexes intact to maintain 

arrest (Borner et al., 2008).  Research has shown that pch2∆ can also bypass 

dmc1∆-induced pachytene arrest, but only partially (San-Segundo and Roeder, 

1999). Therefore, we wanted to investigate whether Pch2 participated in the 

dmc1∆-induced checkpoint that inhibits our DNA re-replication phenotype. We 

found that Sic1∆PHA-induced DNA re-replication re-appeared when Dmc1 and 

Pch2 were absent (Figure 16A). We also performed Western blot analysis of the 

deletion strains to ensure the change in phenotype was not due absence of 

Sic1ΔPHA expression (Figure 16A). These data indicate Pch2 is downstream of 

Dmc1, and participating in the dmc1∆-induced block to re-replication. To ensure 

the deletion mutant did not have an effect on the DNA re-replication phenotype 

alone we made a control strain that was a homozygote deletion for the PCH2 

gene with HOP1pr-SIC1∆PHA, and found that pch2∆ had a small affect on our 
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Figure 15. Gene deletions of MEK1, RED1, and HOP1, do not affect 
HOP1pr::SIC1∆PHA-induced DNA re-replication. 
A. Control strains were generated containing HOP1pr-SIC1∆PHA with 
homozygous gene deletions of MEK1 (YGB673), RED1 (YGB721) and HOP1 
(YGB712) to ensure deletion mutants did not affect DNA re-replication induced 
by Sic1∆PHA (YGB495) expression. Strains were induced to undergo meiosis. 
DNA content was analyzed by flow cytometry and protein was analyzed by SDS-
PAGE. HA tags detected Sic1 protein levels and tubulin protein was used as a 
loading control. 
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Figure 16. Pch2 participates in checkpoint-induced abolishment of DNA re-
replication. 
A. DNA content was analyzed by flow cytometry and protein was analyzed by 
SDS-PAGE of strains containing HOP1pr-SIC1∆PHA with a homozygous gene 
deletion of DMC1 (YGB604) and an additional homozygous gene deletion of 
PCH2 (YGB700). B. A control strain was generated containing HOP1pr-
SIC1∆PHA with homozygous gene deletion of PCH2 (YGB703) to investigate 
whether the gene deletion of PCH2 affected Sic1∆PHA-induced DNA re-
replication (YGB495). Asterisk (*) denotes effect of pch2∆ on DNA re-replication 
phenotype. HA tags were used to detect Sic1 protein, and tubulin detection was 
used as a loading control. 
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DNA re-replication phenotype (Figure 16B). The degree of DNA re-replication 

tends to be variable amongst our experiments, but we noticed that PCH2 gene 

deletions had an affect on extent of DNA re-replication by 24hr (Figure 16A and 

16B). Although a small affect was noted, DNA re-replication in the absence of 

Pch2 with dmc1∆ and HOP1pr-SIC1∆PHA was still re-constituted. Therefore, the 

data indicate the involvement of Pch2 in the dmc1∆-induced block to DNA re-

replication, but further investigations will divulge whether pch2∆ mutants affect a 

biological mechanism that is connected to DNA re-replication. 

   

Main downstream targets of the meiotic recombination checkpoint are not 

involved in the dmc1∆-induced checkpoint that can inhibit DNA re-

replication 

Three known targets of the pachytene checkpoint are Ndt80, Sum1, and 

Swe1. The DNA re-replication phenotype we have observed is caused by the 

expression of a mutant Cdk1 inhibitor (HOP1pr-SIC1∆PHA) that theoretically 

leads to lowered B-type cyclin-CDK activity. Because this type of CDK is required 

for the meiotic divisions, we suspected that DNA re-replication in our system did 

not require pachytene exit. To better understand if this was the case, we turned 

our attention to Ndt80.  Normally, this transcription factor promotes the activation 

of Clb/Cdk1 complexes, which would promote pachytene exit. We deleted the 

gene NDT80 with HOP1pr-SIC1∆PHA to investigate whether absence of Ndt80, 

and therefore absence of potential pachytene exit, would affect our re-replication 

phenotype and uncover if re-replication was occurring prior to the meiotic 



71 

 

divisions (discussed in Chapter 3). In the absence of Ndt80 with Sic1ΔPHA 

expression (Figure 9), we found that DNA re-replication still occurred, indicating 

that our phenotype did not require pachytene exit.  These data were the first 

piece of evidence that suggested a possible novel branch of the pachytene 

checkpoint pathway could inhibit our DNA re-replication phenotype. 

To further investigate whether this was specific to Ndt80 or whether a 

novel branch does, in actuality, exist, we turned our attention to the other 

downstream targets of the pachytene checkpoint: Sum1 and Swe1. Ndt80 is a 

transcriptional activator of middle sporulation genes, while Sum1 is the 

transcriptional repressor of those same genes (Xie et al., 1999; Pak and Segall, 

2002). Research has shown that sum1∆ can bypass dmc1∆-induced arrest, 

which suggests signals are directed to the Sum1 protein in the pachytene 

checkpoint (Lindgren et al., 2000; Pak and Segall, 2002). In terms of its function 

in the checkpoint, research has suggested that Sum1 is upregulated, which 

would cause a vast repression of MSGs and, hence, cause pachytene arrest. 

Therefore, if Sum1 were to function in the pachytene checkpoint that prevents 

DNA re-replication, we should see a re-instatement of DNA re-replication when 

Sum1 is absent in a strain that contains dmc1∆ and HOP1pr- SIC1∆PHA (Figure 

12B). We constructed a homozygous deletion of SUM1 in a diploid strain that 

was also a homozygous deletion for the gene DMC1 expressing Sic1∆PHA.  We 

tested Sum1 function as for other potential checkpoint proteins (see above), and 

did not observe rescue of dmc1∆-induced DNA re-replication block (Figure 17A). 

As before, to ensure the SUM1 deletion mutant did not have an effect on the 
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Figure 17. Transcriptional repressor of middle sporulation genes, Sum1, 
does not participate in dmc1∆-induced block to DNA re-replication. 
A. DNA content was analyzed by flow cytometry and protein was analyzed by 
SDS-PAGE of strains harboring HOP1pr-SIC1∆PHA with a homozygous gene 
deletion of DMC1 (YGB604) and additional homozygous gene deletion of SUM1 
(YGB786) B. A control strain was generated containing HOP1pr-SIC1∆PHA with 
the gene deletion of SUM1 (YGB785) to evaluate its effect on Sic1∆PHA-induced 
DNA re-replication (YGB495). Asterisk (*) denotes effect of sum1∆ on DNA re-
replication phenotype. HA tags detected Sic1 levels, and tubulin detection was 
used as a loading control. 
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DNA re-replication phenotype alone, we made a control strain that was a 

homozygote deletion for SUM1 alone (sum1∆ SIC1∆PHA), and found that, similar 

to the Pch2 experiments, there was an effect on our re-replication phenotype 

(Figure 17B). Nonetheless, DNA re-replication did occur. Further studies need to 

be completed to investigate how Sum1 affects our DNA re-replication phenotype. 

Therefore, these data indicate that, along with Ndt80, Sum1 does not appear to 

participate in the pachytene checkpoint pathway that blocks DNA re-replication. 

Up to this point, our data has suggested that known meiotic recombination 

checkpoint downstream targets do not participate in the prevention of DNA re-

replication in our system. We finally turned our attention to the third downstream 

target, Swe1.  Defects in meiotic recombination, which activate the pachytene 

checkpoint, cause Swe1 accumulation and phosphorylation. This phosphorylated 

form of Swe1 will further inhibit Cdk1 by phosphorylation of the kinase at tyrosine 

19 (Booher et al., 1993) and in turn prevent pachytene exit. We deleted SWE1 

and DMC1 and found that Sic1∆PHA-induced DNA re-replication was not restored 

(Figure 18A). As before, to ensure that the homozygous SWE1 gene deletion 

mutant did not have an effect on the DNA re-replication phenotype alone, we 

constructed a control strain that contained a homozygous gene deletion of SWE1 

with HOP1pr-SIC1∆PHA, and found that there was no effect on our re-replication 

phenotype (Figure 18B). We also performed Western blot analysis of the deletion 

strains, and found there was no obvious change in Sic1ΔPHA expression that 

could explain the inability of a SWE1 homozygous gene deletion to re-constitute 

DNA re-replication in a strain containing a homozygous gene deletion of DMC1 
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and HOP1pr-SIC1∆PHA (Figure 18A and 18B). These data suggested that the 

downstream target Swe1 was not involved in the dmc1Δ-mediated inhibition of 

the DNA re-replication phenotype associated with Sic1ΔPHA expression.  

 

Homozygous deletion of SWE1 does not induce meiotic DNA re-replication 

We were also interested in investigating whether the absence of Swe1 

was able to induce meiotic DNA re-replication, which was previously reported 

(Rice et al., 2005). These experiments showed that diploid cells lacking Swe1 

were able to complete meiosis and exhibited a “multispore” phenotype. We 

examined a swe1∆ homozygous deletion mutant and did not observe any  

“multispores” by flow cytometry or DAPI staining (Figure 19). Our current 

hypothesis is that differences in protocol explain the disparate results.  Through 

personal communications, Dr. Josef Loidl has suggested that the previous 

phenotype could reflect aberrations in pre-meiotic growth.  

 

swe1∆ and sum1∆ do not bypass dmc1∆-induced arrest in W303 yeast 

strain 

When Swe1 and Sum1 were discovered as part of the pachytene 

checkpoint, experiments showed their ability to bypass dmc1∆-induced arrest by 

DAPI staining. Arrest in pachytene prevents further progression into the meiotic 

divisions. Since dmc1∆ causes pachytene arrest, staining of the nuclei can 

indicate whether cells have been able to complete the meiotic divisions with 4 

staining nuclei, versus cells that have not completed the meiotic divisions. We 
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Figure 18. Downstream target of the pachytene checkpoint Swe1 does not 
participate in dmc1∆-induced block to DNA re-replication. 
A. Strains harboring HOP1pr-SIC1∆PHA with a homozygous gene deletion of 
DMC1 (YGB604) and an additional homozygous gene deletion of SWE1 
(YGB697) B. A control strain containing HOP1pr-SIC1∆PHA with the gene 
deletion of SWE1 (YGB689) was generated to test whether swe1∆ effected 
Sic1∆PHA-induced DNA re-replication (YGB495). DNA content was analyzed by 
flow cytometry and protein was analyzed by SDS-PAGE. HA tags were used to 
detect Sic1 protein, and tubulin detection was used as a loading control. 
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Figure 19. Deletion of SWE1 does not induce meiotic DNA re-replication. 
A. Strains were generated harboring the homozygous gene deletion of SWE1  
(YGB687) and HOP1pr-SIC1WTHA with a homozygous deletion of SWE1 
(YGB688). Meiosis was induced, DNA content was analyzed by flow cytometry, 
and Sic1 protein was analyzed by SDS-PAGE. HA tags were use to detect Sic1 
levels, and tubulin detection was used as a loading control. B. Wild type strain 
(YGB138) and homozygous swe1∆ (YGB687) were analyzed by DAPI staining. 
Cells were counted (200 total) for 1, 2, or 3 & 4 DAPI staining bodies to show the  
percentage of cells progressing through the meiotic divisions.
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generated diploids containing homozygous gene deletions for SWE1 and DMC1 

as well as SUM1 and DMC1. We analyzed these strains to determine whether 

the absence of Swe1 or Sum1 could bypass dmc1∆-induced arrest. We found 

that dmc1∆-induced arrest had approximately led to 98% of the cells staining for 

one nucleus. When we turned our attention to the dmc1∆ mutants containing an 

additional homozygous deletion of SWE1 or SUM1, we found again that 

approximately 98% of the cells stained for one nucleus (Figure 20A and 20B). 

The mutants were unable to bypass dmc1∆-induced arrest as examined by DAPI 

staining, so we considered two possibilities. First, it is possible that Sum1 and 

Swe1 do not function as downstream targets of the pachytene checkpoint in the 

yeast strain W303. Rather, Ndt80 may be the main downstream target. The data 

indicated Swe1 and Sum1 were unable to bypass pachytene arrest, and an 

explanation might be that, in the absence of Swe1 and Sum1, dmc1∆ is still 

signaling to inhibit Ndt80, which prevents transcription of genes required for 

pachytene exit. When we reviewed the literature, we found that Swe1 function in 

the pachytene checkpoint appears to be strain specific. In the strain SK1, only 

10-30% of swe1∆ dmc1∆ cells were able to bypass dmc1∆-induced arrest (Pak 

and Segall, 2002). In the strain YAB36, swe1∆ dmc1∆ entered meiotic divisions 

almost as efficiently as wild type cells (Leu et al., 1998). An alternative 

explanation, not exclusive from the first, is that a phenotype is apparent only 

when more than one target is missing. 
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Figure 20. Mutations in Swe1 and Sum1 do not bypass dmc1∆-induced 
arrest by DAPI staining.  
A. Strains were generated to investigate whether the homozygous gene deletion 
of DMC1 with the absence of Swe1 (YGB765) or the absence of Sum1 (YGB792) 
are able to bypass arrest induced by deletion of DMC1 (YGB764). Meiosis was 
induced and the 24 hour time point was analyzed by DAPI staining. Cells were 
counted (200 total) for DAPI staining bodies in each strain. Percentages are 
plotted by bar graph (left), and corresponding images were taken (right).  B. DNA 
content was analyzed by flow cytometry of wild type (YGB138), homozygous 
gene deletion of DMC1 (YGB764), and an additional homozygous gene deletion 
of SWE1 (YGB765) or SUM1 (YGB792). 
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DNA damage checkpoint is not the alternative branch to the pachytene 

checkpoint that can inhibit DNA re-replication 

Up to this point, our data suggests complementation by the other targets 

when one is missing or a novel alternative branch of the pachytene checkpoint, 

which can inhibit our DNA re-replication phenotype. We turned our attention to 

the G1-S DNA damage checkpoint as a possible alternative branch. The G1-S 

DNA damage checkpoint has been extensively studied in mitosis. During mitosis 

this checkpoint pathway is thought to inhibit Cdk1 and S phase entry by inhibiting 

Sic1. Lydall et al., 1996 have found that DNA damage checkpoint proteins Rad9 

and Rad53 can sense mitotic DSBs, but cannot control MI progression in 

response to programmed DSBs in meiosis. In addition, Rad53 is not 

phosphorylated/active when meiosis specific DSBs occur, suggesting meiotic 

DSBs are hidden from the DNA damage checkpoint (Cartagena-Lirola et al., 

2008).  Although it seems unlikely that Rad53 could participate in sensing meiotic 

DSBs, when unrepaired DSBs escape the recombination checkpoint in sae2∆ 

cells, Rad53 phosphorylation is triggered and activation results in a delay of MII 

(Cartagena-Lirola et al., 2008).  

We elected to examine levels of Sic1 protein by the C-terminal tag 13-

myc::kanMX6 in our DNA re-replication strain. First to ensure that the 13myc tag 

we used to detect Sic1 did not functionally interfere with Sic1 function, we 

examined its behavior mitotically. We synchronized mitotically growing yeast 

cells into G1 by the addition of the yeast pheromone alpha factor. When the 

pheromone is washed off the cells, they progress through the cell cycle with 
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relative speed. We took time points every 15 minutes and examined protein 

levels and DNA content level by flow cytometry (Figure 21A and 21B). It is known 

that during mitosis, Sic1 protein levels decrease at the time of S phase entry, and 

subsequently increase when S phase is complete. We observed this pattern with 

our SIC113myc strain (Figure 21B). These data suggested the functionality of Sic1 

was unaffected by the 13myc tag.  

Next we constructed heterozygote SIC1/SIC113myc::kanMX6 strains for 

examination during meiosis. We genomically tagged endogenous SIC1 in strains 

that harbored HOP1pr-SIC1WTHA, HOP1pr-SIC1∆PHA, HOP1pr-SIC1∆PHA with 

dmc1∆, and a parental strain, and examined Sic1 levels (Figure 22). We found 

no significant difference in Sic1 levels in the three strains. Also, during the 

meiotic time course we did not see a drop in Sic113myc expression at S phase, as 

we did mitotically. This result is likely due to meiotic cells not being as 

synchronous mitotic cells.  

Even though we noted Sic113myc was able to functional normally 

mitotically, our assumption that it also functions normally meiotically required 

evaluation. One possible explanation for why we saw relatively no change in 

Sic113myc expression could be due the presence of the untagged SIC1 allele. 

Therefore, we generated homozygous SIC113myc::kanMX6 strains. We tagged 

SIC1 at each allele in wild type, HOP1pr-SIC1∆PHA, and HOP1pr-SIC1∆PHA with 

dmc1∆ cells. We found that by 24 hours there was no notable change in Sic113myc 

expression (Figure 23). Therefore, since the heterozygote Sic113myc appears 

similar to the homozygote Sic113myc, it is unlikely that the 13myc tag can suppress 
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Figure 21. Decreased expression of Sic13myc around the time of mitotic S 
phase.  
Haploid strains wild type (W303) and SIC113myc (YGB502) were synchronized by 
the addition of alpha factor. Time points were taken upon removal of alpha factor. 
A. DNA content of wild type and SIC113myc were examined and show similar 
progression through the cell cycle. B. Protein was analyzed by SDS-PAGE. Myc 
tag was used for endogenous Sic1 protein detection, which decreases around 30 
minutes (the approximate time of S phase). Tubulin was used as a loading 
control. 
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Figure 22. Heterozygote SIC113myc reveals no change in endogenous Sic1 
protein level between HOP1pr::SIC∆PHA and HOP1pr::SIC∆PHA with dmc1∆. 
A. Heterozygote strains of SIC113myc were constructed in wild type, (YGB513) 
HOP1pr-driven SIC1WTHA (YGB514), HOP1pr-driven SIC1∆PHA (YGB515), and 
HOP1pr-driven SIC1∆PHA with a homozygous deletion of DMC1 (YGB757). All 
strains were induced to undergo meiosis and DNA content was analyzed by flow 
cytometry. Protein was examined by SDS-PAGE. HA tags were used for 
detection of Sic1 constructs at URA3 locus. Myc tag was used for detection of 
endogenous Sic1 protein. Tubulin was used as a loading control. 
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Figure 23. Homozygote SIC113myc reveals no change in endogenous Sic1 
protein level between HOP1pr::SIC∆PHA and HOP1pr::SIC∆PHA with dmc1∆.  
A. Both SIC1 alleles were tagged with 13MYC in wild type (YGB807), HOP1pr- 
SIC1∆PHA (YGB808), and HOP1pr-SIC1∆PHA with homozygous gene deletion of 
DMC1 (YGB809). All strains were induced to undergo meiosis and DNA content 
was analyzed by flow cytometry. Protein was examined by SDS-PAGE. HA tags 
were used for detection of Sic1 constructs at URA3 locus. Myc tag was used for 
detection of endogenous Sic1 protein. Tubulin was used as a loading control. 
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Sic1. Rather the likely explanation is that difference in phenotype between 

HOP1pr-SIC1∆PHA and HOP1pr-SIC1∆PHA with dmc1∆ is not due to a change in 

expression of endogenous Sic1.  

We also turned our attention to the protein Rad9, which is required for the 

G1-S DNA damage checkpoint. We found that homozygous deletion of RAD9 

with HOP1pr-SIC1∆PHA did not affect our DNA re-replication phenotype, and 

homozygous deletions of RAD9 and DMC1 with HOP1pr-SIC1∆PHA did not 

bypass the dmc1∆-induced inhibition of DNA re-replication (Figure 24A). We also 

performed Western blot analysis of the deletion strains, and found there was no 

substantial change in Sic1ΔPHA expression that could have explained the lack of 

effect (Figure 24B). These data suggested that the pachytene checkpoint branch 

capable of inhibiting DNA re-replication was not associated with the known G1-S 

DNA damage checkpoint.  

 

III. Discussion 

 We have shown DNA re-replication by expression of Sic1∆PHA can be 

abolished by dmc1∆-induced arrest. We have also shown many of the proteins 

known to function downstream of Dmc1 (i.e. Mec1, Mek1, Red1, Hop1, and 

Pch2) participate in the checkpoint induced inhibition of DNA re-replication. 

However, we also found that the three downstream targets, Ndt80, Sum, and 

Swe1, did not.  These data implied Ndt80, Sum1 and Swe1 were unable to 

prevent DNA re-replication when the checkpoint was induced by dmc1∆.  
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Figure 24. Mitotic G1-S DNA damage checkpoint protein Rad9 does not 
participate in the dmc1∆-induced block of meiotic DNA re-replication. 
A. DNA content was analyzed by flow cytometry of strains containing HOP1pr- 
SIC1∆PHA (YGB495), with a homozygous gene deletion of RAD9 (YGB758), with 
a homozygous gene deletion of DMC1 (YGB604), and with homozygous gene 
deletions of RAD9 and DMC1 (YGB759). B. Protein was analyzed by SDS-PAGE 
of strains containing HOP1pr-SIC1∆PHA with homozygous gene deletion of RAD9 
(YGB758) and with homozygous gene deletions of RAD9 and DMC1 (YGB759). 
HA tags were used to detect Sic1 protein, and tubulin was used as a loading 
control.  
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Perhaps, this is not as surprising since the downstream targets are all involved 

with the progression through the meiotic divisions.  

Our data indicated that Sum1 and Pch2 had an effect on meiotic DNA re-

replication, regardless of the pachytene checkpoint. These data will need to be 

further investigated, but these proteins could allow us to better understand the 

mechanisms that would normally prevent meiotic DNA re-replication.  We 

questioned whether an alternative branch of the pachytene checkpoint might be 

responsible for inhibition of DNA re-replication. We turned our attention to the 

G1-S DNA damage checkpoint and found that there was no change in 

endogenous Sic113myc expression whether in a heterozygote or homozygote 

tagged strain. We also constructed rad9∆ mutants to investigate whether that 

G1-S DNA damage checkpoint protein participated in the dmc1∆-induced arrest, 

and found that the deletion mutant did not rescue the abolishment of DNA re-

replication. 

The data indicated that the G1-S DNA damage checkpoint was unlikely to 

be the alternative branch of the pachytene checkpoint, which can inhibit DNA re-

replication induced by expression of Hop1pr-Sic1∆PHA. Therefore, we further 

investigated whether Sum1 and Swe1 functioned as the downstream targets of 

the pachytene checkpoint in the yeast strain W303, regardless of our DNA re-

replication phenotype. What we uncovered by nuclear staining was that the 

absence of Sum1 or Swe1 could not bypass dmc1∆-induced arrest.  

In summary, an alternative pathway is able to inhibit meiotic DNA re-

replication induced by Sic1∆PHA expression. We have hypothesized that the 
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pachytene checkpoint, which is able to inhibit DNA synthesis, might have a direct 

effect on the replication machinery.  Further experiments will be required to 

resolve this question. 
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CHAPTER 5 

 

DISSCUSSION 

 

During the cell cycle and meiosis, tightly regulated events control the entry 

into S phase to ensure one round of DNA replication. By expression of a mutated 

form of the cyclin dependent kinase inhibitor Sic1 (Sic1∆PHA), we disabled a 

meiotic mechanism that would normally prevent DNA re-replication from 

occurring. In addition, we identified a recombination (pachytene) checkpoint 

pathway that can prevent DNA re-replication. Through these dissertation studies, 

we have used the pachytene checkpoint to better understand the controls of re-

replication, while simultaneously using DNA re-replication as a tool to better 

understand the pachytene checkpoint. 

Cdk1/Clb activity promotes the entry of S phase and prevents DNA re-

replication during mitosis (Schwob and Nasmyth, 1993; Dahmann and Futcher, 

1995). Since altering Cdk1/Clb activity by expression of Sic1∆PHA can allow for 

the initiation of DNA re-replication, we assumed that it must somehow be 

involved in the prevention of DNA re-replication.  Our data suggest that the 

mechanisms that prevent mitotic DNA re-replication are similar in mitosis and 

meiosis. The meiotic events and transitions between phases require specific 

levels of Cdk1 activity to allow for normal progression. According to current 

models regarding the cell cycle, one threshold is required for initiation of DNA 

replication and prevention of re-initiation, while a higher threshold is required for 
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chromosome segregation (Stuart and Wittenberg, 1998). We have shown that 

the meiosis-specific induction of Sic1∆PHA allowed for DNA replication without 

preventing DNA re-replication. Our hypothesis is that HOP1pr-driven SIC1∆PHA 

lowered Cdk1 activity and subsequent fluctuations in this lowered Cdk1 activity 

allowed for pre-RC formation and a second round of origin firing. Increasing the 

expression of Sic1∆PHA inhibited DNA replication altogether, most likely by 

further decreasing Cdk1 activity to a level that was below the threshold required 

meiotic S phase. Ideally in a wild type cell, Cdk1 activity reaches the appropriate 

amounts to allow for smooth progression through meiosis.  

The mechanisms that are known to prevent mitotic DNA re-replication are 

all associated with Cdk1-mediated inhibition of proteins required for replication-

origin licensing.  It will be important to specifically investigate these mechanisms 

in our yeast strain harboring HOP1pr-SIC1∆PHA. Specifically, the behavior of 

proteins such as Cdc6, Ccdt1, the MCM complex, and ORC during normal 

meiotic progression and under conditions of DNA re-replication will be 

informative.  

Although our data suggest that the mechanisms that inhibit meiotic DNA 

re-replication are similar to those in mitosis, it is quite possible there is another 

mechanism involved connected with the prevention of meiotic DNA re-replication, 

possibly through Ime2.  In mitosis, Cdc6 degradation is one mechanism that 

prevents DNA re-replication. It has been shown that Cdc6 degradation in meiosis 

is independent of Cdk1, and by two-hybrid/co-immunoprecipitation experiments a 

physical interaction between Cdc6 and Ime2 was revealed (Ofir et al., 2004). 
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Also, mitotic cells harboring an analog sensitive Cdk1 mutant (Cdk1-as1), 

arrested after S phase by nocodazole and treated with the analog 1-NM-PP1 to 

inhibit Cdk1, were able to participate in multiple round of DNA replication (Holt et 

al., 2007). In addition, it has been shown that ectopically expressed Ime2 can 

prevent DNA re-replication induced by lowered Cdk1 in the mitotic cell cycle.  In 

this scenario, Ime2 prevented nuclear accumulation of Mcm7, which is a normal 

function of Cdk1 (Holt et al., 2007). Therefore, while we induced meiotic DNA re-

replication by lowering Cdk1 activity, it is possible that Ime2 is also involved.  

Others have shown mitotic and meiotic DNA re-replication in S. cerevisiae. 

Sic1 overexpression in the mitotic cell cycle can induce DNA re-replication, but 

only when the level of Sic1 expression is precisely controlled. By increasing the 

expression of Sic1, pre-RC components are established at origins, and then 

decreasing expression of Sic1 allows for an increase in Cdk1 activity and 

subsequent origin firing (Dahmann and Futcher, 1995). In our case, we did not 

have to alter levels of Sic1∆PHA expression. Rather, the simple use of a meiotic 

inducible promoter, HOP1pr, allowed us to achieve a level of Cdk1 activity that 

allowed for meiotic DNA re-replication. As indicated above, we speculate that 

natural fluctuations in this Cdk1 activity allowed for DNA re-replication to occur. 

DNA re-replication through the overexpression of Clb1 or Clb5 (Strich et al. 2004) 

or the deregulation of Cdk1 (Rice et al 2005) has also been observed. These 

data conflict with our findings, since we have shown that a decrease in Cdk1/Clb 

activity can induce meiotic DNA re-replication.  The nature of DNA re-replication 

observed by these two groups display phenotypes vastly different from ours, 
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which could explain our conflicting results. Namely, both groups have shown the 

production of large asci with multiple DAPI staining nuclei. We speculate that 

their DNA re-replication occurred prior to meiosis and resulted in cells containing 

two or more nuclei. Subsequently, each nucleus would undergo normal meiosis 

and result in an asci with numerous haploid spores (Josef Loidl, personal 

communication).  

By testing different recombination mutants, we found that the loss of Dmc1 

could abolish our DNA re-replication phenotype induced by the expression of 

Sic1∆PHA.  There were three reasons that could explain why the loss of Dmc1 

would abolish meiotic DNA re-replication. The first was that the Dmc1 

recombinase itself was somehow required for DNA re-replication. The second 

was that the loss of Dmc1 led to DNA structure physically impossible to replicate. 

The third was that loss of Dmc1 turned on a checkpoint that inhibited DNA re-

replication. By making additional gene deletions to the yeast strain harboring a 

homozygous deletion of DMC1 with HOP1pr-SIC1∆PHA, we were able to uncover 

a recombination checkpoint that inhibited DNA re-replication. The proteins 

participating in this checkpoint include Rad17, Mec1, Mek1, Red1, Hop1, and 

Pch2.  

Surprisingly, the downstream targets of the pachytene checkpoint, Ndt80, 

Sum1, and Swe1, did not seem to function in the pachytene checkpoint-induced 

block of DNA re-replication. Although Swe1 can affect multiple Cdk1-Clb 

complexes, it is known that Swe1 prefers Cdk1-Clb2 complexes for inhibitory 

phosphorylation, and does not recognize Cdk1-Clb5, -6 complexes (Hu and 
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Aparicio, 2005). Clb2 is not expressed during meiosis (Grandin and Reed, 1993; 

Dahmann and Futcher, 1995), Therefore, the inability of Swe1 to participate in 

the dmc1∆-induced block to DNA re-replication might be explained by the 

absence of its preferred Cdk1-cyclin complex and the inability to recognize Cdk1-

cyclin complexes present. 

The gene deletion of DMC1 has been shown to induce pachytene arrest 

(Bishop et al., 1992; Gerton and DeRisi, 2002; Leu et al., 1998) and an additional 

mutation in Swe1 or Sum1 bypasses the arrest and allows for progression 

through the meiotic divisions (Leu and Roeder, 1999; Lindgren et al., 2000; Pak 

and Segall, 2002). Because we did not observe an effect of gene deletions 

SUM1 or SWE1 on dmc1∆-induced inhibition of DNA re-replication, we wanted to 

further investigate the role of these proteins in the checkpoint that prevents 

meiotic divisions. Regardless of Sic1∆PHA expression, we found that swe1∆ and 

sum1∆ were unable to bypass arrest induced by DMC1 gene deletion. An 

explanation might be that in the absence of Swe1 and Sum1, dmc1∆ is still 

signaling to inhibit Ndt80, which prevents transcription of genes required for 

pachytene exit. Since Ndt80 is inhibited by the dmc1∆-induced arrest, the 

construction of a deletion mutant would not give similar insight. Further 

experiments will reveal whether Ndt80 is the sole target of the pachytene 

checkpoint in the yeast strain W303. 

In terms of the ability of the pachytene checkpoint to inhibit DNA re-

replication, we propose 1 of 3 possible mechanisms that could explain how a 

dmc1∆ mutant can prevent Sic1∆PHA-induced meiotic DNA re-replication:  
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 Our first hypothesis is, that the pachytene checkpoint effects Cdk1 

through the targets Ndt80, Sum1, and Swe1, but in the yeast strain W303 the 

absence of one target is compensated by the other two. This can be easily 

answered by the construction of double deletion mutants to (1) see if swe1∆ 

sum1∆ can rescue dmc1∆-induced arrest, and (2) see if swe1∆ sum1∆ 

participates in the dmc1∆-induced block of DNA re-replication.  

Another possibility could be that the pachytene checkpoint has a direct 

effect on the replication machinery preventing DNA re-replication. It has been 

shown that G1-S DNA damage checkpoint protein Rad53 can catalyze 

phosphorylation of the kinase Ddk and inhibit its activity (Weinreich and Stillman, 

1999). Ddk and Cdk1 are required for proper assembly of the pre-RC at the 

origins (Figure 3). It is important to note that G1-S DNA damage checkpoint 

proteins are unlikely to participate in our dmc1∆-induced block to DNA re-

replication, as indicated by the Rad9 experiments (Figure 24). Instead we 

suggest the target of the dmc1∆-induced block to DNA re-replication might be 

directed towards the origins. Evidence has shown that the DNA damage 

checkpoint can directly affect replication machinery (Weinreich and Stillman, 

1999), and it is, therefore, possible that the dmc1∆-induced block to DNA re-

replication might function in the same manner.  

A third scenario is the pachytene checkpoint prevents meiotic DNA re-

replication through Cdk1 and a meiosis-specific protein such as Ime2. Earlier we 

discussed that Ime2 is likely responsible for the degradation of Cdc6 in meiosis 

(Ofir et al., 2004), and it is known that kinase activity of Cdk1 performs the same 
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function in mitosis (Drury et al., 1997; Jallepalli and Kelly, 1997; Elsasser et al., 

1999). This example provides evidence in that Ime2 can replace some Cdk1 

mitotic functions. In addition, the two kinases have been shown to both be 

required for certain meiotic events. While Cdk1 is required for the exit from 

pachytene (Shuster and Byers, 1989), Ime2 is also required pachytene exit by 

activating the transcription factor Ndt80, which activates middle sporulation 

genes including all five CLB genes (Chu and Herskowitz, 1998; Hepworth et al., 

1998). Ime2 does not require cyclin binding partners for its activation, and it has 

been shown that phosphorylation of Ime2 activates and regulates the protein 

kinase through different phases of meiosis (Schindler and Winter, 2006). It is 

then possible that Ime2 is activated by Cdk1 phosphorylation in the dmc1∆-

induced block to DNA re-replication. Therefore, based on this proposal we 

suggest that, although we are manipulating Cdk1 levels to induce meiotic DNA 

re-replication, it is possible that mechanism that prevents DNA re-replication is 

not solely through the kinase Cdk1. Whether Ime2 replaces Cdk1, Ime2 functions 

downstream of Cdk1, or the kinases function together in the dmc1∆-mediated 

block of meiotic DNA re-replication, further experiments will address the 

involvement of Ime2.  

Our studies have provided the first piece evidence that DNA re-replication 

is prevented similarly in mitotic and meiotic cells, and that the meiotic 

recombination checkpoint can influence DNA synthesis.  Further studies will be 

required to more precisely define the mechanisms by which Sic1∆PHA induces 
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meiotic DNA re-replication and the ability of the pachytene checkpoint to prevent 

its occurrence. 
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Progression through meiosis occurs through a strict sequence of events, 

so that one round of DNA replication precedes programmed recombination and 

two nuclear divisions. Cyclin dependent kinase 1 (Cdk1) is required for meiosis, 

and any disruption in its activity leads to meiotic defects. The Cdk1 inhibitor, 

Sic1, regulates the G1-S transition in the mitotic cell cycle and the analogous 

transition in meiosis. We have employed a form of Sic1, Sic1∆PHA, that is 

mutated at multiple phosphorylation sites and resistant to degradation. Meiosis 

specific expression of Sic1∆PHA disrupts Cdk1 activity and leads to significant 

accumulation of over replicated DNA. These data suggested that Cdk1 is 

required to prevent inappropriate re-initiation of DNA synthesis during meiosis,  

as it is during mitosis. In addition, deletion of the gene DMC1, which encodes a 

recombinase required for meiotic recombination, prevented DNA re-replication. 
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However, the additional deletions of RAD17, MEC1, MEK1, RED1, HOP1, or 

PCH2 restored the re-replication phenotype. These proteins are all individually 

required for the meiotic recombination checkpoint. Therefore, indicating that 

induction of the pachytene checkpoint by dmc1∆ was responsible for meiotic 

DNA re-replication. The downstream targets of the meiotic recombination 

checkpoint, Ndt80, Sum1, and Swe1, which function to maintain arrest in the 

pachytene stage of prophase of MI, were unable to inhibit meiotic DNA re-

replication induced by Sic1∆PHA expression. Therefore, it appears that a separate 

branch of the pachytene checkpoint exists that has the ability to prevent extra 

rounds of meiotic DNA replication. We investigated whether the G1-S DNA 

damage checkpoint as defined in the mitotic cell cycle might be implicated, and 

found that this checkpoint was not involved. In summary these dissertation 

studies discuss the implications of lowering Cdk1 activity to induce meiotic DNA 

re-replication, as well as the interplay of the pachytene checkpoint. Our results 

provide strong evidence that the control of DNA replication is likely to be similar 

in mitosis and meiosis. In addition, our results are the first to show the ability of 

the pachytene checkpoint to monitor meiotic DNA replication.  
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