1-1-2011

Cardiac Calsequestrin Phosphorylation And Trafficking In The Mammalian Cardiomyocyte

Timothy Mcfarland
Wayne State University

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Recommended Citation

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.
DEDICATION

This work is dedicated to my family. To my parents and grandparents, who provided continuous support and footed the bill for the past ten years, thank you. Your investment finally paid off. And to my beautiful and patient wife Lindsay, thank you for getting me through the tough times and keeping our family afloat, I love you.
ACKNOWLEDGEMENTS

I would like to thank the members of my dissertation committee for their support and forwardness throughout this process. Your honesty and exceptional insights have helped me to develop professionally and have greatly expedited my graduation. I would especially like to thank my mentor Dr. Steven Cala for helping me to become a scientist. It’s amazing that you were able to give me the time that you did.
TABLE OF CONTENTS

Dedication .. ii

Acknowledgements .. iii

List of Tables ... v

List of Figures ... vi

CHAPTER 1 – General introduction .. 1

CHAPTER 2 – Effects of a dynamic monomer/polymer equilibrium on cardiac
calsequestrin trafficking ... 20

CHAPTER 3 – Identification of cardiac calsequestrin kinase and the effects of
C-terminal phosphorylation ... 41

CHAPTER 4 – Summary ... 65

Appendix .. 68

References .. 71

Abstract .. 86

Autobiographical Statement ... 89
LIST OF TABLES

Table 1. Major features of CSQ2-null and Trd1-null mice. .. 8
Table 2. CSQ2 phosphoform variants. .. 56
LIST OF FIGURES

Figure 1. Cardiac anatomy and blood flow ... 2
Figure 2. Myofibrillar structure .. 3
Figure 3. Calcium-induced calcium release ... 4
Figure 4. CSQ2 polymerization .. 6
Figure 5. CSQ2 modulation of RyR2 ... 7
Figure 6. N-Linked glycosylation ... 9
Figure 7. Features of CSQ sequences .. 10
Figure 8. CSQ2 masses are altered in animal models of heart failure 11
Figure 9. \textit{In situ} phosphorylation of CSQ2 by an unknown kinase 13
Figure 10. Development of CK2 inhibitors ... 16
Figure 11. Co-translational translocation .. 17
Figure 12. Perinuclear localization of CSQ-DsRed in cultured adult rat cardiomyocytes .. 26
Figure 13. Immunoreactivity and specificity of anti-CSQ2, anti-DsRed, and anti-sec23 antibodies examined by immunoblotting as a function of CSQ-DsRed overexpression .. 27
Figure 14. Labeling of the cardiomyocyte rough ER using classic rough ER markers .. 28
Figure 15. Sec23 subcellular localization in cultured rat cardiomyocytes 30
Figure 16. CSQ-DsRed fluorescence versus anti-DsRed immunofluorescence 31
Figure 17. Time-dependent changes in anti-CSQ2 immunofluorescence during CSQ-DsRed overexpression .. 33
Figure 18. Time-dependent changes in CSQ-DsRed fluorescence and anti-DsRed immunofluorescence .. 34
Figure 19. Model of native CSQ2 trafficking from rough ER to junctional SR in cardiomyocytes .. 39
Figure 20. Effects of cellular protein on CSQ2 kinase activity .. 50

Figure 21. Effects of CK2 inhibition on CSQ2 kinase activity .. 52

Figure 22. Reduction in endogenous CSQ2 phosphorylation in cells treated with TBCA ... 53

Figure 23. Knockdown of CK2α and CK2α′ using siRNA .. 54

Figure 24. Reduction in endogenous CSQ2 phosphorylation in cells treated with CK2 siRNA ... 55

Figure 25. Effects of CSQ2 phosphorylation site sequence on glycan structure in nonmuscle cells ... 57

Figure 26. Hypothetical mechanism of cardiac CSQ phosphorylation by CK2 in rough ER during translocation across the ER membrane ... 62
CHAPTER 1

GENERAL INTRODUCTION

BACKGROUND AND SIGNIFICANCE

Cardiac biology

The cardiovascular system is responsible for transporting the many constituents of blood including electrolytes, nutrients, gases, and hormones, to and from all organs in the body. Without the heart to create the appropriate amount of positive pressure, organ perfusion would not occur, pH would become out of balance, and cellular homeostasis would become severely disrupted. The general physiology and anatomy of the heart are well defined (Fig. 1A,B). During the cardiac cycle, deoxygenated blood enters the right atrium through either the superior or inferior vena cava and is then pumped through the tricuspid valve into the right ventricle. It is then pushed through the pulmonic valve into the pulmonary arteries and pulmonary circulation where it is reoxygenated in the lungs. The oxygenated blood re-enters the heart at the left atrium by means of the pulmonary veins. Ventricular diastole then ensues, during which ventricular muscle relaxes. Pressure decreases in the left ventricle, and blood begins to enter through the mitral valve which is forced shut after a critical volume is reached. Contraction of the left atrium pushes a small amount of blood into the nearly full ventricle, increasing its pressure just prior to ventricular systole. Immediately after, left ventricular muscle cells contract and force the oxygenated blood through the aortic valve into the aorta and subsequent arterial circulation [1].

The left ventricular wall of the heart is responsible for generating the immense pressure necessary to circulate blood throughout the body. It is composed of three
tissue layers: the endocardium, myocardium, and epicardium (Fig. 1B). The inner-most layer, the endocardium, consists of epithelial cells that make contact with blood entering the chamber. The myocardium (medial layer) is the location of the heart muscle cells responsible for contraction during systole. The outer layer is a protective tissue known as the epicardium. The myocardium represents the majority of the left ventricular wall, and is composed of layers of cardiomyocytes (heart muscle cells) running in parallel (Fig. 1C), connected cytoplasmically by channels known as gap junctions. Studying the
myocardium at the cellular level is essential to understanding the underlying pathologies involved in cardiomyopathies such as cardiac hypertrophy.

The major histological features of the cardiomyocyte include: 1) numerous rows of myofibrils consisting of segments of interdigitating myosin and actin filaments called sarcomeres (Fig. 2A); 2) a cytoplasmic membrane structure similar to endoplasmic reticulum (ER) known as the sarcoplasmic reticulum (SR); 3) invaginations of the sarcolemma (cell membrane) called T-tubules; and 4) a large number of mitochondria running next to the myofibrils, to provide adequate ATP for cross-bridging termination and to fuel sarco/endoplasmic reticulum Ca$^{2+}$-ATPases (SERCA2a) [1, 7]. The

![Figure 2. Myofibrillar structure.](image-url)

The main constituent of the cardiomyocyte is the myofibril. These long cylindrical structures themselves are made of many sarcomeres stacked in series, containing multiple types of contractile filaments. (A) An electron micrograph of the interior of a cardiomyocyte highlighting multiple myofibrils running in parallel. The sarcomere, the area between two Z-lines in a myofibril, is the contractile unit in the cell. (B) Myofibrils are wrapped in a network of endoplasmic reticulum-like compartments known as sarcoplasmic reticulum or SR. In the free SR, located between Z-lines, the Ca$^{2+}$-ATPase SERCA2a pumps Ca$^{2+}$ into the SR network. The Ca$^{2+}$ is then released at junctional SR located on Z-lines, through the ryanodine receptor after external Ca$^{2+}$ entering through Ca$^{2+}$ channels in the cell membrane (SL)/T-tubules triggers activation. Modified from Gottlieb et al. and Sommer et al. [5-6].
The sarcomere, the most basic myofibril contractile unit, is bordered on both ends by Z-lines (Fig. 2A). Z-lines are the predominant sites of junctional SR, where SR membrane Ca^{2+} channels known as ryanodine receptors (RyR2) reside in close proximity to T-tubules that provide access to extracellular Ca^{2+} (Fig. 2B) [6].

The junctional SR/T-tubule interface is critical for cardiomyocyte contraction, as it is the site where calcium-induced calcium release (CICR) is initiated. Adjacent cardiomyocytes alter membrane potentials through gap junctions, leading to sarcolemmal depolarization, which causes L-type Ca^{2+} channels in T-tubules to open. The influxing extracellular Ca^{2+} binds the cytoplasmic side of junctional SR RyR2 channels, which then open, allowing large quantities of SR Ca^{2+} to move into the cytoplasm. The Ca^{2+} subsequently binds troponin T, which releases tropomyosin bonds to actin and

![Figure 3. Calcium-induced calcium release.](image)

Modified from Berridge et al. [8].
triggers contraction. Ca\(^{2+}\) is then either pumped out of the cell by the Na\(^{+}/Ca^{2+}\) exchanger (NCX) or back into the SR by SERCA2a, during which time cardiac calsequestrin (CSQ2), triadin-1 (Trd1), and junctin (Jct) theoretically interact to cause a RyR2 refractory period (Fig. 3) [8-9].

Calsequestrin

Calsequestrin (CSQ) is a major luminal protein of the junctional SR in muscle, where it is thought to play a role in excitation-contraction coupling [10-16]. While both skeletal CSQ (CSQ1) and cardiac CSQ (CSQ2) are expressed in skeletal muscle, only CSQ2 is present in cardiac muscle, where it is the major Ca\(^{2+}\) binding protein [17]. In fact, previous studies have hypothesized that nearly 50% of Ca\(^{2+}\) stored in cardiomyocyte SR is bound to CSQ2 [18], which is reasonable given its ability to bind large amounts of free Ca\(^{2+}\) (35-40 mol Ca\(^{2+}\)/mol CSQ2) [19-20]. CSQ2 shares structural properties with classic resident ER proteins such as GRP94 and calreticulin, although CSQ2 lacks the C–terminal KDEL retrieval sequence along with any other known targeting sequence [17, 21]. These properties allow CSQ2, through an unknown ER retention mechanism, to evade secretion and become concentrated in junctional SR [10-11, 16, 22]. Recent data supports the hypothesis that CSQ2 retention in ER results from its polymerization [23].

Enrichment of CSQ2 in secretory pathway compartments may be related to its tendency to polymerize in the presence of increasing Ca\(^{2+}\). A model for Ca\(^{2+}\)-dependent CSQ polymerization has been developed based upon crystal structure, showing linear front-to-front and back-to-back CSQ chain formation [24-26]. As luminal SR Ca\(^{2+}\) levels increase, CSQ begins front-to-front polymerization due to the lesser charge on its N-
terminus. A further increase in Ca2+ causes back-to-back polymerization as more cations are needed to shield C-terminal acidic residues. High luminal Ca2+ levels eventually lead to the formation of CSQ linear polymers with front-to-front and back-to-back binding (Fig. 4) [26].

In addition to its proposed function as an SR Ca2+ buffer, CSQ2 is also thought to interact with cardiac RyR2, the SR integral membrane protein responsible for supplying the cytosolic Ca2+ necessary for sarcomeric contraction. As proposed by Gyorke et al., CSQ2 serves as a Ca2+ sensor for the RyR2, promoting a channel refractory period in times of low luminal Ca2+ [9]. CSQ2 binds in low Ca2+ to either Trd1 or Jct, both of which may be tethered to the luminal side of the RyR2 in junctional SR. This is thought to inhibit RyR2 activity. As luminal Ca2+ concentrations increase, CSQ2 binds more Ca2+ and consequently becomes less tightly bound to Trd1 or Jct allowing stimulation of CSQ2 polymerization.

Figure 4. CSQ2 polymerization. As luminal SR Ca2+ levels increase, CSQ2 begins front-to-front polymerization due to the lesser charge on its N-terminus. Further increases in Ca2+ cause back-to-back polymerization as more cations are needed to shield C-terminal acidic residues. High luminal Ca2+ levels lead to formation of CSQ2 linear polymers with front-to-front and back-to-back binding. Modified from Park et al. [26].
channel activity. Eventually Ca\(^{2+}\) levels are high enough to cause CSQ2 dissociation from the complex, allowing the RyR2 to reach maximal activity (Fig. 5).

Overexpressing and CSQ2-null transgenic mice have been developed in an attempt to determine CSQ2 protein function in vivo [27-28]. Overexpressing animals, with approximately 10-fold increases in cardiomyocyte CSQ2, suffer from severe hypertrophy causing heart mass and cell size to increase 2-fold [27]. In knockout mice, a hypertrophic phenotype was also reported, along with increased diastolic Ca\(^{2+}\) leak with pathology similar to a disease in humans caused by CSQ2 mutation, known as catecholaminergic polymorphic ventricular tachycardia (CPVT) [28-29]. Interestingly, both overexpression and knockout transgenic models show a significant decrease in Trd1 and Jct levels. Correspondingly, Trd1-null mice show a significant decrease in CSQ2 and Jct levels, highlighting a potential interdependence between the three proteins. A summary of the effects of CSQ2 knockout, along with Trd1-null data, can be
seen in Table 1, modified from Knollmann [30]. Because changes in CSQ2 levels are believed to be due to translational regulation [29], it would be beneficial to determine the site of CSQ2 synthesis.

Even without knowledge of the location of CSQ2 translation, it has still been possible to obtain data regarding trafficking pathways based upon electrospray ionization mass spectrometric analysis of the intact protein [31]. Information regarding CSQ2 trafficking results from the ability of mass spectrometry to visualize the entire repertoire of CSQ2 structures (glycoforms and phosphoforms) that exist in each experimental system [31-32]. An N-linked glycan is added to CSQ2 co-translationally (Man9GlcNAc2Glu3) in rough ER, and subsequently undergoes mannose trimming upon exposure to various secretory compartments and their respective mannosidases (Fig. 6) [31-32]. CSQ2 glycoforms differing in single mannose sugars (Δ162 Da) are easily discernable in CSQ2 mass spectra, allowing direct visualization of changes that

<table>
<thead>
<tr>
<th>Table 1. Major features of CSQ2-null and Trd1-null mice.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSQ2-null</td>
</tr>
<tr>
<td>Change in structure and SR protein composition:</td>
</tr>
<tr>
<td>Cardiac hypertrophy</td>
</tr>
<tr>
<td>SR ultrastructure</td>
</tr>
<tr>
<td>SR volume</td>
</tr>
<tr>
<td>Number and extent of dyadic junctions</td>
</tr>
<tr>
<td>RyR2 protein</td>
</tr>
<tr>
<td>CSQ2 protein</td>
</tr>
<tr>
<td>Triadin protein</td>
</tr>
<tr>
<td>Junctin protein</td>
</tr>
<tr>
<td>SERCA2a protein</td>
</tr>
<tr>
<td>Change in function (baseline):</td>
</tr>
<tr>
<td>Cardiac contractility in vivo</td>
</tr>
<tr>
<td>SR Ca(^{2+}) release</td>
</tr>
<tr>
<td>SR Ca(^{2+}) release fraction</td>
</tr>
<tr>
<td>SR Ca(^{2+}) content</td>
</tr>
<tr>
<td>SERCA2a</td>
</tr>
<tr>
<td>Change in function after exposure to catecholamines (isoproterenol):</td>
</tr>
<tr>
<td>SR Ca(^{2+}) leak</td>
</tr>
<tr>
<td>Occurrence of premature SR Ca(^{2+}) releases and triggered beats</td>
</tr>
<tr>
<td>SR Ca(^{2+}) content</td>
</tr>
<tr>
<td>Arrhythmia risk in vivo</td>
</tr>
</tbody>
</table>
Figure 6. N-Linked glycosylation. The standard N-linked glycosylation pathway begins with co-translational transfer of the core oligosaccharide. Following successful folding of proteins in the ER, the glycan Man9GlcNAc2 remains intact. An ER mannosidase I produces the Man8 form. Subsequent mannose trimming is generally associated with ER and Golgi compartments, but this process has not been examined in heart. CSQ2 glycan does not contain N-terminal GlcNAc. Modified from Helenius et al. [32].

reflect trafficking pathways. A second important modification of CSQ2 is the phosphorylation of its multiple C-terminal serines (Fig. 7, in canine $^{378, 382, 386}$Ser) which can also be directly visualized ($\Delta 81$ Da). Between the possible combinations of mannose and phosphorylation states in CSQ2, twelve structural forms can be resolved from native heart tissue [31]; yet all will run in a nearly single band with SDS-PAGE analysis at approximately 55 kDa [33].

Based upon the distribution of CSQ2 glycan structures (Man9-Man1) in a normal mammalian heart, CSQ2 can be separated into two distinct pools [31, 34-35]. The most proximal glycoforms (Man9-6) also contain the highest levels of serine phosphorylation [31]; in fact all CSQ2 molecules in the heart that have 6 or more mannoses are also fully phosphorylated. This suggests that CSQ2 phosphorylation also occurs at a location early in the secretory system. A second pool is represented by Man1-5 isoforms. This second pool indicates further trafficking of CSQ2, but still represents trafficking that
Figure 7. Features of CSQ sequences (sequences from NCBI database). (Left panel) Human cardiac (black) and skeletal muscle CSQ (red) sequences are 60% identical, and exhibit conserved glycosylation sites (2nd box from end of the full-length sequence). The cleaved signal sequences are very different, and that difference is conserved among species (upper right panel). Residues highlighted yellow are only examples of near identity, for orientation. The cardiac specific tail is seen in all species, and contains CK2-sensitive serine residues (indicated by black dots under the residues, in addition to yellow highlight in left panel, red lettering in lower right panel). Dotted lines for Rat and Dog C-termini (lower right panel) designate the fact that cardiac tail is uncertain, since skeletal muscle CSQ sequences have not been reported.

The second CSQ2 pool exhibits a lower level of phosphorylation, consistent with data using polymerization-site mutants that shows that the state of CSQ2 phosphorylation decreases with anterograde movement through the cell [23, 31, 34]. The distribution of glycoforms varies between cardiac and skeletal muscle CSQs. In skeletal muscle CSQ, Man1 (a highly unusual glycoform) represents as much as 80% of the total CSQ, while in cardiac muscle, CSQ2 Man1 levels are low with Man3,4 (species dependent) dominating [31, 34-35]. In contrast to CSQ2 in heart, CSQ2 overexpressed in nonmuscle cells consists of only Man9,8 glycoforms, indicative
Figure 8. CSQ2 masses are altered in animal models of heart failure (HF). CSQ2 protein was purified from Control and Heart Failure animal heart, then directly analyzed by mass spectrometry. CSQ2 molecules from failed hearts were larger than CSQ2 from control hearts. Increased mass is due to reduced mannose trimming (Δ mass = 162 Da), indicative of a higher percentage of CSQ2 in early ER (shaded). A second change is a decrease in more highly processed glycans. Mass heterogeneity also occurs due to C-terminal CSQ2 phosphates (Δ mass = 81 Da). Mass peaks and their corresponding glycan structure and phosphorylation state are indicated across the top of the figure.

(Canine rapid-pacing model) tissue from five sham-treated and five HF dogs was provided by H. Valdivia, Univ. Wisconsin. Animals underwent ventricular pacing, (HF = 220 beats/min) for 6-8 weeks to induce heart failure. (Canine micro-embolism model) HF was caused by intracoronary microsphere injections leading to ischemic damage, tissue from H. Sabbah, Henry Ford Health Systems, Detroit, MI. These data were obtained from two Sham treated and two HF dogs, differences are more pronounced than in rapid-pacing. (Mouse heart failure as a result of a canine CSQ2 transgene) transgenic mice with an MHC-promoter driving canine CSQ2 overexpression have been previously characterized. Adult mice have severe heart failure and extreme cardiac hypertrophy. CSQ2 mass spectra were obtained from two cohorts of animals: only 4 transgenic mouse ventricles were needed to obtain sufficient CSQ2 for analysis, whereas 40 control mouse hearts were needed to obtain the Control mass spectrum. The glycan structure (GlcNAc2Man8,9) on CSQ2 from these animals is almost entirely indicative of ER mannosidase I, suggesting a completely altered trafficking.
of its highly efficient ER retention.

In heart tissue from a canine model of heart failure, CSQ2 glycoforms and phosphoforms are highly altered compared to control hearts (Fig. 8). Mass spectrometry of CSQ2 purified from these hearts shows a shift in the degree of mannose trimming to a less trimmed pool of molecules. The underlying cause of this apparent retrograde shift is unclear. Additionally, an approximate doubling of the Man8,9 pool occurred. This may suggest an increase in newly-synthesized CSQ2, still in rough ER. Analysis of CSQ2 mass spectra further indicates a doubling of maximally phosphorylated CSQ2, which could also reflect increased ER retention, or inhibition of the CSQ2 transport system [35].

CSQ2 phosphorylation and protein kinase CK2

In 1991, Cala and Jones reported a cluster of three phosphorylation sites on amino acids 378, 382, 386 Ser of canine CSQ2 [36]. These phosphorylation sites reside within a cardiac specific tail region that is conserved in all cardiac isoforms in all species (Fig. 7). Cardiac CSQ is phosphorylated on these sites in vivo [31, 36], with isolated native CSQ2 showing approximately 50% phosphorylation. Skeletal muscle CSQ can be phosphorylated in vitro on 353Thr but is not phosphorylated in vivo [31, 36]. It was subsequently determined that CSQ2 is the major substrate for endogenous phosphorylation in heart homogenate (Fig. 9) [34]. Surprisingly, CSQ2 overexpressed in nonmuscle cells is phosphorylated to a similarly high extent in vitro and in intact cells, suggesting that the mechanism of CSQ2 phosphorylation may be conserved in all mammalian cells [31]. While it has remained unclear what endogenous protein kinase is responsible for phosphorylating CSQ2 on these sites in vivo, these authors showed
that the sites were very sensitive in vitro to the protein kinase CK2 (formerly known as casein kinase II). Moreover, the phosphorylation sites are part of a consensus sequence for CK2.

A basic structural requirement for phosphorylation by CK2 is the "serine/threonine-X-X-aspartic acid/glutamic acid" motif [37-38]. The fourteen most C-terminal amino acids of canine CSQ2's highly acidic tail, SDEESNDDSDDDDE,
includes three serines that fit the consensus sequence [33, 36]. Although CSQ2 is an SR luminal protein, and protein kinase CK2 is known to be a cytosolic or nuclear kinase [39], an unknown mechanism must exist that allows for CSQ2 consensus site exposure to CK2.

Over 500 protein kinases are represented by the human genome [40]. While protein kinase CK2 is only one of many, it is one of the more active kinases in numerous cell-types [41-42]. CK2 has been reported to phosphorylate hundreds of distinct proteins, positively affecting cell proliferation/cell cycle progression and survival by means of apoptotic inhibition and other various mechanisms [39, 41, 43-46]. Protein kinase CK2 has become the focus of many oncological studies as levels have been found to be elevated in human cancers and in transgenic overexpression models [41, 47-49].

Although CK2 is traditionally thought of as a holoenzyme, its biochemistry is slightly more complex. CK2 is a tetrameric structure consisting of two catalytic and two regulatory subunits [41, 44, 50]. The catalytic subunits, designated CK2α and CK2α′ in humans [51], share approximately 90% homology [41], but may possess some level of specialization as suppression of one subunit in mouse models does not produce a complete compensation by the other [44, 52]. The regulatory subunits, known as CK2β, participate in catalytic activity regulation and CK2 substrate selectivity, in addition to maintaining tetramer stability during holoenzyme formation [41, 44, 50, 53]. CK2 regulatory subunits are identical in humans, performing equal roles [54], while they have been reported to have separate identities in yeast where they are both essential [55]. To further complicate protein kinase CK2 research, an overall mechanism has not been
deduced that summarizes the regulation of the kinase in cells; as some groups argue that CK2 is constitutively active while others claim the influence of extracellular or intracellular factors exists [41].

In addition to phosphorylating substrate as part of the holoenzyme, the individual catalytic subunits CK2α and CK2α′ also have kinase activity independent of the tetramer [56-57]. For example, both the holoenzyme and CK2α subunit were shown to phosphorylate the cytosolic region of calnexin, a protein that shares many similarities with CSQ2 [56]. Interestingly, both catalytic subunits have been shown to localize to the cytosolic side of the ER and Golgi apparatus [57]. This data, collectively, suggests that CK2 function and regulatory activity is quite complex and will require many future studies to explain.

Highly specific inhibitors of CK2 have recently been developed and continue to be improved due in part to the desirable anti-growth and anti-cancer activities they exhibit [58-59]. The three main classes of CK2 inhibitors include: 1) condensed polyphenolic compounds; 2) brominated benzimidazole/triazole derivatives; and 3) derivatives of indolo quinazolines. The second class is the most frequently and successfully used [60]. The first of these ATP specific binding-site inhibitors of CK2, 5,6-dichloro-1-(β-D-ribofuranosyl)-benzimidazole (DRB), was designed as a modified version of adenosine. Due to high experimental IC₅₀ values and various off-target effects, the popular DRB derivative 4,5,6,7-tetrabromobenzotriazole (TBB, Fig. 10) was created by removing the sugar moiety and replacing its chlorines with bulkier bromines. TBB was determined to be more potent and selective than DRB, and was also well tolerated in live animals for multiple week spans [61]. A slightly modified version of
TBB, 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT, Fig. 10) was found to have an even higher potency, particularly when tested on cells in culture [62]. Currently, tetrabromocinnamic acid (TBCA, Fig. 10), the most specific CK2 inhibitor in its class, has the lowest \(K_i \) (77 nM) [61]. It is thought that TBCA’s acrylic tail increases van der Waals interactions, as it allows the brominated benzene ring to move [60].

Translation and translocation

Translocation of a newly translated protein into the ER lumen can occur after translation is completed or concurrently with translation. The latter is referred to as cotranslational translocation. During this process, signal sequences within a nascent polypeptide are recognized by universally conserved factors in the cytosol and membrane in order to mediate their selective targeting, translocation, and/or membrane insertion (Fig. 11A) [64]. These events proceed when the hydrophobic core of the signal sequence from the newly-synthesized protein protrudes from the ribosome and becomes bound by the signal recognition particle (SRP), forming the SRP-bound ribosome nascent chain complex (RNC). Interaction with the SRP receptor (SRP-R)
allows the RNC to be targeted to the ER membrane, where it is then transferred to an adjacent translocon followed by subsequent dissociation of the receptor-bound SRP complex via GTP consumption. The ribosome binds to the Sec61 complex (Fig. 11B), placing the signal sequence in close proximity to the translocating chain-associating membrane protein (TRAM) and Sec61. If the signal sequence is recognized sufficiently by the Sec61 complex, nascent chain insertion into the hydrophilic pore occurs with a concurrent tightening of the bond between the ribosome and translocon. After further elongation of the nascent chain, with its simultaneous translocation into the ER, it can interact with the oligosaccharyl transferase complex (OST) and signal peptidase complex.

Figure 11. Co-translational translocation. (A) As translation begins, the nascent chain signal sequence protrudes from the ribosome and is bound by SRP. The complex is then trafficked to an ER translocation site where SRP is bound by the SRP receptor and the ribosome binds to the Sec61 pore complex. SRP hydrolyzes GTP and releases from the signal sequence, ribosome, and eventually the SRP receptor, leaving the signal sequence to interact with Sec61 and TRAM complexes. The nascent chain is then further synthesized while being translocated into the ER lumen, possibly receiving a glycan from the OST complex and/or having its signal sequence removed by the SPC. (B) A to scale depiction of the rough ER translocon showing theoretical spacial approximations of various complexes according to their interactions with one another (SP, signal peptidase). Modified from Johnson et al. and Kalies et al. [65-66].
causing glycosylation and signal sequence cleaving, respectively, given the nascent chain sequence permits [64, 66].

In part due to their extreme sequence diversity, it has been proposed that signal sequence interaction with Sec61 is influenced by the signal's intrinsic ability to attract specific translocation altering substrates, termed accessory factors [64]. These modulators (accessory factors) can include membrane proteins, cytosolic proteins and luminal proteins, i.e. chaperones. These substrates allow for proper positioning of the nascent chain in preparation for subsequent translocation.

A universal property of signal sequences is their overall hydrophobic nature, highlighted by the presence of an uninterrupted stretch of no less than six nonhydrophilic residues [64]. When a comparison of signals is made between cardiac and skeletal calsequestrin isoforms from various species, it can be noted that the hydrophobic core is much more significant in skeletal muscle (Fig. 7). This difference in hydrophobicity can affect interactions with the translocon apparatus [64], and may contribute to the ability of cardiac calsequestrin to become phosphorylated during translocation.

Significance

CSQ2 is capable of binding large amounts of Ca\(^{2+}\) within the secretory system in cardiomyocytes. It is also thought to regulate RyR2 activity in junctional SR. Previously published data shows that CSQ2 trafficking is altered in heart failure. A change in CSQ2 localization within the cell could result in a significant Ca\(^{2+}\) microdomain shift, capable of altering cellular biochemistry. In order to investigate this pathological phenomenon properly, the site of CSQ2 synthesis, and the protein's subsequent
trafficking pathway must first be elucidated. Additionally, possible effectors of CSQ2 trafficking, such as polymerization and phosphorylation, must be explored.

SPECIFIC AIMS OF DISSERTATION

Specific aim 1

Determine the pathway(s) of CSQ2 trafficking in the adult cardiomyocyte. Hypothesis: CSQ-DsRed fusion protein exhibits retention in rough ER and reflects normal CSQ2 trafficking pathways, involving polymerization.

Specific aim 2

Confirm the identity of CSQ2 kinase and determine the effects of CSQ2 phosphorylation. Hypothesis: CSQ2 is phosphorylated by protein kinase CK2, which may affect its ER-retention.
CHAPTER 2

EFFECTS OF A DYNAMIC MONOMER/POLYMER EQUILIBRIUM ON CARDIAC CALSEQUESTRIN TRAFFICKING

ABSTRACT

CSQ2 is synthesized in rough ER but concentrates within the junctional SR lumen where it becomes part of the Ca$^{2+}$-release protein complex. To investigate CSQ2 trafficking through biosynthetic/secretory compartments of adult cardiomyocytes, CSQ-DsRed was overexpressed in cultured cells and examined using confocal fluorescence microscopy. By 48 h of adenovirus treatment, CSQ-DsRed fluorescence had specifically accumulated in the nuclear envelope, where it co-localized with markers of rough ER. From rough ER, CSQ-DsRed appeared to traffic directly to junctional SR along a transverse (Z-line) pathway along which sec 23-positive (ER-exit) sites were enriched. In contrast to DsRed direct fluorescence that presumably reflected DsRed tetramer formation, both anti-DsRed and anti-CSQ2 immunofluorescence did not detect the perinuclear CSQ-DsRed protein, but labeled only junctional SR puncta. These putative CSQ-DsRed monomers, but not the fluorescent tetramers, were observed to traffic anterogradely over the course of a 48 h overexpression from rough ER towards the cell periphery. We propose a new model of CSQ2 and junctional SR protein trafficking in the adult cardiomyocyte, wherein CSQ2 traffics from its juxtanuclear site of biosynthesis, along contiguous ER/SR lumens in cardiomyocytes as a mobile monomer, but is retained in junctional SR as a polymer.

INTRODUCTION

CSQ2 is a major protein of the junctional SR lumen in heart [11, 17, 67]. Its role
in cardiomyocyte function is not yet clear, and may be multi-faceted [30, 68-69]. Overexpression studies in cultured myocytes support a role as a buffer of luminal Ca\(^{2+}\) [13], whereas data from CSQ2 knockout mice suggest a role in regulation of release of Ca\(^{2+}\) through the RyR2 Ca\(^{2+}\) channel [28]. Interestingly, transgenic CSQ2 overexpressing [27] and knockout mouse models [28], also exhibit unexplained changes in the levels of other junctional SR proteins, such as Trd1, Jct, and RyR2. These larger changes in junctional SR protein levels highlight our poor understanding of the biosynthetic/secretory system of the adult cardiomyocyte, of which ER, free SR, and junctional SR are all a part [70].

Polymerization of CSQ is now thought to play a critical role in its biology, and is predicted to occur in response to high luminal ER/SR Ca\(^{2+}\) [26, 68-69]. Although difficult to study in myocytes, studies of CSQ2 overexpression in nonmuscle cells have clearly shown how polymerization can also determine CSQ2 localization [23, 71-72]. In mammalian nonmuscle cells, each CSQ isoform (cardiac or skeletal muscle) undergoes polymerization that leads to its concentration in a specific cellular compartment. Cardiac CSQ concentrates exclusively in the ER of all nonmuscle cells, whereas skeletal muscle CSQ concentrates in the ER-Golgi intermediate compartment (ERGIC). The distinct sites of localization for the two CSQ isoforms were the result of their specific polymerization properties [71]. In this same way, polymerization of cardiac CSQ in adult cardiomyocytes might occur specifically in junctional SR puncta, brought about by the ionic milieu of junctional SR lumens.

Another biochemical property of cardiac CSQ that is likely to play a role in its biology is phosphorylation on two or more serines in the cardiac-specific tail [31, 34, 36].
These C-terminal protein kinase CK2 consensus sequences are present in all cardiac isoforms of CSQ and are exquisitely sensitive to CK2 in vitro. This modification is believed to occur at the rough ER of the cardiomyocyte where it may affect CSQ2 translocation or CSQ2 trafficking from rough ER to junctional SR [34]. CSQ2 glycans show trimming by cellular mannosidases with no other modification. Because N-acetyl glucosamine (GlcNAc) would be found on CSQ2 glycans were CSQ2 to traffic to early Golgi compartments [23, 73], it becomes likely that CSQ2 remains inside classical mammalian ER.

In a canine tachycardia-induced model of hypertrophy that leads to heart failure, CSQ2 glycosylation and phosphorylation are very significantly altered [35]. CSQ2 glycan structures in the hypertrophic heart show a two-fold increase in ER-localized CSQ2 and a roughly two-fold increase in levels of phosphorylated CSQ2 in the ER [35]. The cellular processes underlying these changes have remained uncertain due to the lack of understanding of CSQ2 biosynthesis and trafficking in the adult cardiomyocyte.

In the present study, we used confocal imaging techniques to investigate the direct fluorescence of CSQ-DsRed along with a complementary indirect immunofluorescence, to outline ER and SR regions in adult cardiomyocytes that parallel putative CSQ2 compartmentation based upon its biochemistry.

MATERIALS AND METHODS

Heart cell preparation and culture

This investigation conforms with the *Guide for the Care and Use of Laboratory Animals* published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). Animal research was approved by the Wayne State University Animal
Investigation Committee (protocol # A 06-07-07). Excised Sprague-Dawley (*Rattus norvegicus*) rat hearts were perfused using a Langendorff apparatus for 5 min before enzymatic dissociation using a 40 ml solution consisting of Liberase Blendzyme (Roche) types 1 and 2 (3 mg/6 mg) in Hank’s buffer containing 5 mM pyruvic acid, 1.2 mM MgSO₄, 5 mM creatine, 11 mM Glucose, 5 mM taurine, 5 mM carnitine and 0.1 mM CaCl₂ (20 min). Cells were titurated for 10 min at 37ºC, filtered, pelleted at 300 x g_{max}, then washed in phosphate buffered saline (PBS) containing gradually increasing CaCl₂ during 3 consecutive washes, to a concentration of 500 µM CaCl₂, after which cells were resuspended in Medium 199 containing 2% bovine serum albumin, 2 mM carnitine, 5 mM creatine, 5 mM taurine, 2 mM L-glutamine, 2 mM Glutamax-1 (Invitrogen), ITS mixture (Sigma I3146), 100 units/ml penicillin G, 0.1 mg/ml streptomycin and plated on laminin-coated dishes at 37ºC with 5% CO₂.

CSQ plasmid and adenoviral constructs

CSQ constructs were generated from wild type canine cardiac CSQ cDNA λgt10 clone IC3A [33]. Adenoviral CSQ-DsRed (Ad.CSQ-DsRed) was created using the AdEasy XL Adenoviral Vector System (Stratagene) after canine cardiac CSQ cDNA had been cloned into pDsRed2-N1 vector as previously described [71]. Adenoviral CSQ-hemagglutinin (Ad.CSQ-HA) was previously described [23].

Adenoviral-mediated overexpression

Recombinant adenoviral treatment was carried out in cultured adult rat primary cardiomyocytes as previously described [31]. Adenoviruses were added directly to dishes 2 h post-plating at a multiplicity of infection (MOI) of 100. Virus treatments were routinely carried out for 48 h before harvesting for biochemical analysis or fixing for
microscopy as described below. Individual dishes and coverslips were incubated for shorter or longer times as indicated.

Antibodies

Monoclonal antibodies specific to cardiac CSQ and RyR2 were the generous gift of Dr. Larry Jones, Indiana University School of Medicine. Rabbit polyclonal antibodies raised to canine CSQ2 were purchased from Abcam (ab3516). Rabbit polyclonal anti-HA antibody was purchased from Sigma-Aldrich. Rabbit polyclonal anti-sec23 antibody was obtained from Affinity BioReagents. Rabbit polyclonal anti-DsRed antibody was purchased from Clontech. Rabbit polyclonal antibodies specific to translocon-associated protein complex (TRAP) and translocating chain-associated membrane protein (TRAM) were the generous gift of Dr. Ramanujan Hegde, National Institute of Child Health and Human Development, NIH. Alexa Fluor 488-conjugated goat anti-rabbit IgG, Alexa Fluor 488-conjugated goat anti-mouse IgG and Alexa Fluor 568-conjugated goat anti-mouse IgG secondary antibodies were purchased from Invitrogen.

Immunoblotting

SDS-PAGE was carried out according to Laemmli [74] on 7.5% acrylamide gels, transferred to nitrocellulose membranes (0.45 µm, Bio-Rad Laboratories) and stained with Amido black (Sigma). Immunoblotting was carried out as previously described [42] using HRP-coupled secondary antibodies. Horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG and goat anti-mouse IgG secondary antibodies were obtained from Jackson ImmunoResearch Laboratories. A SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific) electrochemiluminescence (ECL) kit was used according to the manufacturer’s protocol to detect immune complexes, which were then visualized
by autoradiography using Amersham Hyperfilm ECL film (GE Healthcare). Protein concentrations were determined according to Lowry [75].

Fluorescence microscopy

Cells were fixed on coverslips with 4% paraformaldehyde in PBS for 10 min and then permeabilized for 5 min in 0.2% Triton X-100. Coverslips were blocked in PBS with 0.2% Tween-20 (PBS/Tween) and 2% goat serum at room temperature for 1 hour. Cells were then incubated in PBS/Tween with primary antibody (1:200) for 90 min at ambient temperatures, followed by washing in PBS/Tween, and incubation with goat anti-rabbit IgG or goat anti-mouse IgG antibodies conjugated to Alexa Fluor dyes (1:500 dilution in PBS/Tween for 60 min). Cells were counterstained with 100 μM 4′,6-diamidino-2-phenylindole (DAPI) for 2 min, rinsed, and mounted to microscope slides with ProLong Antifade Mounting Kit (Molecular Probes). Confocal microscopy was performed at the Microscopy and Imaging Resources Laboratory at Wayne State University, School of Medicine. Imaging was performed using a C-Apochromat 63x/1.2 WKorr water objective on either a Zeiss LSM 510 laser scanning microscope or an Axioplan2 Imaging fluorescent microscope with Apotome imaging, or using a 63x/1.4 oil objective on a Leica TCS SP5 laser scanning microscope. Laser scanning images were acquired on a 1024 x 1024 pixel canvas with 8-line averaging. Apotome images were obtained with a Zeiss Axiocam MRm B/W CCD camera. Confocal images were processed and optimized offline for publication using Photoshop (Adobe Systems Inc.). Z-stack images created by the Leica TCS SP5 were compiled and optimized in ImageJ (Wayne Rasband, National Institutes of Health). The ImageJ 3D Viewer plugin was used to create three-dimensional z-stack images.
RESULTS

CSQ-DsRed is localized to perinuclear regions of the cardiomyocyte

Following its overexpression in cultured adult rat cardiomyocytes, the fluorescent fusion protein CSQ-DsRed produced a unique pattern of subcellular localization in which both myonuclei were surrounded by intense red fluorescence (Fig. 12). Red fluorescence could be visualized in most cells after 32 h of virus treatment, consistent with levels of overexpression observed by immunoblotting (Fig. 13). CSQ-DsRed accumulated in cardiomyocytes to levels that were comparable to endogenous levels of CSQ2 after 48 h, by which time CSQ-DsRed prominently surrounded both nuclei.

Figure 12. Perinuclear localization of CSQ-DsRed in cultured adult rat cardiomyocytes. (A) Cultured primary adult rat cardiomyocytes plated on glass coverslips were treated with Ad.CSQ-DsRed for 48 h, and DsRed fluorescence was analyzed by confocal fluorescence microscopy after fixation. (B) Cells treated with Ad.CSQ-DsRed (red) were stained with anti-RyR2 antibodies (green). Enlarged area (white box in panel B) shows RyR2 immunostaining (C) or CSQ-DsRed fluorescence (D). (E) a merge of C and D, shows imperfect co-localization of CSQ-DsRed and RyR2. (F) Cells co-infected with Ad.CSQ-DsRed (red) and Ad.CSQ-HA (green) were stained with anti-HA antibodies. Bars, 20 µm (panels A,B,F) or 2 µm (panels C,D,E). Imaging, Apotome (panels A,F), Leica, (panels B-E).
Figure 13. Immunoreactivity and specificity of anti-CSQ2, anti-DsRed, and anti-sec23 antibodies examined by immunoblotting as a function of CSQ-DsRed overexpression. Following addition of Ad.CSQ-DsRed, cardiomyocytes were cultured for indicated times (24-44 h). Cells prior to adenovirus treatment are shown as t = 0. Cells were harvested in SDS-containing buffer and whole cell homogenates (equal volumes from each cardiomyocyte dish, roughly 80 µg) were analyzed by SDS-PAGE and immunoblotting. The nitrocellulose membrane was stained with amido black (Protein stain), then probed with either anti-CSQ2 (t = 0, 24-40 h), anti-DsRed (t = 44 h), or anti-sec23 antibodies. Mobilities of molecular weight standards in kDa, left margin.

producing a pattern that was qualitatively similar for hundreds of cells examined. We observed a very similar pattern of CSQ-DsRed localization in dishes of live (unfixed) cultured cardiomyocytes (data not shown). In addition to a very high level of red fluorescence that appeared in close apposition to the nucleus, CSQ-DsRed could be seen, albeit with much lower intensity, in perinuclear puncta. At these sites, the pattern of CSQ-DsRed fluorescence was similar (Fig. 12C,D) but not identical (Fig. 12E) to RyR2-positive immunofluorescence. Peripheral CSQ-DsRed puncta became more apparent with increasing time of virus treatment in culture, or when images were brightened offline. In contrast to the peculiar CSQ-DsRed localization, the CSQ2-fusion protein CSQ-HA was uniformly present in puncta throughout the cell, and never exhibited the perinuclear enrichment observed using CSQ-DsRed (Fig. 12F). This suggested that the concentration of perinuclear CSQ-DsRed had resulted from the
characteristic tetramerization of the DsRed portion of the fusion protein [76-77].

CSQ-DsRed around the nucleus co-localizes with rough ER markers

We hypothesized that the localization of CSQ-DsRed around the nucleus represented its site of biosynthesis, that is, cardiac rough ER. To determine whether markers of rough ER supported the juxtanuclear localization of cardiac rough ER, we immunostained cultured cardiomyocytes with antibodies against components of the protein biosynthesis and translocation machinery. TRAP is a major protein component of the translocon in mammalian cells, where it is involved in nascent protein translocation across the rough ER membrane [78]. Indirect immunofluorescence of the subunit TRAPα in cultured cardiomyocytes expressing CSQ-DsRed strongly labeled the

![Figure 14. Labeling of the cardiomyocyte rough ER using classic rough ER markers. Cardiomyocytes were treated with CSQ-DsRed adenovirus for 48 h (red, A-C,E). Anti-TRAPα images (green) were acquired from three optical planes starting from atop the nucleus (A), and 2.2 µm (B) or 4.4 µm (C) below (bar, 20 µm). Panels 1-3 (TRAPα, CSQ-DsRed, merge, respectively) are enlargements of the leftmost nucleus of each cell shown in A-C (bar, 2 µm). Transverse trafficking of CSQ-DsRed can be seen in the optical plane that dissects the nuclear midline (B2, asterisk) but appears as distinct cisternae in an adjacent optical slice (C2, double asterisk). Anti-TRAM immunofluorescence (green) was imaged in cardiomyocytes not treated with Ad.CSQ-DsRed, but immunostained with ant-RyR (red): D1, rightmost nucleus in panel D. Bar, 2 µm. (E) anti-ribosomal S6 protein immunofluorescence (green) was imaged in cells overexpressing CSQ-DsRed (red). Bar, 2 µm. Imaging, Leica (panels A-D), Zeiss LSM (panel E). (F) immunoblot analysis of rat and dog heart homogenates (H, 100 µg) and microsomal vesicles (MV, 50 µg) using anti-TRAPα antibodies. Mobilities of molecular weight standards in kDa, left margin.]
myocyte perinuclear region, co-localizing with CSQ-DsRed fluorescence (Fig. 14A-C). Levels of anti-TRAPα immunofluorescence were highest in cisternae closely apposed to the nucleus, whereas CSQ-DsRed could be seen in selected optical slices to extending beyond to successive cisternae (panel C2, double asterisk). A single optical slice was sometimes able to capture transverse trafficking as a continuous CSQ-DsRed fluorescence between the perinuclear region and an adjacent cisterna (panel B2, asterisk). The abundance of TRAPα in cardiomyocyte membranes was also evident by immunoblotting, where it appeared as a single immunoreactive protein band of roughly 34 kDa [79] enriched in microsomes prepared from either rat or canine heart tissue (Fig. 14F). Further support for the idea that the perinuclear region could be a major site of protein synthesis in cardiomyocytes came from localization of the translocon accessory protein TRAM [80] and the ribosomal S6 protein (Fig. 14D,E respectively) to areas surrounding the myonucleus.

Transport of proteins from the rough ER in mammalian cells is associated with the formation of ER exit sites that become COPII transport vesicles [81-83]. Because fluorescence microscopy of CSQ-DsRed suggested a relatively direct transport step between its apparent site of biosynthesis (perinuclear rough ER) and adjacent junctional SR puncta, we asked whether ER exit site location might also reflect such transport in cardiomyocytes. Sec23 is a well-characterized marker of ER exit sites and COPII vesicles in mammalian cells [84]. In untreated cardiomyocytes, sec23 produced a pattern of immunostaining along Z-lines that was interspersed with RyR2-positive staining (Fig. 15A and inset). This suggested that sec23 might be bound to membrane surfaces of cisternae along Z-lines. When sec23 localization was analyzed in cells
overexpressing CSQ-DsRed, sec23 appeared to be bound to the perinuclear membrane compartment enriched in CSQ-DsRed (Fig.15B). Because CSQ-DsRed is expected to be an intraluminal ER protein whereas sec23 is a cytosolic protein, such interactions could not theoretically be direct, and would presumably require a transmembrane signal resulting from enhanced levels of lumenal CSQ-DsRed. The reason for this unexplained translocation of sec23 was not further investigated, but could reflect the inefficient ER exit of CSQ-DsRed. Sec23 levels measured by immunoblotting and densitometry exhibited a roughly 25% decrease in cells treated with Ad.CSQ-DsRed, but showed no further changes with time of adenoviral treatment (Fig. 13, rightmost panel).

Direct CSQ-DsRed fluorescence is distinct from indirect CSQ-DsRed immunofluorescence

Although CSQ-DsRed was readily detected on immunoblots using either anti-DsRed or anti-CSQ2 antibodies (Fig. 13), we were surprised to find that after 48 h of

![Figure 15. Sec23 subcellular localization in cultured rat cardiomyocytes.](image)
DsRed overexpression, neither anti-DsRed nor anti-CSQ2 antibodies were able to detect CSQ-DsRed in the perinuclear compartments of fixed cardiomyocytes (Figs. 16-18). Instead, anti-DsRed and anti-CSQ2 antibodies prominently labeled the cell periphery. This result was seen with three separate antibodies to the CSQ-DsRed fusion protein (Fig. 17C, 17D, and 18F).

As discussed below, a likely explanation for the loss of immunoreactivity was that interaction of antibodies was lost due to the (predicted) tetrameric structure of DsRed [76-77]. This did lead, however, to a labeling of two separate pools of overexpressed CSQ-DsRed having alternate subcellular distributions. As supported in experiments
below, and discussed in later sections, we interpreted the red and green labeling as tetrameric CSQ-DsRed and an immunoreactive CSQ-DsRed monomer, respectively. The perinuclear versus peripheral (tetrameric versus monomeric) staining patterns were seen in sequential optical slices (z-stack), validating a 3-dimensional distribution of the direct DsRed fluorescence near the nucleus (Fig. 16A-E). Indeed, the radial nature of the direct DsRed fluorescence was apparent in virtual transverse slices of the reconstructed z-stack along its longitudinal length (Fig. 16F). Closer examination of an optical slice (panel G) near the cell periphery (panel E) where green immunofluorescence (CSQ-DsRed monomers) dominates direct red fluorescence (CSQ-DsRed tetramer), revealed an imperfect co-localization of the two forms. Higher magnification of the two fluorescent signals confirmed minor differences in distribution at the level of individual sarcomeric SR structure (panel H). Even where indirect and direct CSQ-DsRed fluorescence signals occurred together, a distinct distribution was revealed for each, perhaps suggesting that CSQ-DsRed tetramers and monomers traffic differently.

To further analyze the relationship between CSQ-DsRed fluorescence and its immunoreactive forms, we examined a time course of overexpression by confocal fluorescence microscopy. Whereas CSQ-DsRed fluorescence did not develop until about 32 h of adenovirus treatment, anti-DsRed and anti-CSQ immunofluorescence were both detected after only 16-20 h, appearing around nuclei (Figs. 17,18). Time-dependent changes in CSQ-DsRed fluorescence and immunofluorescence were consistent with its translation and accumulation in perinuclear rough ER after 16 h, followed by its increasing concentration in the same region as a red fluorescent
polymer. Once juxtanuclear polymerization occurred, CSQ-DsRed, already in junctional SR, continued its anterograde movement towards the cell periphery where it appeared to concentrate by 48 h as (green) monomer. The fact that this movement of immunofluorescent CSQ-DsRed could be visualized suggested that additional CSQ-DsRed was not being generated along the rough ER-junctional SR pathway, perhaps because all CSQ-DsRed monomer was scavenged within the perinuclear region by the polymer.

The fluorescence staining pattern of native rat CSQ2 could be seen in untreated (control) heart cells exhibiting a steady-state distribution characteristic of junctional SR puncta (Fig. 17A). Visualization of native rat CSQ2, however, required fluorescence acquisition times that produced overexposures of CSQ-DsRed immunofluorescence (Fig. 17B, *inset*), so was not visible with the exposure times used in subsequent figures. In contrast to the relatively unchanging pattern of native CSQ2 over a 48 h time course...
(not shown), overexpressed CSQ-DsRed immunofluorescence exhibited a time-dependent trafficking. To summarize, our data suggest that the tetrameric form of CSQ-DsRed, while necessary to produce the intense red fluorescence, was relatively incapable of interaction with antibody molecules. Meanwhile, antibodies to either half of the fusion protein detected CSQ-DsRed monomers which exhibit highly reduced, if any, intrinsic (direct) fluorescence. The data indicate that once CSQ-DsRed tetramerizes within rough ER, its anterograde trafficking is very substantially restricted, whereas molecules that do not incorporate into the polymer within the nuclear envelope, populate increasingly peripheral junctional SR sites. Based upon these new studies on CSQ2 trafficking from rough ER to junctional SR compartments, and our recent work on polymer-dependent trafficking of CSQ2 in nonmuscle cells [23, 71], we propose a new model of CSQ2 trafficking and junctional SR biology in the adult cardiomyocyte.
DISCUSSION

In nonmuscle cells, we previously concluded that CSQ2 is retained within specific secretory compartments by virtue of its polymerization [23, 71]. CSQ2 polymers accumulate in discrete secretory compartments presumably because soluble protein cargo integration into COPII vesicles is very inefficient for large polymers [71, 85-86]. In nonmuscle cells, cardiac CSQ polymers form in an early ER compartment comprised of polygonal cisternae throughout the cell, but are absent from the ERGIC [23]. This subcellular localization for CSQ2 is also reflected in the structure of its N-linked glycan, which is always found in an unprocessed form (GlcNAc2Man9,8).

Skeletal muscle CSQ localizes not to ER, but exclusively to the intermediate compartment (ERGIC) of nonmuscle cells [71]. The remarkable difference between localization of these two CSQ isoforms within the same cell type underscores the relationship between polymerization and localization in mammalian cells. Thus, not only can CSQ polymerize \textit{in vivo}, but differences in milieu that exist within lumens of two consecutive and juxtaposed subcompartments (ER and ERGIC) are sufficient to completely discriminate and segregate these two forms of CSQ. Differences in the glycan structures on a conserved Asn316 in the two proteins are also consistent with the differential localization [71].

Tetramerization of DsRed is a documented aspect of its structure [76-77]; in fact, DsRed fluorescence is thought to require its tetramerization, although a monomeric form exhibiting greatly reduced fluorescence has been generated through numerous point mutations [77]. Thus, when fused with CSQ2, tetramerization of DsRed led to its effective retention, probably because of inefficient anterograde trafficking, similar to that
reported for cardiac CSQ polymers in nonmuscle cells [23, 71]. It is also possible that CSQ-DsRed tetramers led to even more complex polymers as a result of finite levels of CSQ2 polymerization that might occur even in the perinuclear region, although native CSQ2 does not typically accumulate (polymerize) in this compartment.

Anti-DsRed fluorescence and CSQ-DsRed immunofluorescence were mutually exclusive because DsRed tetramerization simultaneously produces a bright red fluorescence [77] while effectively turning off antibody detection. This generated separate assays for polymeric versus monomeric protein molecules that exhibited distinct patterns of intracellular trafficking. Time-dependent features of the overexpression of CSQ-DsRed were particularly revealing. CSQ-DsRed was initially detectable only by immunoreactivity, where it had a juxtanuclear localization. At longer times, immunoreactive perinuclear CSQ-DsRed was replaced with the bright red fluorescence expected for DsRed tetramers in the same compartment. However, whereas immunoreactive (monomeric) CSQ2 trafficked out of the perinuclear region, albeit slowly (Figs. 17,18), the red fluorescent tetramer was too large to traffic to junctional SR puncta to any significant extent [71, 85-86].

By the end of a 48 h incubation period, the entire immunoreactive pool of CSQ2 was concentrated at the cell periphery (Fig. 16F). If immunoreactive CSQ-DsRed represents monomeric CSQ-DsRed, then the shift of this pool of protein from the perinuclear region to the cell periphery suggests that the input of additional immunoreactive CSQ-DsRed protein molecules was no longer occurring. This may be directly due to the scavenging of all newly synthesized CSQ-DsRed within the fluorescent polymer within the perinuclear region once formed. Thus, without further
input of newly-synthesized CSQ-DsRed, the "pulse" of monomeric CSQ-DsRed that escaped juxtanuclear polymerization could be visualized as it moved through the full extent of the Z-line localized ER/SR pathway. The fate of this CSQ-DsRed that concentrated in the cell periphery after 48 h was not investigated in this study, but represents an interesting question for future studies.

Protein markers of the ER translocon complex, TRAPα and TRAM, also had a juxtanuclear localization in the cardiomyocyte, suggesting that this is a major site of rough ER and CSQ2 biosynthesis. Rough ER was previously visualized by electron microscopy in a continuum with the nuclear membrane, as one of a few morphologically-defined sites within adult rabbit cardiomyocytes [87]. Translation around myonuclei in cardiomyocytes for specific cardiac proteins has not been reported to our knowledge, but has been discussed as one of at least two such sites in skeletal muscle myocytes [88].

CSQ-DsRed fluorescence could be observed connecting the perinuclear region directly to adjacent junctional SR (RyR2-positive) puncta in optical sections that bisected the myonuclear midline (Figs. 12E, 14B2, asterisk). A pathway for SR membrane protein trafficking along Z-lines has not previously been reported in cardiomyocytes, but may be similar to the exporting ER network described by Kaisto and Metsikkö in rat skeletal muscle myofibers [89]. We also observed apparent longitudinal trafficking of CSQ-DsRed, particularly when CSQ-DsRed-containing cisternae were viewed near the outer edges of the cell (Fig.16E,G,H). A mechanism of longitudinal trafficking of CSQ2 is also not known, but our data for sec23, a microtubule-based trafficking protein of COPII vesicles [84], suggests that junctional SR to
longitudinal SR might represent the normal direction of protein trafficking in the cardiac secretory pathway. Free SR is enriched in proteins that contain the C-terminal KDEL retrieval sequence [90-92]. Because KDEL proteins are thought to be enriched in both ER and ERGIC [23, 93], their presence is consistent with free SR being a subcellular compartment distal to junctional SR. The view of junctional SR as equivalent to ER, and longitudinal (or free) SR as being equivalent to the intermediate (ERGIC) compartment is consistent with studies from the Metsikkö laboratory in skeletal muscle myofibers [89, 94]. Similar to the limited accumulation of CSQ-DsRed in longitudinal SR (Fig. 16H), native CSQ2 that escapes retention by polymerization should also traverse this part of the cardiac secretory pathway, as do the other muscle-specific luminal ER/SR Ca\(^{2+}\)-binding proteins sarcalumenin and histidine-rich Ca\(^{2+}\)-binding protein [17].

In a new model of CSQ2 biosynthesis and trafficking in cardiomyocytes (Fig. 19), we propose that CSQ2 is synthesized at sites within the nuclear envelope, and then traffics directly to junctional SR in the direction of the cell surface. In the case of CSQ-DsRed, polymers (tetramers) are retained in rough ER and traffic slowly towards distal junctional SR only as tetramers dissociate to monomers. We infer from these data that CSQ2 normally polymerizes only within junctional SR puncta, a process that prevents or slows its anterograde trafficking, and presumably its secretion. We conclude therefore, that, as in the case of mammalian nonmuscle cells, CSQ2 polymerizes in junctional SR because it is the first intracellular compartment that satisfies the biophysical criteria for polymerization.

The model presented here may help to explain previously reported CSQ2 protein structures in normal and hypertrophied hearts from small dogs [35]. In beagle heart
Figure 19. Model of native CSQ2 trafficking from rough ER to junctional SR in cardiomyocytes. (A) Native CSQ2 exists as monomers or linear polymers in dynamic equilibrium inside the secretory pathway of cardiomyocytes. While monomeric CSQ2 traffics anterogradely, polymeric CSQ2 cannot, leading to its accumulation in junctional SR puncta. CSQ-DsRed, in contrast to native CSQ2, polymerizes and accumulates in rough ER around nuclei. CSQ-DsRed monomers, like CSQ2 monomers, can traffic anterogradely where they can be specifically detected by antibodies against either half of the fusion protein pair. Not shown in this scheme are forms of CSQ2 in junctional SR that might contain CSQ-DsRed linear homopolymers and heteropolymers (with native CSQ2). (B) In cardiomyocytes, native CSQ2 is synthesized in perinuclear rough ER. Trafficking proceeds across a direct cellular transport pathway (large arrow) to perinuclear junctional SR, dependent on a dynamic polymer (P)-monomer (M) equilibrium. A predominance of native CSQ2 monomers in rough ER and along the rough ER-junctional SR trafficking pathway led to anterograde trafficking. CSQ2 polymers form within junctional SR puncta due to its distinctive intraluminal ionic conditions, leading to its accumulation [71]. ER-exit sites along this same ER pathway (highlighted by sec23 immunostaining, cf. Fig. 15), may separate the basic cardiac ER (junctional SR) from an intermediate compartment (longitudinal SR) that traffics along myofibrils (smaller arrows). In the case of CSQ-DsRed overexpression in cardiomyocytes, tetrameric CSQ-DsRed accumulates in rough ER. Protein monomers of CSQ-DsRed predominantly traffic anterogradely to accumulate in peripheral junctional SR puncta. Puncta in close proximity to cardiomyocyte nuclei may contain the inositol trisphosphate (IP3) receptor in addition to, or instead of the more prominent ryanodine receptor contained in more peripheral junctional SR puncta [95].
tissue, CSQ2 molecules can be divided into two types based upon their glycan structures. Most CSQ2 glycans show extensive mannose trimming (Man3-5), indicative of junctional SR localization [31, 34], but a minor portion of CSQ2 contains glycans indicative of rough ER localization (Man8,9) [23, 31]. This rough ER portion of CSQ2 doubles in rapid-pacing induced heart failure, as does its state of phosphorylation [35]. Moreover, ER forms of CSQ2 (Man9,8) in heart are fully phosphorylated, whereas junctional SR forms of CSQ2 (Man 3-6) are increasingly dephosphorylated [34]. Phosphorylation by protein kinase CK2 may thus be responsible for its rough ER retention.

CONCLUSIONS

In summary, CSQ-DsRed fluorescence and immunofluorescence reveal several new aspects of CSQ biology by essentially slowing down its secretion, and by causing it to polymerize in a proximal compartment (rough ER). Our new findings and accompanying model include: 1) the identification of the subcellular site of CSQ2 biosynthesis (cardiac rough ER), 2) demonstration of a CSQ2 polymerization-dependent compartmentalization in cardiomyocytes, 3) the suggestion that CSQ-DsRed traffics directly from rough ER to junctional SR along a novel, albeit uncharacterized intracellular pathway, and 4) the characterization of rough ER and junctional SR as cardiac ER, and longitudinal SR as a compartment distal to ER exit sites possibly corresponding to ERGIC. These data and model may aid in understanding the changes in CSQ2 and SR biology associated with new transgenic models and in diseases associated with inner membrane biology in adult cardiomyocytes.
CHAPTER 3
IDENTIFICATION OF CARDIAC CALSEQUESTRIN KINASE AND THE EFFECTS OF C-TERMINAL PHOSPHORYLATION

ABSTRACT

The luminal SR protein CSQ2 contains phosphate on roughly half of the serines found in its short cardiac-specific C-terminus. The sequence around the phosphorylation sites in CSQ2 suggest that the in vivo CSQ2 kinase is protein kinase CK2, even though this enzyme is thought to be present only in the cytoplasm and nucleus. To test whether CSQ2 kinase is protein kinase CK2, we combined experimental approaches directed at reducing the effects of CSQ2 phosphorylation in intact cells. In vitro, tetrabromocinnamic acid (TBCA, 100 µM) inhibited both CSQ2 kinase and CK2 activities by about 85% over the same range of concentrations. In intact cultured primary adult rat cardiomyocytes and in COS cells, 24 h of TBCA (100 µM) treatment produced a roughly 75% decrease in phosphorylation of CSQ2. To further validate the identity of CSQ2 kinase as protein kinase CK2, we down-regulated both CK2α subunits in COS cells by transfection of appropriate siRNA, producing an 85-90% decrease in CK2α and CK2α’ protein levels. CK2-silenced cells exhibited a two-fold reduction in CSQ2 kinase activity. Endogenous CSQ2 overexpressed in CK2-silenced COS cells was also reduced by a factor of two. These pharmacologic and biochemical data suggest that CSQ2 in intact cells is phosphorylated by CK2, a cytosolic kinase (CK2) that could phosphorylate CSQ2 only during or before nascent protein translocation. When CSQ2 phosphorylation site mutants were analyzed in COS cells, the characteristic rough ER form of the CSQ2 glycan (GlcNAc2Man9,8)
underwent phosphorylation-site dependent processing such that CSQ2-nonPP (Ser to Ala mutant) and CSQ2-mimPP (Ser to Glu mutant) produced apparent lower and greater levels of ER retention, respectively. Taken together, our data support a hypothesis in which CK2 is able to phosphorylate CSQ2 co-translationally at biosynthetic sites in rough ER, a process that results in changes in its subsequent movements through the secretory pathway.

INTRODUCTION

Calsequestrin is a resident luminal protein of the SR [11, 19-20, 22, 33, 96] where an involvement in junctional Ca\(^{2+}\) release is assumed to be its primary function [13, 30]. The fast-twitch skeletal muscle CSQ1 and cardiac CSQ2 isoforms come from independent genes but share a relatively conserved sequence [33, 97]. Mammalian CSQ2 proteins have an 18-25 residue C-terminal extension that contains multiple serines in an otherwise highly acidic sequence, and is not present in CSQ1 [33, 98]. These C-terminal serines are prolific *in vitro* substrates for an endogenous protein kinase, making CSQ2 by far the most heavily phosphorylated protein in heart cell homogenates, in the absence of exogenous kinase activators such as cyclic AMP [34]. It is similarly phosphorylated in all mammalian cells following its overexpression [23, 31, 34].

Both CSQ2 phosphorylation state and Asn(N)-linked glycan structure can be simultaneously determined by mass spectrometric analysis of purified CSQ2 protein [31, 35]. From these analyses, a great deal of information about the relationship between CSQ2 phosphorylation and its trafficking has been obtained. For example, pathways of CSQ2 trafficking are revealed in the CSQ2 glycan structures, and it
appears clear that no CSQ2 in heart or nonmuscle cells ever leaves ER compartments. The CSQ2 glycan is comprised of only high-mannose structures GlcNA2Man\(N\), where \(N = 3-9\) depending upon the extent of mannose trimming [31, 34-35]. Recently, we have described novel ER-to-SR intracellular trafficking pathways in the adult cardiomyocyte, concluding that junctional SR represents bona fide ER. CSQ2 traffics directly from juxtanuclear rough ER to junctional SR where it is retained by its polymerization [99]. Mannose trimming accompanies its anterograde trafficking in nonmuscle cells, whereas it is a hallmark of its rough ER to junctional SR trafficking in cardiac myocytes [23, 31, 34]. We have also hypothesized that the longitudinal SR corresponds to the intermediate compartment (ERGIC), requiring proteins such as SERCA2a to enter ER exit sites that lie along the junctional SR pathway [99].

Mass spectrometry of intact purified CSQ2 also reveals significant insights into its phosphorylation. When analyzed from heart tissue, newly synthesized molecules (having unprocessed glycans (Man9,8)) are found to exist only in the completely phosphorylated state [34]. Conversely, as CSQ2 undergoes mannose trimming in its trafficking to junctional SR, the number of unphosphorylated molecules dramatically increases, such that the most highly trimmed glycans contain no phosphate [34]. When analyzed in cultured nonmuscle cells, it is also evident that anterograde trafficking is also accompanied by CSQ2 dephosphorylation [23, 31, 34].

Despite considerable knowledge about the CSQ2 phosphorylation reaction in nonmuscle cells and cardiac myocytes, the identity of the CSQ2 kinase has not yet been established. There are no known luminal serine/threonine kinases identified in the literature, to our knowledge, that could serve as a candidate CSQ2 kinase in vivo. The
putative identity of CSQ2 kinase derives from the fact that its C-terminal phosphorylation sites (Table 2) matches closely a consensus sequence (S/T-X-X-D/E) for the cytosolic serine/threonine protein kinase CK2 (formerly casein kinase 2) [37-38]. CSQ2 is also a very efficient in vitro substrate for CK2 [34, 36].

A paradox, however, results if one assumes that CK2 is the CSQ2 kinase, as CK2 has no signal sequence for gaining access to the ER lumen [100], whereas CSQ2 is thought to be wholly contained within the SR lumen throughout its lifetime [12, 33]. One hypothetical mechanism for reconciling the lack of co-localization with a co-translational phosphorylation event would be that CSQ2 phosphorylation occurs prior to nascent polypeptide translocation across the rough ER membrane [64].

Mammalian protein kinase CK2, in the holoenzyme form, is composed of two separate catalytic subunits and two identical regulatory subunits [101]. The catalytic subunits, CK2α and CK2α', share approximately 90% homology and are the product of different genes [44, 102-103]. Both catalytic subunits are capable of phosphorylating substrates independent of holoenzyme formation, and have been localized to different areas of the cell [101, 104-105]. CK2 has been shown to promote cell proliferation [106], and has recently become a chemotherapeutic target in order to promote tumor regression [107] leading to the advent of a series of new and highly specific inhibitors [61].

In this study, we have combined cellular and molecular approaches to investigate the actions of protein kinase CK2 on the cardiac-specific C-terminus of CSQ2. Reduced CSQ2 phosphorylation produced by reversible CK2-specific inhibitors, loss of CK2 protein by siRNA, and loss of phosphorylation by sequence mutations all support a
hypothesis in which phosphorylation of CSQ2 by the cytosolic protein kinase CK2 occurs co-translocationally in rough ER to affect subsequent anterograde trafficking.

MATERIALS AND METHODS

Antibodies and commercial proteins

Monoclonal antibody specific to CSQ2 was the generous gift of Dr. Larry Jones, Indiana University School of Medicine. Mouse monoclonal antibody raised to human protein kinase CK2α catalytic subunit (CSNK2A1) and rabbit polyclonal antibody raised to human protein kinase CK2α’ catalytic subunit (CSNK2A2) were purchased from Abcam (ab70774 and ab10474). Human CSNK2A1 (His-tagged CK2α) and CSNK2A2 (GST-tagged CK2α’) recombinant proteins were purchased from Invitrogen (PV3248 and PV3624).

Cell culture

COS-7 African green monkey kidney (COS) and human embryonic kidney 293 cells (HEK-293), purchased from American Type Culture Collection, were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 25 mM HEPES, pH 7.4, 10% fetal bovine serum, 100 units/ml penicillin G, 0.1 mg/ml streptomycin and 0.25 μg/ml amphotericin B, at 37 °C with 5% CO2.

Cardiomyocyte preparation

Rat ventricular cells were enzymatically dissociated using a Langendorff perfusion apparatus, as previously described [99]. Heart cells were cultured on laminin-coated dishes in modified Medium 199 containing 2% bovine serum. Protein concentrations were determined according to Lowry et al. [108].
CSQ2 plasmid and adenoviral constructs

CSQ2 constructs and viral inserts were generated from wild type canine cardiac CSQ2 cDNA [33]. Creation and purification of adenoviruses for wild-type CSQ2 (Ad.CSQ) and the non-phosphorylatable mutant Ad.nonPP (Ser 378,382,386 Ala) were previously described [31]. The phosphorylation mimic CSQ2 mutant Ad.mimPP was produced in an identical manner to that of Ad.nonPP except glutamates were used to replace the C-terminal serines (Ser 378,382,386 Glu). Briefly, the mutating reverse primer (67-mer) contained 3 single base changes necessary for the Ser to Glu conversion. PCR products were cloned into pBluescript (Stratagene), sequenced by the dideoxy method [109], and then subcloned into the pShuttle plasmid for virus construction (AdEasy System, American Type Culture Collection).

Adenovirus-mediated overexpression

Cells were treated with recombinant adenoviruses at a multiplicity of infection (MOI, pfu/cell) of 50 or 100 for COS and heart cells [31]. Purified viruses were added to cultured cells at the time of plating and left on throughout the overexpression period.

Purification of overexpressed CSQ2

Purification of CSQ2 from COS and cardiomyocyte cultures was carried out two days post-infection, as previously described [31] but with minor modifications. Cell pellets were resuspended at roughly 1 mg/ml in extraction buffer containing 10 mM Tris, pH 8.0, 250 mM NaCl, 1% Triton X-100 and 1 mM EGTA. Extracts were centrifuged at 25,000 x g for 30 min, bound to 40 µl DEAE-Sephacel (Amersham Biosciences), washed, then eluted with 100 µl extraction buffer containing 500 mM NaCl. SDS-PAGE analysis was carried out according to Laemmli [74].
Preparation of native CSQ2 kinase sources

Freshly isolated adult rat cardiomyocytes and cultured COS cells were pelleted and washed in PBS. The pellets were resuspended in low ionic strength media containing 5 mM MOPS, pH 8.0, 1 mM EGTA and protease inhibition cocktail (Sigma P8340). Suspensions were incubated on ice for 10 min and then passed through a 25½ ga. needle and glass/teflon homogenizer 10 times each. NaCl was added to the resulting lysates (homogenates) to a concentration of 100 mM. Detergent mixtures were created by adding Triton X-100 to the homogenates to a final concentration of 1%. Identical volumes (0.5 ml) of homogenates, detergent-free and detergent extraction mixtures were subjected to high speed centrifugation (30,000 x g_{max} for 15 min) in order to obtain homogenates and extracts.

In vitro phosphorylation of purified CSQ2

The standard CSQ2 phosphorylation reaction mixture for “back phosphorylation” consisted of 20 mM MOPS, pH 8.0, 150 mM NaCl, 0.5 mM EGTA, 10 mM MgCl₂, and contained 20 µM [γ-³²P]ATP (3000 cpm/pmol), 2 µg purified CSQ2 substrate, and a source of CSQ2 kinase, brought to a total volume of 50 µl with distilled water. As a CSQ2 kinase source, either 2 µg of COS cell or cardiomyocyte homogenate or detergent extract was used, as indicated; or 0.1-0.4 µg purified human CK2α or CK2α' kinase was added as indicated. Quantification of phosphate incorporation was determined by SDS-PAGE, autoradiography, and scintillation counting of radioactive bands excised from dried gels. Measurements of “front phosphorylation”, or endogenous phosphorylation, included a pretreatment with or without 0.01 U acid phosphatase (P0157, Sigma) for 60 min in 10 µl of 30 mM MES buffer, pH 5.8, 0.1 mM
EGTA, as previously described [36], then dilution into phosphorylation buffer to a final volume of 50 µl. For comparison with CK2α' commercial protein kinase activities, 2 µg of CSQ2 was used as substrate and equal units of kinase were compared: CK2α was 0.5 U/µg, CK2α' was 0.25 U/µg (1 U = nmol P i /mol RRRDDDDDDD peptide/min).

Inhibition of CSQ2 kinase using specific inhibitors of protein kinase CK2

The CK2 specific inhibitors tetrabromocinnamic acid (TBCA, Calbiochem), 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT, Calbiochem) and 4,5,6,7-tetrabromobenzotriazole (TBB, Sigma) were dissolved in DMSO then diluted into phosphorylation reactions to varying micromolar concentrations to establish which was the most potent and gave the most consistent results. To inhibit CSQ2 phosphorylation in intact cells, COS or heart cells were plated in 6-well dishes with Ad.CSQ for 24 h. TBCA (100 µM) or DMSO was then added for a total incubation time of 48 h, then cells were harvested for analysis.

Mass spectrometry

For mass spectrometry of CSQ-WT, CSQ-nonPP, and CSQ-mimPP, recombinant proteins were produced in HEK cells following the addition of respective viruses. CSQ2 was purified and prepared for electrospray ionization mass spectrometry as previously described [23].

RNAi

HEK and COS cells were grown in 100 mm culture dishes for 24 hrs with or without Ad.CSQ or Ad.nPP, then transfected using DharmaFECT 1 transfection Reagent (Thermo Scientific T-2001-01), for 48 h with 100 nM Dicer-Substrate RNAi (DsiRNA, IDT), designed to silence either CSNK2A1 (IDT #HSC.RNAI.N177559.10.3),
CSNK2A2 (IDT #HSC.RNAI.N001896.10.2), or a combination of both. Negative controls included no siRNA or DS NC1 universal DsiRNA negative control (IDT). Detergent extracts were created for use with standard back and front phosphorylation assays described above, after normalization by protein assay.

mRNA analysis

RNA extraction from COS cells overexpressing Ad.CSQ was performed using RNeasy Fibrous Tissue Mini Kit (Qiagen) according to manufacturer’s protocol. RNA concentrations were determined by spectrophotometer at 260 nm. One microgram of DNase-treated total RNA was reverse transcribed using a high-capacity cDNA reverse transcription kit (Applied Biosystems). Quantitative real-time PCR (qPCR) with fast SYBR green (Applied Biosystems Step One with v2.0 software) was performed using CSQ2 primers designed to span one intron. Relative quantitation was then used to evaluate mRNA levels compared to GAPDH internal control. Canine CSQ2 forward primer: 5′-CCA AGC TTG CCA AGA AGC TGG GT-3′, reverse primer: 5′-ACG TCA GCT GCA AAC TCG CCA -3′.

RESULTS

Optimization of CSQ2 phosphorylation assays

Native and overexpressed canine CSQ2 is phosphorylated in heart or nonmuscle cells on the same sites, and the reactions are assumed to occur by a similar CSQ2 kinase associated in some way with the ER [31, 34]. We analyzed CSQ2 kinase activity from both primary rat cardiomyocytes and COS cells. Both cell types were homogenized in the presence of Triton X-100 detergent to make CSQ2 kinase available to phosphorylate purified canine CSQ2 in vitro. Determinations of reaction linearity as a
function of protein (kinase source) were carried out with varying amounts of homogenate protein. In contrast to an expected linear relationship between protein and kinase activity, increasing protein concentration actually exhibited an inverse relationship with CSQ2 phosphorylation (Fig. 20A,B); that is, increasing homogenate protein produced decreasing levels of $[^{32}P]$-phosphate incorporation. To remedy this extreme nonlinearity, we tested whether linearity could be better achieved using either a mild detergent extract or non-detergent extraction to separate the CSQ2 kinase from...
possible interfering phosphatases or ATPases that might account for this effect. We found that linearity was partially restored with extractions carried out in detergent, and more fully restored if detergents were removed (Fig. 20C,D). Whether restoration of linearity was due to removal of CSQ2 phosphatase or cellular ATPases was not further investigated. Based upon these determinations, CSQ2 kinase activities were generally measured using 2 µg of mild detergent extract. Although the efficiency of CSQ2 kinase extraction could not be determined in these experiments because of the non-linearity, protein kinase CK2 recovery was only about 50% in detergent-free extracts based upon immunoblot analyses (Fig. 20D, inset).

Pharmacological inhibition of CSQ2 phosphorylation in vitro

Because of our previous in vitro evidence implicating CK2 as CSQ2 kinase [36], we tested the effects of new commercially available competitive inhibitors of CK2 [63] on CSQ2 kinase activity in cell extracts. To allow us to compare effects of CK2-specific inhibitors, we first normalized endogenous CSQ2 kinase activities in myocytes, COS cells, and commercial CK2 by comparing their relative ability to phosphorylate 2 µg pure CSQ2. Based upon these determinations, one would calculate that about 0.07% of cardiomyocyte protein and 1.7% of COS cell protein is CK2, if CK2 and CSQ2 kinase are the same protein and purified CK2α' maintains its native activity. A value based upon immunoblotting of pure CK2 and COS cell extracts was closer to 1% of total protein, and consistent with a 25-fold lower level in cardiomyocytes (data not shown).

Equal CSQ2 kinase activities from all three sources were then used to test inhibitors in vitro, using 2, 5, 10, 20, 50 or 100 µM concentrations of CK2-specific inhibitors TBB [110], DMAT [111] and TBCA [60] (Fig. 21A-C). All three inhibitors were
capable of inhibiting endogenous CSQ2 kinase activity in both cardiomyocyte and COS cell extracts, and at concentrations similar to those required to inhibit commercial CK2 phosphorylation of CSQ2. The most potent of the three inhibitors was TBCA, which inhibited both endogenous CSQ2 kinase as well as commercial CK2 phosphorylation of CSQ2 at an IC$_{50}$ of about 10 µM. TBCA produced a near identical inhibition curve for all three kinase source reactions (Fig. 21C). TBB and DMAT were also capable of inhibiting CSQ2 kinase and commercial CK2, but at higher micromolar concentrations (IC$_{50}$ approximately 50 and 60 µM, respectively). TBCA was chosen for subsequent experiments in cultured cells because it is reportedly the most specific and potent inhibitor of the three [60], and because we found TBCA to be the most soluble in culture media (data not shown).

Pharmacological inhibition of CSQ2 phosphorylation in cultured cells

Our ability to inhibit cardiomyocyte and COS cell CSQ2 kinase *in vitro*, led us to determine whether TBCA would inhibit phosphorylation of CSQ2 during its overexpression in COS cells. For both cell types, CSQ2 was overexpressed using an
adenovirus to achieve high levels of biosynthesis in case CSQ2 phosphorylation was tied to its rate of translation. We previously showed using \(^{32}P\)-labeling in rat cardiomyocytes that endogenous CSQ2 phosphorylation is very low compared to similar amounts of virally overexpressed CSQ2 [34]. In experiments here, cardiomyocytes and COS cells were treated with Ad.CSQ for 24 h before an additional treatment with either 100 µM TBCA or vehicle (DMSO). Levels of endogenous phosphate on CSQ2 were determined from the difference between CSQ2 phosphorylation with and without phosphatase pretreatment. We found that TBCA produced a potent inhibition of phosphate incorporation into CSQ2 in cultured cardiomyocytes and COS cells of 82 and 66%, respectively, compared to vehicle controls (Fig. 22). The reduced effect of TBCA on CSQ2 phosphorylation in COS cells might just reflect the high levels of kinase in COS cells (Fig. 20B).
siRNA knockdown of CK2 catalytic subunits

To corroborate the pharmacologic data that supported identification of CSQ2 kinase as CK2, RNAi experiments were performed. Three separate siRNA mixtures that were tested were successful in silencing CK2α and CK2α′ catalytic subunits at 100 nM in either HEK or COS cells, as determined by immunoblotting of cell homogenates (Fig. 23A). CK2α and CK2α′ siRNA with the greatest knockdown efficiencies were used for subsequent experiments in cultured COS cells.

To determine the effect of CK2 knockdown on CSQ2 kinase activity, we transfected COS cells with siRNA directed at both isoforms of the catalytic subunit. Protein levels for both CK2 isoforms, determined by immunoblotting, were reduced by approximately 95% over controls (Fig. 23B). Extracts prepared from these siRNA-cells exhibited an approximate 2-fold reduction in CSQ2 kinase activity (Fig. 23C). This decrease in CSQ2 kinase activity is notable given the high levels of CK2 present in **Figure 23. Knockdown of CK2α and CK2α' using siRNA.** COS cells were transfected for 48 h with siRNA against either CK2α or CK2α′, then extracted in mild detergent. (A) untreated cells ("C") or siRNA-treated cell samples (50 µg) were analyzed by immunoblotting using specific antibodies to detect CK2α (~40 kDa) or CK2α′ (~35 kDa); compare to 45 kDa MW standard. (B) shows the average levels of CK2α and CK2α′ knockdown (si) as a percent of untreated ("C") cells. (C) shows the effects of CK2α plus CK2α′ knockdown on CSQ2 kinase activity levels measured in detergent extracts of treated (si) and untreated ("C") COS cells. Plots show means ± S.E.M., n=3.
COS cells (Fig. 20B) and the potential that siRNA does not silence all cellular pools of CK2 equally, such as those with differing rates of protein turnover. CSQ2 kinase activities from cells following silencing of individual CK2 isoforms could not resolve subunit-specific effects because of apparent compensatory changes in each CK2α isoform that occurred after 48 h of knockdown.

To determine whether CK2 knockdown would decrease the level of endogenous CSQ2 phosphorylation in intact cells, COS cells overexpressing canine CSQ2 were treated with CK2 siRNA. In accordance with the roughly 2-fold decrease in CSQ2 kinase activity caused by CK2 siRNA transfection (Fig. 23C), we measured a 2-fold

Figure 24. Reduction in endogenous CSQ2 phosphorylation in cells treated with CK2 siRNA. COS cells were treated with Ad.CSQ for 24 h in culture, then transfected with siRNA against CK2α plus CK2α’ for an additional 48 h. (A) Cells were extracted in mild-detergent, and levels of phosphate on partially purified CSQ2 (Endog PP) were determined. Individual samples of CSQ2 were normalized by immunoblotting. A sample autoradiogram is shown for purified CSQ2 samples for untreated control (“C”) and siRNA-treated COS cells (upper panel). Results are also shown (lower panel) from multiple analyses of endogenous CSQ2-phosphate content for C and siRNA-treated cells (means ± S.E.M., n=4). (B) similar Ad.CSQ-treated COS cells (C or siRNA-treated) were metabolically labeled with 35S[Met] for 2 h, and identical sample volumes were analyzed by SDS-PAGE. The gel was stained with Stains-All to highlight CSQ2 as a dark-blue protein band on a pink background (arrowhead), then destained and re-stained with Coomassie blue, then dried and placed against film for autoradiography. MW standards (left) are in kDa. The 66 kDa standard is albumin, which also contaminates the sample cultures from the serum in the medium. (C) effects of CK2 siRNA on CSQ2 mRNA levels determined by triplicate qPCR measurements (means ± S.E.M., n=3).
decrease in the levels of phosphate in CSQ2 in COS cells (Fig. 24A). This loss of endogenous phosphate occurred despite a 24 h period of overexpression prior to siRNA treatment. Moreover, even with CK2 protein diminishing over the course of the treatment period, an ongoing phosphorylation of CSQ2 would have occurred due to the exquisite affinity of CSQ2 for CK2 [36].

A complicating effect of CK2 siRNA in COS cells was an increase in protein on SDS-gels, including significant changes in overexpressed CSQ2 (Fig. 24B). The change could be seen by protein stain, as well as following a 2 h [35S]methionine labeling of cells. Analysis by qPCR of CSQ2 mRNA in treated and untreated cells showed a roughly 2-fold increase (Fig. 24C). Whether transcriptional or translational changes accounted for observed changes in cellular protein was not further investigated. Measurements of CSQ2 phosphorylation were therefore carried out by first purifying CSQ2 from cellular extracts, normalizing CSQ2 levels using antibody binding (immunoblot) analyses, then using standard phosphate analysis assays.

Effects of CSQ2 phosphorylation site mutation on protein trafficking in nonmuscle cells

To determine whether CSQ2 phosphorylation could affect its trafficking, we examined purified wild-type CSQ2 (CSQ-WT) and phosphorylation-site mutants (Table 2) by electrospray mass spectrometry to determine the details of their polymorphic structure [31]. CSQ-WT was composed primarily of molecules having glycans with

| Table 2. CSQ2 phosphoform variants. |
|------------------|------------------|
| Name | cDNA | Phosphoform |
| CSQ-WT | -EDDDDDDGNNSSDDEESNDDSDDDDD391E-COOH | Phosphorylated on Ser 378, 382, 386 |
| CSQ-nonPP |A......A.....A......... | Phosphorylation deficient |
| CSQ-mimPP |E......E........... | Phosphomimetic |
structures of GlcNAc2Man9 and GlcNAc2Man8 (Man9,8) with only minor amounts or no Man7 (Fig. 25A). In addition, these CSQ-WT molecules contained peaks of phosphorylated protein with a spacing of 81 Da (Fig. 25A, shaded) as previously described [23, 31]. Replacement of phosphorlatable serines with alanines (CSQ-nonPP) led to loss of all CSQ2 phosphorylation along with the appearance of lower-mass forms of the protein that correspond to increased levels of mannose trimming (Fig. 25B). We previously showed in COS cells that mannose trimming beyond Man9,8 occurs for CSQ2 molecules that are not efficiently retained in ER [23].

Figure 25. Effects of CSQ2 phosphorylation site sequence on glycan structure in nonmuscle cells. Cultured nonmuscle cells were treated with recombinant adenoviruses encoding either the wild-type CSQ2 sequence (WT), the Ser(378,382,386)Ala triple point mutant (nonPP), or the Ser(378,382,386)Glu mutant (mimPP) for 48 h, then CSQ2 was purified and analyzed by mass spectrometry as described in Experimental Procedures. Sample mass spectra are shown for each purified sequence of CSQ2 (A-C). Numbers 5-9 refer to the number of mannoses in the glycan that correspond to the mass values shown along the bottom axis. Minor levels of peaks that differ in mass by 20-40 Da, are likely to correspond to cation-bound molecules, and varied among spectra. Mannose content for the three CSQ2 structures are shown as aligned, although there were minor differences in mass due to the sequence mutations. Molecular weights (bottom) are those corresponding to the WT sequence. (D) The percentages of total CSQ2 molecules that exhibited mannosidase trimming to below 8 mannoses (non-ER glycan) are shown from multiple experiments (means ± S.E.M., n=3).
To determine whether this effect on CSQ2 trafficking was purely due to the loss of phosphorylatable serines, we carried out the same analysis following replacement of serines with glutamates (CSQ-mimPP). In contrast to CSQ-nonPP, CSQ-mimPP molecules gave structures similar to that of CSQ-WT (Fig. 25C). Multiple spectra from independent CSQ-WT, CSQ-nonPP and CSQ-mimPP samples were analyzed in order to compare the percent of total CSQ2 leaving ER as represented by mannoses less than 8 and 9 (Fig. 25D). Thus, the CSQ2 kinase appears to be acting at a cotranslational site within the cell, and a resultant increase in CSQ2 phosphorylation may alter its ability to exit that site of biosynthesis.

DISCUSSION

CSQ2 kinase as protein kinase CK2

In mammalian heart tissue, CSQ2 exists as a highly phosphorylated protein [31, 34, 36]. Endogenous phosphate is found only on a cluster of 2 or 3 serine residues (depending upon the species) that are found in the cardiac C-terminal extension. This CSQ2 phosphorylation reaction is essentially the same in all mammalian cells examined to date, whether one examines native or overexpressed CSQ2 [23, 31]. In intact heart tissue, CSQ2 appears to be phosphorylated early in its biosynthesis in rough ER based upon the fact that newly synthesized molecules (Man 9,8,7) only exist in the fully phosphorylated state, whereas the most highly trimmed glycans (Man 2,3,4) are mostly devoid of phosphate [34]. A critical question that has remained unresolved in this process, however, is whether the CSQ2 kinase is protein kinase CK2. We previously showed that CSQ2 phosphorylation sites adhere closely to the consensus sequence for protein kinase CK2, and CSQ2 is exquisitely sensitive to CK2 *in vitro* [12]. However, if
CK2 is the CSQ2 kinase, it raises the important question of how CSQ2, a luminal ER protein, can be phosphorylated by what is believed to be a cytosolic enzyme. CK2 has no known mechanism for localizing to the ER/SR lumen where CSQ2 is thought to be wholly contained throughout its lifetime [17]. Only when the CSQ2 C-terminus is in the process of traversing the translocon pore complex could such an association theoretically occur [32]. Such a process suggests that CSQ2 phosphorylation is a cotranslational event, and CK2 could be associated with the translocon, similar to the association of the oligosaccharide transferase complex (OST) that brings about cotranslational N-linked glycosylation. CK2 has previously been shown to play a role in assembly of the translocon pore complex and signal sequence through phosphorylation of sec63 [112]. Calnexin, another resident ER protein, is a transmembrane protein that undergoes interaction with the ribosome in response to phosphorylation of its cytosolically exposed CK2 site [56]. We have previously reported that a number of resident ER/SR proteins are substrates for CK2 in vitro [17], perhaps suggesting that the reaction mechanism described in this paper may play a wider role in ER/SR biology.

To show that protein kinase CK2 is the physiological enzyme that modifies CSQ2 in vivo, this series of studies altered the reaction in a mammalian nonmuscle cell model system. Based upon our data from several experimental approaches, we conclude that CK2 is likely to be the native CSQ2 kinase that is present in all mammalian cells. This necessitates a co-translational or co-translocational phosphorylation event occurring for CSQ2. The differences we found in the glycan structures of CSQ2 phosphorylation site mutants support this conclusion, indicating that a proximal phosphorylation event affects subsequent CSQ2 trafficking, reflected in its mannose trimming, within the secretory
pathway.

CSQ2 kinase activity and its inhibition

Whether CK2 activity was competitively inhibited using TBCA, a highly specific inhibitor of CK2 [60], or biospecifically down-regulated using RNAi technology, CSQ2 kinase activity was affected in parallel. These data show that the CSQ2 kinase that exists in preparations derived from all mammalian cells [23] is likely the result of protein kinase CK2. Reduced levels of CSQ2 kinase that remain in cell extracts following CK2 inhibition or down-regulation, we believe, are unlikely to emanate from a second unknown CSQ2 kinase, although further studies may be warranted.

The advent of highly specific inhibitors of CK2 has also been driven by the fact that these compounds exhibit anti-growth and anti-cancer activities [58-59], reflecting an important role of CK2 in cell growth. The fact that CSQ2 is the major substrate for CK2 in heart homogenates is consistent with a possible role of CSQ2 phosphorylation in cardiac hypertrophy. We have previously shown that CSQ2 phosphorylation is doubled in canine tachycardia-induced heart failure [35].

In contrast to the relatively immediate inhibition of all available CK2 catalytic subunits using TBCA, siRNA inhibition was expected to be more gradual requiring turnover of the existing kinase pool, as suggested by Zhu et al. [59]. Furthermore, we cannot be certain that turnover of all CK2 pools within the cell are the same, whereas ATP binding sites are likely to be identical. Because both subunits are capable of efficiently phosphorylating CSQ2 in vitro (data not shown), simultaneous CK2α/α′ knockdown was needed to verify the identity of CK2 as CSQ2 kinase. Analysis by immunoblot usually showed a putative compensatory increase in subunit partner in
single subunit down-regulation experiments that was not further investigated. In spite of these differences in mechanisms, both CK2 inhibition techniques produced qualitative decreases in CSQ2 kinase activity, and each was able to lower phosphate incorporation in overexpressed CSQ2. Minor quantitative differences in the degrees of CSQ2 kinase inhibition were likely to have reflected their very different mechanisms of CK2 inhibition.

Experimental determinations of CSQ2 kinase and phosphorylation

Measurements of *in vitro* CSQ2 phosphorylation were found to be surprisingly nonlinear; and in fact produced lower levels of CSQ2 phosphorylation using higher levels of protein in the phosphorylation assay. In principle, the problems we uncovered should plague any and all determinations of kinase activity in crude preparations, such as those used in this study. Our data suggest that endogenous ATPases represent potentially confounding activities, such that it is necessary to use minimal cellular protein extract along with mild extraction techniques to accurately determine *in vitro* phosphorylation rates. Understanding these limitations, we were able to demonstrate the potential utility of these CK2 inhibitors for use as cellular probes.

Studies aimed at determining effects of CK2 reduction on phosphate levels in CSQ2 were carried out in CSQ2-adenovirus treated cells. As previously observed from 32P-labeling reactions in cultured rat cardiomyocytes [34], the higher rate of CSQ2 biosynthesis obtained through Ad.CSQ2 treatment was needed to observe phosphorylation, presumably because of its elevated rate of biosynthesis and co-translational phosphorylation. CK2 silencing itself, however, produced increases in cellular and CSQ2 protein synthesis that affected steady state protein levels after 48 h in culture, as well as $[^{35}\text{S}]$Met incorporation over a 2 h period (Fig. 24B). CSQ2
purification, however, permitted measurements of CSQ2 phosphorylation state by using our standard assay with equal amounts of CSQ2. Thus, reductions of CK2 activity through either of two separate approaches in cultured cells reduced levels of cellular CSQ2 kinase activity, and reduced endogenous CSQ2 phosphate content.

Protein kinase CK2 regulation of CSQ2 trafficking

Based upon identification of CSQ2 kinase in intact cells as the cytosolic protein kinase CK2, our previous hypothesis that CSQ2 phosphorylation is a co-translational event [34] can be expanded. In our new model (Fig. 26), we hypothesize that CSQ2 phosphorylation occurs before the C-terminal tail has entered the lumen of the protein pore complex (sec61) or ER lumen [113]. One possible mechanism might be a translocation pause wherein the ribosome separates from the translocon permitting a transient co-localization of CK2 and CSQ2 [64, 113]. If such a process, so proximal in the secretory pathway, were to affect the subsequent trafficking of CSQ2 through the secretory pathway, mannose trimming alterations would not be unexpected.

Figure 26. Hypothetical mechanism of cardiac CSQ phosphorylation by CK2 in rough ER during translocation across the ER membrane. A mechanism whereby an ER protein such as CSQ2 becomes exposed to cytoplasmic CK2 would require that the ER-bound ribosome permits access to the nascent CSQ2 polypeptide after completion of translation but during its translocation through the translocon. Other known translocon accessory proteins, such as TRAP and TRAM [99] are present in cardiomyocyte rough ER and could function in such translocational regulation [64].
Intracellular localization of CSQ2 can consistently be predicted from its N-linked glycan structure in a number of mammalian cell types including cardiomyocytes. In this study, comparisons of glycan structures for CSQ-WT, CSQ-nonPP, and CSQ-mimPP showed that only the CSQ-nonPP form exhibits excessive mannose trimming, indicative of increased trafficking away from rough ER. Glutamate, a commonly used phosphomimetic substitution, showed a marked reversal of this effect on glycan structure. These results support the idea that CSQ2 phosphorylation is associated with its biosynthesis and affects retention of CSQ2 in ER.

In heart failure, the detailed structure of CSQ2 is dramatically shifted. A peak of newly synthesized CSQ2 (with Man9,8 glycans) accumulates instead of continuing through its normal trafficking cycle [35], indicating that this newly synthesized protein is being retained within rough ER structures. Rough ER, as we have recently demonstrated, is localized to juxtanuclear cisternae in cardiomyocytes [99]. Together with findings reported here, we hypothesize that changes in CK2 activity and/or localization in heart failure increase CSQ2 phosphorylation with consequent ER retention, to favor a perinuclear Ca\(^{2+}\) microdomain shift facilitating increased transcription or translation in hypertrophy.

CONCLUSIONS

In conclusion, findings generated from multiple experimental approaches in this study support an emerging picture of CSQ2 phosphorylation as a co-translational process, which we now hypothesize is co-translocational as well. Verification that CK2 is the \textit{in vivo} CSQ2 kinase implicates the involvement of the rough ER translocon in this biological reaction. The dependence of CSQ2 glycan structure on its state of
phosphorylation has consistently revealed important features of this reaction, both here using CSQ2 phosphorylation site mutants as well as for CSQ2 in failing hearts. These studies should guide future investigations by establishing a basic biochemical paradigm for CSQ2 phosphorylation in the mammalian cell.
CHAPTER 4

SUMMARY

Cardiac CSQ is a multifaceted protein, capable of binding significant quantities of Ca\(^{2+}\) and altering RyR2 activity at junctional SR. The site of CSQ2 synthesis, however, is not junctional SR. This fact has been largely overlooked in the field of cardiac cell biology, coinciding with a tendency to picture protein distribution in the cardiomyocyte as a static system. The reality is that CSQ2 is constantly being made and trafficked from its site of biosynthesis in perinuclear rough ER to junctional SR in a polymer/monomer, phosphorylation-dependent manner.

With the majority of cardiac biochemists focusing on junctional SR Ca\(^{2+}\) release, little thought has been given to the basic questions that one assumes would have been answered prior to the study of complex cell biology. Accordingly, the location of rough ER in cardiomyocytes has never been elucidated. There is often a comparison between skeletal muscle myocytes, for which cell biology is slightly more established, and cardiac myocytes. This extrapolation may not be applicable in terms of protein synthesis however as traditional cell biology dictates that rough ER surrounds the nucleus and would therefore increase if more nuclei were present. This is the case as skeletal muscle cells are polynucleated while cardiac muscle cells are binucleated in a symmetrical manner.

Through the use of multiple antibodies specific to classic rough ER markers, and with the CSQ-DsRed fusion protein, we were able to establish a juxtanuclear localization of rough ER in cardiomyocytes. Using fluorescence confocal microscopy, the translocon complex proteins TRAP-\(\alpha\) and TRAM, along with the ribosomal protein
were all visualized and found to encapsulate both myonuclei. Additionally, time course studies of the CSQ-DsRed tetramer, in conjunction with anti-DsRed immunostaining, highlighted a perinuclear rough ER site of biosynthesis for CSQ2 and presumably all other proteins in the secretory system.

Following CSQ-DsRed translation, the fusion protein built up in the ER surrounding the nuclei due to DsRed tetramerization, and then trafficked anterogradely to junctional SR. Filling of more peripheral junctional SR puncta occurred with increasing incubation time. With the exception of CSQ-DsRed concentration around the nuclei, DsRed fusion protein tetramerization-dependent trafficking is predicted to be very similar to CSQ2 polymerization-dependent trafficking likely caused by the Ca^{2+} properties of secretory pathway compartments.

Cardiac-specific C-terminal phosphorylation of CSQ2 serines was also shown to effect CSQ2 trafficking according to mass spectrometric analysis of the protein’s N-linked glycan. A Ser 378,382,386 Ala mutation (CSQ-nonPP) of these sites inhibited CSQ2 phosphorylation and led to an increased trafficking out of the ER as indicated by the increased mannose trimming of CSQ2 glycan. This effect was reversed with the phosphomimetic mutant Ser 378,382,386 Glu (CSQ-mimPP) which had glycoforms with mannose trimming nearly identical to that of CSQ-WT.

Pharmacological and molecular inhibition were used to establish the identity of CSQ2 kinase as protein kinase CK2. *In vitro*, inhibition of CSQ2 phosphorylation using cardiomyocyte and nonmuscle cell CSQ2 kinase sources was successfully carried out with three specific inhibitors of CK2: TBB, DMAT and TBCA. TBCA produced identical inhibition curves for both cellular kinase sources and commercial CK2α’ kinase, with
increasing concentrations of drug. SiRNA knockdown of both CK2α and CK2α′ catalytic subunits in nonmuscle cells reduced CSQ2 kinase activity by nearly 2-fold according to similar in vitro CSQ2 phosphorylation assays.

Additionally, both ATP-binding site competitive inhibition and CK2 RNAi protein inhibition were used successfully in situ to suppress endogenous CSQ2 phosphorylation. TBCA used at 100 µM with CSQ-WT overexpressing cardiomyocytes and COS nonmuscle cells in culture led to an 82 and 66% decrease in CSQ2 phosphate incorporation, respectively, compared to control. Similarly, simultaneous knockdown of both CK2α and CK2α′ catalytic subunits in COS cells overexpressing adenoviral CSQ-WT, caused a near 2-fold decrease in CSQ2 phosphate incorporation, further supporting the identity of CSQ2 kinase as protein kinase CK2.

These studies present a global model for CSQ2 trafficking regulation in cardiomyocytes. As CSQ2 is translated at perinuclear rough ER, its C-terminus is exposed to the cytosolic protein kinase CK2 allowing for CSQ2 phosphorylation prior to translocation into the ER lumen. A combination of dephosphorylation and monomerization then promote anterograde trafficking through the secretory system. CSQ2 subsequently becomes retained in junctional SR compartments due to increasing Ca^{2+} concentrations, which leads to polymer formation. Following a decrease in Ca^{2+} levels, CSQ2 monomerizes to once again traffic anterogradely through the secretory system.
APPENDIX

LIST OF ABBREVIATIONS

Ad.CSQ wild-type cardiac calsequestrin adenovirus
Ad.CSQ-DsRed adenoviral cardiac calsequestrin-DsRed
Ad.CSQ-HA adenoviral cardiac calsequestrin with hemagglutinin epitope tag
Ad.mimPP constitutively-phosphorylated cardiac calsequestrin adenovirus
Ad.nonPP nonphosphorylatable cardiac calsequestrin adenovirus
CICR calcium-induced calcium release
COS COS-7 African green monkey kidney cells
CPVT catecholaminergic polymorphic ventricular tachycardia
CSNK2A1 protein kinase CK2α catalytic subunit
CSNK2A2 protein kinase CK2α’ catalytic subunit
CSQ calsequestrin
CSQ-DsRed cardiac calsequestrin pDsRed2-N1 fusion protein
CSQ-mimPP constitutively-phosphorylated cardiac calsequestrin
CSQ-nonPP nonphosphorylatable cardiac calsequestrin
CSQ-WT wild-type cardiac calsequestrin
CSQ1 skeletal calsequestrin
CSQ2 cardiac calsequestrin
CSQ-HA cardiac calsequestrin with hemagglutinin epitope tag
DAPI 4’-6-diamidino-2-phenylindole
DMAT 2-dimethylamino-4,5,6,7-tetramethyl-1H-benzimidazole
DMEM Dulbecco’s Modified Eagle’s Medium
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRB</td>
<td>5,6-dichloro-1-(β-α-ribofuranosyl)-benzimidazole</td>
</tr>
<tr>
<td>DsiRNA</td>
<td>Dicer-Substrate siRNA</td>
</tr>
<tr>
<td>ECL</td>
<td>electrochemiluminescence</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>ERGIC</td>
<td>ER-Golgi intermediate compartment</td>
</tr>
<tr>
<td>ESMS</td>
<td>electrospray mass spectrometry</td>
</tr>
<tr>
<td>GlcNAc</td>
<td>N-acetyl-D-glucosamine</td>
</tr>
<tr>
<td>HEK</td>
<td>human embryonic kidney 293 cells</td>
</tr>
<tr>
<td>HF</td>
<td>heart failure</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>IP3R</td>
<td>inositol trisphosphate receptor</td>
</tr>
<tr>
<td>Jct</td>
<td>junctin</td>
</tr>
<tr>
<td>Man</td>
<td>mannose</td>
</tr>
<tr>
<td>MOI</td>
<td>multiplicity of infection</td>
</tr>
<tr>
<td>NCX</td>
<td>Na⁺/Ca²⁺ exchanger</td>
</tr>
<tr>
<td>OST</td>
<td>oligosacharyl transferase complex</td>
</tr>
<tr>
<td>RNC</td>
<td>ribosome nascent chain complex</td>
</tr>
<tr>
<td>RyR</td>
<td>ryanodine receptor</td>
</tr>
<tr>
<td>RyR2</td>
<td>cardiac ryanodine receptor</td>
</tr>
<tr>
<td>SERCA2a</td>
<td>cardiac sarco/endoplasmic reticulum Ca²⁺-ATPase</td>
</tr>
<tr>
<td>SP/SPC</td>
<td>signal peptidase complex</td>
</tr>
<tr>
<td>SR</td>
<td>sarcoplasmic reticulum</td>
</tr>
<tr>
<td>SRP</td>
<td>signal recognition particle</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SRP-R</td>
<td>signal recognition particle receptor</td>
</tr>
<tr>
<td>T-tubules</td>
<td>transverse tubules</td>
</tr>
<tr>
<td>TBCA</td>
<td>tetrabromocinnamic acid</td>
</tr>
<tr>
<td>TBB</td>
<td>4,5,6,7-tetrabromobenzotriazole</td>
</tr>
<tr>
<td>TRAM</td>
<td>translocating chain-associated membrane protein</td>
</tr>
<tr>
<td>TRAP</td>
<td>translocon-associated protein complex</td>
</tr>
<tr>
<td>Trd/Trd1</td>
<td>triadin-1</td>
</tr>
</tbody>
</table>
REFERENCES

ABSTRACT

CARDIAC CALSEQUESTRIN PHOSPHORYLATION AND TRAFFICKING IN THE MAMMALIAN CARDIOMYOCYTE

by

TIMOTHY P. MCFARLAND

May 2011

Advisor: Dr. Steven E. Cala
Major: Physiology
Degree: Doctor of Philosophy

Cardiac CSQ (CSQ2) is a multifaceted protein, capable of binding significant quantities of Ca2+ and altering ryanodine receptor activity at the junctional sarcoplasmic reticulum (SR). Little is known about the trafficking of CSQ2 from its unknown site of biosynthesis, which appears to be of importance as its structure changes in a trafficking-dependent manner in various types of heart failure. Through the use of multiple antibodies specific to classic rough ER markers, and with the creation of CSQ-DsRed tetramer fusion protein, we were able to establish a juxtanuclear localization of rough ER in cardiomyocytes. Using fluorescence confocal microscopy, the translocon complex proteins TRAP-\(\alpha\) and TRAM, along with the ribosomal protein S6, were all visualized and found to encapsulate both myonuclei. Additionally, time course studies of CSQ-DsRed, in conjunction with anti-DsRed immunostaining, highlighted a perinuclear rough ER site of biosynthesis for CSQ2. The fusion protein exhibited a tetramerization-dependent trafficking predicted to be very similar to CSQ2 polymerization-dependent trafficking with high and low secretory compartment Ca2+ concentrations leading to polymerization and monomerization, respectively.
Cardiac-specific C-terminal phosphorylation of CSQ2 serines was shown to effect CSQ2 trafficking according to mass spectrometric analysis of the protein’s N-linked glycan. A Ser 378,382,386 Ala mutation (CSQ-nonPP) of these sites inhibited CSQ2 phosphorylation and led to an increased trafficking out of the ER as indicated by the increased mannose trimming of CSQ2 glycan. This effect was reversed with the phosphomimetic mutant Ser 378,382,386 Glu (CSQ-mimPP) which had glycoforms with mannose trimming nearly identical to that of CSQ-WT.

Pharmacological and molecular inhibition were used to establish the identity of CSQ2 kinase as protein kinase CK2. In vitro, inhibition of CSQ2 phosphorylation using cardiomyocyte and nonmuscle cell CSQ2 kinase sources was successfully carried out with three specific inhibitors of CK2: TBB, DMAT and TBCA. TBCA produced identical inhibition curves for both cellular kinase sources and commercial CK2α′ kinase, with increasing concentrations of drug. SiRNA knockdown of both CK2α and CK2α′ catalytic subunits in nonmuscle cells reduced CSQ2 kinase activity by nearly 2-fold according to similar in vitro CSQ2 phosphorylation assays.

Additionally, both ATP-binding site competitive inhibition and CK2 RNAi protein inhibition were used successfully in situ to suppress endogenous CSQ2 phosphorylation. TBCA used at 100 µM with CSQ-WT overexpressing cardiomyocytes and COS nonmuscle cells in culture led to an 82 and 66% decrease in CSQ2 phosphate incorporation, respectively, compared to control. Similarly, simultaneous knockdown of both CK2α and CK2α′ catalytic subunits in COS cells overexpressing adenoviral CSQ-WT, caused a near 2-fold decrease in CSQ2 phosphate incorporation, further supporting the identity of CSQ2 kinase as protein kinase CK2.
These studies present a global model for CSQ2 trafficking regulation in cardiomyocytes. As CSQ2 is translated at perinuclear rough ER, its C-terminus is exposed to the cytosolic protein kinase CK2 allowing for CSQ2 phosphorylation prior to translocation into the ER lumen. A combination of dephosphorylation and monomerization then promotes anterograde trafficking through the secretory system. CSQ2 subsequently becomes retained in junctional SR compartments due to increasing Ca2+ concentrations, which led to polymer formation. Following a decrease in Ca2+ levels, CSQ2 monomerizes to once again traffic anterogradely through the secretory system.
AUTOBIOGRAPHICAL STATEMENT

Name: Timothy P. McFarland

Education: Bachelor of Science, 2004
Michigan State University
Major: Biochemistry and Molecular Biology/Biotechnology
East Lansing, MI

I have always enjoyed the prospect of making a career out of solving problems. Initially, I was an electrical engineering major at Michigan State University where I learned to appreciate physics and mathematics. I had never thought of entering into science, but soon after my first general chemistry course, I discovered my passion for the field and transferred into the Biochemistry and Molecular Biology department. Fortunately, I was able to keep the fact that I was a science nerd under wraps, allowing me to meet my future wife Lindsay a few years prior to graduation. Upon completing my B.S. degree in 2004, I began work as a pharmacy technician for the hematology/oncology/nephrology unit of the Children’s Hospital of Michigan. This clinical experience led me to pursue my Ph.D. through the Department of Physiology, where I worked for five years under the expert supervision of Dr. Steven E. Cala. This is where I developed my love for cardiovascular biochemistry and cell biology. I hope to stay in this field in order to establish an academic career.