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LQ-Moments for Statistical Analysis of Extreme Events 

     Ani Shabri        Abdul Aziz Jemain 

                Universiti Teknologi Malaysia        Universiti Kebangsaan Malaysia 
 

 
Statistical analysis of extremes is conducted for predicting large return periods events. LQ-moments that 
are based on linear combinations are reviewed for characterizing the upper quantiles of distributions and 
larger events in data. The LQ-moments method is presented based on a new quick estimator using five 
points quantiles and the weighted kernel estimator to estimate the parameters of the generalized extreme 
value (GEV) distribution. Monte Carlo methods illustrate the performance of LQ-moments in fitting the 
GEV distribution to both GEV and non-GEV samples. The proposed estimators of the GEV distribution 
were compared with conventional L-moments and LQ-moments based on linear interpolation quantiles 
for various sample sizes and return periods. The results indicate that the new method has generally good 
performance and makes it an attractive option for estimating quantiles in the GEV distribution. 
 
Key words: LQ-moments, L-moments, quick estimator, generalized extreme value, weighted kernel. 
 

 
Introduction 

 
Statistical analysis of extremes is often 
interested for predicting large return period 
events. Thus, the more relevant analysis is the 
upper quantiles of the distributions and the 
extreme sample events (Wang, 1997). The 
method of classical moments (MOM) is mostly 
used because of its relative ease of application 
but it is generally not as efficient as the 
maximum likelihood (ML) method estimates 
and it is too sensitive to the upper quantiles of 
distributions (Vogel & Fennessey, 1993).  

The ML method is the most important 
method because it leads to efficient parameter 
estimators       with        Gaussian       asymptotic  
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distributions. However, this method sometimes 
under-estimates and so causes large bias and 
variance of extreme upper quantile and does not 
always work well in small samples (Park, 2005). 

The L-moments (LMOM), certain linear 
functions of the expectations of order statistics, 
were introduced and comprehensively reviewed 
by Hosking (1990). Hosking (1990) presented 
the LMOM estimators for some common 
distributions and demonstrates that in some 
cases, the LMOM method may give even better 
fit than ML method. Hosking and Wallis (1997) 
illustrated that LMOM are efficient in estimating 
parameters of a wide range of distributions. In 
general, the bias of small sample estimates of 
higher-order LMOM is fairly small as compared 
to traditional moment estimates. This method 
has become a standard procedure in hydrology 
for estimating the parameters of certain 
statistical distributions. The LMOM have found 
wide applications in such fields of applied 
research as civil engineering, meteorology, 
hydrology, quality control and engineering 
(Sankarasubramanian & Srinivasan, 1999; 
Karvanen, 2005). 
 Mudolkar and Hutson (1998) extended 
LMOM to new moment like entitiles called LQ-
moments (LQMOM). The LQMOM are 
constructed by using functional defining the 
quick estimators, such as the median, trimean or 
Gastwirth, in places of expectations in LMOM.  
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The LQMOM that are based on the quick 
estimators, namely the trimean and the linear 
interpolation quantile estimator are used to fit a 
GEV to observed flood frequencies. They found 
the LQMOM are often easier to compute than 
LMOM, and in general behave similarly to the 
LMOM. 
 In this article, LQMOM that are based 
on the trimean and the linear interpolation 
quantile (LIQ) estimator are reviewed for 
characterizing the upper part of distributions and 
larger events in data. The objective of this article 
is to revisit the LQMOM, presents the LQMOM 
method based on the new quick estimator using 
five-points quantiles and the weighted kernel 
estimator (WK5) to estimate the parameters of 
the generalized extreme value (GEV) 
distribution. Estimation of the GEV distribution 
by using LQMOM is formulated. The 
performance of the LQMOM based on the new 
estimator is compared to LMOM and LIQ 
methods, by using both GEV and non-GEV 
simulated sample data.  
 
Definition of LQ-Moment 

Let nXXX ,...,, 21  be a random sample 
from a continuous distribution function ).(F  
with quantile function )()( 1 uFuQ −= , and let 

nnnn XXX ::2:1 ... ≤≤≤  denote the corresponding 
order statistics. Hosking (1990) defined the thr  
L-moment rλ  as 
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Mudholkar and Hutson (1998) suggested a 
robust modification in which the mean of the 
distribution of rkrX :−  in (1) is replaced by its 
median or some others population location 
measure. In particular, they defined the thr  LQ-
moments rξ  as 
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where )( :, rkrp X −ατ  is a quick measure of the 
location of the sampling distribution of the order 

rkrX :− . They introduced ατ ,p  based on a 
three-points quantiles of the sample calculated 
from the order statistics and defined as 
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where 2/10,2/10 ≤≤≤α≤ p . ατ ,p  is called 
the median for 1,0 =α=p , the trimean for 

4/1,4/1 =α=p  and Gastwirth for 
3/1,3.0 =α=p . 

The quick measures of location ατ ,p  for 
five-points quantiles is defined as 
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where 1.00 ≤α≤  and 4/10 ≤≤ p .  

The first four LQ-moments of the 
random variable X are defined as 
  
                        )(,1 Xp ατ=ξ ,         (5) 
  
           )]()([ 2:1,2:2,2

1
2 XX pp αα τ−τ=ξ ,        (6) 

 
)]()(2)([ 3:1,3:2,3:3,3

1
3 XXX ppp ααα τ+τ−τ=ξ , 

                        (7) 
  

                
1

4 p, 4:4 p, 3:44

p, 2:4 p, 1:4

[ (X ) 3 (X )

3 (X ) (X )]
α α

α α

ξ = τ − τ

+ τ − τ
    

                                                           (8) 



LQ-MOMENTS FOR STATISTICAL ANALYSIS OF EXTREME EVENTS 

 

230 

The skewness and kurtosis based upon the ratios 
of LQ-moments to be called LQ skewness and 
LQ kurtosis are given respectively by 
  
                             233 / ξξ=η           (9) 
and   

                244 / ξξ=η         (10) 
   
Estimation of LQ-moments 

For samples of size n, the thr  sample 
LQ-moment rξ  is given by 
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where the quick estimator ( )rkrp X :,ˆ −ατ  of the 
location of the order statistic rkrX :−  for five-
points quantiles is given by 
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where )(1

: α−
− rkrB  is the quantile of a beta random 

variable with parameter kr −  and 1+k , and 
(.)Q  denotes the quantile estimator.  The sample 

LQ skewness and LQ kurtosis are given 
respectively by 
 
             233

ˆ/ˆˆ ξξ=η        (13) 
and   

            244
ˆ/ˆˆ ξξ=η        (14) 

    
The Quantile Estimator 

David and Nagaraja (2003), Sheather 
and Marron (1990),  Huang and Brill (1999) and 
Huang (2001) discussed several quantile 
estimators for estimating the values of the 
population quantile. In this study, only the linear 
interpolation quantile estimator and the weighted 
kernel quantile estimator are presented. 

 
The Linear Interpolation Quantile Estimator 

Mudholkar and Hutson (1998) proposed 
the simplest quantile function estimator based on 
the linear interpolation (LIQ). This quantiles is 
used commonly in statistical packages such as 
MINITAB, SAS, IMSL and S-PLUS. The LIQ 
estimator is given by 
 
 [ ] [ ] nunnun XXuQ :1':')1()( +ε+ε−=
 10 << u          
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where  
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The Weighted Kernel Quantile Estimator 

A popular class of L quantile estimators 
is called kernel quantile estimators has been 
widely applied  (Sheather & Marron, 1990; 
Huang & Brill, 1999; Huang, 2001). The L 
quantile estimators is given by 
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where K is a density function symmetric about 0 
and  
           )/()/1()( hKhKh •=•   
           (17) 
 
The approximation of the L quantile estimator is 
called as the weighted kernel quantile estimator 
(WKQ) is given by  
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                         2/1]/)1([ nuuh −=        (20) 
       
and )2/1exp()2()( 22/1 ttK −π= − is the Gaussian 
Kernel. 
 
Generalized Extreme Value 

The generalized extreme value (GEV) 
distribution has been used widely and 
importantly in the modeling of extreme events in 
several areas including hydrology, meteorology, 
finance and insurance, and reliability 
engineering (Park, 2005). It was recommended 
for at-site flood frequency analysis in the United 
Kingdom, for rainfall frequency and for sea 
waves in the United States. Many studies in 
regional frequency have used the GEV 
distribution (Hosking et al., 1985b; Chowdhury 
et al., 1991). In practice, it has been used to 
model a wide variety of natural extremes, 
including floods, rainfall, wind speeds, and wave 
height. Mathematically, the GEV distribution is 
very attractive because its inverse has a closed 
form, and parameters are easily estimated by 
LMOM (Martin & Stedinger, 2000).  The GEV 
distribution has cumulative distribution function 
(CDF) 
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where ∞<≤σ+μ xk/  for 0<k  and 

kx /σ+μ≤<∞−  for 0>k . Here, μ , σ , and 
k  are location, scale, and shape parameters, 
respectively. Quantiles function of GEV 
distribution are given in terms of the parameters 
and the cumulative probability F  by 
 
             )()( 0 FQFQ σ+μ=    
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L-Moments of GEV Distribution 

The LMOM estimators for GEV 
distribution (Martins & Stedinger, 2000) are 
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.     

The k̂  function is a very good approximation 
for k̂  in the range (-0.5, 0.5). The LMOM 
estimators 321

ˆ,ˆ,ˆ λλλ  and 233
ˆˆˆ λλ=τ were 

obtained by using an unbiased estimator of the 
first three probability weighted moment (PWM) 
defined as 
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where the niX :  are the ordered observations 
from a sample of size and 
 

01 β=λ , 012 2 β−β=λ , and 0123 66 β+β−β=λ . 
                                   (27) 

 
The LQ moments of GEV Distribution 

The LQ-moment estimators for the GEV 
distribution behave similarly to the L-moments. 
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From equations (5)-(9) and equation (22), the 
first three LQ-moments of the GEV distribution 
for the quick estimator based on five-points 
quantiles can be written as 
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and 

kFFQ k /])log(1[)(0 −−=  
 
The LQMOM estimators μ̂ , σ̂ and k̂  of the 
parameters are the solution of (28)-(30), when 

rξ  are replaced by their estimators rξ̂ . The 
relationship between 3η  and k  from Eq. (31) 
(for example p = 0.2 and 05.0=α ) is shown in 
Figure 1. The following approximation 
relationships between the value of k  and 3η  
obtained through regression analysis  
  

           

2
3 3

3 4 5
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Figure 1: Relationship between  3η  and  k  for the GEV distribution. 
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The k̂  function is a very good approximation 
for k̂  in the range [-1.0, 1.0] and 3η̂  in the 

range [-0.336, 0.854]. Once the value of k̂  is 
obtained, σ̂  and μ̂  can be estimated 
successively from Equation (29) and (28) as 
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Monte Carlo Simulations 

Monte Carlo simulations have been 
carried out to investigate the effect of LQ-
moments based on WK5 with p = 0.2 and 

05.0=α  on the high quantiles estimation.  
 
Simulation Study For Parent Distribution 
Function Known 

It is still useful to look at how 
estimation is affected by various methods when 
the distribution function is known, although the 
true underlying distribution function is never 
known in practice. In this study, the GEV  

 

distribution  is  used  to  generate GEV samples. 
Monte Carlo simulations were performed for 
sample sizes 15, 25, 50 and 100, and parameters 
of GEV are 0=μ  and 1=σ with different 
values  of  k  between –0.4 and 0.4. The samples 
are fitted by the GEV distribution function using 
the method of LMOM, LIQ, and WK5.  

For each sample size, 10,000 replicates 
were generated, and quantile estimators of 

)(FQ , F = 0.90, 0.98, 0.99, and 0.999, are 
examined  in  terms  of  the BIAS and root mean 
square  error  (RMSE). Results   for    BIAS   for  
different quantiles show a very similar pattern. 
Only the result for ),(FQ  99.0=F  is presented 
here and is shown in Figure 2.  For the extreme 
quantiles, the LMOM estimator consistently 
shows the lowest BIAS followed by WK5 and 
LIQ estimator for samples sizes of 25 and 50.  

RMSE has been obtained for quantiles 
)(FQ , 9.0=F , 0.98, 0.99, and 0.999, estimated 

by using LMOM, LIQ, and WK5. Results are 
presented in Table 1 in terms of estimation 
efficiency in relation to using WK5 defined as 
 

 
LIQor LMOM using RMSE

 WK5using RMSE=φ     (36) 

     

 

 
 
Figure 2. Bias of Q(F=0.99) Estimator Using L Moments and LQ Moments Based on WK5 and LIQ, 
Fitting the GEV Distribution to Generated GEV Samples For n = 25 and n = 50 
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Values 1<φ  indicated that the WK5 method is 
superior to the other methods. Table 1 shows the 
φ  of the estimators for LMOM, and LIQ 
estimators compared to WK5 method for k  =     
-0.3, -0.1, 0, 0.1, 0.3. For the estimation of 

)(FQ , F > 0.9, WK5 in many cases leads to 
higher efficiency especially for k > -0.3. The 
LIQ estimators lead to lower efficiency than 
LMOM for all n and k. 
 
Parent Distribution Function Unknown 

In practice, the true distribution function 
is never known. Thus, it will be even more 
useful to look how estimation is affected by 
various methods when the assumed distribution 
function differs from the parent distribution 
function. In this study Kappa distribution was 
used to generate the random samples data. 
 Hosking and Wallis (1993) used the 
kappa distribution to generate artificial data for 
assessing the goodness of fit of different 
distributions in their study on regional frequency  

 
 
analysis. The cumulative distribution function of 
the Kappa distribution four-parameter is 
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where ς  is a location parameter, σ  is a scale 
parameter, and h  and k are shape parameters 
(Park and Park, 2002). The quantile function of 
the kappa distribution is 
 
           khFFQ kh /}]/)1[(1{)( −−σ+ς= .  (38) 
      
This distribution is a special cases of the 
generalized logistic (GL) )0 and 1( ≠−= kh , 
generalized extreme-value (GEV) 

Table 1: Efficiency of Q(F), F = 0.9, 0.98, 0.99, and 0.999 Estimated By Using LMOM, LIQ, and WK5, 
Fitting the GEV Distribution Based on Generated GEV Samples 

 k 
 -0.3  -0.1  0  0.1  0.3 

n F LMOM LIQ  LMOM LIQ  LMOM LIQ  LMOM LIQ  LMOM LIQ 
15 0.9 0.99 0.00  1.10 0.64  1.14 0.72  1.19 0.80  1.34 0.92 
 0.98 1.15 0.00  0.87 0.18  0.83 0.26  0.81 0.29  0.79 0.30 
 0.99 1.19 0.00  0.80 0.09  0.77 0.17  0.76 0.21  0.84 0.27 
 0.999 1.23 0.00  0.70 0.00  0.75 0.04  0.87 0.09  1.24 0.20 
               

25 0.9 1.22 0.71  1.10 0.73  1.13 0.77  1.17 0.82  1.28 0.89 
 0.98 1.21 0.18  0.94 0.34  0.91 0.35  0.88 0.35  0.84 0.35 
 0.99 1.22 0.07  0.90 0.24  0.87 0.27  0.85 0.28  0.87 0.31 
 0.999 1.31 0.00  0.87 0.07  0.88 0.11  0.93 0.13  1.19 0.25 
               

50 0.9 1.15 0.80  1.08 0.77  1.09 0.78  1.12 0.79  1.20 0.80 
 0.98 1.19 0.50  1.01 0.47  0.97 0.45  0.94 0.43  0.88 0.39 
 0.99 1.23 0.41  0.99 0.40  0.95 0.39  0.92 0.37  0.88 0.35 
 0.999 1.53 0.14  1.01 0.22  0.97 0.24  0.95 0.25  1.02 0.31 
               

100 0.9 0.96 0.85  1.04 0.79  1.04 0.77  1.06 0.76  1.09 0.73 
 0.98 0.88 0.69  0.75 0.57  0.66 0.52  0.71 0.49  0.90 0.42 
 0.99 0.91 0.67  0.72 0.53  0.62 0.48  0.67 0.44  0.89 0.38 
 0.999 1.33 0.62  0.79 0.41  0.64 0.37  0.67 0.35  0.91 0.34  
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)0 and 0( ≠= kh , generalized Pareto (GP) 
)0 and 1( ≠= kh , Gumbel (EV1)  

 
 

)0 and 0( == kh , uniform (U) )1 and1( == kh  
and exponential (EXP) )1 and0( == kh  
distributions (Sing et al, 2002).  

 In order to evaluate the performance of 
the four-parameter estimation methods for GEV 
distribution, different parameters of kappa 
distribution  were considered for simulation with 
values of the shape parameter ),( kh  were set 

)3.0,1( −−  for GL, )3.0,1(  for GP, )1,1(  for U 
and )1,0(  for EXP distribution. The location, ς  
and scale, σ  parameters were set 0 and 1, 
respectively.  For this purpose, 10 000 random 
samples of =n 15, 25, 50, and 100 are used. 
The performance of the LQ-moments using 
WK5   are   only   considered   to   compare with 
LMOM because the LIQ estimator always has 
lower efficiency in comparison to the other 
estimators.  
 Table 2 shows the RMSE of the F = 0.9, 
0.98, 0.99, and 0.999 quantile estimators for 

LMOM, and WK5 method. The WK5 almost 
always perform better than LMOM except when  
 
 
 
the data are generated by the GL distribution for 
n > 15. 

Figure 3 shows the BIAS of )(FQ , F = 
0.99 estimators  for  n = 25  and 100. The results  
are quite similar. In term of BIAS the WK5 
method is clearly superior to the LMOM method 
except when the data are from the GL 
distribution for n = 25. 
 
Data Analysis 

To illustrate the use of the GEV 
distribution for fitting data sets by various 
methods (LMOM, LQ moments using LIQ, and 
WK5), two sets of annual maximum flood series 
for the Feather River at Oroville and the 
Blackstone River at Woonsocket, were taken 
from Mudholkar and Hutson (1998). The 
parameter estimates for each data set, using 
various methods, are given in Table 3. Observed 
and computed frequency curves for the two data 
sets are plotted in Figure 4. The observed data 
values are plotted against the corresponding 

Table 2: Efficiency of Q(F), F = 0.9, 0.98, 0.99, and 0.999 Estimated By Using LMOM and WK5, Fitting 
the GEV Distribution Based on  Generated Kappa Samples 

    GL  EXP  GP  Uniform 
n F LMOM WK5  LMOM WK5  LMOM WK5  LMOM WK5 
15 0.9 1.358 1.555  0.596 0.637  0.316 0.369  0.233 0.081 
 0.98 4.322 4.444  1.335 1.212  0.589 0.446  0.169 0.123 
 0.99 6.990 6.981  2.069 1.582  0.908 0.560  0.249 0.205 
 0.999 33.875 32.832  9.033 4.714  3.125 1.713  0.544 0.499 
             
25 0.9 1.051 1.178  0.465 0.505  0.250 0.301  0.208 0.093 
 0.98 3.422 3.669  1.051 0.993  0.460 0.348  0.146 0.091 
 0.99 5.502 5.936  1.657 1.347  0.730 0.455  0.214 0.157 
 0.999 24.892 30.109  7.056 4.459  2.436 1.489  0.431 0.373 
             
50 0.9 0.776 0.829  0.353 0.382  0.186 0.229  0.192 0.111 
 0.98 2.572 2.850  0.753 0.763  0.346 0.252  0.127 0.063 
 0.99 4.088 4.681  1.219 1.087  0.583 0.353  0.186 0.115 
 0.999 16.568 23.406  5.321 4.072  1.965 1.253  0.351 0.264 
             
100 0.9 0.566 0.586  0.271 0.284  0.145 0.177  0.184 0.121 
 0.98 1.884 2.108  0.547 0.569  0.273 0.184  0.119 0.056 
 0.99 2.989 3.461  0.939 0.874  0.496 0.303  0.174 0.103 
  0.999 11.563 15.713  4.377 3.702  1.723 1.178  0.318 0.229  
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EV1 reduced variates using the Cunnane 
plotting position. 
 
 

 

 
 
 
 

  

 

 
Figure 3: Bias of Q(F= 0.99) Estimator Using L-Moments and LQ-Moment Based On WK5, Fitting the 

GEV Distribution to Generated Kappa Samples For n = 25 and n = 100 
 
 

Table 3: Estimated Values for the GEV Distribution 
  
             (a) Blackstone River Data 

LQ Moment Method Parameter L Moments 
Method LIQ  WK5 

μ  4257.0 4495.0  4064.1 
σ  1443.2 1213.4  1955.1 
k  -0.479 -0.468  -0.359 
10 year flood )sft( 3  10096.0 9335.6  10833.7 
50 year flood 20764.5 18006.5  20717.1 
100 year flood 28153.6 24232.2  27011.1 
1000 year flood 83546.4 67657.9  63607.2 
    
(b) Feather River Data    

LQ Moment Method Parameter L Moments 
Method LIQ  WK5 

μ  44893.6 43537.8  46385.7 
σ  37335.8 40146.3  34804.1 
k  -0.094 -0.119  -0.093 
10 year flood )sft( 3  138501.2 147176.7  146897.9 
50 year flood 221017.6 243047.3  235293.5 
100 year flood 259959.9 289615.9  276951.9 
1000 year flood 408508.6 474246.2  435565.3 
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For Feather River data, the frequency 

curves obtained by the WK5 lie much closer to 
the data than LMOM and LIQ methods. For the 
Blackstone River data, the frequency curves of 
the WK5 and LMOM methods are steeper than 
those of LIQ method, however the fitting of 
these methods are in serious error, especially for 
the larger flows.   
 

Conclusion 
 
The LQ-moments are constructed by using a 
function that defines the quick estimators, such 
as the median, trimean or Gastwirth, in places of 
expectations in L-moments have are re-
examined. The quick estimators based on five 
points quantiles using weighted kernel 
estimators are introduced for characterizing the 
upper quantiles of distributions and larger events 
in a sample. The parameters of the GEV 
distribution are estimated by matching LQ-
moments to their sample estimates behave 

similarly to the L-moments. Results from fitting 
the GEV distribution function to generated GEV 
samples   show   that   LQ-moments  using WK5 
 

 
almost always perform better than L-moments 
but has more BIAS than L-moments method. 
Results from fitting the GEV distribution 
function to samples generated from the Kappa 
distribution show that the WK5 lead to reduced 
BIAS and in many cases, higher efficiency 
compared to the other methods. The LIQ 
estimator leads to poorer estimation of high 
quantiles in terms of BIAS and RMSE.   
 This study has demonstrated that the 
conventional L-moment is not optimal for the 
estimation of GEV distribution. The new method 
of estimation, denoted the LQ-moments based 
on WK5 method, in many cases represents 
higher efficiency in high quantile estimation 
compared the L-moments method. The 
simplicity and generally good performance of 
this method make it an attractive option for 
estimating quantiles in the GEV distribution. 
Although the linear interpolation quantile 
estimator commonly used in most statistical 
software packages and in the LQ-moments 

 

 
 

Figure 4: Fitting the GEV Distribution To Annual Maximum Flows At Blackstone River  
And Feather River. 
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method, but it does not perform as good as the 
WK5 in estimating the parameters of the GEV 
distribution.  
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