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A Comparison of One-High-Threshold and Two-High-Threshold 
Multinomial Models of Source Monitoring 

 
Mahesh Menon        Todd S. Woodward 

Riverview Hospital, Coquitlam, British Columbia, Canada 
 
 
A data simulation study comparing the one-high-threshold (1HT) and two-high-threshold (2HT) 
multinomial models suggested that 2HT models are more likely to misestimate the underlying parameter 
values, due to inflation of some parameters (b and d), and deflation of others (D).  
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Introduction 

 
Source monitoring and reality monitoring 
studies have proven to be extremely useful in 
understanding a variety of memory processes in 
the normal and clinical populations (Brebion, 
Gorman, Amador, Malaspina, & Sharif, 2002; 
Hoffman, 1997; Johnson, Hashtroudi, & 
Lindsay, 1993; Keefe, Arnold, Bayen, McEvoy, 
& Wilson, 2002; Lindsay, Johnson, & Kwon, 
1991). Consider a simple source monitoring 
experiment with two sources: A and B. Single 
words are presented in a random fashion from 
the two sources, and the final recognition test 
consists of a mix of old A and B items along 
with new distracters N. The analysis of data 
from such a study typically examines item 
detection (the number of previously presented 
items that are correctly identified as being old), 
source recognition (the number of times the 
source  of the item was correctly attributed), and 
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the false positive error rates (the number of new 
items that are incorrectly identified as being 
old).  

However, traditional methods of 
analysis are unable to separate guessing biases 
and meta-cognitive response strategies from true 
item and source recognition.   For example, 
when subjects notice that they are recognizing 
too few items from the (less memorable) 
external source, they tend to compensate by 
increasing the number of external-source 
guesses (Batchelder & Riefer, 1990). Therefore, 
in order to accurately measure externalizations, 
increases in strategic external guesses must be 
excluded. Similarly, to accurately estimate 
source recognition, it must be separable from 
both biases and strategic guessing. Multinomial 
modeling allows these distinct cognitive 
mechanisms can be disentangled. Multinomial 
modeling is a statistically sophisticated, yet 
simple method of separating item recognition, 
source recognition and response biases in 
discrimination tasks such as source monitoring, 
allowing estimation of guessing strategies and 
biases separately from source-discrimination 
processes.  

Multinomial models attempt to explain 
discrete responses in a particular psychological 
paradigm by postulating latent cognitive 
processes that combine in different ways to 
determine the response category. The basic idea 
is that any given response category may occur as 
a consequence of one or more processing 
sequences, where each processing sequence is 
characterized by a series of successful or 
unsuccessful processing events. The processing 
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sequences are represented in a tree structure (see 
Figure 1). The root (or initial node) represents 
the beginning of the processing sequence, the 
intermediate nodes represent stages involving a 
choice between two or more processing events, 
and the terminal nodes correspond to the 
observable response categories. The application 
of multinomial models to source monitoring has 
been reviewed in detail elsewhere (Batchelder & 
Riefer, 1999; Bayen, Murname, & Erdfelder, 
1996). 

One theoretical divide with implications 
for future research and interpretability of prior 
research findings lies in the selection of the 
basic model used for the analyses. Bayen et al. 
(1996) described three classes of models: the 
one-low- threshold (1LT), one-high-threshold 
(1HT) and two-high-threshold (2HT) models. 
The 1LT model has been used in some studies 
(Macmillan & Creelman, 1991), but the lack of a 
recognition bias parameter greatly weakens the 
LT model as a general purpose model of source 
monitoring (Bayen et al., 1996). The major 
theoretical debate therefore remains between the 
use of the 1HT and 2HT classes of models.  

In 1HT models there is a single high 
threshold that divides the decision space into 
two discrete areas that correspond to detect as 
old and undetected. In 1HT models, it is 
assumed that only old items can cross the high 
threshold. If the threshold is crossed on 
presentation of a test item, the item is detected 
as old. If the threshold is not crossed, the item is 
said to be in an undetected state. All the new 
items and the old items that do not cross the 
threshold are categorized as old or new only on 
the basis of guessing. The probability with 
which an undetected item is guessed as being 
old is labeled b (see Figure 1). 

In a 2HT model, there are two high 
thresholds that divide decision space into three 
discrete areas that correspond to detect as old, 
detect as new and undetected. It is assumed that 
only old items can cross the detect as old 
threshold, and only new items can cross the 
detect as new threshold. If either threshold is 
crossed on presentation of a test item, the item is 
detected as either old or new, depending on 
which threshold was crossed. If neither threshold 
is crossed, the item goes undetected, and is 
guessed to be new or old. As can be seen from 

Figure 1, the 2HT source monitoring model can 
be constructed from the 1HT model by adding a 
parameter (labeled DN) indicating the probability 
that a new item will be detected as new. 
Conversely, the 1HT model described earlier can 
be derived from the 2HT model by imposing the 
restriction DN = 0. A 1HT model may thus 
always be regarded as a special case of a 2HT 
model, where the probability of crossing the 
second threshold is zero for all classes of items. 

The nature of this debate centers around 
three issues. The primary theoretical issue is one 
of how an item is recognized as being old or 
new. In 2HT model space, the detection of an 
item as new requires it to cross a discrete 
threshold, which would determine it to be 
previously unseen. The 1HT model instead 
argues that the failure to cross the detection 
threshold for the item being old would imply 
that it remains unrecognized, and in the absence 
of a false positive recognition, the person would 
conclude that the item is new.  

The second issue is an empirical one, 
stated as follows: for a given set of data, does 
including a DN parameter affect the values of the 
other parameters (even though it is thought to 
represent a distinct, independent cognitive 
process), and if so, what is the nature of these 
changes? 

A third issue lies in the interpretability 
of the parameters in the two classes of models. 
Specifically, in the 1HT and 2HT models (but 
not the 1LT model), the b parameter represents 
the probability of guessing that a word is a target 
item, when it has not actually crossed one of the 
thresholds. This parameter is reflected in two 
separate scenarios: (1) for previously seen 
words, it is an indicator of the tendency to guess 
that the word is old even when it has not been 
detected as being old, and (2) for new words, it 
is an indicator of the tendency to make false 
positive errors. It is assumed that these two 
scenarios are underpinned by the same cognitive 
process, and hence are assigned a common 
parameter. But how representative are the b 
parameters generated by the 1HT and 2HT 
model of this cognitive process? 

The empirical question of how 
estimating a DN parameter affects the values of 
the other parameters   by   way   of  a  data 
simulation  of  a  three-source source monitoring 
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One-high-threshold model (1HT) Two-high-threshold model (2HT) 

Source A items Source A items 

  

Source B items Source B items 

  

Source C items Source C items 

  

New items New items 

  
 

Figure 1 One- and two-high-threshold models of source monitoring. 

Notes. A = Source A item; B = Source B item; C = Source C item; N = distracter item; Item recognition 
parameters: D1 = probability of detecting an item from source A; D2 = probability of detecting an item from 
source B; D3 = probability of detecting an item from source C; DN = probability of detecting that a distracter item 
is new; Source recognition parameters: d1= probability of correctly discriminating the source of an item from 
source A; d2 = probability of correctly discriminating the source of an item from source B; d3 = probability of 
correctly discriminating the source of an item from source C; Guessing biases: a = probability of guessing that a 
detected item is from source A; a1 = probability of guessing that a detected item is from source B; b = probability 
of guessing that an undetected item is old; g = probability of guessing that an undetected item is from source A; 
g1 = probability of guessing that an undetected item is from source B. 
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study was addressed. The three source model 
was used as it allows for greater flexibility with 
model specification, which is not limited by the 
available degrees of freedom (Keefe et al., 2002; 
Riefer, Hu, & Batchelder, 1994; Woodward et 
al., 2006). The data simulation results are also 
pertinent to the theoretical and interpretational 
issues mentioned above, and these issues are 
addressed in the Discussion section. 

The simulation of the to-be-analyzed 
data involved generating frequency tables from 
tree models for which all parameter values were 
set, with the exception of DN, which was varied 
between 0 and .90. Varying the DN parameter in 
this fashion allowed us to simulate a situation 
where, as is assumed by the 1HT model, there is 
no cognitive process that is captured by DN, as 
well as three other situations whereby detection 
of new items is the true state of affairs, to 
varying degrees.  

Then, these frequency tables were 
analyzed using 1HT and various 2HT models. 
Performance was assessed by examining the 
inflation and deflation of estimated parameter 
values that occur when the 1HT and 2HT 
underlying assumptions did or did not match the 
true state of affairs (the true state of affairs being 
the state where the estimated DN parameter 
value matched the generating DN parameter 
value). In this fashion, the underlying 
assumptions (i.e., 1HT or 2HT generating 
parameter values) and the methods of analysis 
(i.e., 1HT or 2HT estimated parameter values) 
were completely crossed. Both the 1HT and 
2HT models were expected to perform well 
when the method of analysis matched the 
underlying assumptions determined by the 
generating parameters, but inflations and 
deflations in parameter estimates were expected 
when a mismatch occurred between the method 
of analysis and the underlying assumptions. The 
conclusions are based on the net inflation or 
deflation of parameter values for the 1HT and 
2HT models under these mismatch conditions. 

 
Methodology 

 
A   series   of   simulated   frequency   tables  of 
responses from a three-source source monitoring 
task were created, similar to one used by Keefe 
and colleagues (Keefe et al., 2002) and one used 

by Woodward, Menon, and Whitman (in press). 
The frequency tables were created under the 
constraint of 100 old items from each of the 
three sources (labeled A, B and C), and 300 new 
items. A set of underlying parameter values (i.e., 
the generating parameters) were specified, and 
these were used to create sets of response 
frequencies, under the restrictions of 300 old and 
300 new items, as mentioned above. The final 
probabilities for each source/response 
combination were computed by multiplying the 
generating parameters down the processing tree, 
and summing together the events that lead to 
each specific source/response combination. For 
example, for the 1HT and 2HT models shown in 
Figure 1, the probability of participants 
responding “A” given stimulus A can be arrived 
at my multiplying the following parameters:  
 
P (“A” | A)  
= D1* d1 + D1* (1-d1 )*a + (1-D1)*b*g         (1)   
  

The simulated response frequencies 
were created by multiplying the final 
probabilities associated with each 
source/response combination (as specified in 
Figure 1, and exemplified in Equation 1) by the 
number of responses for that source. For 
example, multiplying the summed probability 
shown in Equation (1) by 100 generates the 
number of times participants responded “A” for 
stimuli from source A.  

The generating parameter values were 
fixed across simulated sets of frequencies, with 
the exception of the DN parameter (the item 
recognition parameter for new items), which was 
varied (0, .30, .60 and .90). This method of 
creating sets of frequencies is similar to the 
method used by Reifer and Batchelder (1991) in 
their Monte Carlo simulation. The sets of 
frequencies created when DN = 0 represent 
patterns of frequencies that would be generated 
under the assumptions underlying 1HT model, 
whereas the sets of frequencies created when DN 
> 0 represent patterns of frequencies that would 
be generated under the assumptions underlying 
various 2HT models. The frequency tables 
generated for the analyses are presented in 
Appendix A. Note that the only variation in the 
sets of frequencies generated using the various 
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values of DN occurred in the number of false 
positive responses generated by the new words. 

Then, the data were analyzed using an 
Excel spreadsheet specialized for multinomial 
modeling (Dodson, Prinzmetal, & Shimamura, 
1998). In the analysis, the value of the DN 
parameter was first fixed at the different values 
(0, .30, .60 and .90) to test the impact of varying 
degrees of mismatch between the underlying 
model assumptions (as determined by the 
generating parameter values) and the methods of 
analysis. Following this, the 2HT analysis was 
carried out allowing all parameters (including 
DN) to vary freely. In the Excel spreadsheet, the 
optimum parameter values are found by 
allowing them to vary in an iterative fashion 
using the solver function. Starting values for 
probability estimates were .50, and the log 
likelihood ratio statistic G2 was used to assess 
overall fit. G2 asymptotically has a chi-square 
distribution, and the optimized solution is the 
one that minimizes the G2 value (Riefer & 
Batchelder, 1988).   
 

Results 
 
The estimated parameter values are presented as 
a function of varying generating and estimating 
DN parameter values in Table 1, and in Figures 
2-6. From these results it is apparent that, within 
each set of response frequencies, varying the 
value of the DN parameter (which in theory 
should only affect the recognition of new items) 
affected the value of the other parameters in a 
variety of important ways. As was expected, all 
models were very accurate when the method of 
analysis matched the underlying assumption 
(i.e., when the estimating DN was equal to the 
generating DN). However, in the case of 
mismatches, occasionally severe inflation and 
deflation of the underlying parameters occurred. 
Specifically, underestimation of DN parameter 
resulted in overestimation of the other D 
parameters and underestimation of b and d 
parameters, whereas overestimation of DN 
resulted in underestimation of D and 
overestimation of b and d parameters.  

With respect to the comparative 
performance of 1HT and 2HT models, the most 
important pattern that can be derived from Table  

1 and Figures 2-6 is that the consequences of 
overestimating DN are far more severe than the 
consequences of underestimating DN. As Figures 
2-6 show, the changes in the generating 
parameter values had the least effect when 
estimated using the 1HT model (i.e., DN = 0), 
while the variability of the estimated parameters 
increased greatly when a 2HT model is used, 
particularly with high DN parameter values.  

For example, consider the results based 
on a generating DN parameter of .60 (see Table 
1). An instructive comparison can be made 
between when DN was underestimated by .30 
and when DN was overestimated by .30 for this 
condition. When the DN parameter was 
underestimated by .30 (i.e., estimated DN = .30), 
D1 and D2 increased to .70 (from .67), D3 
increased to .78 (from .75), and the d1 and d2 
parameters decreased to .57 (from .60), a net 
change of .03 on all these parameters. This also 
resulted in a reduction in the value of the b 
parameter to .11 (from .20). However, in the 
comparison condition when DN was 
overestimated by .30 (i.e., estimated DN = .90), 
D1 decreased to .40 (from .67), the d1-2 
parameters increased to 1.0 (from .60, indicating 
perfect source recognition), a net change of .27 
and .40, respectively. In addition, the b 
parameter increased to .59 (from .20).  

Following the analysis where the 
estimating DN parameter was fixed at various 
values, we also examined the results using an 
unconstrained 2HT model (i.e., all parameters, 
including the DN parameter, were free to vary). 
The results are shown in Table 1 (bottom row). 
The unconstrained 2HT model did not retrieve 
the generating parameters in any of the lower DN 
conditions (i.e., generating DN = 0, .30 or .60), 
despite a perfect fit (i.e., very low G2 values). 
Instead the model tended to estimate DN values 
that were higher than the generating DN values, 
resulting in a corresponding elevation of the b 
and d parameter values, and a reduction in the D 
parameter values.   

Both 1HT and 2HT models estimated 
the guessing parameters a, a1, g and g1 
accurately, and their values did not change with 
changes in the value of the estimating DN 
parameter; therefore, they are not presented 
here. 
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Table 1. Estimated Parameter Values Presented as a Function of Varying Generating and Estimating DN 

Parameter Values 
 Generating DN Parameter 

 DN = 0 (1 HT)  FP = .20 DN = .30 FP = .14 

Est DN D1-2 D3 d1-2 d3 b Fit Est DN D1-2 D3 d1-2 d3 b Fit 

DN =0 .67 .75 .60 .59 .20 0 (.99) DN =0 .69 .77 .58 .58 .14 0 (.99) 

DN =.30 .63 .72 .64 .61 .29 0 (.99) DN .30 .67 .75 .60 .59 .20 0 (.99) 

DN =.60 .47 .60 .85 .74 .50 0 (.98) DN =.60 .59 .69 .68 .64 .36 0 (.99) 

DN =.90 .37 .44 1.0 1.0 .68 62.8 (.0) DN =.90 .38 .45 1.0 1.0 .65 26.3 (.0) 

DN =.53 .54 .66 .74 .68 .43 0 (.99) DN =.61 .58 .69 .69 .65 .37 0 (.99) 

 
 Generating DN Parameter 

 DN = .60  FP = .08 DN = .90 FP = .02 

Est DN D1-2 D3 d1-2 d3 b Fit Est DN D1-2 D3 d1-2 d3 b Fit 

DN =0 .71 .78 .57 .56 .08 0 (.99) DN =0 .73 .80 .55 .55 .02 0 (.99) 

DN =.30 .70 .78 .57 .57 .11 0 (.99) DN =.30 .73 .80 .55 .56 .03 0 (.99) 

DN =.60 .67 .75 .60 .59 .20  0 (.99) DN =.60 .72 .79 .56 .56 .05 0 (.99) 

DN =.90 .40 .52 1.0 .74 .59 2.6 (.10) DN =.90 .67 .75 .60 .58 .20 0 (.99) 

DN =.73 .63 .72 .65 .62 .30 0 (.99) DN =.91 .67 .75 .61 .59 .21 0 (.99) 

 
Note. The generating probabilities used were: D1/D2 = .67, D3 = .75, d1/d2 = .60, d3 = .60, a = .60, b = .20, g 
= .60, a1= .50, g1 = .50. FP refers to false positives, and Fit refers to Chi-square values of the final model (p 
values are bracketed, such that p < .05 indicates poor fit). When estimating, all parameters were free to vary 
with the exception of DN, which was fixed (Est DN). The bottom row displays the results when the DN 
parameter was also allowed to vary. The models generated guessing parameters (a, a1, g, g1) that were 
identical to the generating probabilities and did not vary across the different simulations, and are therefore 
not listed in the above table. 
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Figure 2 Estimated D1/D2 parameter values plotted as a function of generating and 
estimated DN parameters (True D1/D2 = .67). 

 

Figure 3. Estimated D3 parameter values plotted as a function of generating and 
estimated DN parameters (True D3 = .75). 
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Figure 4 Estimated d1/d2 parameter values plotted as a function of generating and estimated DN 

parameters (True d1/d2 = .60). 
 

 
Figure 5. Estimated d3 parameter values plotted as a function of generating and estimated DN 

parameters (True d3 = .60) 
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Conclusion 

 
This simulation was designed to compare the 
1HT and 2HT approaches to multinomial 
modeling on their ability to accurately estimate 
underlying parameter values under a number of 
experimental conditions. The results suggest that 
the 1HT model is a more conservative choice for 
the analysis of data from source monitoring 
tasks, because the 2HT models are more likely 
to misestimate the underlying parameters. 
Specifically, the simulation showed that use of 
the 2HT models lead to an artificial inflation of 
the b parameter (probability of guessing that an 
item not detected as old was actually seen 
before), which in turn caused inflation of d 
(source recognition), and deflation of D (item 
recognition) parameter values. The 1HT model 
showed less variability and gave parameter 
estimates that were closer to the underlying 
parameter values, even when the underlying 
assumptions were those held by the 2HT 
perspective. As the simulation shows, the 
unconstrained 2HT solution (where the DN 
parameter value was not fixed - Table 1 bottom 
row)  typically  produced  a  DN parameter value 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
that was in excess of the true generating DN 
value, which in turn affected many of the other 
parameters as outlined above. With respect to a 
behavioral interpretation, the 2HT models 
produce parameter values that suggest 
artificially reduced item recognition for old 
items, increased guessing of undetected old 
items, and increased source recognition 
compared to the 1HT model. For instance, with 
the high estimated DN parameter values, the 2HT 
models suggest a state with perfect source 
recognition even though item recognition is 
occurring much less frequently, which is 
counterintuitive, given that item recognition is 
generally regarded as a less demanding process 
than source recognition.  

With respect to the theoretical issue 
mentioned in the Introduction, whether or not 
the recognition of new items occurs via the new 
items crossing a definite threshold (as suggested 
by the 2HT model) or simply by not being 
recognized as being old (as suggested by the 
1HT model) remains open to debate. What the 
simulation results show is that, given that these 
theoretical issues cannot currently be resolved, 
the 1HT model is a more conservative choice for 

 
Figure 6. Estimated b parameter values plotted as a function of generating and estimated 

DN parameters (True b = .20). 
 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.3 0.6 0.9

Generating Dn parameters

b 
pa

ra
m

et
er

 v
al

ue
s Dn = 0

Dn = .30

Dn = .60

Dn = .90



MULTINOMIAL MODELS OF SOURCE MONITORING 288 

the analysis of data from source monitoring 
tasks, because the 2HT models are more 
sensitive to possible mis-estimation of the 
underlying parameters. 

With respect to interpretability of the b 
parameter (the probability of guessing that an 
undetected item is actually a target item), as can 
be seen in Table 1, the results show that only the 
1HT model (i.e., DN = 0) produced a b parameter 
value equal to the false positive error rate. In the 
2HT model, increasing values of DN resulted in b 
parameter values that were far higher than the 
proportion of false positives. As mentioned 
earlier, the parameter is an indicator of two 
separate scenarios. For previously seen words, it 
is an indicator of the tendency to guess that the 
word is old even when it has not been detected 
as being old, and for new words, it is the 
tendency to make false positive errors (i.e., 
detect them as being old). However, the crucial 
difference between these two processes is that 
the tendency to make false positive errors can be 
estimated (by observing raw frequencies of the 
number of false positive recognition errors), 
while the same cognitive process for old words 
(making fortuitous false positive recognitions, 
which in turn elevates the hit rate), remains a 
hidden process.  

If both these patterns of false 
recognition are driven by the same cognitive 
processes, then the b parameter should reflect 
both in equal measure. The use of the 1HT 
model, which generates the value of the b 
parameter corresponding to the proportion of 
false positive error rates, has an intuitive appeal 
from this perspective. The 2HT model is likely 
to produce a b parameter that is inflated, 
possibly leading to the false conclusion that 
much of the recognition reflected by the raw 
frequencies occurs through fortuitous guessing. 
Moreover, an increase in b causes corresponding 
decreases and increases in the D and d 
parameters, respectively, leading to the false 
conclusion that recognition has decreased and 
source discrimination has increased, 
respectively. 

In an important study that suggested the 
superiority of the 2HT model over the 1HT 
model in source monitoring, Bayen et al. (1996) 
studied the impact of increased distracter 
similarity on the ability to carry out item 

detection and source recognition. On the 
assumption that increased distracter similarity 
(but not increased source similarity) would 
decrease item detection, they analyzed their 
results using 1HT and 2HT models. They found 
that D parameter values decreased with 
increasing distracter similarity only when the 
2HT model was used, and argued on these 
grounds that the 2HT is more sensitive to 
changes in item detection, making it a superior 
model of source monitoring. However, as Bayen 
et al. (1996) pointed out, increasing distracter 
similarity only serves to increase the number of 
false alarms and not the hit rate (p 205, 
Appendix C pg 215), casting doubt on their 
assumption that increasing distracter similarity 
should decrease item detection.  Moreover, the 
simulation results demonstrate that use of the 
2HT model is likely to lead to artificial 
decreases in the recognition parameter D, 
suggesting that Bayen et al.’s (1996) 
recommendations may have been based on an 
artifact of the 2HT model, as opposed to the 
purported superiority of the 2HT model in 
detecting an experimental-manipulation-induced 
true decrease in recognition. 

There are two reasons to suggest that the 
recognition parameters may have been affected 
by the model selected rather than the 
experimental manipulation. First, the Bayen et 
al. (1996) models used one D parameter for both 
old and new items (i.e. DN = D1 = D2), and as a 
result, the increase in false positives, which 
should cause a decrease in DN but not in D1 or 
D2, affected all three of these parameters. 
Secondly, due to the reciprocal relationship 
between b and D in the 2HT model (as can be 
seen from Figures 2, 3 and 6), an increase in the 
b parameter (which is often well in excess of the 
true proportion of false alarms in the 
experimental data) caused a reduction in the D 
parameter. That is to say, use of the 2HT model 
can lead to apparent decreases in item detection 
as an artifact of increases in false positives, even 
in the absence of an experimental manipulation 
affecting item detection.  

In the aforementioned Bayen et al. 
(1996) study, the 1HT model, on the other hand, 
showed a slight decrease in the D parameter due 
to an increase in false alarms, and a significant 
decrease in the D parameter only when the hit 
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rate decreased. This pattern of results would be 
expected from a model that was appropriately 
reflecting factors affecting false alarms 
independently from those affecting item 
detection. 

Bayen et al. (1996) computed decreases 
in the signal detection measure d ′  for item 
detection. They showed decreases in d ′  with 
increasing source similarity, and, based on this 
measure, concluded that their experimental 
manipulations had affected the true recognition 
rate. Batchelder, Riefer and Hu (1994) and 
Thomas and Olzak (1992) explicitly pointed out 
that d ′  can be used as an means to compare 
item recognition only when false alarm rates are 
comparable across conditions. For a paradigm 
such as that used by Bayen et al. (1996), where 
the manipulation specifically affected the false 
alarm rates, d ′  is expected to underestimate 
item detection as the false alarm rate increases. 
It therefore seems likely that the fundamental 
assumption of their experimental manipulation 
(i.e., that increasing distracter similarity causes 
decreases in item detection) is debatable, and 
that the decreases in recognition parameters that 
they observed when employing the 2HT model 
may have instead reflected an artifact of the 2HT 
model. 

The data simulation indicates that the 
1HT model generally provides more accurate 
estimates of the underlying parameter values 
than the 2HT model, and is more robust to 
variation in the generating DN parameters. In 
addition, with respect to interpretation, the 1HT 
model produces a b parameter value that 
accurately reflects the true proportion of false 
positives and the 2HT model inflates the b 
parameter value, which in turn spuriously 
reduces the item detection parameters and 
inflates the source recognition parameters. In the 
light of these considerations, use of the 1HT 
model over the 2HT model is recommended in 
the analysis of data from source monitoring 
studies.  
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Appendix A 
 

Table of frequencies generated with varying 2HT assumptions 
 Response 

Source Experimenter Computer Self New 
DN = 0 

Experimenter 50 (.50) 10 (.10) 13 (.13) 26 (.26) 
Computer 10 (.10) 50 (.50) 13 (.13) 26 (.26) 

Self 11 (.11) 11 (.11) 58 (.58) 20 (.20) 
New 18 (.06) 18 (.06) 24 (.08) 240 (.80) 

DN = .30 
Experimenter 50 (.50) 10 (.10) 13 (.13) 26 (.26) 

Computer 10 (.10) 50 (.50) 13 (.13) 26 (.26) 
Self 11 (.11) 11 (.11) 58 (.58) 20 (.20) 
New 13 (.04) 13 (.04) 17 (.06) 258 (.86) 

DN = .60 
Experimenter 50 (.50) 10 (.10) 13 (.13) 26 (.26) 

Computer 10 (.10) 50 (.50) 13 (.13) 26 (.26) 
Self 11 (.11) 11 (.11) 58 (.58) 20 (.20) 
New 7 (.02) 7 (.02) 10 (.03) 276 (.92) 

DN = .90 
Experimenter 50 (.50) 10 (.10) 13 (.13) 26 (.26) 

Computer 10 (.10) 50 (.50) 13 (.13) 26 (.26) 
Self 11 (.11) 11 (.11) 58 (.58) 20 (.20) 
New 2 (.007) 2 (.007) 2 (.007) 294 (.98) 

Note. Row percentages are presented in brackets. Correct responses are in bold. 
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