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Bias Of The Cox Model Hazard Ratio 
 

   Inger Persson                                    Harry Khamis 
                           TFS Trial Form Support AB                   Statistical Consulting Center 
                                  Stockholm, Sweden                              Wright State University 
 
 
The hazard ratio estimated with the Cox model is investigated under proportional and five forms of 
nonproportional hazards.  Results indicate that the highest bias occurs for diverging hazards with early 
censoring, and for increasing and crossing hazards under a high censoring rate. 
 
Key words: censoring proportion, proportional hazards, random censoring, survival analysis,  
                    type I censoring 
 
 

Introduction 
 
In recent decades, survival analysis techniques 
have been extended far beyond the medical, 
biomedical, and reliability research areas to 
fields such as engineering, criminology, 
sociology, marketing, insurance, economics, etc.  
The study of survival data has previously 
focused on predicting the probability of 
response, survival, or mean lifetime, and 
comparing the survival distributions. More 
recently, the identification of risk and/or 
prognostic factors related to response, survival, 
and the development of a certain condition has 
become equally important (Lee, 1992). 

Conventional statistical methods are not 
adequate to analyze survival data because some 
observations are censored, i.e., for some 
observations there is incomplete information 
about the time to the event of interest. A 
common type of censoring in practice is Type I 
censoring, where the event of interest is 
observed  only  if  it  occurs  prior  to  some  pre- 
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specified time, such as the closing of the study  
or  the  end  of  the  follow-up. The most 
common approach for modeling covariate 
effects in survival data uses the Cox 
Proportional Hazards Regression Model (Cox, 
1972), which takes into account the effect of 
censored observations.  As the name indicates, 
the Cox model relies on the assumption of 
proportional hazards, i.e., the assumption that 
the effect of a given covariate does not change 
over time.  If this assumption is violated, then 
the Cox model is invalid and results deriving 
from the model may be erroneous. 

A great number of procedures, both 
numerical and graphical, for assessing the 
validity of the proportional hazards assumption 
have been proposed over the years. Some of the 
procedures require partitioning of failure time, 
some require categorization of covariates, some 
include a spline function, and some can be 
applied to the untransformed data set.  

However, no method is known to be 
definitively better than the others in determining 
nonproportionality. Some authors recommended 
using numerical tests, e.g., Hosmer and 
Lemeshow (1999). Others recommended 
graphical procedures, because they believe that 
the proportional hazards assumption only 
approximates the correct model for a covariate 
and that any formal test, based on a large enough 
sample, will reject the null hypothesis of 
proportionality (Klein & Moeschberger, 1997, p. 
354).  

Power studies to compare some 
numerical tests have been performed; see, e.g., 
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Ng’andu, 1997; Quantin, et al., 1996; Song & 
Lee, 2000, and Persson, 2002. The goal of this 
article is to assess the bias of the Cox model 
estimate of the hazard ratio under different 
censoring rates, sample sizes, types of 
nonproportionality, and types of censoring. The 
second section reviews the Cox regression 
model and the proportional hazards assumption. 
The average hazard ratio, the principal criterion 
against which the Cox model estimates are 
compared, is described in the third section. The 
fourth section presents the simulation strategy. 
The results and conclusions are given in the 
remaining two sections. 
 
Cox proportional hazards model 

A central quantity in the Cox regression 
model is the hazard function, or the hazard rate, 
defined by: 
 
            P[t ≤ T < t + ∆t | T ≥ t] 
λ(t) =         lim     ____________________, 
            ∆t→0             ∆t 
 
where T is the random variable under study: 
time until the event of interest occurs. Thus, for 
small ∆t, λ(t)∆t is approximately the conditional 
probability that the event of interest occurs in 
the interval [t, t + ∆t], given that it has not 
occurred before time t. 

There are many general shapes for the 
hazard rate; the only restriction is λ(t) ≥ 0. 
Models with increasing hazard rates may arise 
when there is natural aging or wear. Decreasing 
hazard functions are less common, but may 
occur when there is a very early likelihood of 
failure, such as in certain types of electronic 
devices or in patients experiencing certain types 
of transplants.  

A bathtub-shaped hazard is appropriate 
in populations followed from birth. During an 
early period deaths result, primarily from infant 
diseases, after which the death rate stabilizes, 
followed by an increasing hazard rate due to the 
natural aging process. Finally, if the hazard rate 
is increasing early and eventually begins 
declining, then the hazard is termed “hump-
shaped.” This type of hazard rate is often used in 
modeling survival after successful surgery, 
where there is an initial increase in risk due to 
infection or other complications just after the 

procedure followed by a steady decline in risk as 
the patient recovers (see, e.g., Kline & 
Moeschberger, 1997). 

In the Cox model, the relation between 
the distribution of event time and the covariates 
z (a p x 1 vector) is described in terms of the 
hazard rate for an individual at time t:  
 
           λ(t,z) = λ0(t)exp(β'z),  (1) 
 
where λ0(t) is the baseline hazard rate, an 
unknown (arbitrary) function giving the value of 
the hazard function for the standard set of 
conditions z = 0, and β is a p x 1 vector of 
unknown parameters. The partial likelihood 
estimate of β is asymptotically consistent 
(Andersen & Gill, 1982; Cox, 1975, and Tsiatis, 
1981). 

The ratio of the hazard functions for two 
individuals with covariate values z and z* is 
λ(t,z)/λ(t,z*) = exp[β'(z – z*)], an expression that 
does not depend on t. Thus, the hazard functions 
are proportional over time. The factor exp(β'z) 
describes the hazard ratio for an individual with 
covariates z relative to the hazard at a standard z 
= 0. The usual interpretation of the hazard ratio, 
exp(β'z), requires that (1) holds. There is no 
clear interpretation if the hazards are not 
proportional.  
 Of principal interest in a Cox regression 
analysis is to determine whether a given 
covariate influences survival, i.e. to estimate the 
hazard ratio for that covariate. The behavior of 
the hazard ratio estimated with the Cox model 
when the underlying assumption of proportional 
hazards is false (i.e., when the hazards are not 
proportional) is investigated in this paper. To 
assess the Cox estimates under nonproportional 
hazards, the estimates are compared to an exact 
calculation of the geometric average of the 
hazard ratio described in the next section. An 
average hazard ratio does not reflect the truth 
exactly since the hazard ratio is changing with 
time when the proportionality assumption is not 
in force. However, it can provide an 
approximate standard against which to compare 
the Cox model estimates. Because the estimation 
of the hazard ratio from the Cox model cannot 
be done analytically (Klein & Moeschberger, 
1997), the comparison is made by simulations. 
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Average hazard ratio 
 The average hazard ratio (AHR) is 
defined as (Kalbfleisch & Prentice, 1981): 
           ∞ 

       θ(W) = - ∫ [λ1(t)/λ2(t)]dW(t),         (2) 
                   0 

where λ1(t) and λ2(t) are the hazard functions of 
two groups and W(t) is a survivor or weighting 
function. The weight function can be chosen to 
reflect the relative importance attached to hazard 
ratios in different time periods. Here, W(t) 
depends on the general shape of the failure time 
distribution and is defined as W(t) = S1

ε(t)S2
ε(t), 

where S1(t) and S2(t) are the survivor functions 
(i.e., one minus the cumulative distribution 
function) for the two groups, and ε > 0. The 
value ε = ½ weights the hazard ratio at time t 
according to the geometric average of the two 
survivor functions. Values of ε > ½ will assign 
greater weight to the early times while ε < ½ 
assigns greater weight to later times. Here, ε = ½ 
will be used.    
 For Weibull distributed lifetimes with 
scale parameter α and shape parameter γ, the 
survival function is S(t) = exp[-(αt)γ] and the 
AHR estimator (2) can be written 
 
    

θ(W) =  
   ∞ 

- ∫[(γ1α1
γ1)/(γ2α2

γ2)]d{exp[-½((α1t)
γ1 + (α2t)

γ2)]}. 
    0 

 
 When the parametric forms of the 
survivor functions are unknown, the AHR (2) 
can still be used; in this case, the Kaplan-Meier 
product-limit estimates for the two groups are 
used as the survivor functions (Kaplan & Meier, 
1958). However, (2) then only holds for 
uncensored data. The AHR function for 
censored data can be found in Kalbfleisch and 
Prentice, 1981.  
 

Methodology 
 

Simulation strategy 
 The hazard ratio estimates from the Cox 
model are evaluated under six scenarios:  
(1) proportional hazards, (2) increasing hazards, 
(3) decreasing hazards, (4) crossing hazards,  

(5) diverging hazards, and (6) converging 
hazards. The AHR is compared in the two-
sample case, corresponding to two groups with 
different hazard functions.   

Equal sample sizes of 30, 50, and 100 
observations per group are used along with 
average censoring proportions of 10, 25, and 50 
percent. Type I censoring is used along with 
early and late censoring. The number of 
repetitions used in each simulation is 10,000. 
For a given sample size, censoring proportion, 
and type of censoring (random, early, late), the 
mean Cox estimate is calculated for all scenarios 
except converging hazards. Because of the 
asymmetry in the distribution of values in the 
case of converging hazards, the median estimate 
is used. For interpretation purposes, the percent 
bias of the mean or median Cox estimate relative 
to the AHR is reported in tables.  
 For the case of random censoring, 
random samples of survival times ts are 
generated from the Weibull distribution. The 
hazard function for the Weibull distribution is 
λ(t) = αγ(αt)γ-1. The censoring times tc are 
generated from the exponential distribution with 
hazard function λ(t) = β, where the value of β is 
adjusted to achieve the desired censoring 
proportions. The time on study t is defined as: 
 

   
⎩
⎨
⎧

>
≤

=
csc

css

t tift

t tift
t  

 
The event indicator is denoted by d: 

⎩
⎨
⎧

=
occurred hasevent   theif1,

censored isn observatio  theif0,
d  

 
For early censoring, a percentage of the 

lifetimes are randomly chosen and multiplied by 
a random number generated from the uniform 
distribution. The percentage chosen is the same 
as the censoring proportion. The parameters of 
the uniform distribution are chosen so that the 
censoring times are short in order to achieve the 
effect of early censoring. For late censoring, a 
percentage of the longest lifetimes are chosen; 
this percentage is slightly larger than the 
censoring proportion. Of those lifetimes, a 
percentage corresponding to the censoring time 



PERSSON & KHAMIS 93 

is the lifetime, ts, minus a random number 
generated from the uniform distribution. The 
parameters of the uniform distribution are now 
chosen so that the random numbers are relatively 
small in order to achieve the effect of late 
censoring. 

 
Results 

 
For each of the six scenarios concerning the 
hazard rates of the two groups, comparisons of 
the estimated hazards ratio from the Cox model 
to the AHR is made for random, early, and late 
censoring and for selected sample sizes and 
censoring rates. The comparison is made based 
on the percent difference (bias) between the 
average Cox hazard ratio estimate and the AHR; 
[(average Cox estimate – AHR)/AHR] x 100.  
 
Proportional Hazards 
 Survival times are generated from the 
Weibull distribution where γ=1, α=1 for group 1, 
and γ=1, α=2 for group 2. The AHR is 2.0 for 
this situation. The percent of the bias for the 
mean Cox model estimate relative to the AHR is 
given in Table 1. 

Under proportional hazards, the Cox 
model is correct. So, the estimated hazard ratio 
from the Cox model should be close to 2.0 in all 
cases. Table 1 reveals that the Cox estimate is 
slightly biased. This bias grows with decreasing 
sample size or increasing censoring proportion. 
Early censoring produces a more biased estimate 
than random or late censoring, especially for 
high censoring proportions.  
 
Increasing Hazards 
 Survival times are generated from the 
Weibull distribution where γ=1.5, α=2 for group 
1, and γ=2, α=2 for group 2. The AHR is 1.2 for 
this situation. The percent of the bias for the 
mean Cox model estimate relative to the AHR is 
given in Table 2. 

The Cox estimates fall below the AHR 
for increasing hazards. The estimates closest to 
the AHR correspond to early censoring; these 
estimates are relatively stable regardless of 
censoring proportion or sample size. For random 
and late censoring the estimate decreases (higher 
bias) with increasing censoring proportion but 
remains stable relative to sample size. For early 

censoring the estimate is generally unbiased 
regardless of sample size or censoring 
proportion.   
 
Decreasing Hazards 
 Survival times are generated from the 
Weibull distribution where γ=0.9, α=1 for group 
1, and γ=0.75, α=3 for group 2. The AHR is 0.44 
for this situation. The percent of the bias for the 
mean Cox model estimate relative to the AHR is 
given in Table 3. 

The Cox estimates fall below the AHR. 
These estimates decrease slightly with 
increasing censoring proportion. The estimates 
for early censoring are slightly less biased than 
for random or late censoring at the higher 
censoring proportions. The bias is not heavily 
influenced by sample size.  
 
Crossing Hazards 
 Survival times are generated from the 
Weibull distribution where γ=2.5, α=0.3 for 
group 1, and γ=0.9, α=2 for group 2. The AHR 
is 15.4 for this situation. The percent of the bias 
for the mean Cox model estimate relative to the 
AHR is given in Table 4. 

The bias of the Cox estimates tends to 
be much smaller for 10% and 25% censoring 
proportions compared to the 50% censoring 
proportion. For 50% censoring, the Cox model 
tends to overestimate the AHR. The bias 
decreases with increasing sample size, especially 
for high censoring proportions.   
 
Diverging Hazards 
 Survival times are generated from the 
Weibull distribution where γ=0.9, α=1.0 for 
group 1, and γ=1.5, α=2 for group 2. The AHR 
is 0.536 for this situation. The percent of the bias 
for the mean Cox model estimate relative to the 
AHR is given in Table 5. 
 The Cox estimates are larger for random 
and late censoring than for early censoring at the 
highest censoring proportion. Generally, the 
sample size has little effect on the bias. For early 
censoring, the percent bias is approximately 
20% and is not strongly affected by sample size 
or censoring proportion. 
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Table 1. Proportional Hazards: percent bias of Cox model estimates relative to average hazard rate of 2.0. 

 
          Sample Size per Group 
 
Censoring % Censored     30     50    100 
 
Random 10%     5.5    4.0    2.0 
  25%     8.0    4.5    2.0 
  50%   11.0    5.5     3.0 
 
Early  10%     7.0    5.0    2.5 
  25%   10.0     6.0    3.5 
  50%   19.5   11.0     7.0 
 
Late  10%     5.5    4.0    2.0  
  25%     7.0    4.0    2.5 
  50%   10.5    6.5    3.5 
                                                                                                                      
 
Table 2. Increasing Hazards: percent bias of Cox model estimates relative to average hazard rate 
of 1.20. 

 
          Sample Size per Group 
 
Censoring % Censored      30       50     100 
 
Random 10%   -  6.7  -  7.5  -  8.3 
  25%   -  9.2  -10.8  -10.8 
  50%   -15.0  -17.5  -18.3 
 
Early  10%   -  4.2  -  5.8  -  6.7 
  25%   -  4.2  -  5.8  -  5.8 
  50%   -  1.7  -  5.0  -  5.8 
 
Late  10%   -  7.5  -  9.2  -10.0 
  25%   -12.5  -14.2  -15.0 
  50%   -20.8  -22.5  -23.3 
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Table 3. Decreasing Hazards: percent bias of Cox model estimates relative to average hazard rate 

of 0.441. 
 

          Sample Size per Group 
 
Censoring % Censored         30      50     100 
 
Random 10%   -  2.0  -  3.2  -  3.2 
  25%   -  4.3  -  5.7  -  5.9 
  50%   -  9.5  -11.3  -12.2 
 
Early  10%   -  1.4  -  2.5  -  2.3 
  25%   -  2.7  -  3.6  -  3.6 
  50%   -  5.4  -  5.9  -  6.6 
 
Late  10%   -  2.0  -  3.4  -  3.6 
  25%   -  4.9  -  6.8  -  7.3 
  50%   -10.9  -12.9  -13.8 
 
Table 4. Crossing Hazards: percent bias of Cox model estimates relative to average hazard rate of 
15.4. 

 
          Sample Size per Group 
 
Censoring % Censored       30       50    100 
 
Random 10%       5.8  -  7.1  -14.9 
  25%     19.5      4.5  -  5.2 
  50%     73.3    52.6    34.4 
 
Early  10%       1.3  -11.0  -18.8 
  25%       9.1  -  5.2  -15.6 
  50%     32.5      8.4  -  6.5 
 
Late  10%   -  1.9  -12.9  -19.5 
  25%   -  0.6  -  5.8  -  8.4 
  50%   100.6    81.8    67.5 
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Table 5. Diverging Hazards: percent bias of Cox model estimates relative to average 

hazard rate of 0.536. 
 

          Sample Size per Group 
 
Censoring % Censored      30     50    100 
 
Random 10%   -16.2  -18.3  -19.2 
  25%   -10.4  -12.9  -14.2 
  50%      7.8       3.7     1.1 
 
Early  10%   -19.0  -20.9  -22.0 
  25%   -19.0  -21.3  -22.6 
  50%   -18.8  -21.8  -23.7 
 
Late  10%   -16.4  -18.5  -19.4 
  25%   -  6.9  -  9.3  -10.4 
  50%    18.5     13.9    12.3 
 
 

Table 6. Converging Hazards: percent bias of Cox model estimates relative to average 
hazard rate of 7.15. 

 
          Sample Size per Group 
 
Censoring % Censored         30       50     100 
 
Random 10%   -  8.9  -11.2  -12.2 
  25%   -  5.6  -  8.3  -  9.4 
  50%      4.0       1.9  -  0.6 
 
Early  10%   -  9.4  -11.3  -12.4 
  25%   -  6.2  -  8.8  -10.2 
  50%      2.4    -  0.8  -  4.3 
 
Late  10%   -10.2  -12.4  -13.1 
  25%   -  7.3  -  8.4  -  8.1 
  50%    10.5       9.2     8.1 
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Converging Hazards 
 Survival times are generated from the 
Weibull distribution where γ=0.9, α=6.0 for 
group 1, and γ=1.2, α=1 for group 2.  The AHR 
is 7.15 for this situation.  The percent of the bias 
for the median Cox model estimate relative to 
the AHR is given in Table 6. The median Cox 
estimate increases with increasing censoring 
proportion.  The bias is not heavily influenced 
by sample size.  

 
Conclusion 

 
Just as with the classical maximum likelihood 
estimator, the maximum partial likelihood 
estimator is not unbiased, but it is asymptotically 
unbiased (Kotz & Johnson, 1985, p. 591-593).  
This behavior is evident in Table 1, where the 
Cox estimates can be seen to be larger than the 
AHR, but the bias decreases with increasing 
sample size regardless of the type of censoring 
or the censoring rate.   
 Table 7 shows those instances where the 
average percent bias exceeds 20% in absolute 
value; the entries are the percent bias averaged 
over sample size. 

There is no serious bias for the 
proportional hazards case regardless of type of 
censoring or censoring rate.   Similarly, there is 
no serious bias in the cases of decreasing or 
converging hazards.   
 Under-estimation occurs for increasing 
hazards at the 50% censoring rate with late 
censoring.  It also occurs for diverging hazards 
with early censoring regardless of censoring 
rate.  Over-estimation occurs for crossing 
hazards at the 50% censoring rate with random 
and late censoring.   

One might suspect that late censoring 
would render the least biased estimates since 
such a data structure contains more information 
than early or random censoring.  However, late 
censoring leads to severe bias for increasing and 
crossing hazards when the censoring proportion 
is high.  For lower censoring proportions (25% 
or lower), there is no severe bias for any of the 
nonproportionality models except diverging 
hazards. 
 As a practical matter, one can obtain 
descriptive statistics from a given data set, 
including percent censored, sample sizes, and a 

plot of the hazard curves.  From this 
information, one can approximate the magnitude 
and nature of the risk of biased estimation of the 
hazard ratio by the Cox model.  Generally, the 
least biased estimates are obtained for the lower 
censoring proportions (10% and 25%) except for 
diverging hazards.  In terms of bias, early 
censoring is problematic only for diverging 
hazards; late censoring is problematic for 
increasing and crossing hazards with the 50% 
censoring rate; and random censoring is 
problematic for crossing hazards with the 50% 
censoring rate.  The case corresponding to the 
least occurrence of severe bias is the one 
involving random censoring with a censoring 
rate of 25% or less. 
 In practice, the experimenter typically 
has some control over sample size and perhaps 
the censoring proportion.  For instance, the 
experimenter may be able to minimize censoring 
proportion, depending on the situation, through 
effective study design and experimental 
protocol.  Minimizing the censoring rate is 
generally recommended, especially for 
increasing and crossing hazards.  Early 
censoring is appreciably affected by censoring 
proportion only for constant and crossing 
hazards.  Sample size has the strongest effect on 
constant and crossing hazards, especially at 
higher censoring proportions, where higher 
sample sizes lead to less biased estimates. 
 In practical applications, the 
proportional hazards assumption is never met 
precisely.  If the deviation from the proportional 
hazards assumption is severe, then remedial 
measures should be taken.  However, in many 
instances the model diagnostics reveal only a 
small to moderate deviation from the 
proportional hazards assumption.  In these cases, 
the Cox model estimate of the hazard ratio is 
used for interpretation purposes in the presence 
of small to moderate assumption violations.  
This study characterizes the consequences of 
this interpretation in terms of bias, taking into 
account censoring rate, type of censoring, type 
of nonproportional hazards, and sample size.  
The general results indicate that the percent bias 
relative to AHR is under 20% in all but a few 
specific instances, as outlined above.   
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Table 7. Percent bias of the average Cox regression model estimates of the hazard ratio relative to 

the AHR averaged over sample size. 
 
          Censoring 
 
Hazards % censoring  random early  late  
 
constant  10  *  *  *      
   25  *  *  * 
   50  *  *  * 
 
increasing  10  *  *  * 
   25  *  *  * 
   50  *  *  -22   
 
decreasing  10  *  *  * 
   25  *  *  * 
   50  *  *  * 
 
crossing  10  *  *  * 
   25  *  *  * 
   50  53  *    83 
 
diverging  10  *   -21  * 
   25  *   -21  * 
   50  *   -21  * 
 
converging  10  *  *  * 
   25  *  *  * 
   50  *  *  * 
 
 
*under 20% in absolute value 
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