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Local Power For Combining Independent Tests in The Presence of Nuisance 
Parameters For The Logistic Distribution 

 
W. A. Abu-Dayyeh      Z. R. Al-Rawi      M. MA. Al-Momani 

Department of Statistics, Faculty of Science 
Yarmouk University Irbid-Jordan 

 
 
Four combination methods of  independent tests for testing a simple hypothesis versus one-sided 
alternative are considered viz. Fisher, the logistic, the sum of P-values and the inverse normal method in 
case of logistic distribution. These methods are compared via local power in the presence of nuisance 
parameters for some values of α using simple random sample. 
 
Key words: combination method; independent tests; logistic distribution; local power; simple random 

sample; nuisance parameter. 
 
 

Introduction 
 
Combining independent tests of hypotheses is an 
important and popular statistical practice. 
Usually, data about a certain phenomena comes 
from different sources in different times, so we 
want to combine these data to study such 
phenomena. Many authors have considered the 
problem of combining (n) independent tests of 
hypotheses. For simple null hypotheses, Little 
and Folks (1971), studied four methods for 
combining a finite number of independent tests. 
They found that the Fisher method is better than 
the other three methods via Bahadur efficiency. 
Again, Little and Folks (1973) studied all 
methods of combining a finite number of 
independent tests and thy found that the Fisher's 
method is optimal under some mild conditions. 
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Brown, Cohen and Strawderman (1976) 
have shown that such all tests form a complete 
class. Abu-Dayyeh and Bataineh (1992) showed 
that the Fisher's method is strictly dominated by 
the sum of P-values method via Exact Bahadur 
Slop in case of combining an infinite number of 
independent shifted exponential tests when the 
sample size remains finite. Also, Abu-Dayyeh 
(1992) showed that under certain conditions that 
the local limit of the ratio of the Exact Bahadur 
efficiency of two tests equivalent to the Pitman 
efficiency between the two tests where these 
tests are based on sum of iid r.v’s. Again Abu-
Dayyeh and El-Masri (1994) studied the 
problem of combining (n) independent tests as     
(n →  ∞ ) in case of triangular distribution using 
six methods viz. sum of P-values, inverse 
normal, logistic, Fisher, minimum of P-values 
and maximum of P-values. They showed that the 
sum of P-values is better than all other methods. 

Abu-Dayyeh (1997) extended the 
definition of the local power of tests to the case 
of having nuisance parameters. He derived the 
local power for any symmetric test in the case of 
a bivariate normal distribution with known 
correlation coefficient, and then he applied it to 
the combination methods. 
 
Specific Problem 

Suppose there is (n) simple hypotheses:   
 
H0

(i) : θi = θ0i         vs     H1
(i)

 : θi > θ0i   i=1,2,…,n  
                                                                    (1) 
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Where θ0i is known for i=1,2,…,n and H0
(i) is 

rejected for sufficiently large values of some 
continuous real valued test statistic T(i) , 
i=1,2,…,n and we want to combine the (n) 
hypotheses into one hypothesis as follows: 
 
          H0: (θ1, θ2 , …, θn ) = (θ01 , θ02 , …, θ0n  )     
vs 

          H1: θi ≥ θ0i for all i, and θi > θ0i for 
some i, i=1,2, …, n                                          (2) 

             
            Many methods have been used for 
combining several tests of hypotheses into one 
overall test.  Among these methods are the non-
parametric (omnibus) methods that combine the 
P-values of the different tests.  The P-value of 
the i-th hypothesis is given by: 
  

          )(1)(
)(

0
)(

0

)( tFtTPP
ii H

i

H
i −=≥=           (3) 

 
where FH0

(i)(t) is the cdf of T (i)under H0
(i).  Note 

that Pi ~ U(0,1) under H0
(i). 

               
  Considered in this article is the case of 

ii θγθ =∗ , where 0,...,, 21 ≥rθθθ fixed 

constants and γ  is the unknown parameter. 

Then ( ) ( ) ( )rTTT ,...,, 21  are independent r.v’s 

such that for ri ,..,2,1= and we want to test  
 

0:0 =γH             vs 

0:1 >γH  `                                       (4) 
 
and therefore considered is the problem of 
combining a finite number of independent tests 
by looking at the Local Power of tests which is 
defined for a test φ by: 
       

    ( ) ( )
0P EinfL =γθγθ

ϕ
γ∂

∂=ϕ                      (5)                      

 
where  
 

( ) riir ,...,2,1,0,,...,,,0 21 =≥=≥ θθθθθγ , in 

case of logistic distribution. Compared (5) for 
the four methods of combining tests for the 
location family of distributions when 2=r and 

3=r . These methods are: Fisher, logistic, the 
sum of  p-values and the inverse normal 
methods.   

 
Methodology 

 
Now we will find expressions for the Local 
Power of the four combination methods of tests 
then compare them via the Local Power. 
 
Lemma 1  
 
 Let 21, XX  be independent r.v’s such 

that ( )1,~ ii LogisticX θγ for 2,1=i . Then  

A(1)    
 

( )( ) ( )21F0F2,1
KE θ+θ=ϕ

γ∂
∂

=γθθγ ,where 

∫
−

⎟
⎠
⎞⎜

⎝
⎛ −= −

a
c

F dy
y

y
yeK

1
3

2 2
1 , 2

c
ea =  and 

( ) ( )
2

1,4 αχ −=c  

 
A(2)   
 

( )( ) ( )21L
0y

L2,1
KE θ+θ=ϕ

γ∂
∂

=
θθγ , where 

( )( )
( )∫

∞

−+−
−−=

1
31

12
dy

yey

yy
K

cL , and c satisfies the 

following 
( )

( )21

11
1

c

c

e

ce

−

−

−

+−=−α . 

 
A(3)  
 
 

( )( ) ( )21S
0

S2,1
KE θ+θ=ϕ

γ∂
∂

=γ
θθγ ,where 

 
( )

6

232 cc
KS

−= , and α2=c . 

 
 
A(4)  
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( )( ) ( )21N
0

N2,1
KE θ+θ=ϕ

γ∂
∂

=γ
θθγ ,where 

 

∫
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ−−Φ−−= −

a

N dy
y

y

y
cK

1
3

1 21
1 , 

( )c
a

−Φ
= 1

and ( )α−Φ= − 12 1c . 

  
Proofs of the previous lemma are similar to 
proofs of lemma 2, so we will not write it.   
 
Lemma 2  
 Let 321 ,, XXX  be independent r.v’s 

such that ( )1,~ ii LogisticX θγ for 3,2,1=i . 

Then  
 

B(1)   
( ) ( )

( )
1 2 3

3

, ,
0 1

1 2 3               where

F F i
i

F

E K

K

γ θ θ θ
γ

ϕ θ
γ

θ θ θ
= =

∂ =
∂
= + +

∑
, 

 

( ) dy
y

y
y

c
yeK

a c

F 3
1

2 2
ln

2
11

−
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −+−= ∫
−

, 2
c

ea = , and ( ) ( )
2

1,6 αχ −=c . 

 
`B(2)   
 
, where 
 

( )( )( )
( )( )∫ ∫

∞∞

−+−−

−−−−=
1 1

32
11

11

211
dvdu

vuevu

vvu
K

cL , 

and c satisfies the following: 
 

( )( )
( )( )∫ ∫

∞∞

−+−−

−−=−
1 1

22
11

11

11
1 dvdu

vuevu

vu
c

α  

 
 
 
 
B(3) 

  
( ) ( )

( )

1 2 3, ,
0

3

1 2 3
1

where

S

S i S
i

E

K K

γ θ θ θ
γ

ϕ
γ

θ θ θ θ

=

=

∂
∂

= = + +∑

, 

 

         
( )
12

23 cc
KS

−=  and 3 6α=c . 

 
B(4) 

   ( ) ( )

( )
1 2 3

3

, ,
0 1

1 2 3

N N i
i

N

E K

K

γ θ θ θ
γ

ϕ θ
γ

θ θ θ
= =

∂ =
∂
= + +

∑
, 

where 
          

( ) ( )( )( ) ( )1 1

1 1

1 1 2

N

a b

K

c u v v dudv− −

=

− −Φ − −Φ −Φ −∫∫
 

 

( )ca −Φ= , ( )( )vcb 1−Φ−−Φ= , and 

( )α−Φ= − 13 1c .   
  

Now, we will prove just B(1), because 
the proof of the others can be done in the same 
way.  
 
Proof of B(1): 
 

( ) ( ) ( )
1 2 3

3

, ,
1

,F F i i i
i

E f x dx
∞ ∞ ∞

γ θ θ θ
=−∞ −∞ −∞

ϕ = φ − γθ∏∫ ∫ ∫  

where ( )iixf γθ− is the 

fdp .. of  ( ) 3,2,11, =iforLogistic iγθ  

 
 It easy to show that: 

( ) ( )

( ) ( )

1 2 3, ,

3

1

1 1

F

F i i i
i

E

f x dx

γ θ θ θ ϕ

φ γθ
∞ ∞ ∞

=−∞ −∞ −∞

= − − −∏∫ ∫ ∫
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so, 

( ) ( )

( ) ( )

1 2 3, ,

3

1

1 1

F

F i i i
i

E

f x dx

γ θ θ θ ϕ
γ

φ γθ
γ

∞ ∞ ∞

=−∞ −∞ −∞

∂
∂

⎡ ⎤∂= − − −⎢ ⎥∂ ⎣ ⎦
∏∫ ∫ ∫

 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 3, ,
0

\ \
1 2 3 1 2 3

\
1 2 3

1 2 3

1F FE

f x f x f x f x f x f x

f x f x f x

dx dx dx

γ θ θ θ
γ

ϕ ϕ
γ

∞ ∞ ∞

= −∞ −∞ −∞

∂ = − − ×
∂

⎧ ⎫+⎪ ⎪
⎨ ⎬
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∫ ∫ ∫

 
such that when  
 

( ) ( )
( )

2

\

3
0 , 1, 2,3.

1

i i

i

x x

i

i
x

e e
f x for i

e

− −

−

θ −
γ = = =

+
 

By symmetric of 

ix  we have  
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3

1i
i

0
F3,2,1

KE ⎟
⎠

⎞
⎜
⎝

⎛
∑θ=ϕ

γ∂
∂

==γ
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3 3
1 2

1 2 3

2

1 2 32 2 31
1 1 1

F

x xx x

F
x x x

K

e ee e
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e e e
ϕ

− −∞ ∞ ∞ − −

− − −
−∞−∞−∞

=

−
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where 
( )

⎪
⎩

⎪
⎨

⎧
≤−

=− ∑
=

wo

cp
i

i
F

.,0

ln2,1
1

3

1ϕ , 

3,2,1,
1

1 =
+

= i
e

p
ixi  

( ) ( ) ( ) cppp ≤−−− 321 ln2ln2ln2 implies 

that ( )( ) ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
++

≤ 1
11

ln
32

2
1 xx

c
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e
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also 

( ) ( ) cpp ≤−− 32 ln2ln2 and 

( ) cp ≤− 3ln2 implies 

that ( ) ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
+

≤ 1
1

ln
3

2
2 x

c

e

e
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and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≤ 1ln 2

3

c
ex respectively. 

 

 Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= 1ln 2

c
ea , 

( ) ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
+

= 1
1

ln
3

2

x

c

e

e
b and let 

( )( ) ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
++

= 1
11

ln
32

2

xx

c

ee

e
d , then we will 

get  

( ) ( )
( )
( )

3 31 2

1 2 3

2

1 2 32 2 3

1 1 1

x xx xa b d

x x x

F

e ee e
dx dx dx

e e e

K
− −− −

− − −
−∞ −∞ −∞

−
−

+ + +

=
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. 

 

 Let ( )∫
∞− −

−

+
=

d

x

x
dx

e

e
I 121

1

1

1
, then put 

11 xeu −+= to get that 
de

I
−+

=
1

1
1 , 

so , ( )( )111 322
1 ++−=

− xxc
eeeI .                         
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( )
( )

( )( )( )
3 32

32

2 3

2

2
1 22 3

1 1 1
1 1

x xxa b
c

xx

x x

F

e ee
e e e dxdx

e e

K
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− −
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−
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Also, let 
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( )( )∫
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−

−
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( )

( ) ( )
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b x
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c x

x

e
dx

e

e e dx
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( ) ( )

3

3 3
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1 1

1 ln 1
2

c x
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e e
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Finally put   31 xey += we get 
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2 2
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2
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2
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( ) ( )
3 3

0 0

1 1

2 ln 1 2 ln ,
i i

i i

P p c P p c
= =

α= − ≥ = − − ≤⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑  

because ( ) ( )
2
6

3

1

~ln2 χ∑
=

−
i

ip  

under 0H ,  then ( ) ( )
2

1,6 αχ −=c , which 

completes the proof.   
 

Also, here for the logistic distribution 
we will compare the Local Power for the 
previous four tests numerically. So from tables 
(1) and (2) when 01.0=α and 2=r the sum of 
p-values method is the best method followed by 
the inverse normal method, the logistic method 
and Fisher method respectively, but for all of the 
other values of α and r the inverse normal 
method is the best method followed by the sum 
of p-values method followed by logistic method 
and the worst method is Fisher method. 
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The following tables explain the term AK  where { }NSLFA ,,,∈ for the logistic distributions. 
 

Table (1): Local power for the logistic distribution when ( )2=r  
 

α  
FK  LK  SK  NK  

0.010 0.0073833607 0.0081457298 0.0090571910 0.0089064740 
0.025 0.0174059352 0.0192749938 0.0212732200 0.0214554551 
0.050 0.0326662436 0.0361783939 0.0394590744 0.0415197403 

 
 

Table (2): Local power for the logistic distribution when ( )3=r  
 

α  
FK  LK  SK  NK  

0.010 0.0062419188 0.0071070250 0.0080425662 0.0083424342 
0.025 0.0144747833 0.0165023359 0.0183583839 0.0199610766 
0.050 0.0267771426 0.0304639648 0.0332641762 0.0381565019  


	Journal of Modern Applied Statistical Methods
	5-1-2005

	Local Power For Combining Independent Tests in The Presence of Nuisance Parameters For The Logistic Distribution
	Walid A. Abu-Dayyeh
	Z. R. Al-Rawi
	M. M. A. Al-Momani
	Recommended Citation


	Microsoft Word - toc_v4_n1.doc

