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Bias Affiliated With Two Variants Of Cohen’s d When Determining U1 As A 
Measure Of The Percent Of Non-Overlap 
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Variants of Cohen’s d, in this instance dt and dadj, has the largest influence on U1 measures used with 
smaller sample sizes, specifically when n1 and n2 = 10. This study indicated that bias for variants of d, 
which influence U1 measures, tends to subside and become more manageable, in terms of precision of 
estimation, around 1% to 2% when n1 and n2 = 20. Thus, depending on the direction of the influence, both 
dt and dadj are likely to manage bias in the U1 measure quite well for smaller to moderate sample sizes. 
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Introduction 
 
In his seminal work on power analysis, Jacob 
Cohen (1969; 1988) derived an effect size 
measure, Cohen’s d, as the difference between 
two sample means. Using n, M, and SD from 
two sample groups, d provided “score distances 
in units of variability” (p. 21), by translating the 
means into a common metric of standard 
deviation units pertaining to the degree of 
departure from the null hypothesis.  

The common formula for Cohen’s d 
(1988) is 
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 Cohen’s d can be calculated if no n, M, 
or SD for two groups is reported via t values and 
degrees of freedom, termed dt here, where it is 
assumed that n1 and n2 are equal (Rosenthal, 
1991): 

                                1

2t
d

df
=                         (2) 

 
where t = t value, and df = n1 + n2 - 2 

Kraemer (1983) noted that the 
distribution of Cohen’s d was skewed and heavy 
tailed, and Hedges (1981) found that d was a 
positively biased effect size estimate. Hedges 
proposed an approximate, modified estimator of 
d, which will be termed dadj here, where: 

 

                  ( ) 3
1
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−
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where m = n1 + n2 – 2. 
Cohen (1969; 1988) revisited the idea of 

group overlap, which was studied by Tilton 
(1937), and the degree of overlap (O) between 
two distributions;  and also in close proximity to 
the time of Cohen’s initial work (i.e., 1969) by 
Elster and Dunnete (1971). This resulted in the 
U1 measure, which was derived from d as a 
percent of non-overlap. As Cohen (1988) 
explained, “If we maintain the assumption that 
the populations being compared are normal and 
with equal variability, and conceive them further 
as equally numerous, it is possible to define 
measures of non-overlap (U1) associated with d” 
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(p. 21). 
Algebraically, U1 is related to the 

cumulative normal distribution and is expressed 
as (Cohen, 1988): 
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where d = Cohen’s d value, P = percentage of 
the area falling below a given normal deviate, 
and U2 = Pd/2. 

 In SPSS (Statistical Package for the 
Social Sciences) syntax, U1 is calculated using 
the following expressions: 
 
Compute U = CDF.NORMAL((ABS(d)/2),0,1). 
Compute U1 = (2*U-1)/U*100. 
Execute. 
 
where d = Cohen’s d value, ABS = absolute 
value, CDF. NORMAL = cumulative probability 
that a value from a normal distribution where M 
= 0 and SD = 1 is < the absolute value of d/2. 

Thus, the link between d and U1 was 
seen by Cohen (1988) in that, “d is taken as a 
deviate in the unit normal curve and P [from 
expression 4] as the percentage of the area 
(population of cases) falling below a given 
normal deviate” (p. 23). 

For Cohen (1998), non-overlap was the 
extent to which an experiment or intervention 
had had an effect of separating the two 
populations of interest. A high percentage of 
non-overlap indicated that the two populations 
were separated greatly. When d = 0, there was 
0% overlap and U1 = 0 also, or as Cohen (1988) 
noted “either population distribution is perfectly 
superimposed on the other” (p. 21). Therefore, 
the two populations were identical. 

The assumptions for the percentage of 
population non-overlap are: 1) the comparison 
populations have normality and 2) equal 
variability. Further, Cohen (1988) added that the 
U1 measure would also hold for samples from 
two groups if “the samples approach the 
conditions of normal distribution, equal 
variability, and equal sample size” (p. 68). 

Cohen (1988, p. 22) went on to produce 

Table 2.2.1, which consisted of non-overlap 
percentages for values of d. Assuming a normal 
distribution, this table showed that, for example, 
a value of d = .20 would have a corresponding 
U1 = 14.7%, or a percentage of non-overlap of 
just over 14%. That is, the distribution of scores 
for the treatment group overlapped only a small 
amount with the distribution of scores for the 
non-treatment group, which was manifested in 
the small effect size of .20. As the value of d 
increased, so would the percentage of non-
overlap between the two distributions of scores, 
which indicated that the two groups differed 
considerably. 
 

Methodology 
 
After an extensive review of the literature, it was 
found that very few studies included effect size 
indices with tests for statistical significance and 
none produced a U1 measure when any of the 
variants of d were reported. Further, beyond 
studies, for example, by Hedges (1981) or 
Kraemer (1983) related to the upward bias and 
skewness associated with d in small samples, it 
appears in the scholarly literature that d as a 
percent of non-overlap has not been studied to 
evaluate any bias affiliated with variants of d, dt 
and dadj, substituted for it in the calculation of 
U1, except for what has been provided by Cohen 
(1988).  

Thus, the intent of this research was to 
examine U1 under varying sizes of d and n (i.e., 
n1 = n2). That is, this research looked at d values 
of .2, .5, .8, 1.00, and 1.50, which represent in 
educational research typically small to extremely 
large effect sizes. The sizes of n were 10, 20, 40, 
50, 80, and 120, which represent in educational 
research small to large sample sizes. It should be 
noted, though, as was first discussed by Glass, 
McGaw, and Smith (1981), and reiterated by 
Cohen (1988), about the previously-mentioned d 
effect size target values and their importance:  
 

these proposed conventions were set forth 
throughout with much diffidence, 
qualifications, and invitations not to 
employ them if possible. The values 
chosen had no more reliable a basis than 
my own intuition. They were offered as 
conventions because they were needed in 
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a research climate characterized by a 
neglect of attention to issues of magnitude 
(p. 532). 

 
Using the work of Aaron, Kromrey, and 

Ferron (1998), this study’s tables will display 
the bias and proportional bias found in each U1 
measure found via both dt and dadj. As noted in 
the Aaron et al. research, the current study 
defines bias as the difference between the tabled 
value of U1, derived from the standard d formula 
and presented by Cohen (1988) as Table 2.2.1, 
and the presented U1 value resultant from dt and 
dadj., respectively. Proportional bias, or the “size 
of [the] bias as a proportion of the actual effect 
size estimate” (Aaron et al., p. 9), will be 
defined as the bias found above divided by the 
presented estimate for U1 derived from both dt 
and dadj, respectively (see Tables 1 and 2). 

 
Results 

 
Using syntax written in SPSS v. 12.0 to obtain 
the results of the study, Tables 1 and 2 indicated, 
as would be expected, that regardless of the 
variant of d used, as the value of d increased, the 
bias in U1 decreased. For example, Table 1 
shows that at a small value of d = .2, and also at 
a moderate value of d  = .5,  the bias for small to 
moderate sample sizes ranged from about 1% to 
over 4%. As the value of d increased into the 
large effect size range of d = .8 to 1.50, the bias 
for the same sample sizes ranged from about 3% 
to under 1%. 
 The bias related to the U1 measure for 
both  forms  of  d used in this  study was  similar 
with both variants of d, the bias was constant 
with small sample sizes having 3% to 4% bias, 
moderate  sample  sizes  having  about  1%,  and  
 

large sample sizes having very small amounts of 
bias. More specifically, it did appear, though, 
that the bias related to dadj decreased more 
readily after d =.2 than was seen with dt. That is, 
when d = .20, the bias for dt = 4.5% and the bias 
for dadj = 4.3 %, which were very similar. 
However, when d = .5, dt incurred a bias of 
4.4%, while the bias for dadj = 3.5%. This trend 
continued to d = 1.50, with dadj incurring less 
bias than dt, or stated another way, dt had more 
of a biased effect on U1.  dt’s over-estimation 
property was also noted by Thompson and 
Schumacker (1997) in a study that assessed the 
effectiveness of the binomial effect size display. 
 

Conclusion 
 
Finally, as was found by Aaron et al. (1998), 
Hedges (1981), and Kraemer (1983), this study 
added to the literature that the biases found in 
variants of d, in this instance dt and dadj, had the 
largest influence on U1 measures used with 
smaller sample sizes, specifically when n1 and n2 
= 10. Although not looking at U1 measures per 
se, the Aaron et al., Hedges, and Kraemer 
studies showed the effect of small sample sizes 
on d and variants of d when n1 and n2 = 5 or 10. 
 The current study indicated that bias for 
variants of d tended to subside and become more 
manageable, in terms of precision of estimation, 
around 1% to 2% when n1 and n2 = 20, or 
beyond very small sample sizes of n1 and n2 = 5 
and 10. This is favorable for educational and 
behavioral sciences research designs that contain 
sample sizes typically of less than 100 
participants (Huberty & Mourad, 1980). Thus, 
both dt and dadj tended to manage bias in the U1 
measure quite well for smaller to moderate 
sample sizes. 

 

Table 1: Bias Affiliated with Estimates of  U1 Derived from dt 

 
n1 = n2 d U1 U1 via dt Bias 

(U1 – U1 dt) 
Proportional 

Bias 
(Bias / U1 dt) 

10 .2 14.7 15.4 .7 .045 
20 .2 14.7 15.1 .4 .026 
40 .2 14.7 14.9 .2 .013 
50 .2 14.7 14.8 .1 .007 
80 .2 14.7 14.8 .1 .007 
120 .2 14.7 14.7  0      0  
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Table 1 Continued. 
 

n1 = n2 d U1 U1 via dt Bias 
(U1 – U1 dt) 

Proportional 
Bias 

(Bias / U1 dt) 
10 .5 33.0 34.5 1.5 .044 
20 .5 33.0 33.7 .7 .021 
40 .5 33.0 33.4 .4 .012 
50 .5 33.0 33.3 .3 .009 
80 .5 33.0 33.2 .2 .006 
120 .5 33.0 33.1 .1 .003 

 

n1 = n2 d U1 U1 via dt Bias 
(U1 – U1 dt) 

Proportional 
Bias 

(Bias / U1 dt) 
10 .8 47.4 49.2 1.8 .037 
20 .8 47.4 48.3 .9 .019 
40 .8 47.4 47.8 .4 .008 
50 .8 47.4 47.7 .3 .006 
80 .8 47.4 47.6 .2 .004 
120 .8 47.4 47.5 .1 .002 

 

n1 = n2 d U1 U1 via dt Bias 
(U1 – U1 dt) 

Proportional 
Bias 

(Bias / U1 dt) 
10 1.00 55.4 57.4 2.0 .035 
20 1.00 55.4 56.4 1.0 .018 
40 1.00 55.4 55.9 .5 .009 
50 1.00 55.4 55.8 .3 .005 
80 1.00 55.4 55.6 .2 .004 
120 1.00 55.4 55.5 .1 .002 

 

n1 = n2 d U1 U1 via dt Bias 
(U1 – U1 dt) 

Proportional 
Bias 

(Bias / U1 dt) 
10 1.50 70.7 72.7 2.0 .028 
20 1.50 70.7 71.7 1.0 .014 
40 1.50 70.7 71.2 .5 .007 
50 1.50 70.7 71.1 .4 .006 
80 1.50 70.7 70.9 .2 .003 
120 1.50 70.7 70.8 .1 .001 
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Table 2: Bias Affiliated with Estimates of  U1 Derived from dadj 

 
n1 = n2 d U1 U1 via dadj Bias 

(U1 – U1 dadj) 
Proportional 

Bias 
(Bias / U1 dadj) 

10 .2 14.7 14.1 .6 .043 
20 .2 14.7 14.4 .3 .021 
40 .2 14.7 14.6 .1 .007 
50 .2 14.7 14.6 .1 .007 
80 .2 14.7 14.6 .1 .007 
120 .2 14.7 14.7  0      0 

 

n1 = n2 d U1 U1 via dadj Bias 
(U1 – U1 dadj) 

Proportional 
Bias 

(Bias / U1 dadj) 
10 .5 33.0 31.9 1.1 .035 
20 .5 33.0 32.5 .5 .015 
40 .5 33.0 32.8 .2 .006 
50 .5 33.0 32.8 .2 .006 
80 .5 33.0 32.9 .1 .003 
120 .5 33.0 33.0 0      0 

 

n1 = n2 d U1 U1 via dadj Bias 
(U1 – U1 dadj) 

Proportional 
Bias 

(Bias / U1 dadj) 
10 .8 47.4 45.9 1.5 .033 
20 .8 47.4 46.7 .7 .015 
40 .8 47.4 47.1 .3 .006 
50 .8 47.4 47.1 .3 .006 
80 .8 47.4 47.2 .2 .004 
120 .8 47.4 47.3 .1 .002 

 

n1 = n2 d U1 U1 via dadj Bias 
(U1 – U1 dadj) 

Proportional 
Bias 

(Bias / U1 dadj) 
10 1.00 55.4 53.8 1.6 .030 
20 1.00 55.4 54.7 .7 .013 
40 1.00 55.4 55.1 .3 .005 
50 1.00 55.4 55.1 .3 .005 
80 1.00 55.4 55.2 .2 .004 
120 1.00 55.4 55.3 .1 .002 

 
n1 = n2 d U1 U1 via dadj Bias 

(U1 – U1 dadj) 
Proportional 

Bias 
(Bias / U1 dadj) 

10 1.50 70.7 69.1 1.6 .023 
20 1.50 70.7 69.9 .8 .011 
40 1.50 70.7 70.3 .4 .006 
50 1.50 70.7 70.4 .3 .004 
80 1.50 70.7 70.5 .2 .003 
120 1.50 70.7 70.6 .1 .001  
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