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Chapter 1

Introduction

Communications through the atmosphere using an optical signal is emerging as

a viable solution for many applications. Compared to radio frequency (RF) com-

munications, optical communications through the atmosphere offer the potential of

more security with higher directivity and lower cost in unlicensed frequency bands.

Furthermore, optical wireless communications (OWC) links are quicker and cheaper

to establish than fiber links in many situations such as urban environments. Some

of the other applications include ground-to-satellite links which the Jet Propulsion

Laboratory has been doing for years, air-to-air links which are being investigated

for communications between unmanned aerial vehicle swarms [1] and high data rate

ground-to-ground links such as the one demonstrated in [2] for a path length greater

than 4.4 km. Although OWC has important potential advantages, it also has difficult

obstacles, not present in RF, to overcome.

In addition to inclement weather conditions such as rain and snow, which inhibit

reliable optical wireless communications, clear air atmospheric turbulence also detri-

mentally effects an optical wireless link. Clear air atmospheric turbulence results

from micro-fluctuations in the air temperature and pressure, which lead to variations

in the optical index of refraction. An electromagnetic wave propagating horizontally

through this atmospheric turbulence will acquire a distorted wavefront because each

part of the wavefront takes a different optical path. When this distorted wavefront

is collected by the optical receiver, the received intensity will have temporal varia-

tions, which are called scintillation, the same phenomenon as starlight twinkle. In

order to study the effect of scintillation upon the performance of a optical communi-

cations system operating through the atmosphere, a probabilistic model is required

to describe strength of the received intensity fluctuations. Throughout the literature
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dealing with atmospheric turbulence, many different models have been proposed. In

this work, three models are chosen: the lognormal distribution, valid for weak turbu-

lence, the gamma-gamma distribution, valid for a range of turbulence strengths and

the exponential distribution, valid for the saturation regime of signal scintillation.

In a communication system, before the information in the signal can be demodu-

lated and decoded, the signal must be detected. When detecting a signal, two errors

can occur: 1) a miss, in which the signal was present but the detector determined that

it was not and 2) a false alarm, in which the signal was not present but the detector

determined that it was. In any signal detection scheme increasing the signal length

will decrease the probabilities of miss and false alarm, at the cost of a more expensive

signal detector. In addition to the signal length, the detection threshold setting is cru-

cial in the signal detector design. If the threshold is too high the probability of miss

is too high, and if it is too low the probability of false alarm is too high. Therefore,

to determine the appropriate settings for signal length and detection threshold the

probability of miss must be known. The majority of this work is devoted to determin-

ing how to derive or numerically calculate the probability of miss for an optical signal

propagating through atmospheric turbulence. Single-pulse optical detection statistics

in a weak turbulent atmosphere have been reported in [3,4] for lognormal statistics.

Single-pulse statistics are sufficient for determining the demodulator performance in

terms of the bit-error-rate (BER). For signal detection and synchronization, how-

ever, a multiple-pulse signal is required and, therefore, the multiple-pulse detection

statistics must be known in order to design the signal detector.

The remainder of this work is split into four chapters. In each chapter, the goal

is the same, i.e., for an optical communications system transmitting through atmo-

spheric turbulence, calculate the probabilities of miss and false alarm and find the

signal length and detection threshold to maintain the link above a predetermined
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performance. What differentiates each chapter is the system and channel models em-

ployed and the mathematical methods utilized to calculate the detection statistics.

In Chapter 2, the lognormal turbulence model is used and the photodiode output

current is assumed constant. In Chapters 3 and 4, the lognormal turbulence model is

also employed, however, the photoelectron count follows Poisson and Webb statistics,

respectively, corresponding to the implementation of p-i-n and avalanche photodiodes

in the receiver. Chapter 5 contains the detection statistics for a system operating in

strong atmospheric turbulence modeled by the gamma-gamma distribution and re-

ports results for both p-i-n and avalanche photodiodes. Finally, Chapter 6 summarizes

and concludes the study.
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Chapter 2

Detection Statistics for Optical Signal

Through Weak Turbulence With Chernoff

Bound

2.1. Introduction

Optical communications through the atmosphere is important to commercial and

defense applications. Two of these applications are last-mile links [5] and mobile

battlefield networks [6]. The advantages of optical communications through the at-

mosphere over radio communications include increased security and unlicensed, large

bandwidth. Packet switching is widely employed in optical communications through

the atmosphere access networks [7]. One of the challenges to optical communica-

tions through the atmosphere is overcoming the effect of turbulence on the signal as

it propagates through the atmosphere. Atmospheric turbulence is caused by small

fluctuations in temperature and pressure, which affects the propagating optical signal

as random changes in the index of refraction [8,9]. At the receiver focal plane, this

causes small fluctuations (scintillation) of the received optical intensity and polariza-

tion, which can degrade the performance of the communication system.

In packet-switched networks, the information is sent out in packets in which the

first portion of each packet is a unique sequence of bits called the preamble, which

is known to the receiver. The receiver determines that a packet is present when

it detects the presence of the preamble. Once the receiver detects that a packet is

present, it performs parameter estimation, synchronization and demodulation. The

detection of this preamble in an atmospheric turbulence channel is a discrete signal
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detection problem expressed by the hypothesis test

H0 : rk = nk, k = 1, 2, . . . , L (2-2)

versus

H1 : rk = Akdk + nk, k = 1, 2, . . . , L, (2-3)

where r = [r1, r2, . . . , rL] is the observation vector, {nk} are samples of an AWGN

process representing the thermal noise of the receiver, d = [d1, d2, . . . , dL] is the

sequence to be detected and {Ak} are samples from the stochastic process determined

by the turbulent atmospheric channel which controls the strength of the signal. When

the signal is present, the observation is the signal degraded by the channel plus the

AWGN, whereas only the AWGN is observed when the signal is absent. During the

signal detection operation, one of following two events may occur to degrade the

performance of the system: 1) miss detection or 2) false alarm. Miss detection is

false rejection of H1 and false alarm is the false rejection of H0. The probability of

a miss detection and the probability of a false alarm are important measures in the

system design as they determine the signal length L in symbols to meet the system

specifications for optical communications and LIDAR systems.

The rest of this chapter is organized as the following. In Section 2.2, the system

model is described. In Section 2.3, a Chernoff bound is derived for the distribution

of the sum of L lognormal random variables. In Section 2.4, an approximation for

the lognormal sum is investigated. In Section 2.5, a series approximation to the

characteristic function of a lognormal random variable is applied to the problem. In

Section 2.6, the detection problem is studied with AWGN included. Conclusions are

provided in Section 2.7.
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Figure 2.1: Block diagram for optical communications system through the turbulent
atmosphere.

2.2. System Model

Suppose that a binary sequence {di}Li=1 of length L will be transmitted over a

free-space optical channel. To accomplish this, a system is required in which a trans-

mitter prepares the sequence for transmission over the channel and a receiver detects

the signal when it arrives. Figure 2.1 illustrates the model for such a system. The

transmitter is composed of an electrical modulator, an optical modulator and a trans-

mitting telescope. In the electrical modulator an information sequence is impressed

upon an electrical signal. This electrical signal is then used to modulate the inten-

sity of an optical source. On-off keying (OOK) and subcarrier phase-shift keying

(PSK) are two methods employed for optical intensity modulation in optical com-

munications through the atmosphere [8]. After the signal propagates through the

atmospheric channel, it passes through the receiver optics and enters the photodetec-

tor, which converts the optical signal intensity into an electrical signal. The electrical

signal is then sent to the detector, in which it is determined whether the signal has

arrived. When a signal is detected, the detector triggers the demodulator.
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2.2.1. Received Signal. OOK is a binary modulation scheme in which the op-

tical source is switched on to transmit bit ”1” and turned off to transmit bit ”0”.

The transmitted optical signal is the random process

s(u, t) = Is

L∑
i=1

dig(t− iTs), (2-4)

where Is is the average intensity of the field, {di}Li=1 (with di ∈ {0,+1}) is a unique

sequence, g(t) is the shaping pulse and Ts is the symbol time [8]. At the photodetector,

the received optical intensity is

I(u, t) = A(u, t)P
L∑
i=1

dig(t− iTs), (2-5)

where A(u, t) is a lognormal random process representing scintillation and P is the

maximum received intensity. In the receiver, the photodetector converts the received

optical intensity into an electrical signal given by

r(u, t) = A(u, t)K
L∑
i=1

dig(t− iTs) + n(u, t), (2-6)

where K is a constant determined by the received intensity and the photoelectric

conversion efficiency of the detector and n(u, t) is an AWGN process. Without loss of

generality, the constant K can be dropped. After r(u, t) is sampled at time t = iTs,

each bit is given its corresponding random variable:

ri(u) =

 ni(u), (bit ”0”)

Ai(u) + ni(u), (bit ”1”).
(2-7)

Thus, when the full signal for detection is in the correlator, the bit ”0” random

variables drop out because they are multiplied by 0 and the correlator output is

c(u) =
W∑
i=1

Ai(u) + ni(u), (2-8)



8

where W < L is the weight of the signal sequence.

In an optical communications system employing the subcarrier binary PSK (BPSK)

modulation scheme, the information sequence modulates the phase of a sinusoidal

electrical signal, which then modulates the output of the optical source. The trans-

mitted optical signal is the random process

s(u, t) =
Is
2

[
1 +

L∑
i=1

dig(t− iTs) cos (ωct)

]
, (2-9)

where ωc is the intermediate angular frequency and {di}Li=1 (where di ∈ {−1,+1})

is a unique sequence. After transmission through atmosphere and conversion in the

photodetector the received electrical signal is

r(u, t) = A(u, t)

[
1 +

L∑
i=1

dig(t− iTs) cos (ωct)

]
+ n(u, t). (2-10)

The DC term in (2-10) can be filtered out. After down-conversion and sampling, each

bit is given by its corresponding random variable:

ri(u) =

 −Ai(u) + ni(u), (bit ”0”)

Ai(u) + ni(u), (bit ”1”).
(2-11)

After {ri(u)}Li=1 is correlated with the sequence {di}Li=1, the output of the correlator

is given by

c(u) =
L∑
i=1

Ai(u) + ni(u). (2-12)

The design of the sequence is important in the total system design. For infor-

mation on design of (0, 1) sequences, which are the codewords of optical orthogonal

codes, see [10] and for (−1,+1) sequences, see [11].

2.2.2. Atmospheric Turbulence. In (2-3), the stochastic process A is the rep-

resentation of scintillation of the signal, which is modeled as a lognormal random
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process given by

A(u, t) = ex(u,t), (2-13)

where x(u, t) is a stationary Gaussian random process with mean µ and variance σ2.

The probability density function (PDF) of A is

f(x) =
1√

2πσx
exp

[
−(lnx+ µ)2

2σ2

]
, (2-14)

where the variance σ2 is a measure of the strength of the scintillation. In this chapter,

µ is set to 0. The value of σ is often referred to as the scintillation index. Many efforts

have been made to measure the strength of the intensity scintillation [12,13]. In [13],

scintillation measurements were performed on a typical day and σ never increased

beyond about 0.75. It has been measured that the scintillation strength saturates

after about 700 m of horizontal propagation near the ground [14]. In this study,

the probability of a miss detection will be derived for the range of scintillation index

appropriate for near-earth horizontal laser propagation.

2.2.3. Signal Shot Noise. The current in a p-i-n photodiode induced by an

incident deterministic optical field intensity is a shot noise process in which the num-

ber of photo-generated electrons is Poisson distributed [8]. Thus, randomness in the

received signal develops not only as a result of atmospheric turbulence, but also from

signal shot noise inherent in the optical detection process. This signal shot noise is

directly proportional to the signal power level [8, pp. 102-107].

When the signal power is low (i.e., the number of incident signal photons during a

symbol interval is small), the discrete Poisson distribution should be used to model the

number of photoelectrons. During deep signal fades, however, when the atmospheric

turbulence is worst, the effect of thermal noise on detection performance is more

significant than the effect of signal shot noise. Therefore, the signal shot noise is
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negligible in these instances, which are those that ultimately limit the performance

of the system.

On the other hand, when the signal power is high, a Gaussian distribution ap-

proximation can be substituted for the Poisson distribution to model the number

photoelectrons in a p-i-n photodiode [8, p. 107]. Hence, in the case of zero turbu-

lence, the Gaussian noise process models the effects of both thermal noise and signal

shot noise. This situation models the best possible detection performance at a certain

SNR.

2.2.4. Signal Detection. The signal detector declares the arrival of a signal if

c(u) ≥ α, (2-15)

where α is a predetermined threshold. This means studying the sum of L lognormal

and L Gaussian random variables, where L is the weight of the sequence in OOK

systems or the signal length in subcarrier BPSK systems. In this study, it is assumed

that the correlation time of the atmospheric turbulence is less than the symbol time

Ts; therefore, the lognormal random variables are independent. The determination of

α is critical in system design [15]. If the detection sequence is present but c(u) < α,

the signal was missed. If the detection sequence was not sent but c(u) ≥ α, a false

alarm has occured.

Finding the probability of miss means finding the cumulative distribution function

(CDF) of c(u). If the SNR is taken to be ∞, c(u) is the sum of L i.i.d. lognormal

random variables. This corresponds to high SNR systems and allows the study of

the effect of the atmospheric turbulence alone. In the next few sections, different

methods to find the CDF of the sum of multiple i.i.d. lognormal random variables

will be explored.
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2.3. Chernoff Bound on Lognormal Sum Distribution

In this section, a Chernoff bound is derived to find a bound on the distribution of

a sum of L lognormal random variables. Suppose that
{
eXi
}L
i=1

is a set of lognormal

random variables, each with mean m 6= 0. The Chernoff bound for the sum of these

random variables is [16]

[
E
{
eλ0(eX−(m+ε))

}]L
≥


Pr
{

1
L

∑L
i=1 e

Xi ≥ m+ ε
}
, ε > 0

Pr
{

1
L

∑L
i=1 e

Xi ≤ m+ ε
}
, ε < 0

(2-16)

where λ0 is defined by

E
{
eXeλ0eX

}
E
{
eλ0eX

} = m+ ε, (2-17)

and E denotes the expectation operator.

The fact that

E
{
ete

X
}

=∞,∀t > 0 (2-18)

makes it difficult to find λ0 in (2-17). Therefore, an approximation for eX will be

made using the Taylor series

ex =
∞∑
n=0

xn

n!
. (2-19)

Using the second order approximation, the denominator in (2-17) is

E
{
eλ0(1+x)

}
= eλ0e

σ2λ2
0

2 , (2-20)

where it is assumed that the Gaussian mean µ = 0. The numerator in (2-17) is

E
{

(1 + x)eλ0(1+x)
}

= eλ0

(
e
σ2λ2

0
2 + λ0σ

2e
σ2λ2

0
2

)
. (2-21)

Thus,

m+ ε = 1 + λ0σ
2. (2-22)
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Solving for λ0 and noting that the mean of a lognormal random variable m = eµ+σ2/2

gives

λ0 =
1

σ2

(
eσ

2/2 − 1 + ε
)
. (2-23)

Substituting the second order Taylor approximation, the expectation in (2-16) is

E
{
eλ0(1+x−(m+ε))

}
= exp

{
−1

2σ2

(
eσ

2/2 − 1 + ε
)2
}
. (2-24)

Taking the bottom portion of (2-16) (ε < 0), the CDF for the sum is bounded as

follows

Pr

{
L∑
i=1

eXi ≤ L
(
eσ

2/2 + ε
)}
≤
[
exp

{
−1

2σ2

(
eσ

2/2 − 1 + ε
)2
}]L

. (2-25)

Figure 2.2 shows the bound on the CDF computed with the Chernoff bound of

(2-25) for four different values of σ compared with simulations. First, note that

the Chernoff bounds do not intersect while the simulations do. These results are

encouraging enough (especially for σ = 0.2) to proceed to investigate what happens

to the bound if the next term in the Taylor approximation is included.

The following three integrals are used in computing the Chernoff bound using the

third order Taylor approximation of ex:

I1 = E
{
eλ0(x+x2/2)

}
=

1√
1− σ2λ0

exp

{
σ2λ2

0

2 (1− σ2λ0)

}
, (2-26)

I2 = E
{
xeλ0(x+x2/2)

}
=

σ2λ0

(1− σ2λ0)2 exp

{
σ2λ2

0

2 (1− σ2λ0)

}
(2-27)

and

I3 = E
{
x2eλ0(x+x2/2)

}
=

σ2

(1− σ2λ0)3/2

(
1 +

σ2λ2
0

1− σ2λ0

)
exp

{
σ2λ2

0

2 (1− σ2λ0)

}
.

(2-28)
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Figure 2.2: Chernoff bound on the lognormal sum CDF computed using the 2nd
and 3rd order Taylor approximation of ex (L = 108). The dashed lines are the
bounds computed with the 2nd order approximation and the solid lines are the bounds
computed with the 3rd order approximation.

Now, the equation for λ0 is

m+ ε =
I1 + I2 + 1

2
I3

I1

= 1 +
σ2λ0

(1− σ2λ0)3/2
+

σ2

2 (1− σ2λ0)

(
1 +

σ2λ2
0

1− σ2λ0

)
.

(2-29)

Equation (2-29) is plotted in Fig. 2.3. The graph shows that many of the values

of the normalized threshold αN = α/L that are important in finding the bound are

absent from the range of αN(λ0).
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Figure 2.3: Graph of Eq. (2-29) for four different values of the scintillation index. λ0

is the parameter which minimizes the Chernoff bound at normalized threshold αN .

To find the bound for a certain threshold, first λ0 is found numerically in (2-29).

Then, λ0 is used in

Pr

{
L∑
i=1

eXi ≤ α

}
≤
[
I1 exp

{
1− α

L

}]L
=

[
1√

1− σ2λ0

exp

{
σ2λ2

0

2 (1− σ2λ0)
+ 1− α

L

}]L
.

(2-30)

For those values of the threshold which λ0 can be found the Chernoff bound

computed using the third order approximation is tighter than the bound computed

using the second order approximation. No Chernoff bound is present in Fig. 2.2 for
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σ = 1.0 when the 3rd order approximation is used because no values of λ0 exist when

αN < 1 as shown in Fig. 2.3. The computation of the integrals in (2-26)-(2-28) was

simple, but if the fourth term in the Taylor series for ex was added these integrals

become difficult to compute.

In this section, the Chernoff bound is derived for the sum of lognormal random

variables in detection of optical signal through the atmosphere. The computation of

the Chernoff bound is discussed. Using the third order Taylor approximation for ex,

one can have a good upper bound of the lognormal sum CDF for low to moderate

scintillation.

2.4. Approximation of the Lognormal Sum Distribution

In order to approximate the distribution of the lognormal sum, one may guess

that the central limit theorem may be invoked in order to approximate the sum as a

Gaussian random variable. Unfortunately, the central limit theorem does not apply to

the lognormal random variable because after many lognormals are summed together,

the tail of the lognormal remains. This is known as the permanence of the lognormal

distribution [17]. As a result of this and the fact that the lognormal distribution

is important as a model for the attenuation due to shadowing in wireless mobile

communications, many methods have been proposed to approximate the distribution

of the sum of multiple lognormal random variables [18–21].

Of the proposed methods for approximating the lognormal sum distribution pro-

posed in the literature, Fenton’s moments matching method [18] is simple to imple-

ment and closely matches the CDF for values of the scintillation index and the range

of the CDF which are relevant to the present detection problem. Fenton’s approach

begins by assuming that the distribution of the sum of lognormals is itself lognormal
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as in

Y =
L∑
i=1

eXi ≈ eZ , (2-31)

where Z is Gaussian. Now the first two moments of Y are calculated and used to find

the first two moments of Z. This method is outlined below.

The raw moments the lognormal distribution are given by

E
{(
eX
)n}

= eµne
1
2
σ2n2

, (2-32)

Hence, the mean of eX is

E
{
eX
}

= eµe
1
2
σ2

(2-33)

and the variance of eX is

E
{(
eX − E

{
eX
})2
}

= e2µ · eσ2
(
eσ

2 − 1
)
. (2-34)

Since the lognormals in the sum are i.i.d. the mean and variance of the sum distri-

bution are

m = E

{
L∑
i=1

eXi

}
= Leµe

1
2
σ2

(2-35)

and

λ2 = Var

{
L∑
i=1

eXi

}
= Le2µ · eσ2

(
eσ

2 − 1
)
, (2-36)

respectively. To find the mean and variance of Z, Eq. (2-33) and Eq. (2-34) are

solved for µ and σ2. Then m and λ2 are substituted for the mean and variance of eX ,

respectively. One has

µZ = ln
(
Leµe

1
2
σ2
)
− σ2

Z

2
(2-37)

and

σ2
Z = ln

(
eσ

2 − 1

L
− 1

)
. (2-38)
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The CDF of Y is given by

Pr
{
eZ ≤ α

}
= Pr {Z ≤ lnα}

=
1

2

[
1 + erf

(
lnα− µZ√

2σZ

)]
,

(2-39)

where

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (2-40)

Figure 2.4 shows the CDF of Y plotted for µ = 0 and four different values of

the scintillation index σ. For σ = 0.05 and 0.2, the approximation matches up with

simulation. But the curves for σ = 0.6 and 1.0 show that as σ increases, the accuracy

of the approximation decreases.

In order to handle the AWGN process in detection and find the PDF of c(u), the

PDF of the lognormal sum fA(x) is convolved with the PDF of the Gaussian sum

fn(x) as in

fc(α) =

∫ ∞
−∞

fA(x)fn(α− x)dx, (2-41)

where µZ and σZ are plugged into (2-14) to find fA(x). The PDF of the Gaussian

sum is given by

fn(x) =
1√

2πLσg
e−x

2/(2Lσ2
g). (2-42)

Integrating (2-41) will result in CDF of c(u):

Pr {c(u) ≤ α} =

∫ α

−∞
fc(x)dx. (2-43)

Using this approach, Fig. 2.5 shows the probability of miss for three different values

of the scintillation index when the SNR = 10 dB and L = 108. This approach to

calculating the probability of miss isn’t accurate because the lognormal sum PDF

calculated using the moments found with Fenton’s moment matching method is not

a good approximate of the actual lognormal sum PDF.
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Figure 2.4: Fenton’s approximation of the lognormal sum CDF (µ = 0;L = 108)

In this section, it is found that the Fenton’s approximation is useful when dealing

with the atmospheric turbulence alone. However, the Fenton’s approximation can

not help when the AWGN process is included in the calculation of the probability of

miss.

2.5. Calculation of Lognormal Sum Distribution using Log-

normal characteristic function

One method that can be used to find the CDF of a sum of random variables

involves using the characteristic functions of the random variables in the sum. The
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Figure 2.5: Probability of miss calculated using (2-43) for three different values of the
scintillation index, SNR = 10 dB and L = 108.

characteristic function of a random variable X is defined as

φx(τ) =

∫ ∞
−∞

fx(x)ejτxdx, (2-44)

where fx(x) is the PDF of X. The characteristic function of the sum of multiple

random variables is the product of the characteristic functions of the random variables

in the sum; therefore,

φy(τ) =
L∏
k=1

φxk(τ), (2-45)
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where φy(τ) is the characteristic function of the lognormal sum and φxk is the charac-

teristic function of the kth lognormal random variable. The PDF of Y is the inverse

Fourier transform of φy(τ) given by

fy(y) =
1

2π

∫ ∞
−∞

φy(τ)e−jyτdτ. (2-46)

The CDF of Y can be found by integrating the PDF as in

Fy(y) =

∫ y

−∞
fy(u)du. (2-47)

Thus, with knowledge of the characteristic function of a lognormal random variable,

the CDF of a lognormal sum can be calculated.

In [22], the following series is given for the characteristic function of a lognormal

random variable:

φx(τ) = ejτ−τ
2σ2/2

∞∑
n=0

(jσ)n

n!
an(jτ)hn(στ), (2-48)

where an are Taylor series coefficients given by

an(jτ) =
dn

dzn
exp {jτ (ez − z − 1)}z=0 (2-49)

and hn are Hermite polynomials given by the recursive formula

h0(z) = 1,

h1(z) = z,

hn+1(z) = zhn(z)− nhn−1(z). (2-50)

The first twelve coefficients an and first six hermite polynomials hn are given in [22]

and can be obtained with the aid of a symbol-manipulating program such as Maple.

This function converges quickly for σ < 1, which is the range of σ applicable to
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atmospheric turbulence in optical communications. Although less terms may have

sufficed, twelve terms were used for the sum in this study.

Computing the PDF will be difficult because of the oscillatory nature of φ(τ). In

practice, the integration limit T in

fy(y) =
1

2π

∫ T

−T
φy(τ)ejyτdτ. (2-51)

will have to be set at a carefully selected finite value. If T is too small, too much of the

integration will be shut out and if it is too large, the computation of the characteristic

function in (2-48) near the limits may diverge due to numerical inaccuracies. The CDF

of Y is found by integrating (2-51). A discussion on the best numerical integration

technique for this integral is given in [21]. Figure 2.6 shows the CDF for four different

values of σ. Comparison of the calculated CDF with simulations shows that this

method produces accurate results.

2.6. Probability of Miss

Optical communications systems through the atmosphere are power-limited. When

finding the probability of miss, the effect of the AWGN process inherent in the receiver

electronics must be included. In this section, the probability of miss will be calculated

for practical values of SNR in optical communications through the atmosphere.

Noting that (2-45) is valid even if the characteristic functions in the product are

different, the AWGN can be included in the calculation of the probability of miss by

including the Gaussian characteristic function. The characteristic function of c(u) is,

thus, given by

φc(τ) =
L∏
k=1

φxk(τ)φgk(τ), (2-52)
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Figure 2.6: CDF of sum of 108 i.i.d. lognormal rv’s for σ ∈ {0.05, 0.2, 0.4, 0.6, 0.8}.
The solid lines are calculations and the points are simulations.

where φg(τ) is the characteristic function of a zero-mean Gaussian random variable

given by

φg(τ) = exp

{
−1

2
σ2
gτ

2

}
(2-53)

and σ2
g is the power of the AWGN.

The CDF of c(u) for a signal of length L = 108 and five values of the scintillation

index σ is shown in Fig. 2.7(a) for SNR = 30 dB and in Fig. 2.7(b) for SNR = 10 dB.

The solid curves are the calculated probability of miss and the simulation points are

represented by the indicated shapes for each scintillation index. The theoretical curves

match well with simulation for low to moderate strengths of atmospheric turbulence.
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When σ = 0.8, the theoretical probability of miss begins to deviate from simulation

at Pr {Y ≤ α} ≈ 10−6, which is a result of the fact that not enough terms were used

in the calculation of the characteristic function of the lognormal [22]. Comparing Fig.

2.7(a) to Fig. 2.7(b), one can see the diminishing effect of the scintillation strength

on the probability of miss as the SNR decreases. In Fig. 2.7(a), the probability of

miss curves for different values of σ diverge from each other, whereas in Fig. 2.7(b)

the curves are grouped together for different values of σ.

A good choice for the detection threshold setting α is the point at which the

probability of false alarm is equal to the probability of miss. For this system, the

probability of false alarm is the probability that the sum of L zero-mean Gaussian

random variables is greater than α which is

PFA(α) =
1

2

[
1− erf

(
α√
2Lσ2

g

)]
. (2-54)

For an optical wireless system operating through the turbulent atmosphere, the worse

case scenario for probability of miss is when σ is maximum. For L = 108, the

probability of miss and the probability of false alarm do not intersect at any practical

value for the probability of miss. Hence, a shorter signal length is considered.

For a signal of length L = 32, the false alarm rate and miss rate are plotted in

Fig. 2.8(a) and Fig. 2.8(b) for SNR = 10 dB and SNR = 5 dB, respectively. Figure

2.8(a) shows that a system operating at SNR = 10 dB could use a signal of length

32 with a detection threshold set at α = 12 in order to obtain a probability of false

alarm or miss detection that is below 10−10. When the SNR = 5 dB, Fig. 2.8(b)

shows that the high scintillation probability of miss and the probability of false alarm

intersect at about α = 13 and a probability less than 10−8. If a lower probability is

desired when SNR = 5 dB, then the signal length L must be extended.
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Figure 2.7: Probability of miss for L = 108. As the SNR decreases, the effect of scin-
tillation is less prominent on the probability of miss. The solid lines are calculations
and the points are simulations.
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Figure 2.8: Probability of miss for L = 32. The solid lines are calculations and the
points are simulations. For σ = 0.6 and 0.8, the lines are dashed to indicate that the
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the lognormal characteristic function.
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2.7. Conclusions

In this chapter, the probability of miss for optical communications system operat-

ing through the atmosphere in the presence of scintillation and AWGN is found. The

Chernoff bound is derived for the CDF of the sum of lognormal random variables.

The bound can be applied to find the probability of miss when the atmospheric scin-

tillation is in the low to moderate range, and the signal to electronics noise power

ratio is high. Fenton’s approximation is considered in finding the CDF of the sum of

lognormal random variables. This approximation is valid for dealing with the scintil-

lation alone. When the receiver electronics noise is included, Fenton’s approximation

fails. The probability of miss is found using the characteristics function of the the

received signal. The approach in this chapter can help the system designer to find the

appropriate system parameters including signal length, detection threshold, and SNR

to meet system specifications for detection. It also can be used to evaluate system

performance. Further investigation into signal detection in optical communications

through the atmosphere might include finding the probability of miss for a constant

false alarm rate (CFAR) detector.
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Chapter 3

Detection Statistics for Optical Signal

Through Weak Turbulence Using p-i-n

Photodiode

3.1. Introduction

Optical communications through the atmosphere experienced strong growth in

the last decade. In [2], 16 separate 2.5 Gbps wavelength data channels were trans-

mitted over a horizontal free space distance of 4.4 km. In [23], an 8 × 10 Gbps

terrestrial optical free-space transmission over 3.4 km was demonstrated using an op-

tical repeater in the middle. These systems can also be used for airborne [24] and

ground-to-space [25] communication links. Optical wireless communication prod-

ucts supporting data rates over 1 Gbps are available from several communication

equipment manufacturers. However, optical communications systems through the at-

mosphere are subject to many phenomena including random jitter of the beam [26],

atmospheric precipitation and atmospheric turbulence, which can significantly de-

grade the system performance. Atmospheric turbulence is caused by inhomogeneities

in the temperature and pressure of the atmosphere, which creates fluctuations in the

received signal intensity. These fluctuations are also called scintillations and are the

same phenomenon observed when stars twinkle.

Many different stochastic models exist for the effect of atmospheric turbulence on

optical signals. Each gives a probability density function (PDF) for the distribution

of the optical intensity of the signal. One of the first proposed, valid for weak atmo-

spheric turbulence, is the lognormal model, which can be theoretically derived [27]

and experimentally verified [12, 13, 28, 29]. Two heuristic models that have been

proposed are the K-distribution [30] and the gamma-gamma distribution [31]. The
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K-distribution is applicable to strong atmospheric turbulence, which was experimen-

tally verified in [32]. The gamma-gamma model can be used to fit the effects of the

weak and strong turbulence. Simulation methods have also been used to determine

the statistics of the optical intensity fluctuations [33]. In this chapter, the lognor-

mal model is used. Therefore, the results herein are applicable to weak atmospheric

scintillation.

Packet switching is widely employed in modern optical communications systems.

In packet-switched optical communication systems, each packet begins with a pre-

determined sequence, the preamble, which must be detected by the receiver for syn-

chronization, parameter estimation and demodulation. The detection of this packet is

essentially a discrete signal detection problem described by the following hypothesis

test:

H0 : rk = nk, k = 1, 2, . . . , L (3-2)

versus

H1 : rk = Akdk + nk k = 1, 2, . . . , L, (3-3)

where r = [r1, r2, . . . , rL] is the observation vector, {nk} are samples of an additive

white Gaussian noise (AWGN) process representing the thermal noise of the receiver,

L is the signal length, d = [d1, d2, . . . , dL] is the sequence to be detected and {Ak} are

samples from the stochastic process determined by the turbulent atmospheric channel

which affects the signal strength.

Understanding the performance of signal detection is critical to the design of op-

tical communications systems through the turbulent atmosphere. In packet-switched

systems, it is typical to have packet loss rate not higher than 10−7 in the packet de-

tection stage [34]. A system designer can determine the length of the preamble only

after having analytical and numerical tools to evaluate signal detection performance
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in the presence of atmospheric turbulence. In [35], the probability of miss in the

detection of a signal in an optical communications system through the turbulent at-

mosphere using intensity modulation was studied. The received signal intensity in the

presence of atmospheric turbulence was treated as a lognormal random process, and

the received background radiation and electronic noise in the receiver were treated

as AWGN. A series solution for the characteristic function of the lognormal random

variable was used to find the probability of miss and compared with numerical results.

In [36], the probability of miss was derived using methods of Fenton and Schwartz

and Yeh to approximate the distribution of the sum of lognormal random variables.

Statistics of photoelectron count vary with photodetectors, and make the analysis

of signal detection performance very difficult. In these prior studies, statistics of

photoelectron count were not considered.

The system under consideration in this work is an optical communications sys-

tem using intensity modulation and direct detection (IM/DD) in the presence of

atmospheric turbulence. The photodetector may either use a p-i-n photodiode or an

avalanche photodiode (APD). The current induced by an optical signal impinging

on a p-i-n photodiode is a shot noise process in which the photoelectron count is a

Poisson process. In some instances the shot noise can be approximated by a Gauss-

ian noise process. Many bit-error-rate (BER) studies have been presented in which

it is assumed that the signal shot noise is Gaussian including [29]. Some previous

work in signal detection has assumed that this signal shot noise is additive, white and

Gaussian [36]. In [4], the detection of a single optical pulse in lognormal atmospheric

turbulence is studied using p-i-n statistics and including background radation. In

this chapter, the study is extended to the detection of multiple symbols in lognormal

turbulence including the effects of background radiation and thermal electronic noise.

The remainder of this chapter will proceed with a description of the system model

in Section 3.2, a discussion of the photoelectron count statistics in Section 3.3, a
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Figure 3.1: Block diagram for optical communications system through the turbulent
atmosphere.

discussion of the probabilities of miss and false alarm in Section 3.4, an explanation

of how the signal length and detection threshold settings can be determined in Section

3.5 and finally a brief summary and conclusions in Section 3.6.

3.2. System Model

Fig. 3.1 illustrates the block diagram for the optical wireless communication

system. In this system a digital information source modulates an electrical signal.

This electrical signal is then used to modulate the output field intensity of an optical

source, a laser. The laser output propagates through the atmospheric channel and is

distorted by turbulence. The optical receiver is a direct detection receiver meaning

that it responds to changes in the intensity of the transmitted signal. After passing



31

through the receiver’s optics, the signal impinges on the surface of the photodetector,

where, as a result of photon-atom interactions, the light intensity is converted into

electrical current.

The output current of the photodetector is

i(t) = ip(t) + in(t), (3-4)

where ip(t) is the photo-generated current and in(t) is the thermal noise current. Note

that ip(t) is the result of the received signal and background radiation. This current

is passed to the signal detector. If the signal detector determines that a packet has

arrived, then it triggers the demodulator to recover the remainder of the information.

3.2.1. Signal Detector. The signal detector is a linear correlator [15]. The de-

tector is composed of an integrator which integrates the current in Ts second intervals.

The output of the ith integration is

vi = ek (iTs, (i+ 1)Ts) + vn,i, (3-5)

where e is the electron charge, Ts is the symbol time, k(t1, t2) is the number of

electrons generated in the time interval (t1, t2) as a result of photodetection and vn,i is

the integrated thermal noise current. For clarity, ki is used to denote k (iTs, (i+ 1)Ts)

throughout the remainder of this chapter. The current integrations are passed into a

register which holds L integrations, where L is the length of the signal to be detected.

The contents of the register are multiplied by the binary sequence to be detected and

summed to obtain

v =
L−1∑
i=0

di (eki + vn,i) , (3-6)

where {di}L−1
i=0 is the binary sequence. Finally, v is compared to a threshold vT to

determine if the signal was received.
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If the signal was sent, but v < vT , then a miss detection occurs. Hence, the

probability of miss is

PM(vT ) = P [vs < vT ] , (3-7)

where vs represents the correlator output when the signal was sent. If the signal

was not sent and v > vT , then a false alarm occurs. If vn represents the correlator

output when no signal was transmitted and the detector correlates with only noise,

the probability of false alarm is

PFA(vT ) = P [vn > vT ] . (3-8)

3.2.2. Received Signal. In an optical wireless communication system using on-

off keying (OOK) intensity moduation and direct detection, the received field intensity

is

Ir(u, t) = Is(u, t)
L∑
i=1

dig(t− iTs) + Ib(u, t), (3-9)

where Is is the recieved signal intensity, g(t) is the shaping pulse and Ib is the back-

ground radiation intensity. Due to atmospheric turbulence, Is is a lognormal random

process representing optical scintillation.

The scintillation process is a result of fluctuations in the atmospheric index of

refraction caused by turbulence. The index of refraction at a position in space ~r can

be modeled as

n(~r) = n0 + n1(~r), (3-10)

where n1(~r) represents random changes about the mean n0. In [27], it is shown that

using this model and the Rytov transformation when solving Maxwell’s equations for

the electromagnetic plane wave, the amplitude of the optical field is

A = A0e
χ, (3-11)



33

where A0 is the free-space solution and χ, termed the log-amplitude fluctuation, is

a normal random variable with mean χ̄ and variance σ2
χ. This means that A is a

lognormal variable. Since the field intensity I = A2, I is also a lognormal random

variable and has density

fI(I) =
1√

8πσχI
exp

[
−(ln(I/I0)− χ̄)2

8σ2
χ

]
, (3-12)

where I0 = A2
0. For energy conservation, which requires that atmospheric turbulence

neither amplifies nor attenuates the signal,

E(I) = I0e
2χ̄+2σ2

χ = I0 (3-13)

so that χ̄ = −σ2
χ. Many experimental studies have been conducted in which data

have shown that intensity fluctuations due to weak atmospheric turbulence follow a

lognormal distribution [12,13,28].

3.3. Photoelectron Count Statistics

The theory of photoelectron count statistics in semiconductor photodetectors is

well-developed [8]. In this section, the photoelectron count will be found with and

without the effects of atmospheric turbulence.

3.3.1. Photoelectron Count in the Absence of Turbulence. In order to

find the electric current induced by the optical signal, the mean number of primary

electrons that will be emitted over the observation volume V = Ad × Ts must be

determined, where Ad is the area of photodetecting surface. Primary electrons are

those which are released from the photodetector surface as a result of the absorption

of photons. The mean number of primary electrons over V is

mv =
η

hν

∫
V

Ir(u, t)dV (3-14)
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where η is the quantum efficiency of the photosensitive material, h is Planck’s constant

and ν is the optical frequency. During an ”on” symbol and an ”off” symbol the mean

count is

mv =

 Ks +Kb, di = 1

Kb, di = 0,
(3-15)

respectively, where Ks is the average signal electron count and Kb is the average

background noise electron count. In the absence of atmospheric turbulence, the value

of Is is constant throughout V and

Ks =
η

hν
AdTsIs. (3-16)

In a photodetector which receives a constant optical field intensity, the number of

primary electrons k1 is a Poisson distribution given by

P [k1 = k] = Pois(k,mv) =
mk
v

k!
e−mv (3-17)

so that in an ”on” symbol

P [k1 = k] =
(Ks +Kb)

k

k!
e−(Ks+Kb). (3-18)

3.3.2. Photoelectron Count in the Presence of Turbulence. When the

received optical field intensity is stochastic, k1 is no longer Poisson distributed. Since

the atmospheric turbulence channel is a slow fading channel, the signal intensity Is

can be assumed constant for one symbol interval and, as a result, the mean signal

count Ks is constant for one symbol interval. For convenience, K0 is defined as the

mean signal electron count without atmospheric turbulence so that Ks = K0e
2χ.

To find the distribution of k1, the Poisson probability is averaged over the density

fm(m) of mv to get

E(P [k1 = k]) =

∫ ∞
0

Pois(k,m)fm(m)dm. (3-19)
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This type of probability is called a conditional Poisson probability. In [4], (3-19)

is computed numerically in order to find the probability of detection of a single

symbol in lognormal atmospheric turbulence. In the remainder of this section, a

normal approximation is found for (3-19) which allows for simpler calculation of the

probabilities of detection and miss, in particular for multiple symbol detection.

First, (3-19) is written

E(P [k1 = k]) =

∫ ∞
−∞

(K0e
2x +Kb)

k

k!
e−(K0e2x+Kb)fχ(x)dx

=

∫ ∞
−∞

(K0e
2x +Kb)

k

k!
e−Kb exp

[
−K0

∞∑
n=0

2n

n!
xn

]
fχ(x)dx,

(3-20)

where fχ(x) is the density of χ. The log-amplitude signal fluctuation χ is distributed

as N(−σ2
χ, σ

2
χ), where σχ ∈ [0, 0.2]. Since χ is small, only the first three terms in the

Taylor series are kept leaving

E(P [k1 = k]) ≈
∫ ∞
−∞

(K0e
2x +Kb)

k

k!
e−Kbe−K0(1+2x+2x2)fχ(x)dx

=

∫ ∞
−∞

(K0e
2x +Kb)

k

k!
e−Kbe−K0(1+2x+2x2) 1√

2πσχ
e−(x+σ2

χ)2/2σ2
χdx.

(3-21)

Using the binomial theorem to expand the term raised to the kth power in (3-21)

results in

E(P [k1 = k]) ≈ e−(K0+Kb)

k!

∫ ∞
−∞

k∑
m=0

(
k

m

)(
K0e

2x
)k−m

Km
b

· e−K0(2x+2x2) 1√
2πσχ

e−(x+σ2
χ)2/2σ2

χdx,

(3-22)

where (
k

m

)
=

k!

m! (k −m)!
. (3-23)
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The exponential terms in (3-22) are grouped together to obtain

E(P [k1 = k]) ≈ e−(K0+Kb)

k!

k∑
m=0

(
k

m

)
Kk−m

0 Km
b

1√
2πσχ

∫ ∞
−∞

eAdx, (3-24)

where

A = 2 (k −m)x− 2K0x− 2K0x
2 −

(
x+ σ2

χ

)2

2σ2
χ

. (3-25)

After completing the square in A and integrating, the following approximation is

obtained:

P [k1 = k] ≈ e−σ
2
χ/2√

4σ2
χK0 + 1

e−(K0+Kb)

k!

k∑
m=0

(
k

m

)
Kk−m

0 Km
b

· exp

{
σ2
χ [2 (k −m−K0)− 1]2

2
(
4σ2

χK0 + 1
) }

.

(3-26)

Although (3-26) is not a probability mass function because it diverges as k −→ ∞,

it does sum to approximately 1 for k ∈ [0, 2K0]. The probability mass function for

the Poisson distribution given by (3-18) and the conditional Poisson given by (3-26)

are plotted in Fig. 3.2 for K0 = 50, Kb = 10 and σχ = 0.08. The conditional Poisson

distribution is shown to have a larger variance and be more skewed to the right than

the Poisson distribution. This approximation does lend insight into the conditional

Poisson distribution, but it is too complicated for quick calculation of the probability

of miss.

After rearranging terms, (3-26) can be written

P [k1 = k] ≈ e−σ
2
χ/2√

4σ2
χK0 + 1

k∑
m=0

Kk−m
0

(k −m)!
e−K0

Km
b

m!
e−Kb

· exp

{
σ2
χ [2 (k −m−K0)− 1]2

2
(
4σ2

χK0 + 1
) }

.

(3-27)
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Figure 3.2: Probability mass function for Poisson distribution given by (3-18), approx-
imate probability mass function for conditional Poisson distribution given by (3-26)
and normal approximation for conditional Poisson distribution given by (3-32), where
K0 = 50, Kb = 10 and σχ = 0.08.

The Poisson distribution with mean λ is approximated by the Gaussian distribution

with mean λ and variance λ for large λ [37, p. 190], that is

λn

n!
e−λ ≈ 1√

2πλ
e−

(n−λ)2

2λ (3-28)

when λ is large. It may seem logical to substitute this Gaussian approximation at

the beginning of this derivation in (3-20), but that results in an integral that is more

complicated than the one that has been solved. Instead, the two Poisson terms in
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(3-27) are replaced with the Gaussian approximation to obtain

P [k1 = k] ≈
k∑

m=0

1√
2πK0

e
− (k−m−K0)2

2K0
1√

2πKb

e
− (m−Kb)

2

2Kb

· e−σ
2
χ/2√

4σ2
χK0 + 1

exp

{
σ2
χ [2 (k −m−K0)− 1]2

2
(
4σ2

χK0 + 1
) }

.

(3-29)

Since K0 is large, the −1 in the squared term of the last exponential is negligible.

After eliminating the −1, there exists a common (k−m−K0)2 term in the first and

last exponentials so that (3-29) can be rewritten

P [k1 = k] ≈
k∑

m=0

e−σ
2
χ/2√

2πK0

(
4σ2

χK0 + 1
)

· exp

[
(k −m−K0)2

(
2σ2

χ

4σ2
χK0 + 1

− 1

2K0

)]
1√

2πKb

e
− (m−Kb)

2

2Kb

=
k∑

m=0

e−σ
2
χ/2√

2πK0

(
4σ2

χK0 + 1
) exp

[
− (k −m−K0)2

2K0(4σ2
χK0 + 1)

]
1√

2πKb

e
− (m−Kb)

2

2Kb .

(3-30)

The e−σ
2
χ/2 term is near unity for relevant values of σχ and, as such, does not signifi-

cantly effect the calculation of the probability of miss. After removing it,

P [k1 = k] ≈
k∑

m=0

1√
2πK0

(
4σ2

χK0 + 1
) exp

[
− (k −m−K0)2

2K0(4σ2
χK0 + 1)

]

· 1√
2πKb

exp

[
−(m−Kb)

2

2Kb

]
.

(3-31)

Eq. (3-31) is the discrete convolution of two Gaussian density functions, which is

itself Gaussian with mean and variance equal to the sum of the means and the vari-

ances of the input Gaussians, respectively. Therefore, the distribution of k1 can be

approximated as

k1 ∼ N(µk, σ
2
k) = N(K0 +Kb, K0(4σ2

χK0 + 1) +Kb). (3-32)



39

This normal approximation is plotted in Fig. 3.2 for K0 = 50, Kb = 10 and σχ =

0.08.

3.4. Probabilities of Miss and False Alarm

In this section the probability of miss and the probability of false alarm are for-

mulated. Since the modulation scheme is OOK, the ”off” symbols drop out in (3-6)

and

v =
L′−1∑
i=0

eki + vn,i, (3-33)

where L′ is the Hamming weight of the binary sequence to be detected. The ki’s are

independent. Also, the thermal electronic noise is independent from the photoelec-

tron count. Therefore, to find the probability of miss and the probability of false

alarm, one must determine the cumulative distribution function (CDF) and com-

plementary cumulative distribution function (CCDF) of the sum of L′ independent

random variables, respectively.

3.4.1. Quantum Limited Detection. When the background radiation and

thermal electronic noise are negligible, the detection performance is limited only by

the signal shot noise. This is called quantum limited detection. The probability of

false alarm is zero because in this case no current exists in the receiver in the absence

of a signal.

In the presence of atmospheric turbulence, the probability of miss is

PM(kT ) = P

[
L′−1∑
i=0

ki < kT

]
, (3-34)

where each ki has conditional Poisson distribution given by (3-20). Since the thermal

noise is negligible, a signal count threshold kT = bvT/ec is defined. Quantum-limited

detection is equivalent to counting the total number of photons received in the ”on”

symbols and comparing that to kT to determine if the signal is present.
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In the absence of atmospheric turbulence, each ki is Poisson with mean count

Ks. Noting that the distribution of the sum of L independent and identically dis-

tributed Poisson random variables with common mean m is Poisson with mean Lm,

the probability of miss is calculated as

PM(kT ) =

kT−1∑
n=0

(L′Ks)
n

n!
e−L

′Ks

= 1− Ks

(kT − 1)!

∫ L′

0

eKsx(Ksx)(kT−1)dx,

(3-35)

where the last equality can be found in [38, p. 345]. This equation represents the

lower bound on detection performances achievable in (3-34).

3.4.2. Detection in Thermal Electronic Noise. In any power-limited sys-

tem, the thermal electronic noise is non-negligible and must be considered. In this

case, the probability of miss is

PM(vT ) = P

[
L′−1∑
i=0

eki + vn,i < vT

]
, (3-36)

where each ki has conditional Poisson distribution given by (3-20). Each thermal

noise integration vn,i is Gaussian with zero mean and variance

σ2
n =

2kBT

RL

Ts, (3-37)

where kB is Boltzmann’s constant, T is the receiver’s temperature, RL is the load

resistance and Ts is the symbol time. Using the normal approximation for the distri-

bution of k1 given by (3-32), the sum in (3-36) is a sum of normal random variables

so that the sum has mean eL′µk and variance L′(σ2
n + e2σ2

k). Therefore, probability

of miss is approximated by

PM(vT ) =
1

2

[
1 + erf

(
vT − eL′µk√

2L′(σ2
n + e2σ2

k)

)]
, (3-38)
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where erf(·) is the error function defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (3-39)

In the next section, (3-38) is compared with simulations.

In the event of a false alarm, no signal is present so that only background noise

counts and thermal noise integrations are present in the correlator. Therefore, the

probability of false alarm is

PFA(vT ) = P

[
L′−1∑
i=0

eki + vn,i > vT

]

=
1

2

[
1− erf

(
vT − eL′Kb√

2L′ (σ2
n + e2Kb)

)]
.

(3-40)

In the next section, (3-38) and (3-40) are used to determine the required signal length

L′ and detection threshold vT to achieve a desired performance.

3.5. Determination of Signal Length and Detection Thresh-

old

Appropriate settings for the signal length L′ and detection threshold vT are critical

in the design of a packet-switched system. The goals are 1) to minimize L′ while

maintaining required detection performance and 2) to determine vT such that the

probabilities of miss and false alarm are below the required performance. First, a

simple quantum-limited example will be presented and then an example with thermal

electronic noise.

3.5.1. Quantum Limited Detection. In the quantum-limited detection regime,

the thermal noise is negligible and the performance is only limited by the signal shot

noise. In this case, it is assumed that there is no current in the receiver in the absence

of the signal and, therefore, a false alarm is impossible. In Fig. 3.3, the probability of
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Figure 3.3: Probability of miss for quantum-limited detection, where K0 = 4 and
L′ = 32.

miss is plotted for K0 = 4 and L′ = 32. The plot illustrates that, at these parameters,

a threshold set at kT = 60 would achieve a probability of miss of at least 10−7 for

atmospheric turbulence when σχ ≤ 0.20. This is an extremely low signal count which

may be applicable to very low power systems such as space systems.

3.5.2. Detection in Thermal Electronic Noise. Now a system is simulated

in which the thermal noise is not negligible. The detection performance has been

simulated with the following parameters: signal length L′ = 32, data rate Rb = 2.4

Gb/s, load resistance RL = 50 Ω and receiver temperature T = 295 K.
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In order to compute the background noise signal count, first the power of the

background radiation is calculated as [8]

Pb = W (λ)(∆λ)ΩfvAl, (3-41)

where W (λ) (W/cm2-µm-sr) is the spectral radiance of the background at wave-

length λ, ∆λ is the bandwidth of the background radiation which is collected, Ωfv =

4π sin2(θ/4) is the solid angle of the receiver field of view, θ is the receiver field of view

angle and Al is the area of the receiving aperture. In the daytime, the diffuse (indirect

sunlight) spectral radiance W (λ) ≈ 10−3 (W/cm2-µm-sr) at λ = 850 nm [8]. Using

∆λ = 30 nm, receiver field of view angle θ = 3 mrad and aperture diameter D = 18

cm, the collected background energy in one symbol time PbTs ≈ 2.25 · 10−17 J, which

is about PbTs/(hν) = 100 background photons. For a photodiode with quantum effi-

ciency η = 0.1, the average number of background photoelectrons Kb = ηPbTs = 10,

which is what is used for the numerical calculations in this study.

Fig. 3.4 shows the probability of miss for K0 = 5800. The approximate proba-

bility of miss calculated using (3-38) agrees well with simulations. Figs. 3.5 and 3.6

show the detection performances when the mean signal photoelectron count without

scintillation K0 = 3500 and 5800, respectively. When K0 = 3500, a threshold setting

near vT = 0.8 · 10−14, which is equivalent to bvT/ec = 49938 electrons, is required to

achieve the best performance of about 10−7 when σχ = 0.20. If better performance

is required at this signal level, then the signal length must be increased. When

K0 = 5800 a threshold setting of 10−14 ≤ vT ≤ 1.5 · 10−14 or 62422 ≤ bvT/ec ≤ 93633

would make it possible to obtain a detection performance better than 10−8.

In the preceding paragraph, the analysis was limited to one signal length and

two different mean counts. It is possible to obtain a broader perspective when the

analysis is restricted to the worst possible scintillation strength, which in this study

is σχ = 0.20. The probability of miss can be no worse than when the scintillation
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Figure 3.4: Probability of miss for L′ = 32, σχ ∈ {0.0, 0.04, 0.08, 0.12, 0.16, 0.20},
Rb = 2.4 Gb/s, RL = 50 Ω, T = 295 K, K0 = 5800 and Kb = 10. The lines with
circles, squares and triangles are simulations and lines without are calculated using
(3-38).

strength is the highest. Therefore, letting σχ = 0.20 when calculating (3-38) results

in an upper bound on the probability of miss over all cases of atmospheric turbulence.

Fixing σχ and setting PM(vT ) = PFA(vT ), the optimum threshold is found as

voT = eL′

K0

1 +

√
1 +

e2K0

(
4σ2

χK0 + 1
)

σ2
n + e2Kb

−1

+Kb

 . (3-42)

By plotting the detection performance at this optimum threshold versus the mean

signal count without scintillation, a signal length can be determined which achieves
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Figure 3.5: System performance for L′ = 32, σχ ∈ {0.0, 0.04, 0.08, 0.12, 0.16, 0.20},
Rb = 2.4 Gb/s, RL = 50 Ω, T = 295 K, K0 = 3500 and Kb = 10. The lines with
circles, squares and triangles are simulations and lines without are calculated using
(3-38).

the required detection performance. Such a plot is presented in Fig. 3.7. For example,

if K0 = 6000 and a performance of 10−8 is required, then Fig. 3.7 illustrates that a

signal length of L′ = 24 is sufficient. The signal length may also be determined by

plugging the optimum threshold voT of (3-42) into (3-40) to get

Lo =
2 (σ2

n + e2Kb)

e2K2
0

1 +

√
1 +

e2K0

(
4σ2

χK0 + 1
)

σ2
n + e2Kb

2

[erfinv (1− 2PFA(voT ))]2 ,

(3-43)
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Figure 3.6: System performance for L′ = 32, σχ ∈ {0.0, 0.04, 0.08, 0.12, 0.16, 0.20},
Rb = 2.4 Gb/s, RL = 50 Ω, T = 295 K, K0 = 5800 and Kb = 10. The lines with
circles, squares and triangles are simulations and lines without are calculated using
(3-38).

where erfinv(·) is the inverse error function. Again if a performance of 10−8 is required,

then (3-43) can be plotted as in Fig. 3.8 to show the optimum signal length as a

function of K0.

The average signal to noise power ratio in a optical communications system em-

ploying OOK can be estimated as [8]

SNR ≈ (eK0)2

(
√
e2 (K0 +Kb) + σ2

n +
√
e2Kb + σ2

n)2
. (3-44)
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Figure 3.7: System performance at the optimum threshold setting voT assuming the
log-amplitude signal fluctuation σχ = 0.20, data rate Rb = 2.4 Gb/s, load resistance
RL = 50 Ω, receiver temperature T = 295 K and mean background noise count
Kb = 10.

For reference, the SNR is reported on the top x-axis of Fig. 3.7.

3.6. Conclusions

In this chapter, optical signal detection for an IM/DD system operating in the tur-

bulent atmosphere has been studied. Atmospheric turbulence has been modeled as a

lognormal process, which is applicable for weak turbulence. The photoelectron count

statistics have been used in the calculations and simulations, so that the signal shot
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Figure 3.8: Optimum signal length Lo for different detection probabilities assuming
the log-amplitude signal fluctuation σχ = 0.20, data rate Rb = 2.4 Gb/s, load resis-
tance RL = 50 Ω, receiver temperature T = 295 K and mean background noise count
Kb = 10.

noise inherent in the photodetection process is included in the results. Scintillation of

the received signal caused by atmospheric turbulence results in a photoelectron count

that is a conditional Poisson process in which the mean count is lognormal. Using

these statistics, a normal approximation has been found for this conditional Poisson

distribution. The normal approximation provides a means to a quick and simple cal-

culation of the probability of miss in thermal electronic noise which matches well with

simulations. After measuring or calculating the mean signal and background radia-

tion photoelectron counts, the system designer can use the equations for probabilities
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of miss and false alarm to find settings for the signal length and detection threshold

so that system specifications for detection performance are met.

The model developed in this chapter relied on the lognormal model for the dis-

tribution of the intensity fading caused by atmospheric turbulence, which is valid in

the weak scintillation regime. In the case of strong turbulence, the distribution is no

longer lognormal and a different model such as the K or gamma-gamma distribution

must be used. Further work is needed to investigate the signal detection performance

using photoelectron count statistics and assuming strong atmospheric turbulence.
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Chapter 4

Detection Statistics for Optical Signal

Through Weak Turbulence Using Avalanche

Photodiode

4.1. Introduction

Optical communications through the atmosphere is an appealing technology for

various applications such as last-mile broadband service [5], airborne communica-

tions [24] and mobile battlefield communications [39]. One difficulty associated with

free-space optical communications is atmospheric turbulence which causes random

fluctuations or scintillation of the received optical intensity. Scintillation can deteri-

orate the performance of the communications system. As a result, much work has

gone into determining how to mitigate the effects of atmospheric turbulence in these

systems.

One technique that is often employed in optical communications systems is packet-

switching, in which information is transmitted in packets. The first operation that

must be performed in a packet-switched receiver is the detection of the packet pream-

ble, which is a predetermined binary sequence at the beginning of the packet. After

packet detection, synchronization, estimation and demodulation of the signal are car-

ried out. The decision of the packet detector whether or not the signal is present is

described by the following discrete hypothesis test:

H0 : vk = ek2,k(Ib, g) + nk, k = 1, 2, . . . , L

versus

H1 : vk = ek2,k(Is(χ), Ib, g)dk + nk, k = 1, 2, . . . , L,

(4-2)
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where v = [v1, v2, . . . , vL] is the observation vector which represents the photoelec-

tron count plus thermal noise, {nk} are samples of an additive white Gaussian noise

(AWGN) process representing the thermal noise of the receiver, L is the signal length,

e is the electron charge, d = [d1, d2, . . . , dL] is the sequence to be detected and {k2}

are samples from a discrete stochastic process representing the photoelectron count.

Under H0, the signal has not arrived and k2 is dependent upon the background radia-

tion intensity Ib and the random photomultiplication gain g. Under H1, the signal is

present and k2 is additionally dependent upon the optical signal intensity Is, which is

subject to atmospheric turbulence represented by χ. In order to properly design the

signal detector the probabilities of miss, the false rejection of H1, and false alarm, the

false rejection of H0, must be calculated or simulated so that an appropriate signal

length and detection threshold can be determined.

As a result of atmospheric turbulence, the optical signal intensity Is is a random

process. Many different models have been proposed for the distribution of the inten-

sity of an optical wave propagating through atmospheric turbulence. The lognormal

model has been experimentally verified to apply to the weak atmospheric turbulence

case [13, 29]. For strong turbulence, the K-distribution has been shown to fit [32]

and the gamma-gamma distribution, of which the K-distribution is a special case,

has been introduced as a model that can be used for weak to strong turbulence [31].

In this study, the lognormal model is used. However, the method used herein to

calculate the probability of miss is applicable to any model for which the probability

density function (PDF) of the turbulence-induced intensity fluctuations is available.

In this chapter, the system under consideration is a intensity modulated, direct

detection (IM/DD) optical wireless communications system employing on-off keying

(OOK) modulation. When building the optical communications system the designer

can choose from two types of photodetectors: p-i-n photodiodes or avalanche pho-

todiodes (APDs). These two devices operate in fundamentally different ways and,
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as a result, the communication channel model depends upon which one is used. Be-

sides optical communications through the atmosphere, this study is also applicable

to detection statistics for laser radar [3, 4, 40]. The single-symbol detection statis-

tics for a p-i-n photodiode in lognormal atmospheric turbulence are given in [4] and

extended to the multiple-symbol case in [41,42]. In [3], the detection statistics in at-

mospheric turbulence are given for a system using a photomultiplier tube. For APDs,

the single-symbol detection statistics in the absence of atmospheric turbulence are

reported in [4, 40]. (In [40], atmospheric turbulence is acknowledged, but not in-

cluded in the calculations.) In this study, the multiple-symbol detection statistics in

atmospheric turbulence are reported for optical communications systems employing

APDs.

Owing to the complexity of the exact distribution of the photoelectron count in an

APD [43,44], many different methods have been proposed for calculating or estimat-

ing the performance of APD-based systems including a modified Chernoff bound, sad-

dlepoint approximation, large deviations theory and Gaussian approximation (see [45]

and references therein). The Webb distribution [46] is an approximation for the ex-

act distribution which simplifies calculations. In this chapter, the probabilities of

miss and false alarm will be found by numerical integration using the characteristic

function of the Webb distribution, which was formulated in [45].

This chapter proceeds with a description of the system model in Section 4.2,

derivations of the probabilities of miss and false alarm in Section 4.3, a discussion

about the signal length and detection threshold settings in Section 4.4 and a brief

conclusion in Section 4.5.

4.2. System Model

The system model for a optical communications through atmospheric turbulence

is given in Fig. 4.1. In this system an information source is fed into an electrical
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Figure 4.1: Block diagram for optical communications system through the turbulent
atmosphere.

modulator. The electrical signal directly modulates a laser, whose light is transmit-

ted through an optical front end. After propagation through the atmosphere, the light

is focused by the receiver’s optics onto a photodetector, which is an APD. Within

the APD, the received light is converted into electrical current through the process of

photodetection and the current is increased through the process of photomultiplica-

tion. The light-induced current is then fed into a signal detector to determine if the

signal has arrived. If the detector determines that the signal has arrived, it triggers

the demodulator to recover the information from the remainder of the signal.
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4.2.1. Received Signal. In an IM/DD optical wireless communication system

using OOK, the received field intensity is

Ir(u, t) = Is(u, t)
L∑
i=1

dig(t− iTs) + Ib(u, t), (4-3)

where Is(u, t) is the received signal intensity, g(t) is the shaping pulse, Ts is the

symbol time and Ib(u, t) is the background radiation intensity. Due to atmospheric

turbulence, Is(u, t) is a stationary stochastic process representing optical scintillation.

The scintillation process is a result of fluctuations in the atmospheric index of

refraction caused by turbulence. In [27], it is shown that the received optical field

intensity in weak turbulence is represented as

Is(u, t) = I0e
2χ(u,t), (4-4)

where I0 is the free-space solution to Maxwell’s equations for the field intensity and

χ(u, t) is the log-amplitude fluctuation, which is a stationary normal random process

with mean χ, autocorrelation function Rχ(τ) and average power Rχ(0) = σ2
χ. Fixing

t = t0, a sample of the lognormal process Is(u, t0) has a PDF given by

fI(I) =
1√

8πσχI
exp

[
−(ln(I/I0)− χ)2

8σ2
χ

]
. (4-5)

For energy conservation, which requires that atmospheric turbulence neither amplifies

nor attenuates the signal,

E[I] = I0e
2χ+2σ2

χ = I0 (4-6)

where E[·] denotes the expectation, so that χ = −σ2
χ. Experimental studies have

been conducted in which data have shown that intensity fluctuations due to weak

atmospheric turbulence follow a lognormal distribution [12].

The normalized variance of the optical intensity, which is called the scintillation

index, is commonly used to measure the strength of the atmospheric turbulence. For
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the lognormal distribution, the scintillation index is given by

E[I2]

(E[I])2
− 1 = e4σ2

χ − 1. (4-7)

Since the lognormal distribution is valid when the scintillation index is less than 1 [9],

this chapter will use σχ ∈ [0, 0.4].

4.2.2. Photoelectron Count Statistics. The theory of photoelectron count

statistics in semiconductor photodetectors is well-developed [8]. In order to find the

electric current induced by the optical signal, the mean number of primary electrons

that will be emitted over the observation volume V = Ad × Ts must be determined,

where Ad is the area of photodetecting surface. Primary electrons are those which

are released from the photodetector surface as a result of the absorption of photons.

The mean number of primary electrons over V is

k1 =
η

hν

∫
V

Ir(u, t)dV, (4-8)

where η is the quantum efficiency of the photosensitive material, h is Planck’s constant

and ν is the optical frequency. During an “on” symbol and an “off” symbol the mean

count is

k1 =

 Ks +Kb, di = 1

Kb, di = 0,
(4-9)

respectively, where Ks is the average signal electron count and Kb is the average

background noise electron count. Since the atmospheric turbulence channel is a slow

fading channel, it can be assumed that the value of Is is constant throughout V and

Ks =
η

hν
AdTsIs, (4-10)

which meansKs is also a lognormal random variable. For convenience, K0 is defined as

the mean signal electron count without atmospheric turbulence so that Ks = K0e
2χ.
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In a photodetector which receives a constant optical field intensity, the number of

primary electrons k1 is a Poisson distribution given by

P [k1 = k] = Pois(k, k1) =
k1
k

k!
e−k1 . (4-11)

After photomultiplication in the APD, the total output electron count is k2 with

probability

P [k2] =
∞∑
k1=0

P [k2|k1]P [k1], (4-12)

where P [k2|k1] is the conditional probability of k2 given k1 primary electrons. McIn-

tyre has derived [43] and Conradi has experimentally verified [44] that

P [k2|k1] =

k1Γ

(
k2

1− γ
+ 1

)
k2(k2 − k1)!Γ

(
γk2

1− γ
+ 1 + k1

) [1 + γ(g − 1)

g

]k1+γk2/(1−γ) [
(1− γ)(g − 1)

g

]k2−k1
,

(4-13)

where Γ(·) is the gamma function, γ is the ionization coefficient of the semiconductor

and g is the mean gain. When k1 is Poisson distributed, the Webb distribution [46]

is used as an approximation for (4-12). The density of the Webb distribution is

PW (k2) =
1√

2πk1g
2F

(
1 +

k2 − gk1

k1gF/(F − 1)

)3/2
exp

−
(
k2 − gk1

)2

2k1g
2F

(
1 +

k2 − gk1

k1gF/(F − 1)

)
 ,

(4-14)

where

F =
g2

g2 = γg +

(
2− 1

g

)
(1− γ) (4-15)

is the excess noise factor of the APD. If k1F � 1, then (4-14) approaches the Gaussian

density [47] given by

PG(k2) =
1√

2πg2k1F
exp

[
−
(
k2 − gk1

)2

2g2k1F

]
. (4-16)
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When possible, (4-14) and (4-16) will be used to derive expressions for the probability

of miss in the next section.

4.2.3. Signal Detector. The output current of the photodetector is

i(t) = ip(t) + in(t), (4-17)

where ip(t) is the photo-generated current and in(t) is the thermal noise current. Note

that ip(t) is the result of the received signal and background radiation. This current

is passed to the signal detector.

The optimum signal detector is found by computing the likelihood ratio [15] of

the hypothesis test of (4-2) given by

L(v) =
Eχ [Eg [fn (v − k2(Is(χ), Ib, g))]]

Eg [fn(v − k2(Ib, g))]
, (4-18)

where Ex[·] denotes expectation with respect to x and fn(·) is the PDF of the AWGN.

Since the photoelectron counts are assumed independent from symbol to symbol, (4-

18) is equivalent to

L(v) =
L∏
i=1

Eχ [Eg [fn (vi − k2,i(Is(χ), Ib, g))]]

Eg [fn(vi − k2,i(Ib, g))]
. (4-19)

A closed form expression for (4-19) could not be found and, therefore, neither could

the optimum detector. Instead, the suboptimum but simple correlation detector [15]

will be employed.

The signal detector is composed of an integrator which integrates the current in

Ts second intervals, a correlator and a threshold comparator. The output of the ith

integration is

vi = ek (iTs, (i+ 1)Ts) + vn,i, (4-20)

where e is the electron charge, Ts is the symbol time, k(t1, t2) is the number of

electrons generated in the time interval (t1, t2) as a result of photodetection and vn,i is
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the integrated thermal noise current. For clarity, ki is used to denote k (iTs, (i+ 1)Ts)

throughout the remainder of this chapter. The current integrations are passed into a

register which holds L integrations, where L is the length of the signal to be detected.

The contents of the register are multiplied by the binary sequence to be detected and

summed to obtain

v =
L∑
i=1

di (eki + vn,i) , (4-21)

where {di}L−1
i=0 is the binary sequence. Finally, v is compared to a threshold vT to

determine if the signal was received.

If the signal was sent, but v < vT , then a miss detection occurs. Hence, the

probability of miss is

PM(vT ) = P [vs < vT ] , (4-22)

where vs represents the correlator output when the signal was sent. If the signal

was not sent and v > vT , then a false alarm occurs. If vn represented the correlator

output when no signal was transmitted and the detector correlates with only noise,

the probability of false alarm is

PFA(vT ) = P [vn > vT ] . (4-23)

4.3. Probabilities of Miss and False Alarm

In this section the probability of miss and the probability of false alarm are for-

mulated. Since the modulation scheme is OOK, the “off” symbols drop out in (4-21)

and

v =
L′∑
i=1

eki + vn,i, (4-24)

where L′ is the Hamming weight of the binary sequence to be detected. The ki’s are

independent. Also, the thermal electronic noise is independent from the photoelec-

tron count. Therefore, to find the probability of miss and the probability of false
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alarm, one must determine the cumulative distribution function (CDF) and com-

plementary cumulative distribution function (CCDF) of the sum of L′ independent

random variables, respectively.

The analysis and results of this study are not only applicable to IM/DD systems

using OOK, but also to systems using subcarrier binary phase shift keying (BPSK).

As pointed out in [41], the difference is that the upper limit in the sum of (4-24) is

the binary sequence length for subcarrier BPSK as opposed to the Hamming weight

for OOK. Also, for ac-coupled systems such as subcarrier BPSK, the background

radiation is filtered out (Kb = 0) as long as the lower cutoff frequency of the receiver

pass band is high enough.

4.3.1. Quantum Limited Detection. In the absence of thermal electronic

noise (or if it is negligible), the probability of miss is

PM(kT ) = P

[
L′∑
i=1

k2,i < kT

]
. (4-25)

First, (4-25) will be calculated for the zero turbulence case using the Webb and

Gaussian densities for k2 given in (4-14) and (4-16), respectively.

In [48], it is shown that the Webb density is an inverse Gaussian density. The

result of [48] is briefly summarized here as it is required to find (4-25). The PDF of

an inverse Gaussian random variable X is

fX(x;µ, β) =


√

β

2π
x−3/2 exp

[
−β (x− µ)2

2µ2x

]
, x > 0

0, o.w.

(4-26)
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To indicate that X is distributed as an inverse Gaussian random variable with pa-

rameters µ and β, one writes X ∼ IG(µ, β). The CDF of X is

FX(x;µ, β) =
1

2

[
1 + erf

(√
β

2x

(
−1 +

x

µ

))]
+
e2β/µ

2

[
1 + erf

(
−
√

β

2x

(
1 +

x

µ

))]
,

(4-27)

where

erf(x) =
2√
π

∫ x

0

e−t
2

dt (4-28)

is the error function.

By substituting

X = 1 +

(
k2 −K0g

σλ

)
(4-29)

in (4-14), where σ2 = K0g
2F and λ =

√
K0F/(F − 1), the density of X is

fX(x; 1, λ2) =


λ√
2π
x−3/2 exp

[
−λ2 (x− 1)2

2x

]
, x > 0

0, o.w.

(4-30)

Since (4-25) involves a sum of Webb random variables (or inverse Gaussian random

variables), the following property of inverse Gaussian random variables is required

[49]: If Xi ∼ IG(µwi, βw
2
i ), i = 1, 2, . . . , n and the Xi are independent, then

S =
n∑
i=1

Xi ∼ IG(µw, βw2), (4-31)

where

w =
n∑
i=1

wi. (4-32)

Thus, the sum of L′ i.i.d. random variables represented by (4-29) and (4-30) is given

by

T =
L′∑
i=1

Xi ∼ IG
(
L′, (λL′)2

)
. (4-33)
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Therefore, the quantum limited probability of miss calculated using the Webb

approximation is

PM(kT ) = P

[
L′∑
i=1

(K0g + σλ(Xi − 1)) < kT

]

= P

[
L′∑
i=1

Xi <
kT
σλ
− L′

(
K0g

σλ
− 1

)]

= FX

(
kT
σλ
− L′

(
K0g

σλ
− 1

)
;L′, (λL′)2

)
.

(4-34)

The quantum limited probability of miss calculated using the Gaussian approxi-

mation is

PM(kT ) =
1

2

[
1 + erf

(
kT − L′gK0√

2L′g2K0F

)]
. (4-35)

The probability of miss calculated using (4-34) and (4-35) are presented in the next

section along with simulation results.

4.3.2. Detection in Thermal Electronic Noise. In most communications

systems such as a terrestrial optical system transmitting through the atmosphere,

the electrical equipment operates at room temperature and the transmitter’s power

is limited so that the thermal electrical noise is nonnegligible. Thus, the probability

of miss is

PM(vT ) = P

[
L′∑
i=1

eks+n2,i + vn,i < vT

]
, (4-36)

where each thermal noise integration vn is a zero-mean random variable with variance

σ2
n =

2kBT

RL

Ts, (4-37)

kB is Boltzmann’s constant, T is the receiver’s temperature, RL is load resistance and

Ts is the symbol time. The superscript s+n refers to the fact that the photoelectron

count k2 is the result of the signal and background noise.
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In the absence of atmospheric turbulence, if the distribution of k2 is assumed

to follow the Gaussian approximation of (4-16), then the sum in (4-36) is a sum of

Gaussian random variables and the probability of miss is easily calculated as

PM(vT ) =
1

2

[
1 + erf

(
vT − eL′gK0√

2L′ (σ2
n + e2L′g2K0F )

)]
. (4-38)

In the presence of atmospheric turbulence, the scintillation of the signal is ac-

counted for by averaging the characteristic function of the secondary photoelectron

count k2 over the PDF of the signal intensity or, equivalently, the PDF of the log-

amplitude signal fluctuation χ. Therefore, to find the average Webb characteristic

function of k2 over χ, the following integral is computed:

Φk(ω) =

∫ ∞
−∞

ΦW (ω)fχ(x)dx, (4-39)

where

ΦW (ω) = exp

{
(K0e

2χ +Kb)F

(F − 1)2

[
1−

√
1− 2(F − 1)ḡjω

]
− (K0e

2χ +Kb)ḡ

F − 1
jω

}
(4-40)

is the characteristic function of the Webb distribution [45]. Since the photoelectron

counts and the thermal noise are independent, the characteristic function of v is

Φs+n
v (ω) = [Φk(ω)Φn(ω)]L

′
. (4-41)

where Φn(·) is the characteristic function of the AWGN. The CDF of v, which is the

probability of miss, can be calculated numerically by inserting (4-41) into

PM(vT ) =
1

2
+

1

π

∫ ∞
0

sin(ωvT )Re {Φs+n
v (ω)}

ω
− cos(ωvT )Im {Φs+n

v (ω)}
ω

dω, (4-42)

where Re {·} and Im {·} refer to the real and imaginary parts of the argument, re-

spectively [50].
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In the event of a false alarm, no signal is present so that only background photo-

electrons and thermal noise integrations are present in the correlator. Therefore, the

probability of false alarm is

PFA(vT ) = P

[
L′∑
i=1

ekn2,i + vn,i > vT

]

=
1

2
− 1

π

∫ ∞
0

sin(ωvT )Re {Φn
v (ω)}

ω
− cos(ωvT )Im {Φn

v (ω)}
ω

dω,

(4-43)

where

Φn
v (ω) = [ΦW (ω,K0 = 0)Φn(ω)]L

′
(4-44)

is the characteristic function of the sum when no signal is present. When the back-

ground radiation is negligible (Kb = 0), the probability of false alarm is simplified

to

PFA(vT ) = P

[
L′∑
i=1

vn,i > vT

]

=
1

2

[
1− erf

(
vT√
2L′σ2

n

)]
.

(4-45)

4.4. Determination of Signal Length and Detection Thresh-

old

Appropriate settings for the signal length L′ and detection threshold vT are crit-

ical in the design of a packet-switched system. The goals are 1) to minimize L′

while maintaining required detection performance and 2) to determine vT such that

the probabilities of miss and false alarm are below the required performance. First, a

simple quantum-limited example will be presented and then an example with thermal

electronic noise. Table 4.1 lists the parameters that were used for the APD charac-

teristics and the thermal noise in the calculations that were made for the figures.
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Table 4.1: APD and Thermal Noise Parameters

mean photomultiplication gain g 100
ionization coefficient γ 0.028
bit rate Rb 2.4 Gb/s
receiver temperature T 295 K
load resistance RL 50 Ω

Fig. 4.2 shows the probability of miss versus normalized threshold kN = kT/(L
′gK0)

for a zero-turbulence, quantum-limited system in which the signal length L′ = 8 and

the mean signal count K0 = 10 and 100. The probability of miss has been calculated

using (4-34) and (4-35), which use the Webb approximation and Gaussian approx-

imation, respectively. Also, displayed is the probability of miss found as a result

of simulations using the MC distribution. The Webb approximation is better than

the Gaussian approximation in both cases. However, the Gaussian approximation

improves as the photoelectron count increases.

Fig. 4.3 illustrates the probability of miss in atmospheric turbulence, modeled

using the lognormal distribution, when the background noise count Kb = 2 and

thermal electronic noise is present. The probability of miss was found by simulation

using the MC distribution and by numerical integration using (4-42), in which the

Webb distribution was used. It is apparent from the plot how well the probability of

miss is approximated using the Webb distribution for the photoelectron count.

In order to determine the proper setting for the signal length L′ and detection

threshold kT , one might assume the worst case fading (σχ = 0.4) and plot the proba-

bilities of false alarm and miss versus the normalized threshold kN for different signal

lengths. Such a plot is given in Fig. 4.4 for four different signal lengths. For a given

signal length the best threshold setting would be at the point where PM = PFA. If

the intersection point is below the required detection performance, then that signal

length is sufficient. If, for example, the system designer required PFA < 10−7, by

looking at Fig. 4.4, he or she can see that if L′ = 8, the PM = PFA at about 10−4
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Figure 4.2: Quantum limited probability of miss calculated using the Webb approx-
imation (Eq. (4-34)) and the Gaussian approximation (Eq. (4-35)) for (4-12). The
simulation results, in which the MC distribution was used in (4-12), are also plotted.
The parameters used were mean signal count K0 = 10 and 100 and signal length
L′ = 8.

and, therefore, L′ = 8 is not sufficient. When L′ = 16, however, PM = PFA below

10−7. Thus, L′ = 16 and kN ≈ 0.23 are appropriate choices for this example.

4.5. Conclusions

In this chapter, the performance of a correlation detector in an optical communi-

cations system operating through the turbulent atmosphere and employing an APD

has been studied. The effect of the atmospheric turbulence on the transmitted optical
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Figure 4.3: Probability of miss in atmospheric turbulence. The lines with circles,
squares and triangles were found by simulation using the MC distribution for the
total electron count given by (4-13). The bare lines were calculated using numerical
integration using the Webb distribution. The parameters used were L′ = 8, σχ ∈
{0.08, 0.16, 0.24, 0.32, 0.40}, Kb = 2 and K0 = 100.

signal has been modeled as a lognormal random process and, therefore, the results

are applicable to weak turbulence. Using the Webb and Gaussian approximations for

the APD photoelectron count the probability of miss has been derived for the zero-

turbulence, quantum-limited case. In the case of detection in atmospheric turbulence

and thermal electronic noise, the probability of miss is simulated using the MC dis-

tribution for the APD photoelectron count and compared to the probability of miss

calculated using numerical integration, in which the Webb characteristic function is
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Figure 4.4: Probabilities of miss and false alarm for signal lengths L′ ∈ {8, 16, 32, 64}
and log-amplitude signal standard deviation σχ = 0.40. The parameters used were
Kb = 2 and K0 = 100.

used. The faster numerical integration is shown to provide accurate approximation

to the more time-consuming simulation method. Using the methods described in

this chapter, the system designer can find appropriate values for the signal detec-

tor’s signal length and detection threshold in an APD based IM/DD optical wireless

communications system.
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Chapter 5

Detection Statistics for Optical Signal

Through Strong Turbulence

5.1. Introduction

Atmospheric turbulence, which results from small temperature variations, causes

signal intensity fluctuations called scintillation at the receiver and can significantly

impair communications performance. Many models have been proposed for the effect

of atmospheric turbulence on a propagating optical wave, which lead to a probability

density function (PDF) for the scintillation or fade statistics at the receiver [51].

The first and most widely utilized model is the lognormal PDF which is applicable to

weak turbulence conditions. For weak to strong turbulence, the gamma-gamma model

introduced in [52] and based on theory in [31] has gained acceptance as a reputable

model due to its good agreement with simulation and experiment and the ease with

which it can be fit to measured turbulence data. Many studies of performance of OWC

in the presence of atmospheric turbulence represented by the gamma-gamma model

have been carried out including [53–55]. These studies are focused on demodulation

and decoding performance in the presence of gamma-gamma atmospheric turbulence.

Before estimation, demodulation or decoding can be performed, however, the sig-

nal must be detected. In this chapter, the problem that is studied is the determina-

tion of the signal length and detection threshold necessary to maintain a satisfactory

OWC link in the presence of gamma-gamma turbulence. In order to determine this

the probability of miss in atmospheric turbulence must be calculated and compared

to the probability of false alarm. Optical detection statistics in a weak turbulent

atmosphere have been reported in [3,4,42] for lognormal statistics. This chapter fo-

cuses on strong turbulence and compares the results with moderate turbulence using
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the gamma-gamma model. It is assumed that the scintillation fade of each symbol

is independent and identically distributed (IID). Therefore, these results are valid

for OWC links in which the coherence time of the scintillation fades is less than the

symbol interval.

The remainder of this chapter proceeds as follows: Section 5.2 explains the system

model for the received signal, atmospheric turbulence and signal detector, Section

5.3 shows how to calculate the probabilities of miss and false alarm, Section 5.4

presents two exercises illustrating how to find the required signal length and detection

threshold and Section 5.5 ends the chapter with concluding remarks.

5.2. System Model

Relevant to this study is an intensity modulated, direct detection (IM/DD) optical

communications system that employs on-off keying (OOK) [8]. The received optical

signal and noise is given by

s(u, t) = A(u, t)Is

L∑
i=1

g(t)di + Ib(u, t), (5-2)

where u is an event in the sample space, t is time, A(u, t) is the scintillation process re-

sulting from atmospheric turbulence, Is is the collected signal power in the absence of

turbulence, L is the signal length, g(t) is the pulse shape, {di : di ∈ {0, 1} ; i = 1, . . . , L}

is the sequence to be detected and Ib(u, t) is the background radiation.

After photodetection, the current at the output of the photodetector is i(u, t) =

is(u, t) + ib(u, t) + in(u, t), where is(u, t) is due to the received signal light, ib(u, t) is

due to background radiation and in(u, t) is due to thermal noise. Using an integrate

and dump receiver, the integrated current in one symbol interval Ts is

v = eKs + eKb + n, (5-3)
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where e is the electronic charge, Ks is the signal photoelectron count, Kb is the

background photoelectron count and n is a zero-mean Gaussian random variable,

representing the integrated thermal noise. The variance of n is [8]

σ2
n =

2kBT

RL

Ts, (5-4)

where kB is Boltzmann’s constant, T is the receiver temperature and RL is the load

resistance.

5.2.1. Atmospheric Turbulence Channel. In clear air conditions micro-fluctuations

in temperature create variations in the index of refraction, which is optical turbulence.

As an optical beam propagates though turbulence, the wavefront is distorted. This

distortion leads to variations in the received power, called scintillation. The strength

of the scintillation is quantified by the Rytov variance given by

σ2
R = 1.23C2

nk
7/6L11/6

p , (5-5)

where C2
n is the refractive index structure parameter, k = 2π/λ is the optical wave

number, λ is the laser wavelength and Lp is the propagation distance. Various models

have been proposed for C2
n, but it can be measured [51]. For horizontal links near the

ground, C2
n varies from 10−17 for weak turbulence to 10−13 for strong turbulence [56].

5.2.1.1. Gamma-Gamma Model. In the gamma-gamma turbulence model [52],

the propagating optical wave is subject to large scale turbulent eddies which are

modulated by small scale eddies and the received optical intensity is a product I = xy,

wherein x and y are independent gamma random variables with parameters α and

β, respectively. Thus, the probability density function (PDF) for a gamma-gamma

random variable A can be found to be

fA(x) =
2

Γ(α)Γ(β)

(
αβ

A0

)α+β
2

x
α+β

2
−1Kα−β

(
2

√
αβx

A0

)
, (5-6)
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where Γ(·) is the gamma function, Kν(·) is the νth order modified Bessel function of

the second kind and A0 is the mean of A. If either α or β equals 1, then (5-6) reduces

to the PDF of the K distribution. The normalized variance of the intensity, called

the scintillation index, for this PDF is given by

σ2
A =

1

α
+

1

β
+

1

αβ
. (5-7)

The parameters α and β are calculated using measured values of C2
n and the inner

scale diameter l0, which is the scale of the smallest turbulent eddies. Depending on

the turbulence properties, different formulas are available for α and β, but for a plane

wave and non-zero inner scale the following two formulas are used [52]:

1

α
= exp

{
0.16σ2

R

(
2.61ηl

2.61 + ηl + 0.45σ2
Rη

7/6
l

)7/6

·

[
1 + 1.753

(
2.61

2.61 + ηl + 0.45σ2
Rη

7/6
l

)1/2

− 0.252

(
2.61

2.61 + ηl + 0.45σ2
Rη

7/6
l

)7/12]}
− 1

(5-8)

1

β
= exp

 0.51σ2
R(

1 + 0.69σ
12/5
R

)7/6

− 1, (5-9)

where ηl = 10.89(RF/l0)2 and RF is the radius of the Fresnel zone. For the examples

given in Section 5.4, (5-8) and (5-9) are used.

5.2.1.2. Negative Exponential Model. As the path length increases, the scintilla-

tion does not increase without bound, instead it saturates at a certain distance [14].

In the saturation regime, in which σ2
R = 25, the intensity fluctuations can be modeled

as an negative exponential process for which the PDF of a sample is

fA(x) =
1

A0

e−x/A0 , (5-10)
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where A0 is the mean. The scintillation index for this PDF is σ2
A = 1.

5.2.2. Signal Detection. In this signal detection problem, the goal is to deter-

mine if the transmitted optical signal Is(u, t), which is a stochastic process as a result

of atmospheric turbulence, is present in the receiver. In the receiver, the optical signal

is converted to an electrical signal by the (p-i-n or APD) photodetector. It is assumed

that the turbulence channel is slowly varying so that the number of photo-generated

electrons ks(u) in one symbol interval is Poisson distributed or Webb distributed for

p-i-n or APD, respectively. In order to detect the signal, the detector must overcome

both the background optical radiation Ib(u, t) and the thermal electronic noise n(u, t).

The detection problem is modeled as the following discrete hypothesis test:

H0 : vi = eKb,i(Ib, g) + ni, i = 1, 2, . . . , L

versus

H1 : vi = eKs,i(Is, g)di + eKb,i(Ib, g) + ni, i = 1, 2, . . . , L,

(5-11)

where v is the current integration during one symbol interval and g is the photomul-

tiplication gain (g = 1 for p-i-n). The decision device considered in this chapter is

the correlation detector which can be represented as

v =
L∑
i=1

vidi
H1

≷
H0

vT , (5-12)

where vT is the detection threshold. Assuming that the laser transmits zero energy

for a “0” symbol, the “0” symbols do not contribute to the sum in (5-12) and

v =
∑
{j:dj=1}

vj. (5-13)

The cardinality of the set {j : dj = 1} is the Hamming weight of the sequence

{di : i = 1, . . . , L} and will be labeled L′ in this chapter.
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Under (5-11), two types of errors can occur: a miss, when H1 is true and the

detector chooses H0, and a false alarm, when H0 is true and the detector chooses H1.

The probability of miss is

PM(vT ) = P [v < vT |H1 is true] (5-14)

and the probability of false alarm is

PF (vT ) = P [v > vT |H0 is true] . (5-15)

The goal of this signal detection problem is to determine the signal length L′ and

detection threshold vT necessary to stay below a certain probability of miss, while

staying below a set probability of false alarm. In order to find these settings the

probabilities of miss and false alarm must be calculated.

5.3. Probabilities of Miss and False Alarm

Computing the probabilities of miss and false alarm for the test in (5-12) is equiv-

alent to calculating the cumulative distribution function (CDF) and complementary

cumulative distribution function (CCDF) of the sum in (5-12), respectively. Under

the assumption of independence between symbol integrations, which is valid for chan-

nels in which the symbol time is less than the atmospheric coherence time (Ts < τ0),

the CDF and CCDF will be calculated using the method of characteristic functions

(CFs), i.e., the CFs for each symbol integration will be computed, they will be mul-

tiplied together and finally, the CDF and CCDF will be computed using an inversion

formula.

5.3.1. Conditional Poisson and Webb Counts. For a p-i-n photodiode, the

photoelectron count is Poisson distributed, i.e., the probability mass function for the
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count in one symbol interval conditioned on the intensity process λ(u, t) is

p(k|λ) = (k!)−1

(∫
Ts

λ(u, t)dt

)k
exp

(
−
∫
Ts

λ(u, t)dt

)
. (5-16)

The quantity
∫
T
λdt is called the rate of the Poisson process. In this case, the intensity

λ(u, t) =
η

hν
s(u, t) = ξs(u, t), (5-17)

where η is the photodiode quantum efficiency, h is Planck’s constant and ν is the laser

frequency. Thus, during an “ON” symbol, the intensity λ(u, t) = ξ (A(u, t)Ps + Ib(u, t)).

Due to the mathematical intractability of integrating this stochastic process, it is as-

sumed that the signal fade due to scintillation is constant for one symbol interval so

that it can be treated as a random variable. Therefore, the intensity λ = ξ (APs + Ib)

and the rate is ξ(APs + Ib)Ts = Aks + kb, where ks is the mean signal count without

fading and kb is the mean background noise count. The Poisson count is now found

by computing the expectation over the density of A as

E [p(k|λ)] =

∫ ∞
0

(xks + kb)
k

k!
e−(xks+kb)fA(x)dx, (5-18)

where fA(·) is the fading PDF. Similarly, the Poisson CF averaged over the fading

distribution is

φp(ω) = E
[
exp

[
(Aks + kb)

(
ejω − 1

)]]
= exp

[
kb(e

jω − 1)
]
E
[
exp

[
Aks(e

jω − 1)
]]
.

(5-19)

As in [8], comparing (5-19) to the characteristic function of the fade distribution

φA(ω) = E
[
ejωA

]
, (5-19) can be written

φp(ω) = exp
[
kb(e

jω − 1)
]
φA(ω)|jω→ks(ejω−1). (5-20)



75

The gamma-gamma characteristic function, which can be found using [57, Eq.

(6.643.3)] (similar to the calculation in [54]), is

φg(ω) =
Γ(β − α)

Γ(β)

(
1

−jω
αβ

A0

)α
Φ

(
α, 1 + α− β;

1

−jω
αβ

A0

)
+

Γ(α− β)

Γ(α)

(
1

−jω
αβ

A0

)β
Φ

(
β, 1 + β − α;

1

−jω
αβ

A0

)
,

(5-21)

where

Φ(a, b;x) = 1 +
a

b
x+

a(a+ 1)

b(b+ 1)

x2

2!
+
a(a+ 1)(a+ 2)

b(b+ 1)(b+ 2)

x3

3!
+ . . . (5-22)

is the confluent hypergeometric function. Thus, the Poisson CF with gamma-gamma

fading is

φp,g(ω) = exp
[
kb(e

jω − 1)
] [Γ(β − α)

Γ(β)

(
1

1− ejω
αβ

ksA0

)α
· Φ
(
α, 1 + α− β;

1

1− ejω
αβ

ksA0

)
+

Γ(α− β)

Γ(α)

·
(

1

1− ejω
αβ

ksA0

)β
Φ

(
β, 1 + β − α;

1

1− ejω
αβ

ksA0

)]
,

(5-23)

The CF of the exponential distribution is φe(ω) = (1− A0jω)−1 and the Poisson CF

with exponential fading is

φp,e(ω) =
exp [kb (ejω − 1)]

1− A0ks (ejω − 1)
. (5-24)

In an APD exposed to constant intensity light the photoelectron count is approx-

imated by the Webb distribution [46]. Using the same assumption of constant signal
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fade for one signal interval, the conditional Webb PDF is

fw|λ(k|λ) =
1√

2πλTsg2F

(
1 +

k − gλTs
λTsgF/(F − 1)

)3/2

· exp

− (k − gλTs)2

2λTsg2F

(
1 +

k − gλTs
λTsgF/(F − 1)

)
 ,

(5-25)

where g is the mean photomultiplication gain, F = γg+ (2−1/g)(1−γ) is the excess

noise factor and γ is the ionization coefficient. The conditional CF for the Webb

distribution is [45]

φw|Is(ω|Is) = exp

{
(Isks + kb)F

(F − 1)2

[
1−

√
1− 2(F − 1)gjω

]
− (Isks + kb)g

F − 1
jω

}
(5-26)

and the unconditional Webb CF is found by averaging over the gamma-gamma PDF

as

φw(ω) = E
[
φw|Is(ω|Is)

]
. (5-27)

5.3.2. Probability of Miss. In order to find the probability of miss, the CF of

a single symbol integration must first be found. In the following development, the

CF for the photoelectron count will be represented by φk(ω) which will be equal to

(5-19) for a p-i-n and (5-27) for an APD. Since the photoelectron count and thermal

noise AWGN are independent, the single symbol CF is

φs(ω) = φk(ω)φn(ω), (5-28)

where φn(ω) = exp(−σ2
nω

2/2) is the zero-mean Gaussian CF. In order to compute the

CF of the sum in (5-12), the assumption that each symbol integration is independent

and identically distributed (IID) is used so that the sum CF is

φv(ω) = [φk(ω)φn(ω)]L
′
. (5-29)
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Finally, (5-29) is inserted into the following inversion formula [50] to calculate the

CDF:

PM(vT ) =
1

2
+

1

π

∫ ∞
0

sin(ωvT )Re {φs+nv (ω)}
ω

− cos(ωvT )Im {φs+nv (ω)}
ω

dω, (5-30)

where Re{·} and Im{·} refer to the real and imaginary part of the argument, respec-

tively.

5.3.3. Probability of False Alarm. In the event of a false alarm, no signal is

present in the correlator and the photoelectron count CF is

φnk(ω) = φk(ω; ks = 0), (5-31)

where the superscript n indicates that the count is only due to background noise.

Inserting the sum CF given by

φnv (ω) = [φnk(ω)φn(ω)]L
′

(5-32)

into

PF (vT ) =
1

2
− 1

π

∫ ∞
0

sin(ωvT )Re {φnv (ω)}
ω

− cos(ωvT )Im {φnv (ω)}
ω

dω, (5-33)

gives the probability of false alarm.

When the background noise is high, Gaussian approximations [8] can be used

for photoelectron count in a p-i-n and APD resulting in simpler formulas for the

probability of false alarm. The p-i-n formula is

PF (vT ) =
1

2

[
1− erf

(
vT − eL′kb√

2L′ (σ2
n + e2kb)

)]
(5-34)

and the APD formula is

PF (vT ) =
1

2

[
1− erf

(
vT − eL′gkb√

2L′ (σ2
n + e2Fgkb)

)]
, (5-35)
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Table 5.1: OWC Link Parameters

Tx output power 1 mW
wavelength 850 nm
beam divergence 2 mrad
Rx FOV 2 mrad
bit rate 10 kb/s
Rx temperature 295 K
load resistance 50 Ω
spectral radiance 10−3 W/cm2-µm-sr
background radiation BW 0.030 µm
aperture diameter 10 cm
quantum efficiency 0.1

where

erf(x) =
2√
π

∫ x

0

e−t
2

dt (5-36)

is the error function. The Gaussian approximations could also be used when calcu-

lating the probability of miss when the signal count is high, but this would not make

the computation any simpler because the signal counts must be averaged over the

PDF of the fading.

5.4. Examples

In this section, the probabilities of miss and false alarm are calculated and pre-

sented for various situations using the methods of the previous section. The param-

eters in Table 5.1 are held constant and the turbulence strength, path length and

signal length are varied. In all situations, just for illustrative purposes, it is assumed

that the probability of false alarm is set at 10−7 and it is required that the probabil-

ity of miss be at least as good. Beam energy loss due to absorption and scattering

(extinction coefficient) is not included in these calculations.

5.4.1. OWC Link with Varying Path Length. In the case where an optical

link is established between a vehicle equipped with an optical wireless transceiver and
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another vehicle or an immobile ground station, the link must maintain communica-

tions as the path length varies causing the scintillation strength to vary according

to (5-5). For the following calculations, it is assumed that the transmission power is

limited to 1 mW so that the probability of miss increases as path length increases

not only because of the increasing scintillation strength, but also because less of the

laser beam energy is captured by the receiver, lowering the SNR.

Figs. 5.1 and 5.2 depict the probability of miss for a p-i-n receiver operating in

moderate and strong atmospheric turbulence characterized by C2
n = 10−15 and 10−13,

respectively. The signal has Hamming weight L′ = 16. Also plotted in these and

all remaining figures is the probability of false alarm, which is the curve that always

has negative slope. These two show that the goal of 10−7 for the probability of miss

is achievable (in 0.5 km increments) up to 2.5 km for moderate turbulence and only

up to 1.5 km for strong turbulence. Therefore, in the case of strong turbulence, to

extend the range, the signal length must be increased beyond 16.

Another way to improve performance, other than increasing the signal length,

is to use an APD instead of a p-i-n photodiode. Due to the internal gain of an

APD, it is more sensitive than the p-i-n and, accordingly, the relative probabilities

of miss and false alarm are smaller. Figs. 5.3 and 5.4 represent the same situation

as the previous two figures except an APD is employed instead of a p-i-n. One

obvious difference between the p-i-n and APD probability of miss curves is the p-i-

n curves start to flatten out as the path length increases whereas the APD curves

remain vertical. This is the result of thermal noise. In the p-i-n receiver, the strong

turbulence probability of miss performance starts to become limited by thermal noise

at 2.5 km for PM = 10−8. The APD receiver, however, is not affected by thermal

noise at these signal levels.

5.4.2. Fixed-Length OWC Link with Varying Turbulence Strength. A

fixed-length link, such as an urban building to building link, must handle fluctuating
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Figure 5.1: Probability of miss using using p-i-n photodiode in moderate atmospheric
turbulence (C2

n = 10−15). The optical transmit power is constant at Pt = 1 mW and
the range of path lengths is 1 to 6 km.

scintillation power that results from changes in the turbulence strength caused by

diurnal temperature variation. In Figs. 5.5 and 5.6, the probability of miss is plotted

for path length Lp = 2 km, signal length L′ = 16 and C2
n ∈ {10−15, 10−14, 10−13} for a

p-i-n and APD receiver, respectively. The APD receiver is able to handle all levels of

turbulence. The p-i-n receiver probability of miss, however, is too high at the highest

level of turbulence (C2
n = 10−13), and can not meet the required PM = 10−7.

From Fig. 5.5 it is evident that the signal length must be increased for the p-

i-n receiver in order to mitigate strong turbulence. On the other hand, from Fig.
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Figure 5.2: Probability of miss using using p-i-n photodiode in strong atmospheric
turbulence (C2

n = 10−13). The optical transmit power is constant at Pt = 1 mW and
the range of path lengths is 1 to 5 km.

5.6 it seems it is possible to decrease the signal length and still gain the required

performance. In consideration of this, the p-i-n and APD probability of miss are

plotted versus the normalized threshold for five different signal lengths in Figs. 5.7 and

5.8, respectively. In this way, a signal length is determined by finding the intersection

of the probability of miss and its corresponding probability of false alarm and if it’s

below 10−7, then that signal length is sufficient. Fig. 5.7, for example, shows that the

signal length L′ = 32 is sufficient for a p-i-n receiver and Fig. 5.8 shows that L′ = 8

is sufficient for an APD receiver.
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Figure 5.3: Probability of miss using using APD in moderate atmospheric turbulence
(C2

n = 10−15). The optical transmit power is constant at Pt = 1 mW and the range
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5.5. Concluding Remarks

Using the gamma-gamma distribution for optical signal intensity fluctuations

caused by atmospheric turbulence, in this chapter it has been shown how to cal-

culate the probability of miss for the signal detector of an optical receiver employing

a p-i-n or avalanche photodiode. Since the gamma-gamma distribution is applicable

to conditions representing from weak to strong turbulence, the methods used herein
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are applicable to such conditions. However, since the channel was treated as memo-

ryless and due to the relatively long temporal coherence of atmospheric turbulence,

these results are valid for slow speed communications.

Upon observing Figs. 5.1-5.6, it is apparent that, as the scintillation strength

increases, the greater probability of deep fades will significantly increase the prob-

ability of miss. Enough so that either the signal length or SNR must be increased

to compensate for the deeper fades. For a fixed distance link, increasing the SNR
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km and varying turbulence strength. The optical transmit power is constant at Pt = 1
mW.

requires increasing the transmitted power or the receiver sensitivity, which is not pos-

sible for a communications system designer using off-the-shelf transceivers. Therefore,

in order to decrease the probability of miss, the signal length must be increased to

an appropriate point, which can be determined using the methods described in this

chapter.
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Chapter 6

Conclusions

In this work, signal detection for intensity modulated, direct detection optical

communications systems operating through the turbulent atmospheric channel has

been studied. More specifically, using various system and channel models, the proba-

bility of miss has been theoretically derived in some cases and numerically calculated

in others. Comparing the probabilities of miss and false alarm, it is then possible to

determine the two signal detector parameters: signal length and detection threshold

so that both the probabilities of miss and false alarm remain below a required level.

The systems were chosen to model those used in commercial and research devices,

including the p-i-n and avalanche diode, and the atmospheric turbulence models used

represent the whole range of scintillation strength from weak to strong to saturated.

For the p-i-n and avalanche photodiodes, the photoelectron generation was modeled as

Poisson and Webb stochastic process, respectively. In the range of weak turbulence,

the lognormal model was employed and for saturated scintillation the exponential

model. The gamma-gamma model was used to represent strong turbulence.

Future research topics in this area include: finding other, possibly more complex,

signal detector structures, and determining their performance; investigating how the

signal detector performance is affected if the transmitter, receiver or both are mobile

and determining how to mitigate those effects; and, finally, experimentally measuring

the probability of miss for an optical communication system operating through the

atmosphere.
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Statistics are studied for signal detection in optical communication systems op-

erating through the atmosphere. Optical communication systems with which this

study is concerned are those that employ intensity modulation and direct detection.

Atmospheric turbulence, which is fluctuations in the atmosphere’s optical index of

refraction, is a hindrance to optical wireless communications because of the signal

fades, called scintillation, it causes at the optical receiver. In order to mitigate the

deteriorative effect of turbulence on the communications system, the signal length

and detection threshold for the signal detector must be properly chosen.

In this study, mathematical models for photoelectron generation in the receiver’s

photodiode and for the atmospheric turbulence channel enable the derivation or nu-

merical calculation of the probability of miss, which is crucial for determining the

signal length and detection threshold. The two commonly used types of photodiodes

are the p-i-n photodiode and the avalanche photodiode. A light source of constant

intensity impinging upon a photodiode will generate a photoelectron count which

is a Poisson process for a p-i-n and a follows the McIntyre-Conradi distribution for

an avalanche photodiode. In this study, the Webb distribution will be used as an
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approximation for the McIntyre-Conradi distribution. When the light intensity is

itself a random process, as is the case for the received optical intensity after traveling

through atmospheric turbulence, the photoelectron count will be a doubly (or condi-

tional) stochastic process. To model the effect atmospheric turbulence, three different

probability distributions are utilized to describe the received optical intensity. These

are the lognormal distribution, valid for weak turbulence, the gamma-gamma distri-

bution, valid for a range of turbulence strengths and the exponential distribution,

valid for the saturation regime of signal scintillation.

With these models, the probability of miss is derived or numerically calculated.

Simulations are provided to verify derived formulae for the probability of miss. Ap-

plying results in this study, a system designer can determine appropriate signal length

and detection threshold settings in order to meet system specifications for signal de-

tection.
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