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Abstract
Background: In utero interactions between incompatible maternal and fetal genotypes are a
potential mechanism for the onset or progression of pregnancy related diseases such as pre-
eclampsia (PE). However, the optimal analytical approach and study design for evaluating
incompatible maternal/offspring genotype combinations is unclear.

Methods: Using simulation, we estimated the type I error and power of incompatible maternal/
offspring genotype models for two analytical approaches: logistic regression used with case-control
mother/offspring pairs and the log-linear regression used with case-parent triads. We evaluated a
real dataset consisting of maternal/offspring pairs with and without PE for incompatibility effects
using the optimal analysis based on the results of the simulation study.

Results: We identified a single coding scheme for the incompatibility effect that was equally or
more powerful than all of the alternative analysis models evaluated, regardless of the true
underlying model for the incompatibility effect. In addition, the log-linear regression was more
powerful than the logistic regression when the heritability was low, and more robust to adjustment
for maternal or fetal effects. For the PE data, this analysis revealed three genes, lymphotoxin alpha
(LTA), von Willebrand factor (VWF), and alpha 2 chain of type IV collagen (COL4A2) with possible
incompatibility effects.

Conclusion: The incompatibility model should be evaluated for complications of pregnancy, such
as PE, where the genotypes of two individuals may contribute to the presence of disease.

Background
Typically, many diseases or complications arising during
pregnancy, such as pre-eclampsia (PE), have been consid-

ered primarily maternal disorders. For example, in the
context of genetic studies, it is frequently the maternal
genotype that is considered in evaluating increased risk
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for disease (summarized in [1]). However, this narrow
view ignores potential contributions from the fetal
genome or other mechanisms of disease, such as genomic
conflict [2]. For example, one of several proposed mecha-
nisms of disease for PE is that the fetus demands a greater
blood supply than is beneficial for the mother to provide,
resulting in hypertension in the mother [3]. Other poten-
tial mechanisms include genomic imprinting, gestational
drive, or incompatibility between the maternal and fetal
genomes that can lead to diseases such as Rh incompati-
bility. Thus, it may be critical to evaluate maternal-fetal
genetic interactions to fully understand the genetic contri-
butions to many disorders or complications of pregnancy.

In this paper we will focus on the genetic 'incompatibility'
between maternal and fetal alleles, i.e., where the mater-
nal and fetal genotypes do not exactly match. One possi-
ble explanation for the underlying biological mechanism
of disease in this scenario is that the genetic differences
between the mother and fetus may induce an immuno-
logical response by the mother. One of the best known
examples of fetal contributions to risk of pregnancy
related complications is a genetic incompatibility
between mother and fetus at the RhD locus. RhD hemo-
lytic disease of the newborn (HDN) occurs when the
mother is Rh negative (dd) and does not possess the allele
for the antigen present in the offspring (Dd), and has been
immunized by transplacental passage of RhD-positive red
cells during a previous pregnancy [4]. This particular
incompatibility presents an adverse prenatal environment
where the mother produces antibodies to the D allele
present in the fetus. However, it is important to remember
that the genetic 'incompatibility' may, in fact, be benefi-
cial rather than harmful, as will be discussed further
below. In addition, biological mechanisms aside from an
immunological response could produce an incompatibil-
ity effect, and thus, alternative models of disease need to
be explored. Our terminology differs from that used by
other investigators [5-9], in that genotypes are compatible
or incompatible depending on whether they are the same
or different for the maternal-fetal pair, and the 'incompat-
ible' genotype combinations can have beneficial or
adverse effects. In contrast, other investigators define a
maternal-fetal incompatibility to be "...a maternal-fetal
genotype combination that can adversely affect the devel-
oping fetus... [5]." Thus, under this definition the term
'incompatibility' refers only to adverse effects, but can cor-
respond to genotype combinations that are the same or
different for the maternal-fetal pair.

PE, a leading cause of maternal and perinatal mortality
and morbidity worldwide, affects 3–7% of all pregnancies
in developed countries [10-12], although rates may be
lower in non-industrialized countries (1.6–5.5%) [13-
18]. The etiology and pathophysiology of PE are incom-

pletely understood, but a combination of maternal/fetal
genetic predisposition and environmental factors have
been implicated as potential risk factors for the disease
[10,19].

Some investigators have proposed that PE may be due to
an abnormal maternal immune response to a semi-allo-
genic fetus [19,20]. Hence, it can be hypothesized that
genetic models of maternal/fetal interactions, in particu-
lar maternal and fetal genotype incompatibility, can offer
a possible mechanism of genetic action in PE. Despite the
growing epidemiological evidence for the role of fetal
(paternal) alleles and their interaction with maternal alle-
les, the hypothesis of maternal/fetal genotype incompati-
bility as a potential mechanism of PE has not been well
explored. Only a few studies [19,21] have evaluated the
maternal/fetal genotype incompatibility model for a 14
base pair (bp) deletion in exon 8 of the HLA-G gene, and
no significant evidence for an HLA-G antigen incompati-
bility between the mother and fetus in PE was observed in
cases where the fetus carried the 14 bp deletion that the
mother did not carry. However, Hylenius and coworkers
[21] did indicate that the risk of PE is higher in mother-
offspring HLA-G genotype combinations that share more
than one copy of the 14 bp deletion.

In evaluating the incompatibility model, different under-
lying mechanisms for the genetic incompatibility can be
proposed. For example, the incompatibility effect is not
necessarily asymmetric, as in the case of the RhD locus,
and disease could occur anytime the fetus possesses an
allele that is not present in the mother, regardless of which
allele it is. Thus, it remains to be investigated what is the
best approach for evaluating the incompatibility model
when the true underlying genetic model is unknown.

A second consideration is the study design and analytical
approach used to evaluate association between incompat-
ible maternal/offspring genotypes and disease risk. We
consider two alternatives. The first approach was selected
to reflect the study design for the PE study that we evaluate
here, where case and control mother/offspring pairs were
recruited. For this study design, the case and control pairs
can be compared using logistic regression. Alternatively,
we consider a second approach using log-linear regression
(also called the Maternal Fetal Incompatibility test, as dis-
cussed further below), which compares the distribution of
genotypes of case parent-offspring trios to their expected
distribution. This approach potentially has several advan-
tages in that the paternal contribution to disease can be
more fully understood since the paternal genotype is
known, and the trio design offers the opportunity to con-
trol for population stratification using family-based
approaches [22]. We proposed to study these two analyti-
cal approaches although were limited to performing the
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logistic regression for the PE dataset. Studying the two
approaches would allow us to determine the potential
loss or gain of power attributed to the analytical approach.
For simplicity, in the remainder of the paper we will refer
to these alternatives as the 'logistic regression model' and
the 'log-linear regression' model, keeping in mind that
approaches differ not only by the analytical model, but
also by the sampling approach and structure of the data.

The log-linear regression model for studying incompati-
bility effects was first proposed by Sinsheimer and cow-
orkers [5], called the Maternal Fetal incompatibility test
(MFG). The MFG test renders independent tests of associ-
ation between disease risk and incompatible maternal
and offspring genotypes. Sinsheimer states that that the
MFG test is preferable to the common practice of using
contingency tables analysis for testing maternal fetal
incompatibilities as risk factors since use of contingency
tables can lead to misattributing maternal main effects or
fetal main effects to the incompatibility effects. Sinshe-
imer did not, however, look at the differences between the
logistic regression and the log-linear regression analysis.
Starr and coworkers [23] conducted a study comparing
the power to detect maternal main effects using the logis-
tic regression with maternal fetal case control samples and
using log-linear regression with case parent triads. How-
ever the study did not consider the MFG incompatibility
risk. The study found that the log-linear approach was
more powerful than the unconditional logistic approach.
In addition, the log-linear approach was more robust than
the logistic regression when maternal effects were param-
eterized but the actual effects were fetal. This has also been
previously shown by Wilcox and coworkers [24] that log-
linear maternal and fetal main effect tests are orthogonal,
and hence tests for maternal main effects are the same
whether or not fetal effects are accounted for in the model.
However, Sinsheimer et al (2005) [5] showed in their sim-
ulations, that introduction of the MFG incompatibility
effect destroys the orthogonality between the maternal or
fetal main effects and marginal tests of either effect will no
longer give the same results as conditional tests that
account for the other effect. This suggests that the conclu-
sions of Starr and coworkers of the superiority of the log-
linear approach to the logistic approach cannot be imme-
diately assumed when testing the MFG incompatibility
effects and hence provides the justification for our study.

To clarify the relative advantages of these two analytical
approaches, we conducted a simulation study to evaluate
the power and type I error of several defined incompatibil-
ity models and their performance using the logistic regres-
sion and log-linear regression model unadjusted and
adjusted for maternal and fetal effects. The following three
a priori hypotheses were tested: i) A single most powerful
incompatibility model with good statistical properties

(e.g., power and the type I error rate) exists regardless of
the true underlying model; ii) The logistic regression has
comparable power to the log-linear regression when
maternal and fetal effects are absent and unadjusted for in
the model; and iii) The log-linear regression performs bet-
ter than the logistic regression when maternal and fetal
effects are present and adjusted for. The best analysis
model was used to identify maternal/fetal genotype
incompatibilities in the PE dataset using the logistic
regression. In this study, we show that a single analytical
model exists with the best performance under conditions
similar to PE when the true underlying generating model
is unknown. In addition, the performance of the logistic
regression compared to the log-linear regression is
dependent on heritability and on the adjustment of the
presence of maternal and fetal effects. Although we were
limited to performing the logistic regression in the PE
dataset, overall power of the log-linear regression was
only 10% greater than the logistic regression.

Methods
Incompatibility Models
A genotype incompatibility arises when the maternal and
fetal genotypes are different (Table 1). Several unique bio-
logically plausible models of incompatibility were deter-
mined (Table 2) from all the possible maternal/offspring
genotype combinations of a two allele locus. The relation-
ship between the models is described in Figure 1, indicat-
ing that model 5 encompasses all of the other models in
that anytime the maternal and offspring genotypes are dif-
ferent; the pair is coded as having an incompatibility. For
example, the RhD locus is an example of Model 3, where
the incompatibility effect only occurs if the mother does
not possess the rarer allele. This is identical to the incom-
patibility proposed by the MFG test [5]. Model 3 is nested
within the more general model 1, which describes a simi-
lar mechanism of disease, where the presence of either
allele in the offspring that is not present in the mother
could increase susceptibility to disease. Models 4 (or 6)
describe a situation where an excess of the "A" (or "a")
allele in the mother-offspring pair can have an additive
effect on the risk of incompatibility. If the mother off-
spring pair possess exactly three copies of a specific allele,
this combination may increase risk to disease.

Generation of the Simulated Datasets
Datasets were generated for each incompatibility model
(Table 2). One hundred datasets each with sample size of
100 families were randomly generated for each of the
incompatibility models. Values of the disease prevalence
and heritability were chosen based on previously pub-
lished studies for PE [11,25,26], and a population preva-
lence of 5% and broad sense heritability estimates of 0.15,
0.25 and 0.35 were assumed. In addition, a recombina-
tion fraction of 0 and linkage disequilibrium parameter of
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1 was assumed (i.e., the measured locus is the disease sus-
ceptibility locus). For clarity, the model that was used to
simulate the data will be referred to as the generating
model, while the model used to evaluate the data will be
referred to as the analysis model.

The first step in the simulation was to generate genotypes
for the parent-offspring trio. Assuming Hardy-Weinberg
equilibrium, genotypes of mothers and fathers were gen-
erated under allele frequencies for the high-risk allele, f, of
0.1 to 0.4 in increments of 0.1. Mendelian inheritance was
used to generate the offspring genotype given the parental
genotypes. Overall, 100,000 triads were generated for
each allele frequency. Next, we simulated the phenotypic
value given the genotypes of the trio. In order to adhere to
the notion that PE is a disease of pregnancy, the pheno-
type is not assigned to a particular individual but rather to
the mother/offspring pair.

The Genetic Model
Let Pi denote the underlying quantitative liability pheno-
type of the ith family unit in a sample of N families, and
gm, goff, the genotypes of the mother and offspring at the
candidate locus, respectively. μ denotes the overall mean
of the liability while the polygenic and environmental
component Eo, is a random value from a normal distribu-

tion with a specified mean μe and variance σ2
e. Xi is an

indicator variable that represents the genotype combina-
tion of the mother/offspring pair, and is 0 if the incompat-
ibility does not exist and is 1 if it does exist. β is the
incompatibility parameter that represents the degree of
deviation from the overall mean due to the incompatibil-
ity effect. The following equation was used to compute the
phenotypic value for each mother/offspring pair given
known model parameters:

Pi = μ + βXi(Gm, Goff) + Eo.

Without loss of generality, the overall mean and environ-
mental mean were restricted to 0. To ensure that the her-
itability and the prevalence remained at the pre-specified
levels, the environmental variance (σ2

e) and incompati-
bility effect (β) were selected based on these values in
addition to the proportion of families with an incompat-
ibility. A random value for the environmental variance
(σ2

e) was generated, and the incompatibility effect was
computed using the following equations for the locus-
specific heritability (h2) and total phenotypic variance
(σ2

T):

where p is the proportion of incompatible maternal/off-
spring genotypes in the simulated dataset and is a func-
tion of the allele frequency.

To generate cases, a threshold (T) was determined from
the model parameters such that 5% of the phenotypic val-
ues exceeded the threshold. An additional constraint was

h e

T

2 1
2

2
= − σ

σ

σ β σT ep p2 2 21= − +( )( ) ,

Table 1: Possible maternal and offspring genotype combinations 
under Mendelian inheritance

Maternal genotype (gm) Offspring genotype (goff)

AA Aa Aa

AA C1 I1 -
Aa I2 C2 I3
aa - I4 C3

C = compatible genotype combinations; I = incompatible genotype 
combinations

Table 2: Biologically plausible models of incompatibility

Model Maternal Genotype (gm) Offspring Genotype (goff) Scenario

1 I1 AA Aa Symmetric Incompatibility: offspring has any allele that mother does not
I4 aa Aa

2 I2 Aa AA Gestational Drive: Mother has an allele that offspring does not
I3 Aa aa

3 I1 AA Aa Asymmetric Incompatibility: offspring has a particular allele ("a") that mother does 
not

4 I2 Aa AA Mother-offspring pair possess 3 copies of the "A" allele
I1 AA Aa

5 I1 AA Aa Any difference between maternal and offspring genotypes will result in disease
I2 Aa AA
I3 Aa aa
I4 aa Aa

6 I3 Aa aa Mother-offspring pair possess 3 copies of the "a" allele
I4 aa Aa
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that the proportion of mother/offspring pairs that
exceeded the threshold (T) given an incompatibility
[Xi(Gm, Goff) = 1], was set to approximately 50%. This con-
straint was added to generate a more complex genetic
model in which other causes of disease may exist (either
environmental or genetic) aside from the incompatibility.
In certain models and under certain allele frequencies, it
was not possible to satisfy this constraint given the preva-
lence of 5%. In such cases the proportion of mother/off-
spring pairs that exceeded T given an incompatibility was
relaxed to fit a prevalence of 5%.

To evaluate type I error, parent-offspring triads were gen-
erated by specifying a locus-specific heritability of 0 under
each allele frequency, and β was 0. One hundred datasets
were simulated for each generating model in addition to
the null model of no incompatibility effects. Each dataset
was evaluated with all the models listed in Table 2, so the
generating model and the analysis model were not neces-
sarily the same. The purpose of using all of the possible
analysis models is that for a real dataset, the true underly-
ing generating model is not necessarily known.

Logistic Regression Model
The datasets for each generating model were analyzed by
fitting an unconditional logistic regression model.
Although fathers were simulated along with mothers and
offspring, the fathers were ignored for the analysis, and
the dataset consisted of equal numbers of case and control
mother/offspring pairs. Given that the prevalence was
constrained to 5%, and 100,000 families were simulated,
all of the 5,000 case families were used, and 5,000 control
families were randomly selected from the remaining
95,000 non-case families. The 5,000 case and control fam-
ilies were divided into 100 datasets with 50 case and 50
control maternal/offspring pairs each. Hence a total of
200 individuals per dataset were analyzed. The regression
was repeated for each of the 100 datasets for each combi-
nation of allele frequency and heritability estimate. Mod-
els that adjusted for maternal and fetal risk effects,

maternal risk effects only, fetal risk effects only or neither
maternal nor fetal risk effects in addition to the incompat-
ibility effect were evaluated and these likelihoods are
given in the appendix as equations 1–4.

The Log-linear Regression
The log linear regression was conducted using two differ-
ent sample sizes. To keep the number of individuals com-
parable to that used for the logistic regression models, the
5,000 simulated case families were divided into 75 data-
sets with 67 case parent-offspring trios each. In addition,
the analysis was also conducted by keeping the number of
families constant by using a sample size of 100 parent-off-
spring trios. Analogous to the analysis for the logistic
regression, we evaluated models unadjusted for maternal
risk and fetal risk effects, and adjusted for maternal risk
and fetal risk effects, maternal risk effects only and fetal
risk effects only, when assessing the incompatibility. The
likelihoods are specified in the appendix as equations
5–8.

Statistical Power and Type I error rate
Statistical power was calculated as the proportion of sim-
ulated datasets in which the incompatibility effect was sig-
nificantly associated with disease at the alpha level of
0.05. Statistical power was calculated for each of the anal-
ysis models tested in all of the true generating model data-
sets simulated with different allele frequencies and
heritability values. In addition, power was also calculated
for all of the analysis models adjusted or unadjusted for
maternal and/or fetal effects.

The type I error rate was calculated similarly, where the
error was calculated as the proportion of datasets simu-
lated under the null generating model of no heritability,
in which the incompatibility effect was significant at the
nominal alpha level of 0.05. Type I error was calculated
for all analysis models adjusted and unadjusted for mater-
nal and/or fetal effects under the different allele frequen-
cies.

The PE Study Population
The study design was described previously [1]. Briefly,
subjects were recruited through the Department of
Obstetrics and Gynecology at Sotero del Rio Hospital in
Puente Alto, Chile at the time of admission to the hospital
for delivery, or as part of a longitudinal cohort study to
predict obstetrical complications such as PE. The mother
provided a blood sample at the time of enrollment, and
blood of fetal origin was collected from the umbilical cord
following delivery. Clinical and demographic informa-
tion was obtained by trained personnel using a data col-
lection form. PE was defined as systolic blood pressure ≥
140 mm/Hg or diastolic blood pressure ≥ 90 mm/Hg on
two occasions 6 hours apart, and proteinuria of 300 mg/

Relationship between biologically plausible models of incom-patibilityFigure 1
Relationship between biologically plausible models of 
incompatibility.

Model 5

Model 3

Model 4 Model 6Model 1 Model 2

Model 5

Model 3

Model 4 Model 6Model 1 Model 2Model 1 Model 2 Model 4 Model 6
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24 hours or ≥ 2 (dipstick) on two occasions 6 hours apart.
For the purposes of this study, women with eclampsia (n
= 7) or haemolysis, elevelated liver enzymes low platelet
count (HELLP) syndrome (n = 18) were excluded, to limit
the possible effects of genetic heterogeneity. Control fam-
ilies were full term and without obstetrical complications
including PE, small for gestational age, and placentae pre-
via among others.

The biology or pathophysiology of obstetrical complica-
tions including preterm delivery, PE, preterm premature
rupture of membranes, and infants who are small for ges-
tational age was used as the basis for selecting the candi-
date genes in this study. Candidate genes were selected
from pathways including immune response, uteroplacen-
tal ischemia, and angiogenesis. A complete list of all 190
candidate genes is provided by Goddard and coworkers
[1]. SNP discovery within the candidate genes was per-
formed by DNA sequencing at Genaissance Pharmaceuti-
cals, Inc. (New Haven, CT). SNPs were selected for
genotyping in order to capture at least 90% of the haplo-
typic diversity of each gene, as described previously [1]. A
total of 775 single nucleotide polymorphisms (SNPs)
from 190 genes were analyzed in 324 PE mother/offspring
pairs and 602 control mother/offspring pairs after elimi-
nating families with obvious relationship errors and gen-
otyping errors in the SNPs. Important covariates that were
identified previously were maternal age, offspring gender,
and body mass index (BMI), and were included in all sub-
sequent analyses. No evidence of population stratification
was revealed for the study population using the genomic
control method [27], since the estimated inflation factor
was near one (i.e., no inflation).

Testing Incompatibility Effects
The overall best analysis model identified in the simula-
tion study was used to code the incompatibility effect in
the PE dataset. Given that father's genotype and clinical
information was unknown, the logistic regression was
used to analyze the incompatibility model. Whether or
not to adjust for maternal and/or fetal effects and the
method of coding the incompatibility was dependent on
the results from the simulation study. In addition, we per-
formed logistic regression to examine the relationship
between affection status (PE [1] vs. control [0]) for each
SNP genotype individually (mother and offspring). An
additive genetic model (e.g., AA = 0, Aa = 1, aa = 2) was
used to code each SNP where the homozygote corre-
sponding to the allele with the minor allele frequency
(MAF) was coded as 2.

Given that a large number of tests were conducted, cor-
recting for multiple testing was necessary. The false dis-
covery rate (FDR) was used to correct for multiple testing
since this procedure is less conservative than the Bonfer-

roni correction, and can account for the inter-marker cor-
relation that may be present among markers genotyped
within the same candidate gene or region [28].

Results
Simulated Data
All of the analysis models were slightly conservative, since
the type I error rates were less than the expected value of
0.05 in most cases. In addition, all of the models had
comparable type I error rates in both the logistic and log-
linear regression models with the exception of model 6,
where the type I error rate was 50% less compared to
model 5 (Figure 2b). Thus, the power of most of the mod-
els could be compared.

Analysis model 5 (Table 2) was equally or more powerful
than all of the other models in the logistic and log-linear
regression unadjusted for maternal and fetal effects (Fig-
ure 2a). It is important to note that all of the other models
are a subset of model 5, so model 5 is able to capture
incompatibility effects regardless of the true generating
model. There was little effect of heritability on the power
for model 5 under the logistic regression, when averaged
across the generating models and adjustment for maternal
and fetal effects. For this model, the power increased by
4% for a heritability of 0.25 compared to a heritability of
0.15 followed by a slight decrease in power of 2% for a
heritability of 0.35 compared to a heritability of 0.15. The
effect of heritability on the power for model 5 using the
log-linear model was similar, with the exception that there
was a much larger decrease in power at a heritability of
0.35. For this model, the power decreased 2% for a herit-
ability of 0.25 compared to a heritability of 0.15, and
decreased by 10% for a heritability of 0.35 compared to a
heritability of 0.15. For both the logistic and log-linear
approaches, model 5 consistently performed similar to or
better than all other models for all allele frequencies sim-
ulated (Figure 3). Although these results are locus specific
it is important to note that the heritability estimates refer
to the heritability of the underlying quantitative trait.

As expected, the power to detect a statistically significant
incompatibility was the highest when the true underlying
generating model was identical to the analysis model (Fig-
ure 4). This result was observed for both the logistic and
log-linear regression models with the exception of model
6 for the logistic regression. This may be explained by the
low type I error for analysis model 6 (Figure 2b). Although
none of the models performed consistently well in all sit-
uations, analysis model 5 performed either equally well or
slightly less powerfully compared to the true analysis
models when averaged across all heritability values for all
models except models 2 and 6 (Figure 4). Model 5 is also
a reasonable 'default' model, because it encompasses all
of the other models of incompatibility.
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The trend in the type I error rate as a function of allele fre-
quency differed between the logistic and log-linear regres-
sion (Figure 5). The type I error for the logistic regression
in models unadjusted for maternal and fetal effects
increased as the allele frequency increased. For the log-lin-
ear regression, when the number of individuals was the
same, the trend was similar. However, when the number
of families was the same, the type I error rate was more
conservative for the log-linear regression compared to the
logistic regression, except at the allele frequency of 0.4.

The relative power of the logistic regression and the log-
linear regression depended on the heritability. For a herit-
ability of 0.15 and 0.25, the power of the log-linear regres-
sion was greater than the power of the logistic regression
when averaged over all of the analysis models by 25% and
15%, respectively. In contrast, for a heritability of 0.35,
the power of the log-linear regression was less than the
power of the logistic regression by 9% (Figure 6A). Over-
all, as the heritability increased, the relative advantage of
the log-linear regression decreased compared to the logis-
tic regression.

The effect of allele frequency and heritability on the power for (A) the logistic model, (B) the log-linear model with equal number of families, and (C) log-linear model with equal number of individualsFigure 3
The effect of allele frequency and heritability on the power for (A) the logistic model, (B) the log-linear model 
with equal number of families, and (C) log-linear model with equal number of individuals. Model 1 (diamond), 
Model 2 (square), Model 3 (triangle), Model 4 (X), Model 5 (solid square), and Model 6 (circle).

A) Power under each analysis model for the logistic model (black) and the log-linear model with equal number of families (diag-onal lines) or individuals (white), and B) type I error rate under each analysis model for the logistic model (solid line), and the log-linear model with equal number of families (dotted line) or individuals (dashed line)Figure 2
A) Power under each analysis model for the logistic model (black) and the log-linear model with equal number 
of families (diagonal lines) or individuals (white), and B) type I error rate under each analysis model for the 
logistic model (solid line), and the log-linear model with equal number of families (dotted line) or individuals 
(dashed line).
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Adjusting for maternal and fetal effects in addition to the
incompatibility effect, by adding these effects into the
analysis model, generally decreased power compared to

adjusting for the incompatibility effect alone (Figure 7).
The decrease in power depended on the heritability, and
was the greatest for the heritability of 0.35, where adjust-
ment for maternal and/or fetal effects reduced the power
by as much as 50% for the logistic regression and 20% for
the log-linear regression. Although separate maternal and
fetal effects were not simulated, when we evaluated the
simulated datasets for the presence of these effects, 80% of
the datasets had either maternal or fetal effects, while 10%
of the datasets had both effects. This is a limitation in the
way simulations were conducted. We could not simulate
incompatibility effects independent of maternal or fetal
effects while keeping all the constraints mentioned above.
However, we did evaluate type I error rates and confirmed
that when maternal or fetal effects were not present, the
type I error for detecting an incompatibility effect was not
underestimated when adjusting for maternal and fetal
effects in the logistic regression (data not shown). Similar
results were found for the log-linear regression however,
the log-linear regression model has slightly lower type I
error rates for the adjusted models compared to the logis-
tic regression. Overall, the log-linear regression appears to
be more robust than the logistic regression to the adjust-
ment for maternal or fetal effects, since the reduction in
power is smaller.

Type I error of logistic model (solid) and log-linear model with equal number of families (dotted) or individuals (dashed) as a function of allele frequencyFigure 5
Type I error of logistic model (solid) and log-linear 
model with equal number of families (dotted) or indi-
viduals (dashed) as a function of allele frequency.
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Pre-Eclampsia Data
To evaluate the PE data, we were limited to the logistic
regression approach, since fathers were not recruited in
this study. However, based on the results of the simula-
tion study, we selected analysis model 5 to test the incom-
patibility effect, and we did not adjust for maternal and
fetal effects. None of the SNPs in this study had a statisti-
cally significant incompatibility effect after correcting for
multiple testing using the FDR approach and hence only
nominal p-values are presented. However, this analysis
revealed several interesting candidate SNPs with nominal
p-values < 0.01 for the incompatibility effect (Table 3).

SNP rs2857713 in the lyphotoxin alpha (LTA) gene
showed the strongest evidence for association with PE in
the incompatibility model (p = 0.0007). The marginal
maternal and fetal effects were not statistically significant

(Table 3), suggesting that the unadjusted model was
appropriate. None of the remaining four SNPs evaluated
in this gene showed evidence of association with PE for
the incompatibility model, and none of the remaining
SNPs were in LD with SNP rs2857713. The associated SNP
is in exon 2 of LTA and encodes an amino acid change
from cysteine to arginine at position 13 of the protein
sequence. Interestingly, the incompatibility has a protec-
tive effect (OR = 0.439), where cases have a lower fre-
quency of incompatibility compared to controls (Table
3). The greatest increase in risk occurs when both the
mother and the offspring are heterozygous.

Two SNPs in the von Willebrand Factor (VWF) gene
showed evidence for association with PE in the incompat-
ibility model (Table 3). None of the remaining nine SNPs
evaluated in this gene showed evidence of association

The power of (A) the logistic model, and the log-linear model with equal number of (B) families or (C) individualsFigure 7
The power of (A) the logistic model, and the log-linear model with equal number of (B) families or (C) individ-
uals. Models include incompatibility only (diamond), incompatibility plus maternal effects only (triangle), fetal effects only (X), 
or maternal and fetal effects (square).

Average increase in power for the log-linear regression compared to the logistic regression with identical number of (A) fami-lies or (B) individuals for a heritability of 0.15 (solid), 0.25 (dotted), and 0.35 (dashed)Figure 6
Average increase in power for the log-linear regression compared to the logistic regression with identical 
number of (A) families or (B) individuals for a heritability of 0.15 (solid), 0.25 (dotted), and 0.35 (dashed).
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with PE for the incompatibility model, except rs1800377
(p = 0.1099) in exon 12. However, the highest measure of
LD between SNPs evaluated within this gene was 0.45.
SNP rs216900 is in intron 37, whereas SNP rs216321 is a
non-synonymous SNP in exon 20 causing an arginine to
glutamine amino acid change in the protein sequence.
Both SNPs showed an increased risk of PE for those with
an incompatibility (Table 3). In particular, the genotype
combination where the maternal genotype was 'AG'
('AG') and the offspring genotype was 'AA' ('AA') for SNP
rs216900 (rs216321) showed the greatest increase in fre-
quency for case compared to control maternal/offspring
pairs.

Finally, the gene encoding for the alpha 2 chain of type IV
collagen (COL4A2) also had two SNPs with suggestive evi-
dence of association with PE for the incompatibility
model including rs2296849 (p = 0.0046) and rs421177
(p = 0.0054). None of the remaining 7 SNPs evaluated in
this gene showed evidence of association with PE for the
incompatibility model, except COL4A2_633876793 (p =
0.0474). These two SNPs are both intronic polymor-
phisms in introns 37 and 38, respectively, of this gene.
The two SNPs have moderate levels of LD between them,
with r2 of 0.62, and are located within 6 kb of each other.
Both SNPs were more likely to have different (incompati-
ble) genotypes for the mother/offspring pairs with PE
compared to mother/offspring pairs without PE (Table 3).
The genotype combination where the maternal genotype
was 'CG' ('CG') and the offspring genotype was 'CC'
('CC') for SNP rs2296849 (rs421177) showed the greatest
increase in frequency for case maternal/offspring pairs
compared to control maternal/offspring pairs. Moderate
maternal and fetal effects were observed for the SNPs in
this gene, suggesting that it may potentially be important
to control for these effects when evaluating the incompat-
ibility model, although that was not done here because of
the loss of power. None of the remaining genes (Table 3)
had additional suggestive SNPs for the incompatibility
model.

Discussion
By conducting a comprehensive simulation study, we
were able to identify a single analysis model with the best
performance when the true underlying generating model
is unknown. Model 5 consistently performed comparably
or better than the alternative analytical models under all
allele frequencies, heritability values, and in models
adjusted and unadjusted for maternal and fetal effects.
Model 5 incorporates all possible maternal/offspring
genetic incompatibilities. Once an incompatibility effect
has been detected, investigation of the proportion of
mother/offspring pairs with specific genotype combina-
tions (Table 1) may provide further insights into the bio-
logical mechanism of disease.

Our simulation study also showed that the performance
of the logistic regression and the log-linear regression was
similar, but dependent on the underlying conditions. The
difference in power was relatively modest, approximately
10–20%, and the relative performance of the methods
depended on heritability. More importantly, the regres-
sion methods differ in 1) the type of sample that must be
recruited, and 2) the ability to test for maternal and fetal
effects in addition to the incompatibility effects. In theory,
estimating incompatibility effects can be biased when
maternal and fetal effects are present, but are not
accounted for. Likewise, when an incompatibility is
present and not modeled explicitly, offspring and mater-
nal effects, or both, can be biased [5]. Our observations
indicated that the power to detect an incompatibility
effect could be reduced by as much as 50% for the logistic
regression versus a much smaller reduction in power for
the log-linear regression. Log-linear regression can per-
haps more efficiently handle the correlation between the
maternal and fetal genotypes compared to the logistic
regression. Thus, the considerations of study design and
marginal maternal and fetal effects should play a greater
role in determining which analytical approach to utilize.

Table 3: Genes in which a SNP has a p-value < 0.01 for the maternal-fetal incompatibility model in the pre-eclampsia dataset

Gene Symbol rs Number Incompatibility model P-value Additive Model P-value % of Incompatibility Odds Ratio1 95% CI1

Maternal effects Fetal effects Cases Controls

LTA 2857713 0.0007 0.53 0.67 29.6 35.1 0.439 [0.273, 0.708]
IGF1R 28401726 0.0017 0.42 0.23 11.7 8.54 3.089 [1.530, 6.238]
VWF 216900 0.0037 0.15 0.86 28.9 17.9 2.104 [1.273, 3.480]
VWF 216321 0.0083 0.17 0.59 24.6 19.6 1.940 [1.185, 3.176]
COL4A2 2296849 0.0046 0.01 0.03 24.5 16.2 2.193 [1.274, 3.773]
COL4A2 421177 0.0054 0.02 0.22 32.2 23.2 1.952 [1.219, 3.125]
IGF1 5742620 0.0088 0.01 0.48 8 3.65 3.504 [1.371, 8.955]
IL2RA 10752175 0.0082 0.09 0.22 44.7 34.9 1.797 [1.163, 2.777]

1Model unadjusted for Maternal and Fetal Effects
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Our analysis for incompatibility effects in the PE data set
revealed several interesting candidate genes. COL4A2 is an
extracellular matrix gene which encodes one of the six
subunits of type IV collagen, the major structural compo-
nent of basement membranes [29], and may be involved
in tissue remodeling [30]. COL4A2 is a plausible candi-
date, since defects in the extracellular matrix due to poly-
morphisms in one of the subunits of type IV collagen,
may be involved in the failure of transformation of uter-
ine arteries that occurs in PE as well as other obstetrical
complications, which some investigators attribute to
abnormal trophoblast migration. In addition, there is
some evidence to suggest that collagen is increased in PE,
including a two-fold increase in expression level of colla-
gen in the PE placenta [31], and decreased activity of
cathepsin D activity in the PE umbilical cord, which may
result in reduced collagen degradation and subsequent
accumulation of collagen in the umbilical cord and uter-
ine arteries [32]. Thus, polymorphisms in collagen that
impact expression levels or degradation by cathepsin D
could influence the risk of developing PE.

VWF, a large glycoprotein encoded by a gene on chromo-
some 12, is synthesized by vascular endothelial cells and
circulates in human plasma. A possible mechanism of
action for VWF is that abnormalities in VWF in fetal
endothelial cells may interact with circulating maternal
VWF during fetal trophoblast invasion of maternal spiral
arteries and hence lead to the progression of PE. Although
it is unclear how this interaction would lead to disease,
this proposed mechanism is supported by the fact that
altered patterns of VWF multimers are found to occur fre-
quently in patients with thrombotic thrombocytopenic
purpura in the acute and chronic stages, which shares
some clinical and laboratory findings with PE including
thrombocytopenia. In addition, although the sample
sizes were small, Pottecher and coworkers [33] showed
significantly increased plasma levels of VWF in women
with PE compared to non-pregnant women (p = 0.009) or
women with uncomplicated pregnancies (p = 0.037).
Bergmann and colleagues [34] showed that alterations in
the structure or biological function of VWF were not sig-
nificantly associated with PE; however, they did not eval-
uate the role of VWF in the incompatibility model. In our
analysis, the risk for PE is only elevated in the incompati-
bility model rather than independent effects from the
maternal or offspring genotypes.

LTA was the most significant gene found to be associated
with PE in the incompatibility model. LTA, also known as
tumor necrosis factor-β (TNFβ), is a pro-inflammatory
cytokine with a broad spectrum of immunological activi-
ties [35]. Circulating inflammatory cytokines such as
TNFα have been implicated in the pathogenesis of PE [36-
38]. In addition, the LTA gene lies in close proximity to

TNF, the gene for tumor necrosis factor α [39-41]. Studies
have shown that the plasma concentration of TNFα is sig-
nificantly increased in PE patients. Although LTA has not
been found to be associated with PE, it is possible that
polymorphisms in the maternal and fetal LTA gene may
decrease the circulating levels of LTA leading to a reduc-
tion in the inflammatory response, and a reduced risk for
PE. This association offers a unique scenario where
incompatible genotypes benefit the mother and fetus
rather than causing harm.

The findings of this study highlight one important con-
cept regarding the incompatibility model, which is that a
genetic incompatibility between maternal and fetal geno-
types can be beneficial. It is therefore somewhat unfortu-
nate that the term "incompatibility" is used in this context
since the negative connotation of the word implies that
disease occurs only when the maternal and fetal geno-
types are different. However, it may, in fact, be beneficial
for the maternal and fetal genotypes to be different, result-
ing in positive selection, i.e., an excess of heterozygosity.
Preference for different genotypes may be a mechanism to
promote outcrossing due to the effects of dominance,
since mating with close relatives will increase the chance
of homozygous recessive genotype combinations. Alter-
natively, a preference for different genotypes may be an
artifact of overdominance, where it is beneficial for the
offspring to be heterozygous. Heterozygosity may be
advantageous for several reasons such as increased varia-
tion in gene products resulting in improved chances to
bind foreign proteins, or an increased chance of possess-
ing rare alleles that infectious organisms have not yet
developed resistance to.

One example of a locus where it is thought to be beneficial
to be heterozygous is the Major Histocompatibility
(MHC) locus. The increased heterozygosity at this locus
may be a result of disassortative mating, where mates are
preferentially selected to have different MHC alleles. This
selection process is hypothesized to occur through the
olfactory system, where individuals prefer the odor of
people with different MHC alleles [42-44]. However, it is
also possible that selection occurs at this locus through
mechanisms other than mate choice. Females mating with
males with the same MHC haplotype have increased fetal
loss in humans [44-47] and primates [48], and increased
chance of recurrent spontaneous abortions and unex-
plained infertility [49]. Thus, a fetus with similar geno-
types to the mother is at increased risk of loss compared
to a fetus with different genotypes than the mother. Haig
[50] explored alternative models for these observations
including gestational drive, where it is beneficial for the
mother and fetus to be compatible, and a model of
incompatibility. Both models could produce similar
observations in the distribution of genotypes. Thus,
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although the mechanism of disease at this locus is incom-
pletely understood, beneficial effects of genetic incompat-
ibility remain a possibility.

Generalization of the study findings outside the scope of
this work should be done with caution. We simulated
genetic models based upon estimated model parameters
for PE. Previous studies evaluating the heritability of the
variance in liability of PE found that 35% of the variance
is attributable to maternal effects, 20% to fetal effects, and
13% to the couple effect [25]. Therefore, we simulated
genetic models with heritability between 0.15 and 0.35,
since locus specific effects may not entirely account for all
of the heritability for this disease. In addition, we simu-
lated models with only an incompatibility effect, and
without marginal maternal or fetal effects. This assump-
tion could particularly impact the relative power of the
models that are adjusted versus unadjusted for these
effects. Finally, although we have identified compelling
genetic candidates for association with PE with the incom-
patibility model, none of these findings were statistically
significant after correcting for multiple testing. Given the
frequency of conflicting or erroneous reports of genetic
association, these findings should be interpreted with cau-
tion unless they are replicated with similar large studies of
PE.

There are several limitations of the study. We were unable
to simulate incompatibility effects independent of mater-
nal or fetal effects and hence the power to detect an
incompatibility effect was significantly reduced in the
adjusted models compared to the unadjusted models.
However the log-linear models were more robust to this
adjustment. In addition, we only looked at minor allele
frequencies ranging from 0.1 to 0.4. Model 5 may have
performed equally well to the true analysis models due to
similar frequencies of the incompatible genotype combi-
nations to the true analysis model. This is a characteristic
of model 5 as it incorporates all possible incompatible
genotype combinations by the other models, and hence
under similar allele frequencies, the proportions may be
similar. Specifically model 5 may have had the best per-
formance compared to model 6 since the number of
incompatible genotype combinations was greater in
model 5 compared to model 6 and the genotype combi-
nations were dominated by AA, Aa genotype combina-
tions. This may also explain the relative performance of
models 1 and 4 compared to model 5; however, it seems
unrealistic to simulate conditions where the MAF is > 0.4
which is very rare in populations [51]. Nevertheless, we
have shown that model 5, which includes all possible
combinations of incompatible genotypes, performs as
well as the simulated model in all datasets, suggesting that
if the true underlying model is unknown, model 5 has the
best power to detect the incompatibility.

Conclusion
In summary, we have identified a single incompatibility
model that has optimal properties in terms of power and
type I error compared to the alternative models under the
specific conditions simulated. Our results also indicate
that the relative performance of the logistic regression and
log-linear regression approaches are similar, and that
issues of study design including the ability to recruit
fathers and the presence of marginal maternal and fetal
effects are the most important considerations. We also
identified three genes, COL4A2, VWF, and LTA which may
have a significant functional role in the progression of PE
under the incompatibility model, although none of these
findings were statistically significant after correcting for
multiple testing using the FDR. Little is known about the
biological mechanism though which maternal and fetal
incompatibility of these genes may have an adverse or
protective effect on the mother. Future studies both epide-
miological and molecular are needed to confirm the bio-
logical mechanism of the incompatibility effect among
these genes. However, these findings will be helpful in the
design and interpretation of future studies of incompati-
bility effects, particularly studies of PE.
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APPENDIX
Equations

Logit [Y = 1] = -β + β1*I (Gm, Goff) (1)

Logit [Y = 1] = β + β1*I(Gm) + β2*I(Goff) + β3*I(Gm, Goff)

(2)

Logit [Y = 1] = β + β1*I(Gm) + β3* I(Gm, Goff) (3)

Logit [Y = 1] = β + β2*I(Goff) + β3* I(Gm, Goff) (4)

For the following equations, the variables are defined in
Table 4.
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ln(ωi) = ln (δj) + ln (μ)I(Gm, Goff) + ln(2)I(Gm = Gf = Goff) (5)

ln(ωi) = ln (δj) + ln (μ)I(Gm, Goff) + ln(η)I(Gm) + ln(ρ)I(Goff)+ 
ln(2)I(Gm = Gf = Goff) (6)

ln(ωi) = ln (δj) + ln (μ)I(Gm, Goff) + ln(ρ)I(Goff) + ln(2)I(Gm = 

Gf = Goff) (7)

ln(ωi) = ln (δj) + ln (μ)I(Gm, Goff)+ ln(η)I(Goff) + ln(2)I(Gm = 

Gf = Goff) (8)
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Table 4: Case parent/offspring triads and expected triad counts for analysis model 3 using the log-linear regression

Cell Mating Type Mother/Father Genotype Offspring Genotype Expected Counts
J Gm, Gf Goff ωi

1 1 A/A, A/A A/A ηρδ1
2 2 A/A, A/a A/A ηρδ2
3 2 A/a, A/A A/a ηρδ2
4 2 A/a, A/A A/A ηρδ2
5 2 A/a, A/A A/a ηρδ2
6 3 A/A, a/a A/a ηρδ3
7 3 a/a, A/A A/a μρδ3
8 4 A/a, A/a A/A ηρδ4
9 4 A/a, A/a A/a 2ηρδ4
10 4 A/a, A/a a/a ηδ4
11 5 A/a, a/a A/a ηρδ5
12 5 A/a, a/a a/a ηδ5
13 5 a/a, A/a A/a μρδ5
14 5 a/a, A/a a/a δ5
15 6 a/a, a/a a/a δ6

Where η is the relative risk when the variant allele/s is present in the mother, ρ is the relative risk when the variant allele/s is present in the child, 
μ is the relative risk associated with the maternal-fetal genotype incompatibility and δj is the mating type where j = 1 to 6.
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