
Wayne State University
DigitalCommons@WayneState

Wayne State University Dissertations

1-1-2010

Causal Product Knowledge Management
Yun Seon Kim
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Kim, Yun Seon, "Causal Product Knowledge Management" (2010). Wayne State University Dissertations. Paper 135.

http://digitalcommons.wayne.edu?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/135?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages

CAUSAL PRODUCT KNOWLEDGE MANAGEMENT

by

YUN SEON KIM

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2010

MAJOR: INDUSTRIAL ENGINEERING

Advisor Date

© COPYRIGHT BY

YUN SEON KIM

2010

All Rights Reserved

ii

ACKNOWLEDGEMENTS

In acknowledging my appreciation and thanks, I am most grateful to the

Almighty God for His divine guidance and blessings. Specially, He designs my life

to complete this work and has brought many wonderful people during my research.

I received a lot of support from many people during this research. I owe special

thanks to my academic advisor, Dr. Kyoung-Yun Kim, for this advice, inspiration,

and support in this work. My gratitude also goes to the entire faculty and staff of the

Department of Industrial and Manufacturing Engineering at the Wayne State

University, for the support and kindness they have shown me over the years. I

thank Drs. Leslie Monplaisir, Darin Ellis, Alper Murat, and Su Kyeong Cho, for

serving on my dissertation committee, and for providing invaluable advice and

constructive criticism for my work.

My special thanks go to all of the Computational Intelligence and Design

Informatics Laboratory members for their support and suggestions in this research.

I acknowledge the help of Keunho Choi and Jihoon Kim in providing useful

suggestions and assistance.

Finally, I wish to thank to my parents who have always provided endless love

throughout my life with their continuous prayers. My deepest appreciation has been

reserved for my wife YooSoo for all her love, unwavering support, and continued

prayers. I would like to thank my son David. You have always made me smile,

David. Thank you.

iii

TABLE OF CONTENTS

Acknowledgement ∙∙ ii

Chapter 1 Introduction and Objectives ∙∙ 1

1.1 Introduction ∙∙∙ 1

1.2 Research Objectives ∙∙ 11

1.3 Research Organization ∙∙ 14

Chapter 2 Expected Significance ∙∙∙ 15

Chapter 3 Literature Reviews ∙∙ 17

3.1 Trends in Product Development ∙∙∙ 18

3.2 Knowledge in Product Development ∙∙∙ 20

3.3 Issues in Product Development Knowledge ∙∙∙ 23

3.3.1 Design Knowledge Reuse Issues ∙∙ 23

3.3.2 Product Development Knowledge Management Issues ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 24

3.4 Procedural Knowledge and Causal Knowledge ∙∙∙ 27

3.4.1 Procedural Knowledge ∙∙∙ 27

3.4.2 Causal Knowledge ∙∙ 30

3.4.2.1 Causality ∙∙ 30

3.4.2.2. Bayesian Belief Network ∙∙∙ 31

3.5 Ontology and Semantic Web ∙∙∙ 39

3.6 Analysis in Product Development ∙∙ 43

Chapter 4 Preliminary Study ∙∙ 47

4.1 Systematic Knowledge Elicitation and FCM-BBN Constructor ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 47

4.1.1 Comparison of FCM and BBN ∙∙ 48

4.1.2 Systematic Construction of FCM ∙∙ 51

4.1.2.1 Eliciting Variables Relevant to the Problem ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 51

4.2 Eliciting Causal Structure between Variables ∙∙ 52

4.2.1 Defining the Augmented Matrix ∙∙ 54

iv

4.2.2 Constructing the Additive Matrix ∙∙∙ 56

4.2.3 Converting Bipolar Values into Linguistic Weights ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 57

4.3 Systematic Generation of BBN from FCM ∙∙∙ 58

4.3.1 Constructing BBN form FCM ∙∙ 59

4.3.1.1 Building BBN Compatible Causal Structure form CM ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 60

4.3.1.2 Constructing CPTs of BBN from Causal Weights of FCM ∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 62

4.4 Case study: Fault Diagnosis for Fuel Nozzle ∙∙ 65

4.5 Conclusion ∙∙∙ 69

Chapter 5 Product Design Knowledge Representation and Transformation ∙∙∙ 71

5.1 Definitions and Relationships in Knowledge ∙∙∙ 72

5.2 Mathematical Comparison of PK and CK ∙∙ 77

5.3 Implementation: Knowledge Modeling with SysML ∙∙ 89

5.4 Demonstration: Representation and Reasoning Capability of Causal

Knowledge ∙∙

96

5.5 Conclusion ∙∙∙ 101

Chapter 6 Degree of Causal Representation ∙∙∙ 103

6.1 Causal Design Knowledge Evaluation and Support ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 103

6.2 Mathematical Representation of Causal Knowledge ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 106

6.3 Evaluation of Causal Knowledge Network with Weighted Vertices ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 109

6.4 Evaluation of Causal Knowledge Network with Weighted Edges ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 112

6.5 Validation of DCR-based Causal Knowledge Evaluation ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 118

6.5.1 Comparison of Different Causal Knowledge ∙∙∙ 118

6.5.2 Case Study ∙∙ 123

6.5.3 Implementation: Knowledge Network Optimality Evaluation System ∙∙∙ 127

6.5 Conclusion ∙∙∙ 132

Chapter 7 DCR Index and Knowledge Integration ∙∙ 134

7.1 DCR Index ∙∙∙ 134

7.2 Knowledge Integration ∙∙ 139

v

7.2.1 Inter-actor Knowledge ∙∙∙ 141

7.2.2 Inter-process Knowledge ∙∙ 143

7.2.3 Inter-product Knowledge ∙∙∙ 146

7.2.4 Integration of Causal Knowledge ∙∙∙ 148

7.2.4.1 Ontological Knowledge Mapping ∙∙ 150

7.2.5 Utilization of Causal Knowledge Integration ∙∙ 151

7.3 Conclusion ∙∙∙ 163

Chapter 8 Implementation ∙∙ 165

8.1 Causal Design Knowledge Management System ∙∙∙ 165

8.2 Case Study ∙∙ 176

Chapter 9 Conclusion ∙∙ 180

Appendix A ∙∙ 185

Appendix B ∙∙ 221

Appendix C ∙∙∙ 225

Appendix D ∙∙∙ 227

References ∙∙ 234

Abstract ∙∙∙ 253

Autobiographical Statement ∙∙∙ 254

vi

LIST OF FIGURES

Figure 1-1: Knowledge accumulation in product development processes ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 5

Figure 3-1: A Bayesian Belief Network representing Causal influence among five
variables ∙∙

34

Figure 4-1: Augmented matrix for previous two matrices ∙∙∙ 55

Figure 4-2: Additive matrix after combining causal knowledge of two experts ∙∙∙∙∙∙∙∙∙∙∙∙ 57

Figure 4-3: Causal Structure ∙∙∙ 58

Figure 4-4: BBN Compatible Causal Structure ∙∙ 61

Figure 4-5: Network from FCM-BBN ∙∙ 66

Figure 4-6: Network from BBN ∙∙∙ 67

Figure 5-1: Knowledge transformation ∙∙∙ 77

Figure 5-2: Procedural knowledge representation for two-object-welding knowledge ∙ 78

Figure 5-3: Causal knowledge representation for joining knowledge ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 80

Figure 5-4: The Four Pillars of SysML ∙∙∙ 90

Figure 5-5: Causal network for the fuel nozzle knowledge ∙∙∙ 96

Figure 5-6: Examples of decision alternative using causal knowledge diagnosis ∙∙∙∙∙∙ 97

(a) Decision alternative with one observation ∙∙ 97

(b) Decision alternative with four observations ∙∙ 98

(c) Decision alternative with five observations ∙∙∙ 98

Figure 5-7: The examples of the effects of the causal knowledge prediction ∙∙∙∙∙∙∙∙∙∙∙∙∙ 100

(a) The effects of material modification ∙∙∙ 100

(b) The effects of diameter modification ∙∙∙ 100

vii

Figure 6-1: Framework of the causal design knowledge evaluation and support system 106

Figure 6-2: Examples of causal knowledge networks ∙∙∙ 108

Figure 6-3: Examples of knowledge network with weighted vertices ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 112

Figure 6-4: Examples of knowledge network with weighted edges ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 115

Figure 6-5: Processes of the causal knowledge evaluation ∙∙∙ 118

Figure 6-6: Examples of causal knowledge network with weighted edges for
comparison ∙∙∙

119

Figure 6-7: Comparison results for causal knowledge network with weighted edges ∙ 120

(a) Probability comparison ∙∙∙ 120

(b) Network comparison ∙∙ 120

Figure 6-8: Examples of causal knowledge network with weighted vertices for
comparison ∙∙∙

122

Figure 6-9: Comparison results for causal knowledge network with weighted vertices 122

(a) Probability comparison ∙∙∙ 122

(b) Network comparison ∙∙ 123

Figure 6-10: Examples of causal knowledge ∙∙ 124

(a) Causal knowledge for assembly design ∙∙∙ 124

(b) Causal knowledge for wheel design and maintenance ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 125

(c) Causal knowledge for fuel nozzle design and maintenance ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 125

Figure 6-11: Example of UGS NX5 valve design ∙∙ 128

Figure 6-12: Web-based causal design knowledge evaluation and support system ∙∙ 128

Figure 6-13: Example of the effects of the design modification ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 129

Figure 6-14: Example of the design factors from maintenance issues ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 129

viii

Figure 7-1: Examples of network for DCR ∙∙∙ 135

Figure 7-2: DCR indexing process ∙∙∙ 137

Figure 7-3: Example of DCR index test ∙∙∙ 138

Figure 7-4: Current product development knowledge acquisition and loss ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 140

Figure 7-5: Knowledge relationship for product development ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 141

Figure 7-6: Inter-actor knowledge integration for product development ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 142

Figure 7-7: Inter-actor knowledge framework for product development ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 143

Figure 7-8: Inter-process knowledge framework vs. current knowledge framework for
product development ∙∙∙

144

Figure 7-9: Missing knowledge in current product development knowledge
framework ∙∙∙

145

Figure 7-10: Heterogeneous product development knowledge framework ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 147

Figure 7-11: Inter-product knowledge framework with unsupervised learning ∙∙∙∙∙∙∙∙∙∙∙∙ 147

Figure 7-12: Knowledge integration cases ∙∙ 149

Figure 7-13: Ontological BBN design knowledge ∙∙∙ 150

Figure 7-14: Snapshot of causal product design knowledge management system for
knowledge integration ∙∙∙

152

Figure 7-15: Result of knowledge integration with DCR evaluation ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 153

Figure 7-16: Knowledge network for integration ∙∙ 154

(a) Knowledge network for Bad weld based ∙∙ 154

(b) Knowledge network for Voids based ∙∙ 154

(c) Knowledge network for newNetwork-wheel ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 154

Figure 7-17: Effects of the design modification ∙∙∙ 156

ix

(a) Bad Weld based wheel knowledge ∙∙∙ 156

(b) Voids based wheel knowledge ∙∙ 156

Figure 7-18: Effects of design modification in integrated wheel knowledge ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 157

Figure 7-19: Knowledge network for integration with different domains ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 158

(a) Bad weld based wheel knowledge ∙∙ 158

(b) Tire knowledge ∙∙∙ 159

(c) Integrated wheel tire knowledge ∙∙∙ 159

Figure 7-20: Effects of the design modification ∙∙∙ 160

(a) Bad weld based wheel knowledge ∙∙ 160

(b) Tire knowledge ∙∙∙ 161

Figure 7-21: Effects of design modification in integrated wheel-tire knowledge ∙∙∙∙∙∙∙∙∙ 162

(a) For bad weld based wheel knowledge ∙∙∙ 162

(b) For tire knowledge ∙∙∙ 163

Figure 8-1: .net based developing environment ∙∙ 166

Figure 8-2: Basic concept: design support processes ∙∙ 167

Figure 8-3: System architecture of the causal product design knowledge
management system ∙∙

168

Figure 8-4: Systematic knowledge acquisition ∙∙ 169

(a) Elicitation of important variables ∙∙ 169

(b) Causal relationship between variables ∙∙∙ 169

(c) Systematical generated Fuzzy Cognitive Map ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 170

(d) Bayesian Belief Network from Fuzzy Cognitive Map ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 170

Figure 8-5: Result of evaluation (DCR) ∙∙ 171

x

Figure 8-6: Causal knowledge integration example ∙∙ 173

Figure 8-7: Integrated knowledge (newNetwork.xdsl) ∙∙ 173

Figure 8-8: integrated knowledge evaluation ∙∙∙ 174

Figure 8-9: knowledge network interface engine between knowledge inference
engine and causal product design knowledge management system ∙∙∙∙∙∙∙

175

Figure 8-10: Example of assemble design ∙∙ 177

Figure 8-11: Example of wheel for automotive ∙∙ 177

Figure 8-12: Example of fuel nozzle for aircraft engine ∙∙ 178

Figure 9-1: Contribution of the research in knowledge management system
requirement ∙∙

184

xi

LIST OF TABLES

Table 3-1: Knowledge Perspectives and Their Implications ∙∙∙ 21

Table 4-1: A Summary of Comparison Results ∙∙ 50

Table 4-2: Adjacency Matrix for FCM ∙∙∙ 59

Table 4-3: BBN Compatible Adjacency Matrix ∙∙∙ 59

Table 4-4: Three-step Construction of CPT for Assembly Cost (a,b,c) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 63

Table 4-5: The Test Results with Fuel Nozzle ∙∙ 69

Table 5-1: Comparison result between procedural knowledge and causal knowledge 88

Table 5-2: SysML implementation for PK and CK ∙∙∙ 92

Table 6-1: The results of causal knowledge network analysis ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 126

Table 7-1: Result of DCR index with vertices 3 to 11 ∙∙ 137

Table 7-2: Result of DCR index test ∙∙∙ 139

Table 8-1: Evaluation index (DCR index) ∙∙∙ 172

Table 8-2: Causal design knowledge repository ∙∙ 175

Table 8-3: Results of case study (DCR) ∙∙∙ 179

1

CHAPTER 1

INTRODUCTION AND OBJECTIVES

1.1 Introduction

Today, manufacturing enterprises are globalized with the world-wide

availability of technology, capital, information, and labor. True competitive

advantage can only result from the ability to bring highly customized quality

products to the market at lower cost and in less time. Product development has

become a very complicated process. Discrete product manufacturers are under

pressure from customers and the market to move away from the traditional make

to stock production model to a build to demand model. Many customers are no

longer satisfied with mass produced goods. They are demanding customization

and rapid delivery of innovative products [FIPER 2001, ISIGHT 2002]. Faster

change in market demand drives faster obsolescence of established products.

Industries now realize that the best way to reduce life cycle costs is to evolve a

more effective product development paradigm using the Internet and web-based

technologies. Yet, there remains a gap between these current market demands

and current product development paradigms.

In additionally, global marketing competition makes manufacturers more

conscious of quality, cost, and time-to-market. This global economical and

technological environment poses a challenge of how to realize a true collaborative

environment. In the collaborative environment, engineers can cooperate globally

during the overall product development processes. However, one survey found that

2

74% of respondents believed that their organization’s best knowledge was not

accessible and reusable, and 68% thought that mistakes were reproduced several

times [Gazeau 1998]; more than 75% of product design activities have been

conducted due to the lack of product development knowledge reuse and it has

been long recognized as a critical problem in modern product development

[DeLong 2004]; this problem is still recently indicated around industries according

to professional meetings and interviews that we conducted [PDSEC 2007]. Busby

[Busby 1999] notes three issues: that design reuse was desirable but not practiced,

that inevitable additional efforts to reuse the design are required, and that

knowledge loss, inappropriate replication, and errors are all-too-common issues

encountered when attempting to reapply existing but incomplete knowledge to a

new design. Furthermore, problems in various product life-cycle activities may

arise since expertise is often unavailable or the knowledge has been forgotten.

This situation contributes to long delays in recognizing potential failures in product

development [Dieter 2001]. When the potential failure is not promptly identified in

the early stages of the product development process, it causes greatly increased

downstream costs, such as warranty and maintenance. Because traditionally

product development knowledge remains un-codified, mapping the internal

expertise is a potential research challenge in knowledge management [Ruggles

1998, Arkell 2007].

Such perception of the failure to apply existing knowledge is an incentive for

developing a knowledge-driven decision support system. Specifically, there is

3

strong need for a framework, which aims to understand product development

knowledge and to develop fast and efficient information/knowledge database for

the better product development. Recently, the Information Technology (IT) has

evolved rapidly and has made enormous impact on the whole spectrum of

industries. Various IT applications and CAx (Computer Aided technology) tools in

manufacturing have been considered and employed to overcome the following

challenges in the practice of collaborative product development processes: 1) lack

of information from suppliers and working partners; 2) incompleteness and

inconsistency of product knowledge within the collaborating group; 3) incapability

of processing information/data from other parties due to interoperability.

However, it seems currently available tools and techniques are not entirely

suitable and effective enough to handle the challenges/pressures faced by product

development processes. Previous research on product development knowledge

reuse has focused on searches, by matching keyword and file name, or searching

by specific indices (e.g., part number, relationship among parts, etc.). However,

these methods indicate various drawbacks based on [Iyer 2005]. First, product

development knowledge is often incomplete or is not adequately defined at a

detailed level for current information search methods. Second, it is often not true

that proper initial information (e.g., project name or part name) is known before an

actual search. Third, the search space and time requirements are often

cumbersome and hence impractical, generating search results that are either too

detailed or too broad. The product development knowledge, which is a blood

4

stream of development cycles, is still not fully captured, maintained, and reused.

Problems mostly come from the lack of unified protocol of knowledge acquisition

and diffusion. Therefore, developing the product development knowledge reuse

framework becomes one of the important issues in product development research.

Knowledge loss because of retirement, downsizing, and turnover is not only

one of the costliest problems, but it also one of the most widely ignored problems

facing organizations today. Figure 1-1 shows the knowledge accumulation and loss

between preserved knowledge and missing knowledge in the product development

processes. Preservation of knowledge is a daunting challenge. Different strategies

for knowledge preservation have been considered [Bott 2007]. As information is

stored increasingly in electronic formats, there is a need to reexamine the

principles of preservation under which we have traditionally been trained and under

which we are still often guided in decision making. These need to be reevaluated

and compared so that "points of convergence or divergence can be evaluated."

[Cloonan 1993]. In addition, the need to optimize organization processes rather

than individual benefits poses challenges [Rangan 2005]. The importance of a

lifecycle-wide knowledge sourcing strategy in support of the Enterprise System

investment is articulated [Gable 2005]. Considerable research has been done in

knowledge engineering and using new technologies [Matsumoto 2005, Barnard

2003, O'Hara 2002]. Knowledge Management specialists have sometimes failed to

recognize the synergy that knowledge engineering methodologies and tools hold to

enhance the state of the art in practical domains [Liebowitz 2001].

5

Figure 1-1 Knowledge accumulation in product development processes

Recently, a paradigm called mass collaboration is emerging for harnessing

the knowledge and creativity. It is based on the collaboration and competition of

large groups of people in innovative ways [Tapscott 2006]. An example of the

success of mass collaboration is the free encyclopedia, Wikipedia.com. Currently,

about 10 million volunteers collaborate to create an encyclopedia which consists of

about 9.5 million articles in 256 languages. Its accuracy is comparable to that of

Encyclopedia Britannica [Giles 2005]. Further, the large communities on sites such

as Facebook for general networking (58 million users), Flicker for photo sharing (4

million users), LinkedIn for business networking (17 million users), and soundpedia

CInDI Lab.Planning
Conceptual

Design Detailed Design Prototyping Test

PD Processes

Missing
Knowledge

Total
Knowledge

Gap

Knowledge
Accumulation

6

(3.5 million users) for music sharing show that individuals are increasingly

participating in collaborations over the Internet at massive scales. Recently, there

have been a few efforts on applying the concepts of open-source development to

physical product development [OpenMoko 2008, Open 2008, Baker 2006]. Based

on current mass collaboration paradigm, the product development management

required web-based knowledge acquisition and reuse to handle discrete product

development knowledge from currently working or retired stakeholders.

To acquire product development knowledge, the representation of knowledge

is one of core requirements. One view of knowledge is that of a condition of access

to information [McQueen 1998]. According to this view, product development

knowledge must be organized to facilitate access to and retrieval of content.

Product development knowledge shows three different knowledge ways:

declarative, procedural, and contextual knowledge. Declarative knowledge (DK) is

knowledge of facts or is knowledge that answers the question of “what”. Procedural

knowledge (PK) addresses the question of “how”. Contextual knowledge (CoK)

addresses “when” and “why” to use the declarative knowledge [Roberts 2003, Yoo

2006]. As an illustration, if we suppose an assembly method of certain parts, then

this method and the parts themselves from DK. When we start consider how the

parts are assembled, the DK of the assembly method becomes PK. If we consider

the context of CoK (i.e., how the parts can be assembled under which conditions

(when and why) as well as how the resultant outputs would be), then the CoK

embed PK. Therefore, PK can represent an assembly, which has objects, method,

7

conditions, and output.

Most product development knowledge is represented by PK, since the PK

includes both declarative and CoK. Product design knowledge can be represented

by PK. However, PK is broad and requires unwieldy processes to define itself

discretely. Furthermore, during product development processes, PK cannot fully

represent product design knowledge [Kim 2008]. Causal knowledge (CK), which

utilizes causal reasoning, is particularly useful for overcoming these challenges. By

modeling causal relationships, causes of certain events are diagnosed and their

effects are predicted [Gopnik 2002, Gopnik 2004, Liu 2001]. The author’s previous

study [Kim 2008] concludes that CK’s characteristics are more beneficial in

representing product development knowledge than PK, and that CK provides more

functions of the knowledge practices. However, CK is still rarely captured in the

product development processes because eliciting this type of knowledge the

domain expert is a very time-consuming process. Furthermore, product

development requires multi-disciplinary, domain knowledge. Systematic extraction

of integrated CK is very difficult [Kim 2008]. However, even with these known

difficulties in terms of collecting the knowledge elicitation from domain experts,

CK’s value outweighs its difficulties and costs.

To fully capture and diffuse the product development knowledge, this

dissertation research aims to develop knowledge representation formalism,

knowledge evaluation method and evaluation index, knowledge integration method,

and web-based product design knowledge management system. The knowledge

8

acquisition method is conducted by a preliminary study with colleges in South

Korea. This preliminary study addresses two core function of the knowledge

acquisition, systematic knowledge acquisition from domain experts and systematic

knowledge conversion from fuzzy cognitive map to Bayesian belief network.

The first topic is knowledge representation formalism. This topic addresses

which knowledge representation formalism can express the product development

knowledge in order to utilize existing knowledge. First, this research is starting with

the mathematical definitions of the procedural product development knowledge, the

causal product development knowledge, and the knowledge transformation by set

theory. Based on this mathematical definitions, the comparison of PK and CK with

the knowledge perspectives indicated in product development knowledge and

discussion of CK’s effectiveness in realizing an integrated representation of the

product development knowledge are presented. This comparison is presented the

mathematical effectiveness of causal and procedural knowledge from four

perspectives: knowledge expression, decision alternative representation, reasoning,

and knowledge cultivation. After understanding and comparing the relationship

between PK and CK, the causal knowledge representation formalism can present

product development knowledge. However, most product development knowledge

is represented by PK. Therefore, the knowledge transformation method from PK to

CK is developed and defined. The features of CK with an actual case study, a fuel

nozzle on an aerospace engine, is demonstrated.

9

To confidently use causal knowledge for the product development knowledge,

the evaluation of causal knowledge is required. This research presents a new

causal design knowledge evaluation and management system that uses a causal

knowledge evaluation method to quickly and easily design a new product and to

help prevent potential future failure. One of the new system’s core functions is

causal knowledge evaluation. The developed causal knowledge evaluation method

compares knowledge networks using degree of causal representation (DCR). In

this research, causality (C) and network connectivity (NC) are used for the causal

knowledge network with weighted vertices, and weighted network connectivity

(WNC) for the causal knowledge network with weighted edges. Causality (C) is a

measure of how the causal knowledge network represents a causal relationship,

taking into consideration the incoming and outgoing edges of each vertex. Network

connectivity (NC) represents the connection of the network with the ratio of total

connections in the causal knowledge network. WNC is composed with the network

connectivity and the normalized edge weights of vertices. This developed method

is tested with three real causal knowledge cases.

To use DCR evaluation method, one limitation of this method should be

overcome. The limitation of DCR method is that it is strongly dependant with the

number of vertices in causal knowledge network because the causal knowledge is

represented by network as defined in chapter 5. This limitation restricts the

comparison of multiple causal knowledge for selecting better design knowledge in

product development. To overcome this limitation, new evaluation index, which is

10

called DCR index, is developed. Using DCR index, multiple causal knowledge with

different number of vertices are compared in chapter 7.1. Also, the validation of

DCR index is conducted in Chapter 7.

The evaluated knowledge can be used for determining which knowledge is

more appropriate for a new design knowledge. For the new design knowledge, it

can be selected from existing knowledge or be generated with existing knowledge.

To generated the new knowledge from existing knowledge, knowledge integration

method is required. In this research, based on knowledge relationship, the new

knowledge integration method is developed. The knowledge relationship classifies

product development knowledge into three categories: inter-process, inter-actor,

and inter-product knowledge in order to integrate heterogeneous existing product

development knowledge. To systematically integrate the product development

knowledge associated to these three categories, appropriate knowledge integration

methods are required. With these three categories, a new knowledge framework,

which is called inter-relational knowledge framework, is developed. First, inter-

process knowledge framework acquires and reuses different domains knowledge,

which have different constrains for each domain, using causal network structure

update method during the product development processes. Second, inter-actor

knowledge framework acquires and reuses the same domain knowledge with

different actors (e.g., designers, engineers, etc.) using causal network integration.

Third, inter-product knowledge framework acquires and reuses different domains

knowledge and different products knowledge using causal network and structure

11

integration between different structures. In this framework, a classification of inter-

product knowledge for similar product is required because product knowledge of all

kinds of products cannot be integrated to one general causal network. Based on

this frameworks, the cases of the causal knowledge integration is developed as

shown in chapter 7.2. Finally, the innovative knowledge integration method is

validated with real case.

In the summary of the this research, this research develops the new causal

product design knowledge management system to acquire, represent, store,

integrate, and reuse the existing knowledge for new product design. The web-

based system makes a communication among the stakeholders, who are currently

working or retired. Also, this system can be a model of web-based collaboration

environments with discrete knowledge and stakeholders in product development.

During the implementation of the system, two useful outputs are developed,

knowledge network interface engine between causal product design knowledge

management system and causal knowledge inference engine (GeNIe) and causal

design knowledge repository with causal knowledge evaluation results, which

include DCR, DCR index, and other considerable factors.

1.2 Research Objectives

Based on much research in several areas, such as product development,

knowledge management, information technology, and decision support systems,

following needs are required for establish an efficient product development

knowledge management system: 1) there is a need for a framework, which aims to

12

understand and capture recursive product development knowledge, 2) it is needed

the extension of causal network to update recursive product development

knowledge and to integrate existing product development knowledge to reuse it, 3)

collaborative IT tools are needed to improve collaboration among distributed

product development groups, enhance knowledge sharing, and assist in better

decision making, 4) integration of appropriate information, decision technology, and

domain knowledge in decision-making processes of distributed network-based

collaboration, is required in a seamless and automated manner. Furthermore,

current product development knowledge management framework cannot fully

manage recursive product development knowledge in the product development

processes because of complexity of product development knowledge, lack of

product development knowledge management, and lack of representation for

recursive product development knowledge. Therefore, the overall hypothesis of this

research is that causal product design knowledge management system can be

developed to capture and represent casual product design knowledge, to integrate

knowledge in product lifecycle, and to utilize casual product design knowledge for

better product development decision making.

The research objectives for causal product design knowledge management

are as follows:

1. Causal Design Knowledge Acquisition and Representation: Investigate 1)

knowledge acquisition method that can be used to guide the process of

collecting experiential knowledge and information in a systematic manner from

13

domain experts, 2) mathematical representation for procedural knowledge,

causal knowledge, and knowledge transformation, 3) mathematical comparison

between procedural knowledge and causal knowledge to select better

knowledge representation formalism, 4) and knowledge transformation from

procedural knowledge to causal knowledge.

2. Causal Design Knowledge Evaluation and Integration: Investigate 1) evaluation

method that can be asses the causal design knowledge network, 2)

comparison standard for multiple causal design knowledge to select better

knowledge of the product design, 3) and knowledge network integration

method that can be accumulate existing causal design knowledge to utilize

new product design.

 3. Implementation of Causal Design Knowledge Management System and Case

Study: Develop 1) web-based knowledge network optimality evaluation system

that can be assist a designer for providing design analysis information, 2)

knowledge network interface engine between causal design knowledge

management system and causal knowledge reasoning system, 3) causal

design knowledge repository that includes design analysis information and it

can be utilized to other application or system separately, 4) and case study for

causal design knowledge management system validation.

14

1.3 Research Organization

In this documentation, Chapter 2 provides a significance of this research.

Chapter 3 provides a background and literature review of relevant research areas

and important aspects of this research. Chapter 4 addresses the preliminary study

for systematic knowledge acquisition and knowledge conversion. Chapter 5

discusses the mathematical definitions of this research (procedural knowledge,

causal knowledge, and knowledge transformation) and comparison and

transformation between procedural knowledge and causal knowledge. Chapter 6

explains the causal knowledge evaluation method. Chapter 7 mentions the causal

knowledge evaluation index for multiple knowledge comparison and knowledge

integration for generating a new knowledge from existing knowledge. Chapter 8

shows implementation of the web-based causal product design knowledge

management system. Finally, Chapter 9 concludes this dissertation with the

contributions and areas of future research.

15

CHAPTER 2

SIGNIFICANCE OF RESEARCH

The US engineering industry base is facing a significant loss of knowledge

due to large numbers of employees retiring in the next decade. Problems in various

product developments including product design may arise when the expertise is no

longer available or the knowledge is forgotten. Also, most of product design

knowledge is not reusable, because product design knowledge in an organization

remains un-codified. Previous research on design knowledge reuse has been

focused on search by matching keyword and file name or search by specific

indexes (e.g., part number, relationship among parts, etc.). However, these

methods indicate various drawbacks [Iyer 2005]. First, product design knowledge is

often incomplete or is not defined detailed enough for the current information

search methods. Second, it is often not true knowing proper initial information (e.g.,

project name or part name) before an actual search. Third, often the search space

and time is cumbersome and it may generate too detailed search results or too

broad results. Generally, knowledge-based system can solve or infer these

drawbacks. However, knowledge-based systems have been developed solely

through the use of rule-based approach, which allows for easy modeling of expert

reasoning, but such a approach is not general and for a specific use; thus, existing

experience and analyses show that this approach has serious limitations on

associations between observable findings and diagnostic hypotheses [Chen 2001].

Furthermore, the product development knowledge cannot be appropriately

16

acquired, represented, and reused by these techniques. To address these

challenges, this research develops new methodologies and tools to capture,

represent, store, and reuse domain knowledge from experts and implement a novel

web-based causal product design knowledge management system to

systematically utilize the knowledge from experts, who are currently working or

retired. The particular emphasis is on these research areas: 1) design knowledge

acquisition, 2) causal knowledge representation, 3) causal knowledge evaluation

and index, 4) causal knowledge integration, 5) and causal design knowledge

management system.

This research aims to extend design, technological and computational

innovations in knowledge acquisition, knowledge representation, integration of

knowledge, web-based knowledge management system to design problem solving

processes. Results from this research are expected to advance our understanding

of 1) capturing domain knowledge from experts, 2) systematic knowledge

acquisition for current working engineering knowledge retention and for keeping

retired professionals engaged in industry, 3) capturing and transforming existing

procedural engineering knowledge to better knowledge representation formalism, 4)

evaluating causal knowledge to make design decision, 5) comparing multiple

design knowledge in heterogeneous product, 6) integrating existing design

knowledge to generate refined knowledge, 7) and systematic knowledge

management using information technologies and tools. Thus, this research leads to

discovery and integration across these frontiers.

17

CHAPTER 3

LITERATURE REVIEWS

3.1 Trends in Product Development

Product manufacturers are under pressure from customers to move away

from the traditional make-to-stock production model to a build-to-demand model.

True competitive advantage can only result from the ability to bring highly

customized quality products to the market at lower cost and in less time. Product

development has become a very complicated process. Many customers are no

longer satisfied with mass-produced goods. They are demanding customization

and rapid delivery of innovative products. Industries now realize that the best way

to reduce product life-cycle costs is to evolve a more effective product

development paradigm using the IT and web-based technologies [Engineous 2005].

Yet, there remains a gap between these current market demands and current

product development paradigms. One possible approach to fill this gap is to

seamlessly integrate product development processes into a collaborative

environment.

Recently, the scope of design participants has been increased. In particular,

persons (e.g., customers) who are not necessarily experienced in product

engineering can informally partake in the design process by providing input from an

existing or potential product’s end operating environment. Furthermore, other

organization members, who are not traditionally a member of product development,

can have a role in product design and development. Also, designers are no longer

18

merely exchanging geometric data, but knowledge about design and the product

development process, including specifications, design rules, constraints, and

rationale. As design becomes increasingly knowledge-intensive and collaborative,

the need for computational frameworks to enable engineering product development

by effectively supporting the formal representation, acquisition, and reuse of all

product development knowledge, becomes more critical [Lutters 1997, Szykman

2001]. However, the cumulative, creative, iterative, evolutionary product

development knowledge and rationale behind the product are infrequently captured

or retained. Although a few researchers [Lin 1996, Horváth 1998, Kitamura 2004]

have attempted to systematically capture design and functional knowledge,

manufacturing industries are still struggling with this knowledge integration issue,

while they are globalized and highly competitive.

The global economical and technological environment poses a challenge of

how to realize a true collaborative environment. In recent years, the Information

Technology (IT) has evolved rapidly and has made enormous impact on the whole

spectrum of industries. To overcome the following challenges in the practice of

collaborative product development processes, various IT applications and CAx

(Computer Aided technology) tools in manufacturing are required: 1) lack of

information from suppliers and working partners; 2) incompleteness and

inconsistency of product knowledge within the collaborating group; 3) incapability

of processing information/data from other parties due to interoperability.

Furthermore, improving collaboration using collaborative tools among distributed

19

design groups is one of critical issues in product development decision. Lack of all

product development knowledge in the design stage causes many problems in the

different stages.

The product development process, one of the most critical business

processes, is foster corporate success in today’s global market environment.

Design rationale plays an important role in the product development of large and

complex systems. Design rationale has many benefits. It can be used to verify and

trace the design of a product. Despite its usefulness, design rationale is often not

documented and the knowledge is evaporated or eroded after the product design is

completed. Without such knowledge, impacts of proposed changes to the system

cannot be assessed accurately. Problems in various product life-cycle including

product design may arise when the expertise is no longer available or the

knowledge is forgotten. The lack of product development knowledge reuse has

been long recognized as a critical problem in product development [Ullman 1997]

There is need for a framework, which aims to understand and capture product

development knowledge, to integrate multi-disciplinary knowledge of multiple

stakeholders, and to establish causal knowledge management system for the

better product. It seems currently available tools and techniques are not entirely

suitable and effective enough to handle the challenges/pressures faced by product

development processes.

20

3.2 Knowledge in Product Development

One view of knowledge is that of a condition of access to information

[McQueen 1998]. According to this view, product development knowledge must be

organized to facilitate access to and retrieval of content [Maryam 2001]. This view

may be thought of as an extension of the view of product development knowledge

as an object, with a special emphasis on the accessibility of the knowledge objects.

If product development knowledge is viewed as an object, or is equated with

information access, then knowledge management should focus on building and

managing knowledge. If product development knowledge is a process, then the

implied knowledge management focus is on knowledge flow and the processes of

creation, sharing, and distribution of knowledge. The view of knowledge as a

capability suggests a knowledge management perspective centered on building

core competencies, understanding the strategic advantage of know-how, and

creating intellectual capital.

The major implication of these various conceptions of knowledge is that each

perspective suggests a different strategy for managing the knowledge and a

different perspective of the role of systems in support of knowledge management.

Table 3-1 summarizes the various views of knowledge just discussed and their

implications for knowledge management and knowledge management systems

[Maryam 2001].

21

Table 3-1 Knowledge Perspectives and Their Implications [adopted from Maryam

2001]

Perspectives
Implications for Knowledge
Management (KM)

Implications for Knowledge
Management System (KMS)

Knowledge vis-à-
vis
data and
information

Data is facts, raw numbers.
Information is processed /
interpreted data.
Knowledge is personalized
information

KM focuses on exposing
individuals to potentially
useful information and
facilitating assimilation of
information

KMS will not appear radically
different from existing IS, but
will extended toward helping
in user assimilation of
information

State of mind
Knowledge is the state of
knowing and understanding

KM involves enhancing
individual’s learning and
understanding through
provision of information

Role of IT is to provide
access to sources of
knowledge rather than
knowledge itself

Object
Knowledge is an object to be
stored and manipulated.

Key KM issue is building and
managing knowledge stocks

Role of IT involves gathering,
storing, and transferring
knowledge

Process
Knowledge is a process of
applying expertise

Km focus is on knowledge
flows and the process of
creation, sharing, and
distributing knowledge

Role of IT is to provide link
among sources of knowledge
to create wider breadth and
depth of knowledge flows

Access to
information

Knowledge is a condition of
access to information

KM focus is organized access
to and retrieval of content

Role of IT is to provide
effective search and retrieval
mechanisms for locating
relevant information

Capability
Knowledge is the potential to
influence action.

KM is about building core
competencies and
understanding strategic
know-how

Role of IT is to enhance
intellectual capital by
supporting development of
individual and organizational
competencies.

Product development knowledge management systems refer to a class of

information systems applied to managing product development knowledge. They

are IT-based systems developed to support and enhance the product development

processes of knowledge creation, storage/retrieval, transfer, and application

[Maryam 2001]. Many KM initiatives rely on IT as an important enabler. While IT

does not apply to all of the issues of KM, it can support KM in sundry ways.

Examples include finding an expert or a recorded source of design knowledge

22

using online directories and searching databases; sharing knowledge and working

together in collaborative teams; access to design case/information on past product

development projects; and learning about customer needs and behavior by

analyzing transaction data among others [KPMG 1998].

One of the most common applications is internal benchmarking with the aim

of transferring internal best practices [KPMG 1998; O.Dell 1998]. For example, a

common application of knowledge management is the creation of corporate

directories, also referred to as the mapping of internal expertise. Because much

knowledge in an organization remains un-codified, mapping the internal expertise

is a potentially useful application of knowledge management [Ruggles 1998]. Such

perception of the failure to apply existing knowledge is an incentive for mapping

internal expertise. Another common application of knowledge management

systems is the creation of knowledge networks [Ruggles 1998]. For example, when

Chrysler reorganized from functional to platform based organizational units, they

realized quickly that unless the suspension specialists could communicate easily

with each other across platform types, expertise would deteriorate. Chrysler formed

Tech Cul, bringing people together virtually and face-to-face to exchange and build

their collective knowledge in each of the specialty areas. In this case, the

knowledge management effort was less focused on mapping expertise or

benchmarking than it was on bringing the experts together so that important

knowledge was shared and amplified. Providing online forums for communication

and discussion may form knowledge networks. In another case, Ford found that

23

just by sharing knowledge, the development time for cars was reduced from 36 to

24 months, and through knowledge sharing with dealers, the delivery delay

reduced from 50 to 15 days [Gazeau 1998].

3.3 Issues in Product Development Knowledge

The advent of the Internet and World Wide Web ushered in a new wave of

research on the collaborative product development environment. There are two

major research areas in this field: one, research on how to manage product life-

cycle knowledge effectively within a distributed enterprise environment; two, how to

reuse design and manufacturing knowledge and repurpose it to new product

design.

3.3.1 Design Knowledge Reuse Issues

Baxter and Gao’s research addresses design knowledge reuse issues and the

next step of design reuse research [Baxter 2007]. They noted that approximately

20% of the designer’s time is spent searching for and absorbing information.

Furthermore, approximately 40% of all design information requirements are met by

personal information storage, despite the fact that more appropriate information

may be available from other sources. Even if knowledge stored in computer based

systems is accessed, if it is to be reused, several additional factors must be met:

reusability, availability, and relevance. Efficient exploitation of past designs has

been prohibited by the lack of a complete or consistent methodology to structure

past designs and information [Shahin 1999]. With a well-structured library of past

designs and a method to make new design reusable, the issue of design reuse

24

would be greatly simplified. Busby provided a detailed study into problems with

design reuse [Busby 1999]. Most reuse issues that Busby presented were cases of

reuse not taking place, belief that reuse was desirable but not practiced. The next

most common problem was an unexpected amount of additional effort to reuse.

Others were knowledge loss through inappropriate replication, and error where

existing designs were reapplied to new purposes.

Design reuse remains a developing area, and many approaches have been

developed. Further effort is required to understand the needs of knowledge users

and producers so that appropriate methods can be applied [Busby 1999, Markus

2001, Finger 1998]. Existing methods to reuse design knowledge are generally not

compatible with the whole product design process: some are suitable in conceptual

design; most are focused on detail design. Further research is needed to explore

the potential of an integrated product development knowledge approach. This

should include non-geometric knowledge such as problem solving methods,

solution generation strategies, design intent and project knowledge. These

knowledge types are associated with the variety of tasks in today’s design process.

3.3.2 Product Development Knowledge Management Issues

In looking at managing product life-cycle knowledge, research topics have

focused on integrating product and process information temporally and spatially.

The product information for the whole life cycle needs to be stored, retrieved, and

integrated enterprise-wide. The accessibility, security, and integrity of information

are the major concerns. By merging the processes of the design documentation

25

and the design data management via linking CAD drawings with external, network-

accessible relational databases, integrated geometric information and related

documentation can be shared enterprise-wide [Dong 1998, Gable 2005, Huang

1999, Kan 2001]. This research utilizes the existing network protocols to achieve

enterprise-wide communication. Other research focuses on agent-based

communication methodology over networks. Those researchers [Kumar 1994,

Sriram 1993, Huang 2000] considered the following issues vis-à-via the

collaborative design system: multimedia engineering documentation, messages

and annotations organization, negotiation/constraint management, design,

visualization, interfaces, and web communication and navigation among agents.

Knowledge loss because of retirement, downsizing, and turnover is not only

one of the costliest problems, but it also one of the most widely ignored problems

facing organizations today. The Accenture Institute for Strategic Change [DeLong

2003] found that organizational innovation is often compromised due to knowledge

loss. The special importance of an organizational memory has been stressed by

many management thinkers recently. Memory is described "as a system of

knowledge and capabilities that preserves and stores perceptions, actions and

experiences over time and secures the possibility of recall for the future" [Romhardt

1997].

However, preservation of knowledge is a daunting challenge. Different

strategies for knowledge preservation have been considered [Bott 2007]. As

information is stored increasingly in electronic formats, there is a need to

26

reexamine the principles of preservation under which we have traditionally been

trained and under which we are still often guided in decision making. These need

to be reevaluated and compared so that "points of convergence or divergence can

be evaluated." [Cloonan 1993]. In addition, the need to optimize organization

processes rather than individual benefits poses challenges [Rangan 2005]. The

importance of a lifecycle-wide knowledge sourcing strategy in support of the

Enterprise System (ES) investment is articulated [Gable 2005]. Considerable

research has been done in knowledge engineering (KE) and using new

technologies [Matsumoto 2005, Barnard 2003, O'Hara 2002]. Knowledge

Management (KM) specialists have sometimes failed to recognize the synergy that

KE methodologies and tools hold to enhance the state of the art in practical

domains [Liebowitz 2001].

According to an article published in Boeing Frontiers [Arkell 2007], 80 percent

of a company's knowledge resides only within the minds of its employees. There is

a threat of lost knowledge from an aging workforce [DeLong 2004]. A few tools

currently being used at Boeing and other companies include tools such as an

initiatives database to allow employees to search best practices, communities of

practice for employees to share success stories, internal wiki services, video-taped

training sessions, and recruiting retired scientists as expert consultants [Ledbetter

Ledbetter 2007, Blanton 2007, Shneiderman 2007]. There is a need for research in

expanding these and integration with engineering workflow to allow continuing

capture, retention, and utilization of this knowledge.

27

Recently, a paradigm called mass collaboration is emerging for harnessing

the knowledge and creativity. It is based on the collaboration and competition of

large groups of people in innovative ways [Tapscott 2006]. an example o f the

success of mass collaboration is the free encyclopedia, Wikipedia.com. Currently,

about 10 million volunteers collaborate to create an encyclopedia which consists of

about 9.5 million articles in 256 languages. Its accuracy is comparable to that of

Encyclopedia Britannica [Giles 2005]. Further, the large communities on sites such

as Facebook for general networking (58 million users), Flicker for photo sharing (4

million users), LinkedIn for business networking (17 million users), and soundpedia

(3.5 million users) for music sharing show that individuals are increasingly

participating in collaborations over the Internet at massive scales. Recently, there

have been a few efforts on applying the concepts of open-source development to

physical product development [OpenMoko 2008, Open 2008, Baker 2006].

3.4 Procedural Knowledge and Causal Knowledge

3.4.1 Procedural Knowledge

Declarative knowledge (DK) and procedural knowledge (PK) are not terms

that directly describe aspects or systems of the mind. Instead, they have meaning

within a particular theoretical model of cognitive structure and function. Existing

theories span a wide range of possibilities. Some theories make this distinction in

simple and direct form, whereas others entirely lack the distinction. The nature of

information is that an individual acquires, processes, stores in memory, and uses in

judgment. PK represents the processes that act on DK; the sequences of

28

interrelated operations that transform, store, retrieve, or make decision based on

DK. Ryle introduced into philosophy the distinction between knowing how and

knowing that [Ryle 1949]. Similarly, Polanyi distinguished between tacit and explicit

knowledge and argued that science depends heavily on tacit knowledge that

cannot be made explicit [Polanyi 1958, Polanyi 1967]. In the late 1960s,

researchers in the field of artificial intelligence introduced a distinction between

declarative and procedural representations of knowledge, where the latter

consisted of programmed functions for answering particular questions [Barr 1983].

The distinction between DK and PK was carried over into psychology by

researchers such as Anderson (1997), although his procedures consist of

specifiable rules [Alederson 1997]. In contrast, Ryle, Polanyi, and the “Artificial

Intelligence three proceduralists” would reject the claim that PK can be captured by

explicit rules. A related distinction was proposed by psychologists in the 1980s:

implicit vs. explicit memory [Schacter 1996]. In contrast, Mandler (2004)

decomposed generalized task knowledge into declarative and procedural

components [Mandler 2004]. The declarative structure captures abstract

knowledge about the task (e.g., to pick up an object, we must first find the object,

reach to it, and then grasp it). The procedural structure captures knowledge about

how to instantiate the abstract policy in a particular setting (e.g., we must use our

left hand to pick up the object and use an enveloping grasp). With such

decomposition, it is possible to represent task knowledge in a general, robust, and

fault-tolerant way. The declarative structure of a task defines an abstract schema

29

that can guide an agent’s behavior in the world, while the procedural substrate

decorates this abstract schema with resources based on environmental context.

Because different classes of psychological models suggest different conceptions of

PK, there are four basic classes of models: flowcharts, stored-program models,

proceduralization models, and parallel distributed processing models. To perform

complex, real-world tasks, agents must constantly react to changes in highly

complex, dynamic environments by selecting appropriate goals and performing

actions to achieve and maintain those goals. Frequently, PK is represented by a

collection of operators composed of preconditions and effects [Fikes 1971].

Aforementioned studies conclude that PK is essentially a set of learned behavioral

routines. These learned activity sequences, or cognitive scripts, are distinctive in

terms of activity or event content, activity ordering or sequence, or both.

One advantage of PK is that it can involve more senses, such as hands-on

experience, practice at solving problems, understanding of the limitations of a

specific solution, etc. Thus PK can frequently eclipse theory. However, one

limitation of PK is its job-dependence and so it tends to be less general than DK.

For example, a product designer might have knowledge about a joining system

(e.g., welding, riveting, adhesive bonding, fastening, etc.) for assembly design,

whereas a welding designer might only know about a specific welding process for

assembly. Thus the hands-on expertise and experience of the welding assembly

designer might be of commercial value only to welding job-shops.

30

3.4.2 Causal Knowledge

It is always essential but difficult to capture incomplete, partial or uncertain

product development knowledge during the product development processes to

achieve interoperability among heterogeneous product development processes.

This chapter presents one method to capture these product development

knowledge based on cause and effect representation.

3.4.2.1 Causality

Causality has taken many journeys in the minds of men for over human

history. One of the world-view is determinism, which is no more than a chain of

events following one after another according to the law of cause and effect.

Interpreting causation as a deterministic relation means that if A causes B, then A

must always be followed by B. Informally, A probabilistically causes B if A's

occurrence increases the probability of B. Though philosophers have pointed out

the difficulties in establishing theories of the validity of causal relations, there is yet

the plausible example of causation afforded daily which is our own ability to be the

cause of events. When experiments are infeasible, the derivation of cause effect

relationship from observational studies must rest on some qualitative theoretical

assumptions, for example, the symptoms do not cause diseases with expression in

the form of missing arrows in causal graphs such as Bayesian Belief Networks.

The theory of "Causal Calculus" [Pearl 2000] permits one to infer interventional

probabilities from conditional probabilities in causal Bayesian Belief Networks with

unmeasured variables. One very practical result of this theory is the

31

characterization of confounding variables, which are a sufficient set of variables

that would yield the correct causal effect between variables of interest.

While derivations in causal calculus rely on the structure of the causal graph,

parts of the causal structure can be learned from statistical data under certain

assumptions. The basic idea goes back to a recovery algorithm developed by

Rebane and Pearl [Rebane 1987] and rests on the distinction between the three

possible types of causal substructures allowed in a directed acyclic graph (DAG): X

 Y Z (type 1), X Y Z (type 2), X Y Z (type3). Type 1 and type 2

represent the same statistical dependencies (i.e., X and Z are independent given Y)

and are indistinguishable. However, type 3 can be uniquely identified, since X and

Z are marginally independent and all other pairs are dependent. Thus, while the

skeletons (the graphs stripped of arrows) of these three triplets are identical, the

directionality of the arrows is partially identifiable. Algorithms have been developed

to systematically determine the skeleton of the underlying graph and, then, orient

all arrows whose directionality is dictated by the conditional independencies

observed [Pearl 2000, Spirtes 1991, Spirtes 1993, Verma 1990].

3.4.2.2 Bayesian Belief Network

For over two decade, Artificial Intelligence (AI) researchers have used

Bayesian Belief Networks (BBN) to encode expert knowledge and AI researchers

and statisticians developed methods for learning Bayesian Belief Networks. BBN is

an annotated directed graph that encodes probabilistic relationships among

distinctions of interest in an uncertain reasoning problem [Howard 1981, Pearl

32

1998]. The representation formally encodes the joint probability distribution for its

domain. BBN uses a graphical structure to represent causal relationships and

probability calculus to quantify these relationships and update beliefs given new

information. Pearl, in 1986 [Pearl 1986] and later in 1988 [Pearl 1988], introduced

the concept of conditional independence for a more tractable and efficient evidence

propagation mechanism. Since then, BBN has become a practical tool for

reasoning under uncertainty. BBN has had considerable number of real-world

applications, such as MIT’s Heart Disease Program for differential therapy of

cardiovascular disorders [Long 1989], Microsoft’s Lumiere Project for inferring the

goals and needs of software users [Horvitz 1998], Hewlett Packard’s SACSO

project for automatic customer support operations [Skaanning 2000], and change

impact analysis in architecture design [Tang 2007].

Despite the efficient evidence propagation mechanism and powerful

reasoning capability, knowledge elicitation from domain experts has never been

easy in BBN, for two main reasons [Das 2004]. First, the number of probability

values required to populate a Conditional Probability Table (CPT) grows

exponentially with the number of parent nodes associated with the table. Second,

the elicitation of conditional probability distributions from a domain expert is a very

complex task and it requires a systematic approach to handle. Even though there

are many applications of BBN in various decision support systems, to the best of

our knowledge, there is no existing research ever applied BBN to product design

decision support. So far the closest to our work is the application of BBN in change

33

impact analysis in the domain of architecture design [Tang 2007].

This chapter presents the BBN [Pearl 2000]. Figure 3-1 illustrates a simple

typical BBN. It describes the causal relationships among the season of the year

(X1), whether it’s raining (X2), whether the sprinkler is on (X3), whether the

pavement is wet (X4), and whether the pavement is slippery (X5). Here, the

absence of a direct link between X1 and X5, for example, captures our

understanding that there is on direct influence of season on slipperiness – the

influence is mediated by the wetness of the pavement. (If freezing is a possibility,

then a direct link could be added.)

Perhaps the most important aspect of a BBN is that they are direct

representations of the world, not of reasoning processes. The arrows in the

diagram represent real causal connections and not the flow of information during

reasoning (as in rule-based systems and neural networks). Reasoning processes

can operate on BBN by propagating information in any direction. For example, if

the sprinkler is on, then the pavement is probably wet (prediction); if someone slips

on the pavement, that also provides evidence that it is wet (abduction). On the

other hand, if we see that the pavement is wet, that makes it more likely that the

sprinkler is on or that it is raining (abduction); but if we then observe that the

sprinkler is on, that reduces the likelihood that it is raining (explaining away). It is

this last form of reasoning, explaining away, that is especially difficult to model in

rule-based systems and neural networks in any natural way.

34

Figure 3-1 A Bayesian Belief Network representing Causal influence among five

variables

Probabilistic semantics: any complete probabilistic model of a domain must,

either explicitly or implicitly, represent the joint distribution - the probability of every

possible event as defined by the values of all the variables. There are exponentially

many such events, yet BBN achieve compactness by factoring the joint distribution

into local, conditional distributions for each variable given its parents. If xi denotes

some value of the variable Xi and pai denotes some set of values for Xi’s parents,

then P(xi|pai) denotes this conditional distribution. For example, P(x4|x2,x3) is the

probability of wetness given the values of sprinkler and rain. The global semantics

of BBN specifies that the full joint distribution is given by the product

i

iin paxPxxP)|(),...,(1 (1)

X1
X1

X2
X2X3

X3

X5
X5

X4
X4

Season

Wet

Slippery

Sprinkler Rain

35

In this example network, we have

P(x1,x2,x3,x4,x5)=P(x1)P(x2|x1)P(x3|x1)P(x4|x2,x3)P(x5|x4) (2)

Provided the number of patents of each node is bounded, it is easy to see that the

number of parameters required grows only linearly with the size of the network,

whereas the joint distribution itself grows exponentially. Further savings can be

achieved using compact parametric representations – such as noisy-OR models,

decision trees, or neural networks – for the conditional distributions.

There is also an entirely equivalent local semantics, which asserts that each

variable is independent of its non-descendants in the network given its parents for

example, the parents of X4 in Figure 3-1 are X2 and X3 and they render X4

independent of the remaining non-descendant, X1. that is,

P(x4|x1,x2,x3) = P(x4|x2,x3) (3)

The collection of independence assertions formed in this way suffices to

derive the global assertion in Equation 1, and vice versa. The local semantics is

most useful in constructing BBN, because selecting as parents the direct cause of

a given variable automatically satisfies the local conditional independence

conditions. The global semantics leads directly to a variety of algorithms for

reasoning.

Evidential reasoning: From the product specification in Equation 1, one can

express the probability of any desired proposition in terms of the conditional

probabilities specified in the network, for example, the probability that the sprinkler

is on, given that the pavement is slippery, is

36

4321

421

4321

421

,,, 4532413121

,, 4532413121

,,, 54321

,, 54321

5

53
53

)|(),|()|()|()(

)|(),|()|()|()(

),,,,(

),,,,(

)(

),(
)|(

xxxx

xxx

xxxx

xxx

xtrueXPxxxPxxPxxPxP

xtrueXPonXxxPxonXPxxPxP

trueXxxxxP

trueXxonXxxP

trueXP

trueXonXP
trueXonXP

 (4)

These expressions can often be simplified in ways that reflect the structure of the

network itself.

Learning in BBN: The conditional probabilities P(xi|pai) can be updated

continuously from observational data using gradient-based method that uses just

local information derived from inference [Lauritzen 1995] – in much the same way

as weights are adjusted in neural networks. It is also possible to learn the structure

of the network, using methods that trade off network complexity against degree of

fit to the data [Friedman 1998]

Uncertainty over time: Entities that live in a changing environment must keep

track of variables whose values change over time. Dynamic BBN [Dean 1989]

capture this process by representing multiple copies of the state variables, on for

each time step. A set of variables Xt denotes the world state at time t and a set of

sensor variables Et denotes the observations available at time t. the sensor model

P(Et|Xt) is encoded in the conditional probability distributions for the observable

variables, given the state variables. The transition model P(Xt+1|Xt) relates the state

at time t to the state at time t+1. Keeping track of the world means computing the

current probability distribution over world states given all past observations, i.e.,

37

P(Xt|E1,…,Et). Dynamic BBN are strictly more expressive than other temporal

probability models such as hidden Markov models and Kalman filters.

Causal networks: Most probabilistic models, including general BBN, describe a

distribution over possible observed events – as in Equation 1 – but say nothing

about what will happen if a certain intervention occurs. For example, what if I turn

the sprinkler on? What effect does that have on the season, or on the connection

between wetness and slipperiness? A causal network, intuitively speaking, is a

BBN with the added property that the parents of each node are its direct causes –

as in Figure 1. in such a network, the result of an intervention is obvious: the

sprinkler node is set to X3=on and the causal ink between the season X1 and the

sprinkler X3 is removed. All other causal links and conditional probabilities remain

intact, so the new model is

P(x1,x2,x4,x5) = P(x1)P(x2|x1)P(x4|x2,X3=on)P(x5|x4) (5)

Causal networks are more properly defined, then, as BBN in which the correct

probability model after intervening to fix any mode’s value is given simply by

deleting links from the node’s parents. For example, Fire smoke is a causal

network whereas Smoke Fire is not, even though both networks are equally

capable of representing any joint distribution on the two variables. Causal networks

model the environment as a collection of stable component mechanisms. These

mechanisms may be reconfigured locally by interventions, with correspondingly

local changes in the model. This, in turn, allow causal networks to be used very

naturally for prediction by an agent that is considering various courses of action.

38

Causal discovery: One of the most exciting prospects in recent years has been

the possibility of using BBN to discover causal structures in raw statistical data

[Spirtes 1993, Pearl 2000] – a task previously considered impossible without

controlled experiments. Consider, for example, the following intransitive pattern of

dependencies among three events: A and B are dependent, B and C are

dependent, Yet A and C are independent. If you ask a person to supply an example

of three such events, the example would invariably portray A and C as two

independent causes and B as their common effect, namely, A B C. (For

instance, A and C could be the outcomes of two fair coins, and B represents a bell

that ring s whenever either coin comes up heads.) Fitting this dependence pattern

with a scenario in which B is the cause and A and C are the effects is

mathematically feasible but very unnatural, because it must entail fine turning of

the probabilities undergo a slight change.

Such thought experiments tell us that certain patterns of dependency, which

are totally void of temporal information, are conceptually characteristic of certain

causal directionalities and not others. When put together systematically, such

patterns can be used to infer causal structures form raw data and to guarantee that

any alternative structure compatible with the data must be less stable than the

one(s) inferred; namely, slight fluctuations in parameters will render that structure

incompatible with the data

Bayesian Belief Networks for Supervised Learning and Unsupervised

Learning: The local distribution functions are essentially classification models.

39

Therefore, if we are doing supervised learning where the explanatory (input)

variables cause the outcome (target) variable and data is complete, then the

Bayesian-network and classification approaches are identical. When data is

complete but input/target variables do not have a simple cause/effect relationship,

tradeoffs emerge between the BBN approach and other methods.

The search algorithms of Spirtes et al. (1993) provide one method for

identifying possible hidden variables in such situations. Martin and VanLehn (1995)

suggest another method. Their approach is based on the observation that if a set

of variables are mutually dependent, then a simple explanation is that these

variables have a single hidden common cause rendering them mutually

independent. Thus, to identify possible hidden variables, we first apply some

learning technique to select a model containing no hidden variables. Then, we look

for sets of mutually dependent variables in this learned model. For each such set of

variables (and combinations thereof), we create a new model containing a hidden

variable that renders that set of variables conditionally independent. We then score

the new models, possibly finding one better than the original.

3.5 Ontology and Semantic Web

The original version of Tim Berners-Lee’s WWW included meta-data above

and beyond the current web, that is, additional information that was machine-

interpretable [W3C-WWW 1992]. The Semantic Web provides a common

framework that allows data to be shared and reused across application, enterprise,

and community boundaries. In other words, the Semantic Web is the Web with

40

inference capabilities. The point of the Semantic Web is not just to make

applications smarter, but also to make data smarter [Daconta 2003]. Data does

not/should not reside in application specific databases. Data can become smarter

through the use of higher semantics from technologies such as concept maps or

ontologies. Ontologies are explicit formal specifications of the terms in the domain

and relations among them [Gruber 1993]; a formal, explicit specification of a

shared conceptualization. “Conceptualization” refers to an abstract model of some

phenomenon in the world which identifies the relevant concepts of that

phenomenon. “Formal” refers to the fact that the ontology should be machine-

readable [Fensel 2001]. Ontological engineering is the successor of knowledge

engineering and is viewed as a challenge to enabling knowledge sharing and reuse,

which knowledge engineering failed to realize. Mizoguchi [Mizoguchi 2003]

presented the roles of an ontology as common vocabulary, data structure,

explication of what is left implicit, semantic interoperability, explication of design

rationale, systemization of knowledge, meta-model function, and theory of content.

Ontologies have been developed for a variety of domains, most of them being

broad. The broadest of ontologies, are the upper-level ontologies that describe

common sense-level knowledge. CYC, developed by Cycorp, is a commercial

ontology containing over 200,000 terms and assertions. Its goal is to define high-

level, common sense-type of concepts in a machine-interpretable manner.

Potential applications for CYC include, online brokering of goods and services,

enhanced virtual reality, improved machine translation, improved speech

41

recognition, data mining, true language processing, etc [Cycorp 2004]. However,

since CYC is still a high-level ontology, it has not had a strong impact in the

mechanical design domain. Nonetheless, in 1999, the National Institute of

Standards and Technology (NIST) chose CYC as an ontology for further

investigation in the manufacturing domain [Schlenoff 1999]. The results from this

investigation lead to the development of Process Specification Language (PSL),

which is a language that is generic enough to represent discrete manufacturing

and construction process data [Gruninger 2003].

Narrower in scope than upper-level ontologies, enterprise-level ontologies

attempt to formalize the practices and processes that occur within an organization.

The level of concepts is enterprise specific and is meant to promote knowledge

reuse with regard to business decisions and transactions. Enterprise Ontology

[Uschold 1998] developed by the Artificial Intelligence Applications Institute (AIAI)

at the University of Edinburgh, is an ontology intending to define the overall

activities of an organization. While this ontology takes into account the business

aspects of an organization, it does not in detail define engineering activities. Similar

to the overall goal of Enterprise Ontology, TOVE [Fox 1992, 1998] is an ontology

for enterprise knowledge. It is a composite of several smaller ontologies including

ontologies defining activity, resource, organization, product requirements, quality,

and costing. The results of TOVE particularly in the domain products and

requirements, are closer to the knowledge-intensive tasks of engineering design

than Enterprise Ontology, yet they still do not capture all detailed forms of

42

mechanical design knowledge. In the engineering domain, Lin et al. [Lin 1996]

developed a Knowledge Aided Design (KAD) system to capture knowledge from

engineering tasks, particularly those tasks related to engineering requirements.

The ontology for their KAD system included many requirements including

component structure, features, parameters, constraints, requirements, etc. Issues

that they address for the motivation for their work include communication,

traceability, completeness, consistency, document creation, and managing change.

They used an object-oriented approach to implement their work. Some ontological

research has been applied at both the conceptual and detailed design levels.

Kitamura et al. [Kitamura 2002, 2003, 2004a, 2004b] successfully developed an

ontology to represent functional design and deployed the ontology into industry.

While their work captures the flow of something (e.g. the flow of fluids or parts in

manufacturing), it has limitations on capturing complex mechanical phenomena.

Horváth et al. [Horváth 1998] attempted to create an ontology for design features

using ontology theory. They classify design concepts in terms of entities,

phenomena, and situations.

To semantically capture design and functional knowledge, manufacturing

industries have to concern the knowledge integration issue, which is that significant

researchers (Lin et al. 1996; Horváth et al. 1998; Kitamura et al. 2004; Grosse et al.

2005) have attempted. While they are globalized and highly competitive, they are

still struggling with the knowledge integration issue. In additionally, the product

development knowledge and rationale behind the product are infrequently captured

43

or retained in the industries because this knowledge is cumulative, creative,

iterative, and evolutionary, specially, during product development processes.

Ontology can handle the integration, sharing, and reuse issues of the cumulative

and evolutionary product development knowledge if the roles of an ontology in

product development, which are common vocabulary, data structure, explication of

what is left implicit, semantic interoperability, explication of design rationale,

systemization of knowledge, meta-model function, and theory of content, is

realized.

3.6 Analysis in Product Development

The improvement of the complexity of a product in a hard concurrent

marketing context encourages the managers to give more importance to the

maintenance functions. The industrial monitoring, which is one of the most

significant of them, is divided into two tasks: the fault detection, and the fault

diagnosis [Wan 1999]. More the product is complex, more the monitoring is difficult.

The heterogeneity of maintenance and product information is taken into account for

the creation of the monitoring system. This information can be provided by various

techniques, such as Failure Modes and Effects Analysis (FMEA Gilchrist 1993],

Fault Tree (FT)[Vesely 1981], Functional Analysis (FA)[Hansen 2006], Production

and Operations Management (POM)[Thierry 1993], Computerized Maintenance

Management System (CMMS)[Niebel 1994], and Supervisory Control and Data

Acquisition (SCADA)[Neville 1986], to name a few. Most of these techniques work

appropriately in the product development problems, but these have many

44

limitations. For example, in FMEA, the most well adapted technique, a risk is

measured in terms of Risk Priority Number (RPN) that is a product of occurrence,

severity, and detection difficulty. Furthermore, measuring severity and detection

difficulty is very subjective and with no universal scale. RPN is also a product of

ordinal variables, which is not often meaningful as a proper measure. Generally,

the enlisted techniques above inhibit the understanding of the true cause of failures

and fault chains [Lee, 2000].

It seems currently available tools and techniques are not entirely suitable and

effective enough to handle the challenges/pressures faced by product development

processes. An interesting example demonstrating the inability of current methods

to deal with product complexity is the amount of knowledge generated through

failure analysis. The internal study of one of the US automakers reports that 35-40%

of field failure issues are related to system interactions. Most of the manufacturing

organizations use traditional FMEA technique for failure analysis in product

development processes. However, the traditional FMEA is very tedious,

painstakingly time consuming, and prone to errors of inconsistency and

incompleteness, and hence unable to support development time reduction strategy

beyond a limit. There are well established failure analysis (physics-of-failure)

models for individual components, but when they are assembled together in a

complex system, the failure behavior is often totally different. The FMEA fails to

capture potential system interactions effects of complex products, dynamic

behavior of the system, and its effects on system failure mechanisms. Moreover,

45

the product complexity leads to an emergence of unpredictable failure patterns and

the FMEA is unable to anticipate these unpredictable failure patterns. Therefore,

modeling of failure dependency and failure interactions among the

components/modules of a system presents yet another interesting research

opportunity. Specifically, there is need for a framework, which aims to understand

and capture failure dependence/interactions and to develop better understanding

of the product behavior from the perspective of the end-user, and to establish fast

and efficient information/knowledge database for the failure and behavior.

The early identification of the few faulty components is an important research

endeavor in that it allows an organization to take mitigating actions by optimally

allocating testing resources or by redesigning components [Harrison 1988]. The

early identification of faulty components is commonly achieved through a binary

quality model that classifies components into either a faulty or not-faulty category

[Briand 1993, Lanubile 1997]. Early detection and isolation of faults as other

research motivations are critical factors for avoiding product deterioration, loss of

production, poor plant economy, performance degradation, major damage to

machinery, environmental pollution and damage to human health or even loss of

life. These motivations generate a great attention in fault detection and isolation in

dynamic processes. A wide variety of “model-based” approaches have been

proposed to tackle this problem [Patton 1989]. The conceptual realization of these

models can vary according to the following approaches: the parity space and state

estimation, the fault detection filter, and non-linear techniques for parameter

46

identification. In each case, appropriate mathematical models are required, either

in state space or in input-output form to guarantee that faults can be detected and

isolated. Existing studies have shown that, only if certain modeling and design

conditions are satisfied, model-based methods can be useful for the detection and

isolation of multiple faults [Simani 2006].

47

CHAPTER 4

PRELIMINARY STUDY

The aim of this chapter is a prelimanary study for causal product knowledge

management. The preliminary study is for systematic knowledge elicitation and

FCM-BBN constructor, which is co-work with chonnam national university in South

Korea [Kim 2008].

4.1 Systematic Knowledge Elicitation and FCM-BBN Constructor

Managing design knowledge is an important concern for industry, including

engineering. Engineering firms are facing pressures to increase the quality of their

products, to have even shorter lead times and reduced costs. There is also a trend

towards globalization resulting in complex supply chains and the need to manage

teams that are not necessarily co-located. Design knowledge needs to be

exchanged and accessed efficiently. Other motivations for managing design

knowledge are to provide a trail for product liability legislation and to retain design

knowledge and experience as engineering designers retire. Fuzzy Cognitive Map

(FCM) is one of the main formalisms for modeling, representing and reasoning

about causal knowledge. Despite the fact that FCM has been used extensively in

causal knowledge engineering, there is a lack of methodology for the systematic

construction of FCM. Although some techniques were used in the individual

construction processes, these techniques were either not systematically

documented or too specific to the problem at hand. FCM and Bayesian Belief

Network (BBN) are two major frameworks for modeling, representing and

48

reasoning about causal design knowledge. Despite their extensive use in causal

design knowledge engineering, there is no reported work which compares their

respective roles. This research deals with three topics, which are systematic

constructing FCM, a methodology for FCM-BBN conversion, and comparison FCM

and BBN. BBN has a sound mathematical foundation and reasoning capabilities,

also it has an efficient evidence propagation mechanism and a proven track record

in industry-scale applications. However, BBN is less friendly and flexible, and often

very time-consuming to generate appropriate conditional probabilities. Thus, FCM

is used for the indirect knowledge acquisition, and the causal knowledge in FCM is

systematically converted to BBN. Finally, we compare BBNs directly generated by

domain experts and generated from FCM, with a realistic industrial example, a fuel

nozzle for an aerospace engine.

4.1.1 Comparison of FCM and BBN

The roles of FCM and BBN in the knowledge engineering of causal reasoning

systems have been compared. The knowledge engineering process includes

knowledge acquisition, knowledge representation and causal reasoning. The

comparison is done based on some inherent features of the frameworks which are

independent of any specific applications. These features, such as usability,

expressiveness, reasoning adequacy, formality and soundness, constitute the

comparison criteria. The criteria are discrete because a framework is either having

or not having a particular feature. Hence, the comparison is done in an objective

and qualitative manner. Besides, a literature survey to compare the roles of the

49

frameworks in the knowledge engineering of some real applications (both

research-based and industry-scaled) has been conducted with some conclusions

related to the practicality of the frameworks.

The comparison results are summarized in Table 4-1. Overall, except for the

modeling of dynamic system, BBN is, in general, more expressive and formal in

representation as well as more powerful and sound in reasoning. The

expressiveness in representation is attributed to the ability in handling uncertainty.

The powerfulness in reasoning is attributed to the ability in performing backward

diagnostic reasoning. The formality in semantics and soundness in inference is

attributed to its solid foundation on probability theory. In addition, BBN is more

superior because it has an efficient evidence propagation mechanism based on

conditional independence and a proven track record in industry-scale applications.

Unfortunately, BBN suffers from its complexity when used as a front-end modeling

tool for capturing causal knowledge from the domain expert. Elicitation of causal

knowledge from the domain expert, through the specification of CPTs is both

unnatural and tedious. As a complement to it, FCM is an excellent front-end

modeling tool. The visual graphical interface of FCM is both friendly and intuitive. It

allows the domain expert to work at a higher level of abstraction as it hides the

lower level details and focuses on the essentials.

50

Table 4-1 A Summary of Comparison Results

From the comparison results, FCM has shown to be simpler, more intuitive,

more high-level, and more user-friendly. These features make it very appropriate to

be used at the front-end of knowledge engineering for the acquisition of causal

knowledge from human experts. BBN, on the other hand, has shown to be more

expressive, powerful, formal and sound. These features make it very appropriate to

be used at the back-end of knowledge engineering for the representation and

General Criterion Specific Distinguishing Question BBN FCM Remark

Usability in What to construct essentially? CPTs Signed directed graph

Modeling What type of construction interface? Tabular Visual graphical FCM is more user-friendly

How to represent a causal relationship? Probabilistic dependencies A causal link between FCM is more direct in

between variable states the variables representation

How to represent a causal strength? Multiple conditional Single value attached FCM is simpler in

probability values in the CPT to the causal link representation

How obvious is the causal structure? Implicitly represented in Explicitly represented FCM is more intuitive

the CPTs on the graph

What is the level of specification? Variable states Variables FCM is more high-level

How many values are required to specify The product of the number The number of cause FCM is easier to handle

a combination of causal effects? of possible states of the variables or causal

individual cause and effect links

variables

Expressiveness in Does it allow unequal likelihood of Yes (user can decide and No (user has no control BBN is more expressive

Representation increase and decrease before any evidence? specify prior probabilities) over initial likelihood)

Does it allow unrepresented causes? Yes (effect of unrepresented No (assume all possible BBN is more expressive

causes is reflected in unequal causes are represented)

prior probabilities)

Does it allow ignorance of individual Yes (it is only required to No (it is required to BBN is more expressive

causal effects of a combination? specify combination effect) specify individual effects)

Does it allow ignorance of how individual Yes (user estimates total No (combination is only BBN is more expressive

causal effects are combined? effect if formula is unknown) based on algebraic sum)

Does it allow feedback and causal loops? No Yes FCM is more expressive

Does it allow temporal representation? No (it only supports Yes (it supports modeling FCM is more expressive

static system) of dynamic system)

Adequacy in Does it support backward chainning? Yes No (it only supports BBN is more powerful

Reasoning forward chainning)

Does it support diagnostic reasoning? Yes No (it only supports BBN is more powerful

predictive reasoning)

Does it have an efficient evidence Yes (based on Pearl's No BBN is more practical

propagation mechanism? conditional independence)

Are there many commercially available Yes (Netica, Hugin, etc.) No BBN is more practical

powerful and efficient reasoning engines?

Are there many industry-scale Yes (by Microsoft, Hewlett No (restricted to research BBN is more practical

applications? Packard, etc.) based applications)

Formality in Is it founded on sound mathematical Yes (founded on probability No BBN has formal semantics

Semantics & theorems derivable from well-defined theory)

Soundness in basic axioms?

Inference Is the correctness of the inference Yes No (Inference mechanism BBN has sound inference

mechanism provable? is rather ad hoc)

51

automated reasoning by machine. The idea of integration is made possible by

transforming FCM into BBN.

4.1.2 Systematic Construction of FCM

There are two basic components of a causal model constructed based on the

knowledge elicited from a domain expert: domain variables which constitute factors

to the problem at hand, and causal structure which describes the relationships

between these variables. The elicitation of the domain variables and the causal

structure are separately discussed in the following subsections.

4.1.2.1 Eliciting Variables Relevant to the Problem

The process is carried out through unstructured questions. These are

exploratory and open ended questions, in which an expert is asked to list out all the

domain variables relevant to the decision making. The elicitation process is carried

out systematically as follow. First, the knowledge engineer is required to determine

the first/main goal variable as the starting point for the elicitation process. Then, the

domain expert is requested to enumerate factors contributing (either positively or

negatively) to the first goal variable and these factors constitute the first-level

variables. For each first-level variable, the expert is then requested to enumerate

factors contributing to it and these are second-level variables. The probing process

continues until the expert cannot think of any additional factors; or the expert feels

that the additional factors are not significant to the problem at hand. The elicitation

process is automatable and the role of a knowledge engineer can be significantly

reduced or completely eliminated. The process can be implemented using queue

52

data structure.

At this stage, the domain expert will be notified for duplicate entry of the same

variable. Hence, the interview process assimilates a breadth-first tree construction.

The aim at this stage is to gather a complete set of relevant variables that make-up

the problem domain, not their relationships. After having a complete set, V, of N

domain variables, an N×N adjacency matrix, M, can be constructed for the

representation of an expert’s causal knowledge about the problem domain. The

matrix can be represented as an N×N two dimensional array with Mij be an entry at

the intersection of i th row and j th column, where i,j = {1,2,3,…,N}. Each entry of

the matrix is initialized with 0, that is Mij=0, representing no causal relationship has

been assigned. An auxiliary 1-d array, A, is created to accompany the matrix M. It

maps the indices of the matrix to their respective domain variables. Let Vi be the i

th element of V, and Aj be the j th element of A, Ai=Vj when i=j, where i,j =

{1,2,3,…,N}.

4.2 Eliciting Causal Structure between Variables

After eliciting the domain variables, the next step is to request the domain

expert to determine their mutual causal relationships. The causal effect can be

positive (causal increase) or negative (causal decrease). The weight determines

relative strength of the causal effect. It is easier for a human expert to specify

discrete linguistic weights than continuous numerical weights. Hence, for each

problem domain, a scheme for linguistic weights is to be determined by the

53

knowledge engineer before it is used for the elicitation of causal structures from the

domain experts. After eliciting all the P positive linguistic variables, a one

dimensional array, L, is created to store them. The array, L, can be considered as a

one-to-one function which maps the positive integer causal values into their

respective linguistic variables. Li denotes the i th element of L, where I =

{1,2,3,…,P}.

The causal structure elicitation process can be carried out through an

interview using structured questions. These are closed questions with limited

options for the answers. In the interview, the domain expert is requested to

determine, for each variable, whether there is a causal link to the other variables. If

a link exists, the domain expert is further requested to determine its sign and

linguistic weight.

The causal structure elicited through structured interview or questionnaires is

represented as a directed graph with feedback. As the causal relationships are

added, the update is immediately reflected in the graph. This allows the human

expert to observe and examine the growth of the causal structure. The cause-effect

relationships elicited are also represented assigned integers into the appropriate

entries of the adjacency matrix. Let Wij be the causal weight, with a sign and a

magnitude, for a link from variable i to variable j, elicited from a domain expert. The

causal relationship can be assigned to the adjacency matrix as follow: Mij=Wij.

54

In the adjacency matrix elicited from a human expert, causal values are

represented using integers drawn from a crisp set specific to the application at

hand, such as {-5,-4,-3,-2,-1,0,1,2,3,4,5}. However, in FCM, it is a common practice

to use real numbers for causal values drawn from a bipolar fuzzy interval, that is [-

1…0…1]. A bipolar notation consists of a negative sub-interval [-1…0), 0, and a

positive sub-interval (0…1]. There are two advantages of using bipolar notation.

First, it is more intuitive because it uses 0 for no causal effect, 1 for full or

maximum causal effect, and real numbers in between 0 and 1 for causal effects

with intermediate strength. Second, it captures more fine grain information and

thus allows fuzzy functions to be used for defining causal strength.

It is often desirable to combine knowledge of multiple experts to obtain a collective

view of a particular problem domain. Kosko, the author of FCM, has developed a

mathematical method for combining the FCMs of multiple experts [Kosko 1988,

1995, 1997]. There are also some other works on knowledge fusion in FCMs [Taber

1987, 1991, 2007]. In our methodology, Kosko’s mathematical formalism is used due to its

simplicity. However, the methodology can be easily adapted for other formalisms by only

changing the formula for computing the combination.

4.2.1 Defining the Augmented Matrix

In general, different FCMs specific to the same domain may consist of an

unequal number of variables. This results in these FCM matrices having different

sizes, hence, a need for an augmentation of the matrices to produce an

augmented matrix which ensures conformity in addition. Suppose that in addition to

55

the FCM for the first expert mentioned above, there is a second expert’s opinion

captured in the form of a directed graph, and the corresponding adjacency matrix

and auxiliary array. The set of domain variables proposed by the second expert is

almost the same as those proposed by the first expert, except there is an additional

variable called Productivity. The first expert proposed 10 variables and the second

proposed 11, and there are 10 overlaps. Hence, the augmented matrix has 11 rows

by 11 columns as there is a total of 11 (=10+11–10) distinct domain variables. The

auxiliary array contains all of these 11 domain variables. The augmented matrix for

the previous 2 matrices is shown in Figure 4-1.

A3[i]

1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 0 0 0 0 0 0 0 0 1 Market Share

2 0 0 0 0 0 0 0 0 0 0 0 2 Competitiveness

3 0 0 0 0 0 0 0 0 0 0 0 3 Market Demand

4 0 0 0 0 0 0 0 0 0 0 0 4 Competitor's Advertisements

5 0 0 0 0 0 0 0 0 0 0 0 5 Sales Price

6 0 0 0 0 0 0 0 0 0 0 0 6 Assembly Quality

7 0 0 0 0 0 0 0 0 0 0 0 7 Quality Control

8 0 0 0 0 0 0 0 0 0 0 0 8 Economic Conditions

9 0 0 0 0 0 0 0 0 0 0 0 9 Assembly Design

10 0 0 0 0 0 0 0 0 0 0 0 10 Assembly Cost

11 0 0 0 0 0 0 0 0 0 0 0 11 Productivity

M3[i, j]

Figure 4-1 Augmented matrix for previous two matrices

56

4.2.2 Constructing the Additive Matrix

The augmented matrix M3 is the super structure of the individual matrices, M1

and M2, and it has zero content. The additive matrix for M1 and M2 is the

augmented matrix M3, after it is added with the causal weights from M1 and M2. It

represents the combination of causal knowledge K3 (=K1+K2). Two related entries

of M1 and M2 for the same cause and effect are averaged, and the result is

recorded in the related entry of M3. It represents the average of the values

proposed by the two experts. For example, if both experts say that a particular

causal effect is 1, the resulting causal effect is also 1=(1+1)/2. If one says that the

causal effect is 1 and the other says that it is –1, the resulting causal effect is 0=(1–

1)/2. If one says that a particular causal effect is 1 and the other says that it is 0, or

without saying anything about it, the resulting causal effect is 0.5=(1+0)/2.

The combination of causal knowledge of multiple experts can be done

incrementally such that matrices are added two at a time. This approach allows the

accumulation of new causal knowledge once it is elicited from a domain expert.

The additive matrix after combining the causal knowledge of two experts is shown

in Figure 4-2.

57

A3[i]

1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 0.3 0 0 0 0 0 0 0 1 Market Share

2 0.7 0 0 0 0 0 0 0 0 0 0 2 Competitiveness

3 0.3 0 0 0 0 0 0 0 0 0 0 3 Market Demand

4 -0.9 0 0.15 0 0 0 0 0 0 0 0 4 Competitor's Advertisements

5 -0.5 -0.1 -0.1 0 0 0 0 0 0.15 0 0 5 Sales Price

6 0 0.7 0 0 0.5 0 -0.45 0 0 0.25 0 6 Assembly Quality

7 0 0.5 0.05 0.25 0 0 0 0 0.45 0 0 7 Quality Control

8 0 0 0.5 0 0 0 0 0 0 0.35 0 8 Economic Conditions

9 0 0.7 0.9 0 0.3 0 -0.15 0 0 0 0 9 Assembly Design

10 0 -0.9 0 0 0.9 0 0 0 0 0 0 10 Assembly Cost

11 0 0 0 0 -0.45 0 0 0 0 -2.5 0 11 Productivity

M3[i, j]

Figure 4-2 Additive matrix after combining causal knowledge of two experts

4.2.3 Converting Bipolar Values into Linguistic Weights

There are three possible ways to output the bipolar causal values of an

additive matrix, depending on the target application at hand. First, a bipolar causal

value can be returned as it is, to a higher level client, for subsequent causal

reasoning or further computation because it is easy for a machine to manipulate

real numerical causal values. Second, it can be returned as a crisp linguistic weight

using an appropriate linguistic variable derived from a predefined set. Third, it can

be returned as a fuzzy linguistic weight using a linguistic variable accompanied by

a membership value. The second and third forms are normally targeted to human

users because they appreciate qualitative weights better than quantitative values.

Fuzzy linguistic weights are used when high precision is needed. Otherwise, crisp

linguistic weights should be used.

58

4.3 Systematic Generation of BBN from FCM

Nadkarni et al. proposed a systematic approach for capturing causal knowledge from

domain experts [Nadkrni 2004]. It includes a method for the elicitation of unstructured

knowledge, with a set of open ended interview questions. It also includes a procedure for

the subsequent derivation of environmental factors and initial causal structure. Figure 4-3

shows an example of an initial Cognitive Map (CM) for the assembly design decision (ADD)

and environmental factors, elicited from the domain experts based on the FCM approach.

This example will be used to explain the FCM and the method for mitigating FCM to BBN.

Figure 4-3 Causal Structure

In this methodology, causal weights or values are elicited from the experts and

represented using an FCM. Conditional probability distributions can be derived directly

from the causal values in the FCM. In general, an FCM with n nodes can be described by

an n×n adjacency matrix, Mij, whose elements, eij, are the causal value (representing

causal strength) of the link directed out of Vi into Vj. Table 4-2 shows an adjacency matrix

59

for the FCM. In the table, the causal value for the link from C2 to E2 is 0.8, which indicates

a strong positive causality from C2 to E2.

Table 4-2 Adjacency Matrix for FCM

Table 4-3 BBN Compatible Adjacency Matrix

4.3.1 Constructing BBN form FCM

The migration involves two stages, qualitative and quantitative. Qualitative

migration involves the transformation of the qualitative structure of FCM.

Quantitative migration involves the transformation of “fuzzified” causal weights or

causal values into the conditional probability distributions in BBN. For each variable

or node in the BBN compatible qualitative causal structure, there will be CPT

60

associated with it.

4.3.1.1 Building BBN Compatible Causal Structure form CM

The initial CM is less structured due to the way knowledge is elicited from the

experts. The initial CM requires modification to make it compatible with BBN by

performing four operations: 1) ensuring conditional independency; 2) removing

indirect relationships; 3) converting abducted links to deductive; and 4) eliminating

circular relations [Taber 1987]. The operations are elaborated below and the result

is shown in Figure 4-4. In BBN, all the dependent nodes are to be linked with an

arrow, so that when there is no link between two nodes, we can conclude that the

nodes are conditionally independent. Only variables with direct causal relationships

are linked with an arrow directly. Hence, the links between variables which are

indirectly related are to be removed. The indirectly related variables are to be

separated as conditionally independent variables. The direct links between the

following pairs of variables were removed: (E3, E2), (E3, E6), (E3, E8), (E4, E1),

(E5, E4), (C1, E2), (C2, C1), (C2, E4), (C3, E4). Each of them is substituted by one

or more indirect links which indicate the propagation of causal effects.

61

Figure 4-4 BBN Compatible Causal Structure

Causal statements involving abducted reasoning are often represented by a

link from effect to cause in CM. These causal links are to be converted as links

from cause to effect (i.e., in the direction of causation). The reverse, effects to

cause, relationships will be inferred by using the probabilistic inference mechanism

of BBN. In Figure 4-3, there is a negative link from productivity to assembly design.

The link is abducted and it is removed. Instead, a negative deductive link from

assembly design to productivity is added in Figure 4-4. The rationale is that a

better (often more complex) assembly design usually requires more time and effort,

hence lower productivity. In CM, circular relations violate the acyclic graphical

structure required in BBN, hence, they are to be removed. In this work, we confine

our model to the current time frame of the decision being modeled, and we remove

62

the link from market share to competitor’s advertisement. There is a loop between

the three variables: quality control, assembly design, and assembly quality. The

negative link from assembly quality to quality control represents the fact that high

quality assembly will require less control and managing in the future; though,

currently, the high quality assembly is the result of the high quality control. Since

the link pertains to the future time frame, it is removed.

4.3.1.2 Constructing CPTs of BBN from Causal Weights of FCM

The above four operations have modified the qualitative structure of the FCM

making it compatible with BBN. The conversion has also changed the adjacency

matrix and the result is shown in Table 4-4. This updated matrix is useful for

constructing CPTs for the BBN. There are three steps involved in the construction

of CPTs from causal weights: 1) summing the causal effects; 2) normalizing the

tables; and 3) assigning probability to the opposite state.

63

Table 4-4 Three-step Construction of CPT for Assembly Cost (C1)

(a) (b)

(c)

Table 4-4(a) shows a result of summing the causal effects from three sources:

E3, E5, and E7. It shows the probability distributions for C1, one for each

configuration of states of its parents. After summing the causal effects, the value

for the ‘+’ state of C1 is greater than 1 (i.e., 1.3), when both E3 and E7 increase but

64

E5 decreases. The value for the ‘–’ state of C1 is also 1.3, when both E3 and E7

decrease but E5 increases. A probability value greater than 1 is not acceptable in

probability theory. Therefore, a normalization process is necessary. Since we only

want the relative strength, it is fine to modify the values, as long as their ratios

remain unchanged. We normalize the probabilistic values by dividing each of them

using the maximum value, which is greater than 1.

In Table 4-4(b), when both E3 and E5 increase, E7 decreases. The three

factors, collectively, produce a causal effect of 0.08, to the ‘–’ state of C1, which is

the state of interest. We have no knowledge about the causal effect to the

counterpart (i.e., the ‘+’ state of C1). However, in BBN, the ‘+’ state has to be

assigned 0.92 (1 – 0.08). This causes a semantic problem because it implies that

the collective effect from the three factors is more likely to cause an increase to C1

(0.92) than a decrease (0.08). This is commonly recognized as a limitation of the

classical probability theory. We propose a simple and practical method which

ensures the assigned probability is always smaller than the probability of the state

of interest, though it does not eliminate the assignment of probability to the

counterpart state.

Without any knowledge, we assume a prior probability of 0.5 for both ‘+’ and

‘–’ states of a variable. The value of 0.5 indicates absolute uncertainty of their

likelihood. Once concrete evidence (complete certainty) is acquired for a particular

state of interest, its probability immediately increases to 1, and the counterpart

state immediately decreases to 0. Hence, the probability range of the state of

65

interest is 0.5. The minimum probability is 0.5 and the maximum probability is 1.

The counterpart state, on the other hand, stays within 0 and 0.5; hence, it is always

less than the state of interest. Suppose we are 50% sure (0.5 initial probability) that

a variable will increase (i.e., in between absolute uncertainty and absolute

certainty). Based on our proposed method, the moderated probability should fall

exactly in between 0.5 and 1, which is 0.75. It can be computed using a simple

proportionality formula, as follow: Moderated Probability = (Initial Probability ×

Probability Range) + Minimum Probability.

4.4 Case study: Fault Diagnosis for Fuel Nozzle

This case study for FCM-BBN conversion is based on a fuel nozzle of an

aerospace jet engine. Two networks are created based on the domain expert for

the fault diagnosis. These networks include ten design aspects and twenty different

maintenance aspects of the fuel nozzle. Figure 4-5 illustrates FCM-BBN (BBN

generated from FCM) and the other network is a traditional BBN (Figure 4-6). The

both networks are showing the design stages, which are ten nodes located in left

side in the networks, and the maintenance stages are others. Also, the Graphical

Network Interface (GeNIe) is used to compare the performance of both networks.

The GeNIe software package, which is developed by the University of Pittsburgh,

can be used to create decision theoretic models intuitively using the graphical click-

and-drop interface.

66

Figure 4-5 Network from FCM-BBN

67

Figure 4-6 Network from BBN

For test these networks, ten scenarios are used. One example scenario is

that temperature in combustion is ‘Yes’ and leakage form seal is ‘Yes’. The

meaning of this particular scenario is that the maintenance department observed

that the temperature in combustion is not normal and the leakage from seal is

occurred in the fuel nozzle. To compare the result of the scenario with both

networks, the testing diagnosis module, which is one of GeNIe modules, and two

criteria are used in this work. One is the number of matching in the top five ranked

68

targets (N), which is shown left and upper side of figures. The other is the number

of matching order (O) of the matching ranked targets (identified in N). In O, a

flipped order is considered as one matching count in a consecutive order. These

two criteria are combined as a comparison measure (R) as a weighted sum as

shown below:

R = C1 x W1 + C2 x W2, C1 = N / 5, and C2 = O / N,

where C1 and C2 are scaled measures for N and O, and W is a weight for

each criteria.

The sum of W1 and W2 equals to 1. The R (Table 5) with this example case

was 0.87, which means that the both networks performed 87% similar each other,

where average N is 3.8 and O is 3.7. It concludes that the method, FCM-BBN,

shows similar performance with the BBN in this fuel nozzle case. In the

experiments, the probabilities of FCM-BBN were greater than ones in BBN. It

seems that this difference is due to the normalization process.

69

Table 4-5 The Test Results with Fuel Nozzle

4.5 Conclusion

This chapter presents three topics. First, a methodology for the systematic

construction of FCM is presented. Our methodology is general and independent of

0.870.980.763.73.8Average

Burning/coking of the nozzle itself

damaged o-ring

Wear of distributor weight body
0.910.844

Projection angle of heat

10

Defective material

Projection angle of heat 0.910.844

Burning of nozzle guide vanes

9

Escape of hot air from combustion chamber

Temperature in combustion 0.810.633

Leakage from seal

8

Defective material

Wear of distributor weight body 0.910.844

Lack of cooling air flow

7

Flow rate

Temperature in combustion 0.810.633

Flow pattern

6

Air/fuel mixture ratio
0.910.844

Damage of seals
5

damage of distributor spring
0.810.633

damaged o-ring
4

Air/fuel mixture ratio
11155

Burning of nozzle guide vanes
3

Burning/coking of the nozzle itself
0.810.633

Overheating/disacolorating
2

Leakage from seal
0.90.8145

Temperature in combustion
1

RC2C1ONScenariosNo.

0.870.980.763.73.8Average

Burning/coking of the nozzle itself

damaged o-ring

Wear of distributor weight body
0.910.844

Projection angle of heat

10

Defective material

Projection angle of heat 0.910.844

Burning of nozzle guide vanes

9

Escape of hot air from combustion chamber

Temperature in combustion 0.810.633

Leakage from seal

8

Defective material

Wear of distributor weight body 0.910.844

Lack of cooling air flow

7

Flow rate

Temperature in combustion 0.810.633

Flow pattern

6

Air/fuel mixture ratio
0.910.844

Damage of seals
5

damage of distributor spring
0.810.633

damaged o-ring
4

Air/fuel mixture ratio
11155

Burning of nozzle guide vanes
3

Burning/coking of the nozzle itself
0.810.633

Overheating/disacolorating
2

Leakage from seal
0.90.8145

Temperature in combustion
1

RC2C1ONScenariosNo.

70

any specific application. It covers the entire process of constructing FCM. The

methodology is systematically and formally described to avoid potential

ambiguities. Second, this research have compared the roles of FCM and BBN in

the knowledge engineering of causal reasoning systems. The comparison is done

based on some inherent features of the frameworks which are independent of any

specific applications. Third, a methodology of FCM-BBN conversion is presented.

BBNs are used for the representation and reasoning of the assembly design

decision and environmental factors. Also, FCM is used for the indirect knowledge

acquisition, and the causal knowledge in FCM is converted to BBN. In case study,

we compared the networks’ accuracy between BBNs directly generated by domain

experts and generated from FCM, with a realistic industrial example, a fuel nozzle

for an aerospace engine. The result of comparison concludes that FCM-BBN is

similar performance with BBN in this fuel nozzle case.

In this chapter, only one case study for fuel nozzle is tested. Other future work

planned is to get a group of knowledge engineers and domain experts working on

a number of real applications, with different nature, using FCM and BBN

separately. A comparison of the frameworks can be done based on the statistics of

the subjective opinion from the knowledge engineers and the domain experts. Also,

this research is conducting more comprehensive testing for the FCM-BBN method

and the result will be reported in a separate article. An automatic FCM-BBN

generating system will be implemented to reduce the manual construction of BBN,

which requires time-consuming processes.

71

CHAPTER 5

PRODUCT DESIGN KNOWLEDGE REPRESENTATION AND

TRANSFORMATION

The aim of this chapter is to conduct a mathematical representation and

comparison of procedural knowledge and causal knowledge from the perspective

of representing product development knowledge. Product development knowledge

is seldom documented since in typical product development processes, the

knowledge evaporates or erodes after the product design is completed. Product

development knowledge is exponentially exploding because the Information

Technology (IT) can be providing various data/information/knowledge from various

sources, such as Internet, books, other domain experts, communities, and more.

Nowadays, to realize a truly collaborative product development environment,

therefore, product development knowledge should be managed, which means it is

properly captured, represented, stored, and reused. The first topic is knowledge

capture or elicitation from domain experts. This issue is presented in preliminary

study in chapter 4. In this chapter, the representation of product development

knowledge, which is one of the significant functions in the product development

knowledge management, is addressed. This chapter discusses the comparison of

two knowledge representations (i.e., procedural knowledge representation and

causal knowledge representation) for properly using the representation of product

development knowledge. Also, it discusses how procedural knowledge can be

transformed as causal knowledge, which represents the relationship between

72

cause and effect.

5.1 Definitions and Relationships in Knowledge

Most product development knowledge is represented by procedural

knowledge, since the procedural knowledge includes both declarative and

contextual knowledge. Product design knowledge can be represented by

procedural knowledge. However, procedural knowledge is broad and requires

unwieldy processes to define itself discretely. Furthermore, during product

development processes, procedure knowledge cannot fully represent product

design knowledge [Kim 2008]. Because procedural knowledge is static, and

cumbersome processes are needed to define the procedural knowledge

individually. Causal knowledge, which utilizes causal reasoning, is particularly

useful for overcoming these challenges. By modeling causal relationships, causes

of certain events are diagnosed and their effects are predicted [Gopnik 2002,

Gopnik 2004, Liu 2001]. The causal network (e.g., Bayesian belief network) has a

sound mathematical foundation and reasoning capabilities; it also has an efficient

evidence propagation mechanism and a proven track record in industry-scale

applications.

The probabilistic causal network (e.g., Bayesian belief network) represents

causal relationship, which is quantified by the computation of the probabilities of

any subset of variables given evidence about any other subset. These

relationships, which are updated by probabilistic beliefs, represent informational or

causal dependencies in the causal network. To utilize causal knowledge (CK), first,

73

CK must be defined. One of the possible methods is set theory, which is the branch

of mathematics that studies collections of objects. Although any type of object can

be collected into a set, set theory is applied most often to objects that are relevant

to mathematics. The following are the definitions of CK and procedural knowledge

(PK) models by set theory. In this paper, we follow a naïve set theory by Halmos

[Halmos 1960]. As described in the previous chapter, CK has the ability to explain

why a particular conclusion is made; via causal reasoning, the causality can be

diagnosed and their effects can be predicted even under incomplete situation.

Definition 5-1 illustrates CK, which is a network that is composed with vertices,

edges, and probability of each vertex. Vertices include input, intermediate, and

output vertices. Input vertices represent a set of input objects (number of inputs)

and a set of conditions (CoK). Intermediate vertices are a set of knowledge system,

for example, joining. Output vertices are a set of methods for the knowledge

system (e.g., welding, riveting, fastening, adhesive bonding). Edges represent

connections between vertices. If vertex v1 is connected with vertex v2, e12 is 1.

Otherwise, e12 is 0. The probability of each vertex represents its causal effects.

Definition 5-1 Causal Knowledge

Causal knowledge is a network that is composed with vertex, edge, and

probability of each vertex.

CK : Causal knowledge

CK = {V, E, Pa},

74

n is the total number of vertices in CK

V is a set of all vertices in CK.

V ={Vin, Vint, Vout}, where V has input, intermediate, and output vertices.

Vin = {im , chg },V
int = {so},V

out = {me},

I = {im ; m = 1,…,nm}

C = {chg ; h = 1, ..., nh , g = 1,…, ng},

M = {me ; e = 1, ..., ne }

S = {so ; o =1,…,no},

where I is a set of input objects, C is a set of conditions, M is a set of

methods, and S is a set of names of knowledge system

E is a set of connected edges in CK.

E = {ejk ; j, k = 1, …, n, j ≠ k}, where ejk = 1 if the edge jk is existed, otherwise,

ejk= 0.

Pa is a set of probabilities of nodes in CK.

Pa = {Pal; l=1,…,nl}

Definition 5-2 illustrates PK, which is knowledge with specific pre-defined

conditions. PK includes DK, CoK, and knowledge system. As defined in Chapter

2.1, DK is knowledge of facts or is knowledge that answers the question of “what”.

CoK addresses “when” and “why” to use the DK [Yoo 2006]. Knowledge system is

a pre-defined system for a specific knowledge model (e.g., welding system). All

three components of PK are pre-defined. It means that this knowledge is static.

Definition 5-2 Procedural Knowledge

75

In the procedural knowledge model, a knowledge system represents

procedural knowledge with specific pre-defined conditions

PK : Procedural Knowledge

PK = {DK, CoK, KS}, where DK is declarative knowledge; CoK is contextual

knowledge; KS is knowledge system.

DK = {I, M} = {Input object, Method, Output}, DK is pre-defined.

CoK = {C} = {Conditions}, CoK is pre-defined.

KS = {S} = {Names of the knowledge models}, KS if pre-defined.

I = {im ; m = 1,…,nm},

C = {chg ; h = 1, ..., n h , g = 1,…, ng},

M = {me ; e = 1, ..., ne }

S = {so ; o =1,…,no},

where I is a set of input objects, C is a set of conditions, M is a set of

methods, and S is a set of names of knowledge system

The relationship between PK and CK is addressed with simple product

development knowledge (definitions 5-1 and 5-2). The PK includes two input

objects (A, B), one method (welding ⓦ), two conditions (when, why), and output

object (AⓦB) for this specific two-object-welding knowledge. This knowledge

means two input objects are welded to get an output object when the conditions

are occurred. This PK does include CoK, which is a condition of the method.

However, the conditions are predefined, which means this knowledge is static for

76

the specific conditions.

Most product development knowledge can be represented by PK. However,

that knowledge is rarely represented by CK in product development. To use CK

requires a knowledge transformation from PK to CK. Definition 5-3 represents

knowledge transformation from PK to CK (Figure 5-1). PK’s DK, CoK, and KS are

transformed to vertices in CK (DK: Vin, Vout, COK: Vin, KS: Vint). However,

there is a limitation to obtain Pa from PK because a single PK cannot represent the

probability of event. If the cases of the same PK are existed, Pa can be calculated.

Definition 5-3 Knowledge transformation

Knowledge transformation is a transformation process from procedural

knowledge to causal knowledge.

When PK is transformed to CK,

PK: CK,

DK: Vin, Vout,

COK: Vin,

KS: Vint

E = { Vin Vint , Vint Vout }, where Vin Vint =1, Vint Vout = 1 if the edge

Vin Vint , Vint Vout is existed, otherwise, Vin Vint = 0, Vint Vout = 0.

Therefore, CK = {DK, CoK, KS, E, Pa}, but Pa not defined by a single PK.

CK represents a necessary relationship between one event and another event

(cause to effect). The PK is transformed to a CK. The CK has three input nodes -

77

one join node, and two output method nodes. Each has more than two stages with

probability, such as two cases of input object (e.g., two objects with 0.6, three

objects with 0.4) for input object node. This CK can represent exactly the same

knowledge with PK if number of object is two (A, B) and the condition of method

(when, why) is defined, the method ‘welding’ is occurring and can represent more

knowledge (e.g., ‘riveting,’ ‘fastening,’ ‘adhesive bonding’ for the methods with

different inputs).

Figure 5-1 Knowledge transformation

5.2 Mathematical Comparison of PK and CK

In the previous chapter, CK and PK using a set theory and the knowledge

transformation method from PK to CK, is addressed. In this chapter, to show that

CK is superior to PK, I compare CK and PK from four perspectives: knowledge

78

expression ability, decision alternative representation ability, reasoning capability,

and knowledge cultivation ability. To explain the different characteristics of two

knowledge methods, I use a two-object-welding knowledge example (Figure 5-2).

In this example, all information for the PK is already given. The number of input

objects must be two. The CoK (when) is the objects are weldable and CoK (why) is

the objects have to be firmly joined. The method of this joining knowledge is

welding. PK represented by Definition 5-2 is following.

DK1 = {i1, i2 } = {object 1, object 2},

CoK = {c1, c2 } = {‘the objects are weldable’, ‘the objects have to be firmly

joined’},

DK2 = {m1 } = {welding},

KS = {s1} = {the name of the knowledge system} = {join}.

Figure 5-2 Procedural knowledge representation for two-object-welding knowledge

JoinJoin

Object
A

Object
A

Object
B

Object
B

Conditions
(When, Why)

Conditions
(When, Why)

Method ⓦ
(Welding)

Method ⓦ
(Welding)

Output
AⓦB

Output
AⓦB

79

For CK (Figure 5-3), join knowledge is used. The input object number is

determined by the probability of each input instance, such as two cases of input

object (e.g., two objects with 0.6, three objects with 0.4). The CoK (conditions of

join) is defined by the combination of cases from four instances where CoK (when)

is ‘the objects are weldable or the objects have holes,’ CoK (why) is ‘the objects

have to be firmly joined or the objects are joined’. Also, the output (method) is

determined by all inputs. It can be one of four methods: welding, riveting, fastening,

adhesive bonding. CK as represented by Definition 5-1 as shown below:

V = {Vin, Vint, Vout},

Vin = { im , chg },

Vint = {sg},

Vout = {me}

E = {epq ; p =1,…,np, q = 1,…, nq},

Pa = {pah ; h = 1,…,nh },

I = {im ;m = 1,…,nm} = {i1, i2} ={object 1, object2},

C = {chg, ; h = 1,...,n h, g = 1,...,ng } = {c11, c12, c21, c21} = {‘the objects are

weldable’, ‘the objects have holes’, ‘the objects have to be firmly joined’, ‘the

objects are joined’}

M = {me ; e = 1,...,ne } = {m1, m2, m3, m4} = {‘welding’, ‘riveting’, ‘fastening’,

‘adhesive bonding’ }

S = {sg ; g =1,…,ng} = {s1} = {‘join’}

where I is a set of input objects, C is a set of conditions, M is a set of

methods, and S is a set of names of knowledge model; |IK|, |CK|, |MK|, |SK|

are a number of cases for each set.

80

Figure 5-3 Causal knowledge representation for joining knowledge

To compare PK and CK, we need appropriate comparison perspectives. The

perspectives should define the core characteristics of knowledge such as

knowledge expression, decision alternatives suggestion, reasoning capability, and

dynamic information processing. Therefore, in this study four perspectives are

defined: knowledge expression ability; decision alternative representation ability;

reasoning capability; and knowledge cultivation ability. Knowledge expression

ability means how much knowledge can be represented by a single knowledge

model. The decision alternative representation ability measures how many decision

alternatives can be included and can be used for decision support in a single

knowledge model. Reasoning capability, which includes prediction and diagnosis,

is the ability to extract hidden knowledge, new knowledge, and rules from any

given knowledge based on mathematical theory. Knowledge cultivation ability

81

represents how much additional knowledge can be obtained by the insertion of

information instance.

The first perspective, knowledge expression ability, is defined in Definition 5-4.

Knowledge expression ability is about the generality of knowledge expression; a

single knowledge model is able to represent how much knowledge. This ability is

measured with η. η is a combined measurement of knowledge cases and is

calculated by case multiplication with cases in input, contextual, and method nodes.

In the two-object-welding example, for PK, two pre-defined input objects, two

conditions, and one method welding provides only one case for each set: |IPK| = 1,

|CPK| = 1, |MPK| = 1. Then, ηPK is |IPK| • |CPK| • |MPK| = 1 x 1 x 1 = 1. However, CK is

more general than PK. Three input nodes can have multiple instances; the number

of the input objects can be two and more; two of contextual knowledge also can be

multiple. All instances of nodes have probability for the specific cases, and based

on these input nodes with probability, the output (method) will be determined. For

example, the welding output is determined with the same input information with PK.

If the input information for CK is changed from the objects are weldable to the

objects have holes, the output will be riveting or fastening. For this comparison,

let’s assume the number of input objects is two. Then, the conditions of the CK are

either when = weldable or objects have hole or why = have to be firmly joined or

have to be joined. Since CK methods are welding, riveting, fastening, and adhesive

bonding with probabilities, |ICK| = 1, |CCK| = 4, |MCK| = 4 , and ηCK = |ICK| • |CCK| •

|MCK| = 1 x 4 x 4 = 16. A single knowledge model of CK can represent 16 different

82

knowledge.

Definition 5-4 Knowledge expression ability

Knowledge expression ability means how much knowledge can be

represented by a single knowledge model. η is a measurement of

knowledge expression and is written in the number of represented

knowledge in a single knowledge model.

ηK = total number of expression with knowledge K

= |IK| • |CK| • |MK|,

where • is case multiplication symbol; |IK|, |CK|, |MK| are a number of cases

for each set.

Decision alternative representation ability is the next perspective (Definition 5-

5). This ability represents how many decision alternatives are provided for decision

support from a single knowledge model. ρ is represented by the total number of the

order of decision alternatives (OMK). OMK is the order of decision alternative (MK).

MK is determined by a probability based on input nodes (Ik, Ck). PK is only for a

specific task and is limited in the task. PK can provide only welding with two

objects and CoKs (when and why). For the PK, |MPK| = 1, and ρPK = OMPK = 1

because it has only one knowledge, which means it can only support two object

welding tasks. However, CK can have multiple alternatives for any given input

information and it can provide ranked alternatives. Two input objects, the

combination of CoKs (when and why) cause all CK methods, which include welding,

83

riveting, fastening, and adhesive bonding with probabilistic order (e.g., Welding

(45%), Riveting (25%), Fastening (20%), and Adhesive bonding (10%)). Therefore,

|MCK| = 4, and ρCK = OMCK = 4. Comparing between PK and CK, CK has a more

powerful decision supporting function than PK.

Definition 5-5 Decision alternative representation ability

A decision alternative representation ability measures how many decision

alternatives can be included and be used for decision support in a single

knowledge model. ρ is represented by the total number of the order of

decision alternatives (OMK).

ρK = OMK,

where P(MK)OMK, in other words OMK is determined by P(MK); P(MK) is a

probability based on input nodes(Ik, Ck); OMK is the order of MK.

Definition 5-6 Reasoning capability

Reasoning capability, which includes induction, deduction, and abduction, is

the ability to extract hidden knowledge, new knowledge, or a rule from any

given knowledge based on mathematical theory. ι is a measurement of

reasoning capability, which is represented with a number of inferred

knowledge from existing knowledge.

ιK = ιiK + ιdK + ιaK,

Induction

84

ιiK = |IK, CK MK| = |IK| • |CK|,

Deduction

ιdK = 2 x (|IK| • |CK| • |MK|),

Abduction

ιaK = |IK| • |CK| • |MK|

where • is a case multiplication symbol; |IK|, |CK|, |MK| are a number of cases

for each set.

The next perspective is reasoning capability. Definition 5-6 illustrates the

causation of knowledge with induction, deduction, and abduction to extract a

hidden knowledge, a new knowledge, and a rule from any given knowledge based

on mathematical theory. ι is a measurement of reasoning capability, which is

represented with a number of inferred knowledge from existing knowledge. Based

on the Free On-line Dictionary of Computing (FOLDOC), these induction,

deduction, abduction knowledge causation are defined as: 1) induction is a type of

reasoning which involves moving from a set of specific facts to a general

conclusion; 2) deduction is a type of reasoning which constructs or evaluates

deductive arguments; 3) abduction is a method of logical inference which comes

prior to induction and deduction. Induction is the process of inferring probable

antecedents as a result of observing multiple consequents. For example, the

statement “It is snowing outside” is invalid until one looks or goes outside to see

whether it is true or not. Induction requires sense experience. Deduction is the

process of deriving the consequences of what is assumed. Given the truth of the

85

assumptions, a valid deduction guarantees the truth of the conclusion. For example,

if it is true (given) that the sum of the angles is 180° in all triangles, and if a certain

triangle has angles of 90° and 30°, then it can be deduced that the third angle is

60°. Abduction allows inferring a precondition as an explanation of a consequence.

Because of this, abduction allows the precondition to be inferred from the

consequence—for example, “The window’s getting wet”; then, it may be raining

outside.

PK cannot support any reasoning unless only for a specific task. For PK, |IPK|

= 1, |CPK| = 1, |MPK| = 1. Induction (ιiPK) is |IPK| • |CPK| = 1 x 1 = 1, deduction (ιdPK) is

2 x (|IPK| • |CPK| • |MPK|) = 2 x (1 x 1 x 1) = 2, and abduction (ιaPK) is |IPK| • |CPK| •

|MPK| = 1 x 1 x 1 = 1. Therefore, ιPK = ιiPK + ιdPK + ιaPK, = 1 + 2 + 1 = 4. However, CK

has a powerful reasoning capacity based on mathematical theory. With reasoning

capability, CK can reason the causation of knowledge (i.e., induction, deduction,

and abduction). For example, if welding is selected, the node constraint for when

becomes the most effective node. The input objects are the second effective nodes

since welding needs more than two objects. Also, with reasoning capability, CK can

handle incomplete information. As an example, say the number of objects is 2 and

the CoK (why) is objects have to be joined firmly. CoK (when) is missing. In this

case, CK can provide best alternatives to decision, such as welding, fastening,

adhesive bonding. For CK, |ICK| = 2, |CCK| = 4, |MCK| = 4. Induction (ιiCK) is |ICK| •

|CCK| = 2 x 4 = 8, deduction (ιdCK) is 2 x (|ICK| • |CCK| • |MCK|) = 2 x (2 x 4 x 4) = 64,

and abduction (ιaCK) is |ICK| • |CCK| • |MCK| = 2 x 4 x 4 = 32. Therefore, ιCK = ιiCK + ιdCK

86

+ ιaCK, = 8 + 64 +32 = 104. So, CK has more powerful reasoning capability than PK

has.

Definition 5-7 Knowledge cultivation ability

Knowledge cultivation ability represents how much additional knowledge

can be obtained by the insertion of information instance. ψ is the total

number of cultivated information and is increased knowledge by the

insertion of information instance (ΔIK, ΔCK, ΔMK)

ψ K = |IK + ΔIK| • |CK + ΔCK| • |MK + ΔMK| - ηK ,

where • is a case multiplication symbol; |IK|, |CK|, |MK| are a number of cases

for each set; ΔIK, ΔCK, ΔMK are increased information instance in IK, CK, and

MK.

The last perspective is knowledge cultivation ability (Definition 5-7).

Knowledge cultivation means knowledge extension, representing how much

additional knowledge can be obtained by the insertion of an information instance. ψ

is the total number of cultivated information and is increased knowledge by the

insertion of information instance (ΔIK, ΔCK, ΔMK). ψ is calculated by the total

number of cultivated and existing information, minus the number of the existing

information (ηPK), which is from knowledge expression ability. PK is static. All

information is given, already defined for a specific task. For the PK, |IPK + ΔIPK | = 1,

|CPK + ΔCPK | = 1, |MPK + ΔMPK | = 1, ηPK = 1. ψPK = |IPK + ΔIPK| • |CPK + ΔCPK| • |MPK

+ ΔMPK| - ηPK = 1 x 1 x 1 – 1 = 0. This means that PK does not support any

87

knowledge extension, because it has static. However, CK can handle dynamic

information; the number of objects can be more than two. CoKs (when and why)

and outputs also can be multiple. It is easy to extend the instance of each node.

For the CK, the number of input objects, conditions, and methods are multiples—2

and more. In this case, assume the number of input objects is 2 or 3 plus 4, which

is dynamically increased. The conditions of the CK are CoK (when) is the objects

are weldable or the objects have holes and CoK (why) is the objects have to be

firmly joined or the objects are joined. The method of the CK is welding, riveting,

fastening, and adhesive bonding. |IPK + ΔIPK | = 1 + 2, |CPK + ΔCPK | = 4 + 0, |MPK +

ΔMPK | = 4 + 0, ηPK = 16. ψPK = |IPK + ΔIPK| • |CPK + ΔCPK| • |MPK + ΔMPK| - ηPK = 3 x

4 x 4 – 16 = 32. This means CK can represent 32 more knowledge cases only

adding two more input object cases. Therefore, CK is more capable to handle

dynamic information.

In summary, after comparison between PK and CK with four perspectives, CK

is superior to PK in terms of knowledge expression, reasoning, decision alternative

representation, knowledge cultivation ability. In addition, CK has sound

mathematical theorem and knowledge integration by structure and belief

integration. Table 5-1 shows more comparison result.

88

Table 5-1 Comparison result between procedural knowledge and causal knowledge

Perspective Criterion
Procedural

Knowledge
Causal Knowledge

Knowledge

expression ability
Generality

Specific with

conditions

General for similar

cases

Reasoning ability

Reasoning No reasoning Possible

Incompleteness for input

data
Not supported Supported

Causation

Induction One knowledge Inductable

Deduction One knowledge Deductable

Abduction One knowledge Abductable

Decision

alternative

representation

ability

Decision Supporting One knowledge Support alternatives

Knowledge

cultivation ability

Dynamic information

processing
Static information Dynamic information

Extension Limited Unlimited

Others

Mathematical

representation
Symbolic

Sound mathematical

theorems

Integration Not supported
Structural and belief

integration

89

5.3 Implementation: Knowledge Modeling with SysML

This chapter shows knowledge modeling with Systems Modeling Language

(SysML), including an explanation of SysML followed by knowledge modeling

implementation. SysML is a general-purpose modeling language for systems

engineering applications (http://www.wikipedia.com and

http://www.omgsysml.org/#What-Is_SysML). It supports the specification, analysis,

design, verification, and validation of a broad range of systems and systems-of-

systems. SysML was developed by an open source specification project and is

defined as an extension of the subset of Unified Modeling Language (UML) using

UML’s profile mechanism.

There are three advantages to use SysML as follows: 1) SysML’s semantics

are more flexible and expressive than UML. SysML reduces UML’s software-centric

restrictions and adds two new diagram types (i.e., requirement and parametric

diagrams) to model hardware, software, information, processes, personnel, and

facilities; 2) SysML is a smaller language since it removes many of UML’s software-

centric constructs. SysML has a total of nine diagram type, which includes reuses

seven of UML 2’s thirteen diagrams and adds two diagrams (requirements and

parametric diagrams); 3) the SysML model management constructs support

models, views, and viewpoints. These constructs extend UML’s capabilities and are

architecturally aligned with IEEE-Std-1471-2000 (IEEE’s Recommended Practice

for Architectural Description of Software Intensive Systems). Figure 5-4 illustrates

the four pillars of SysML. Block is the basic unit of structure in SysML and can be

90

used to represent hardware, software, facility, personnel, or any other system

element. The system structure is represented by block definition diagrams and

internal block diagrams. The behavior diagrams include use case diagram, activity

diagram, sequence diagram, and state machine diagram. The activity diagram

represents the flow of data and control between activities. A sequence diagram

represents the interaction between collaborating parts of a system. The state

machine diagram describes the state transitions and actions that a system or its

parts perform in response to events. The requirements diagram captures

requirements hierarchies and requirements derivation, and the “satisfy and verify”

relationships allow a modeler to relate a requirement to a model element that

satisfies or verifies the requirements. The parametric diagram represents

constraints on system property values such as performance, reliability, and mass

properties, and serves as a means to integrate the specifications and design

models with engineering analysis models.

Figure 5-4 The Four Pillars of SysML

SysML

Structure
Diagram :

Block diagram
(block definition,
internal block)

Package diagram

Behavior
Diagram :

Use case diagram
Activity diagram
Sequence diagram

State machine diagram

Requirements
Diagram :

Requirements
hierarchies

Requirements
derivation

Parametrics
Diagram :

Performance

Reliability
Mass properties

91

Using the two-object-welding examples in Chapter 5-2, the knowledge

modeling for PK and CK is implemented with SysML. Each knowledge model is

composed with package, block, internal block, activity, sequence, state machine,

and requirements diagrams. Table 5-2 includes the detail implementations of

SysML for PK and CK. Comparing these detail implementations of both knowledge

models we note: 1) the CK and PK package diagrams are similar; however, PK’s

inputs, conditions, and method are pre-defined, 2) CK’s block diagram is similar to

PK, 3) only an internal block diagram of CK exists, because CK’s output can be

decomposed to sub-block. This means that CK can support multiple alternatives for

the method. 4) An activity diagram of CK can represent probabilities for the outputs,

which means that CK is able to infer knowledge, 5) sequence diagrams are

identical with both knowledge, 6) state machine diagram of CK can represent

dynamic information processing ability because the information of the CK is

handled by information manager, finder, or recommender, which are linked with

dynamic information blocks, 7) requirement diagram of CK has more requirements

than PK has because CK can represent more knowledge.

In summary, this SysML analysis indicates that PK’s knowledge model is

inferior to CK’s knowledge model because CK can represent more knowledge than

PK as shown in the state-machine and requirement diagrams. PK’s knowledge is

static, which means all information is predefined. CK’s block diagram includes

more detailed knowledge with internal block diagrams. Also, more requirements

are necessary to represent CK than PK. The state machine diagram for CK can

92

handle dynamical increased/decreased information. Therefore, we can reconfirm

the result with Table 1 in Chapter 5-4.

Table 5-2 SysML implementation for PK and CK

SysML

Diagram
PK CK

package

93

block

internal

block
No internal block

bdd join two objects [detail view]

«block»
Constraints

«block»
Input Objects

«block»
Method

«block»
Join

«block»
Output

94

activity

Sequen

-ce

act join

Find
Constraint 1

Find
Constraint 2

Obtain
Objects

Join

Welding Riveting Fastening Adhesive bonding

{prob = 40%}
{prob = 25%}

{prob =15%}

{prob = 10%}
{prob = 10%}

95

state

machine

Require

-ment

96

5.4 Demonstration: Representation and Reasoning Capability of

Causal Knowledge

This chapter includes a demonstration of CK to represent product

development knowledge, particularly decision support and reasoning capability.

This demonstration is based on a fuel nozzle of the aerospace jet engine. The

network is created based on the domain expert for the CK representation of the

fuel nozzle as shown in Figure 5-5. This network shows the design stages, which

are ten nodes located in left side in the networks; the others are the maintenance

stages. GeNIe (Graphical Network Interface) is used to represent and test the

performance of network.

Figure 5-5 Causal network for the fuel nozzle knowledge

97

One of the features for causal product development knowledge is decision

support, which provides decision alternatives in order to make appropriate and

better decisions in different scenarios. Figure 5-6 (a) illustrates a diagnosis

reasoning for decision support. The spring tension of a distributor is the most

affected design issue when the distributor spring fails or is damaged. Figure 5-6

(a)’s right upper box shows the ordered list of affected design causes. Figure 5-6 (b)

shows the ordered list of affected design causes when the failures of flow pattern,

burning of nozzle guide vanes, burning/coking of the nozzle itself, and air/fuel

mixture ratio issues occur. Figure 5-6(c) shows another case of failure and the

ordered list of affected design causes. Therefore, these ordered lists can be used

to support a decision in product design stage.

(a) Decision alternative with one observation

98

(b) Decision alternative with four observations

(c) Decision alternative with five observations

Figure 5-6 Examples of decision alternative using causal knowledge diagnosis

99

The other important feature of causal product development knowledge is

reasoning, which includes prediction and diagnosis. Figure 5-7 illustrates two

examples of predictions. If a designer modifies the material of the seal ring, it will

provide a list of potential failures (see Figure 5-7 (a)’s left upper box). The list

shows an ordered effect from the modification by designer. Figure 5-7 (b) shows

another case of prediction. For instance, when an aerospace engine designer

designs a new fuel nozzle for the engine, the designer has to consider multiple

factors, which affect the performance of the engine. The designer indicates the

material of seal ring has a problem and the material of seal ring should be replaced

with a different material. However, the replacement will affect other designs of fuel

nozzle. The designer needs to check what are the effects of the replacement to

other parts. This reasoning feature can warn to designer for the effects of the

replacement. The order of effects is listed (i.e., broken seal, defective material,

escape of hot air from combustion chamber, leakage from seal, etc.) in Figure 5-7

(a). The diagnosis feature is presented in Figure 5-6 with an explanation of the

decision support feature.

100

(a) The effects of material modification

(b) The effects of diameter modification

Figure 5-7 The examples of the effects of the causal knowledge prediction

101

5.5 Conclusion

Most knowledge is represented as procedural knowledge because procedural

knowledge includes declarative knowledge and contextual knowledge. Product

development knowledge can be represented by procedural knowledge but

unwieldy processes are required to define procedural knowledge individually.

Furthermore, during the product development processes, this procedure

knowledge cannot fully represent evolutionary and dynamic product development

knowledge. Therefore, this research presents mathematical definitions of

procedural product development knowledge, causal product development

knowledge, and the knowledge transformation by set theory. This research

develops a set-theory-based knowledge transformation method to match the

components of knowledge models between procedural and causal knowledge and

mathematically defines the relationship between procedural and causal product

development knowledge. Based on the comparison with four perspectives, this

research concludes that causal knowledge represents more knowledge expression,

reasoning, decision alternative representation, and knowledge cultivation ability

than procedural knowledge. Furthermore, causal knowledge has sound

mathematical theorem and knowledge integration by structure and belief

integration. This research implements knowledge models by SysML. With this

demonstration, causal knowledge (CK) represents more product development

knowledge than procedural knowledge (PK). CK’s block diagram includes more

detail knowledge with internal block diagrams; more requirements were required to

102

represent CK than PK. The state machine diagram for CK can handle dynamic,

increased information, but PK cannot support dynamic information. This research

also demonstrates the features of the causal knowledge with a real industrial case,

a fuel nozzle of an aerospace engine in product development. This research also

concludes that CK’s characteristics are more beneficial to represent product

development knowledge than PK and provide more functions of knowledge

practices.

These results of the knowledge comparison and transformation method can

be used to represent, store, retrieval, and reuse the product development

knowledge since the knowledge is formally defined. In the product development

processes, the amount of knowledge is often difficult to count and imagine. A CK

model can represent similar multiple PK models; therefore CK has a potential to

generate knowledge compression. Furthermore, the knowledge expression ability

of the model is increased and the possibility of the knowledge reuse increases in

product development. Un-captured knowledge will be decreased in product

development. CK’s knowledge inference can increase the ratio of the knowledge

reuse in the product development, since knowledge inference provides several

advantages to reuse knowledge: 1) more decision alternatives; 2) predictive

reasoning to advise design decision; 3) diagnostic reasoning to acquire design

faults in current product design; 4) dynamic knowledge allowance to give flexible

product design; and 5) knowledge integration to keep the product development

knowledge in a team, a department, and a company. The author has developed

103

new causal CK evaluation method to evaluate different CK that can be obtained in

overall product development processes. The results will be reported in the next

Chapter.

104

CHAPTER 6

DEGREE OF CAUSAL REPRESENTATION

The aim of this chapter is to present a new causal design knowledge

evaluation for product development knowledge management. Current product

development processes still include unintended feedback due to insufficient

product design knowledge—a problem that a causal design knowledge evaluation

and support system and its reasoning capability is designed to overcome. This

chapter presents a new method and system for causal design knowledge

evaluation and support to appropriately, easily, and quickly design a new product

and to prevent a future potential failure. This research develops a degree of a

causal representation-based causal knowledge evaluation method as one of the

main functions of the product design knowledge support system. Finally, the

implementation of a causal product design knowledge support system is presented

with a new valve design case scenario.

6.1 Causal Design Knowledge Evaluation and Support

A framework of the causal design knowledge evaluation and support system is

composed with a design application, causal knowledge support system, and causal

knowledge-bases as shown in Figure 6-1. A designer utilizes a design application for

designing a new product. The designer searches an existing design of the product

and loads that design into the design application. The new design is slightly modified

from the existing design one. When the designer modifies the existing design, he or

she is able to obtain the effects of the modification in the design. The causal

105

knowledge support system provides the design analysis and evaluation toward the

product development life cycle from design modification at the design stage. The

provided design analysis and evaluation includes a degree of causal representation

(DCR), an ordered list of the effects of the design modification, and causal design

knowledge. One of the core functions in the causal design knowledge evaluation and

support system is a causal knowledge support system, which utilizes a DCR-based

method. The causal knowledge support system is composed with causal knowledge

representation, evaluation, and integration. Causal knowledge representation is a

knowledge representation method for design knowledge using a cause-and-effect

relationship. Causal knowledge evaluation is a DCR-based method for measuring a

causal representation within the causal knowledge. Causal knowledge integration is a

knowledge-combining method that allows us to integrate different areas of knowledge

within the broader product design.

6.2 M

A

(CKN

2): de

6-2, C

repres

vertice

vertice

netwo

Figure 6-1 F

Mathemat

A mathema

) for causa

efinition 6-1

CKN with w

sents CKN

es (V), edg

es in the kn

ork, and W

Framework

tical Repr

atical defin

l knowledg

, CKN with

weighted v

N with weig

ges (E), and

nowledge n

is a set of w

k of the caus

resentati

ition is req

e evaluatio

h weighted

vertices (e.

hted vertic

d weights (W

network. E i

weights in t

106

sal design k

system

on of Cau

quired to us

on. There a

edges (e.g

.g., Bayesi

ces. The C

W) of the k

is a set of c

the knowled

knowledge e

usal Kno

se the cau

re two type

g., fuzzy co

an belief n

KN is com

knowledge n

connected

dge networ

evaluation a

owledge

usal knowle

es of the CK

ognitive ma

network). D

mposed with

network. V

edges in th

k.

and support

edge netwo

KN (Figure

ap); definitio

Definition 6

h the sets

is a set of

he knowledg

t

ork

6-

on

6-1

of

all

ge

107

Definition 6-1 Causal knowledge network with weighted vertices

The causal knowledge network is represented by CKN = {V, E, W} as a

weighted-directed graph, where:

n is the total number of vertices in CKN;

V is a set of all vertices in CKN and V = {vi; i = 1, …, n};

E is a set of connected edge in CKN and E = {ejk ; j, k = 1, …, n, j ≠ k},

where eij = 1 if the edge ij is existed, otherwise, eij= 0;

W is a set of weights in CKN (e.g., the weight can be probability of V) and W

= {wl ; l =1, …, n}.

Figure 6-2’s Network 1 is a CKN with weighted vertices and can be represented

as below.

CKN = {V, E, W},

V = {v1, v2, v3, v4},

E = {e12, e21, e23, e31, e41, e42},

W = {0.6, 0.2, 0.7, 0.9}

A CKN with weighted edges can be represented based on definition 6-1 with

modified weight (W). In this definition, the weights of the CKN are modified from wl

to wlk, which means the weights are on the edges.

Definition 2 Causal knowledge with weighted edges

The causal knowledge network is represented by CKN = {V, E, W} as a

weighted directed graph where:

n is the total number of vertices in CKN;

V

E

wh

W

co

W

by de

is a set of a

is a set of c

here eij = 1

W is a set

onnected ed

W = {wjk ; j, k

Figure 6-2’

finition 6-2.

CKN = {V,

V = {v1, v2

E = {e12, e

W = {-0.6

F

all vertices

connected e

if the edge

of weights

dge (V)) an

k = 1, …, n,

s Network

.

V, E, W},

2, v3, v4},

e13, e21, e23

, 0.5, 0.5, 0

Figure 6-2 E

in CKN and

edge in CK

 ij is existed

s in CKN

d

j ≠ k}.

2 is a CKN

3, e24, e31, e

0.2, 0.7, 0.8

Examples o

108

d V = {vi ; i

KN and E =

d, otherwise

(i.e., the

N with weig

e34, e41, e42,

8, 0.3, 0.7, -

of causal kn

= 1, …, n};

{ejk ; j, k =

e, eij = 0;

weight ca

ghted edge

 e43},

-0.7, 0.7}

nowledge n

1, …, n, j ≠

an be prob

es, which is

networks

 k},

bability of

s represente

ed

109

To evaluate them, first, we defined CKNs (definition 6-1 and 6-2) as illustrated in

the previous section. Next, as in this chapter, we define the degree of causal

representation (DCR) as a causal representation measure. The DCR is a combined

measure with causality (C) and network connectivity (NC) for a CKN with weighted

vertices, and is a weighted network connectivity (WNC) for a CKN with weighted

edges.

6.3 Evaluation of Causal Knowledge Network with Weighted

Vertices

The DCR of a CKN with weighted vertices is decomposed with Causality (C),

which represents the effects of each vertex, and Network Connectivity (NC), which

measures the ratio of the connection. Causality is a measure how a CKN

represents a causal relationship with the consideration of incoming and outgoing

edges of each vertex. Definition 6-3 represents causality. NP is the number of

parent vertices, which is the same as the number of incoming edges. P is the

measure of the distributed of weights. The weight of each vertex is distributed

based on the number of states (S) in the vertex. For instance, if the number of

states is two, the weights are distributed based on 0.5 (e.g. (0.2, 0.8), (0.3, 0.7),

(0.1, 0.9), …). In this case, P is the variance of this distribution.

Definition 6-3 Causality

Causality (C) is based on a number of affected vertices and the measure of

the distributed of weights in a vertex.

110

C = Σ (NPi × Pi),

where n is the total number of vertices in CKN;

NPi is a number of parent vertices or is a number of incoming edges and

NPi = Σeki ; k = 1, …, n;

Pi is the measure of the distributed of weights and Pi = Σ(Pi,q – (1/Si))2 / (n -

1),

where q =1,…,|S| × 2NPi, Si is a number of the state in each vertex and n is

the total number of V.

Definition 6-4 explains Network Connectivity. NC represents the connection of

the network with the ratio of total connections in CKN. The ratio of total

connections is an accumulation of each edge’s ratio of connections based on the

connection, which includes direct and indirect connection. A direct connection

means that an edge exists between vertex 1 (v1) to vertex 2 (v2). An indirect

connection means that edges exist from vertex 1 (v1) to vertex 2 (v2) through

another vertex.

Definition 6-4 Network Connectivity

Network Connectivity (NC) represents the connection of the network with

the ratio of total connections in causal knowledge network.

NC = Σuij,

where n is the total number of vertices in CKN;

uij is the ratio of total connections and uij = rij / ti;

rij is the relation of the connections, which includes direct and indirect

111

connections and rij = (dij + indij);

ti is the total number of connections, which includes direct and indirect

connection, from vertex i to vertex k and ti = Σ tik = Σ(dik + indik), k = 1, …, n;

dij is the number of direct link from Vi to Vj;

indij is the number of indirect link form Vi to Vj.

In the proposed analysis method for the CKN with weighted vertices, DCR =

NPi × Pi × Σuij is used. To illustrate this method, the network 1 in Figure 6-3 is used.

We assumed each vertex has only two states (Yes/No) for the simplicity of

illustration. For the network 1, C is calculated by NP and P and NC is calculated by

the relation of the connection.

The numbers of parent vertices are NP1 = ek1, ek1= 3; NP2 = 2; NP3 = 1; and

NP4 = 0. For the vertex v1, the weights of states are P(Yes) = 0.6, P(No) = 0.4. The

measures of the distributed of weights are P1 = ((0.6 -0.5)2 + (0.4-0.5)2) / (4-1) =

0.0067, P2 = 0.06, P3 = 0.0267, P4 = 0.1067. Therefore, the C is 6 × 0.2 = 1.2. The

relations of connections are r12= 1+0 =1, r13=1, r21=2, r23=1, r13=1, r32=1, r41=3,

r42=2, r43=2. The total numbers of connection are t1= Σ t1k = Σ (d1k +ind1k)

=3+12=15, k = 1, …, n, t1 = t2 = t3 = t4 =15. The ratios of the connection are

u12=1/15=0.0667, u13=0.0667, u21=0.1333, u23=0.0667, u13=0.0667, u32=0.0667,

u41=0.2, u42=0.1333, and u43=0.1333. Therefore, NP is 6, P is 0.6, C is 3.6, NC is

2.6, and DCR is 9.36. Using the same calculation for network 2, NP is 9, P is 0.36,

C is 3.24, NC is 6.6, and DCR is 21.384. Based on this calculation, network 2’s

DCR is higher than network 1. It means network 2 represents approximately two

112

times more causality and network connectivity than network 1. More detailed

discussion on this is in section 6.4.

Figure 6-3 Examples of knowledge network with weighted vertices

6.4 Evaluation of Causal Knowledge Network with Weighted

Edges

The DCR of CKN with weighted edges uses a weighted network connectivity

(WNC) as shown in Definition 6-5. WNC is composed with network connectivity

and the normalized edge weights of vertices. Network connectivity is used the

same definition of Definition 6-4. The normalized edge weights of the vertices

represent the effects of the edges from a normalized zero line (in this research 0.5

is used.). If the normalized edge weight is higher than normalized zero line, it

represents a positive effect of original weight. If the normalized edge weight is

lower than a normalized zero line, it represents a negative effect of original weight.

113

The reason of normalization is because the negative effect of original weight

cannot appropriately be calculated for WNC: even if the effect of weight is negative,

this effect should increase WNC, however, the original weight of negative effect

decreases WNC. Therefore, the normalization of weighs can adjust this problem.

WNC is the sum of the direct edge and the indirect edges. The indirect of the

edges in WNC uses a special function (), which is a multiplication function of

connections. For instance, the indirect of edges from vertex 1 to vertex 2 can be

calculated with three parts; 1) vertex 1 to vertex k1, 2) vertex k1 to vertex k2, 3)

vertex k2 to vertex 2, where k1 and k2 are in V = {vi ; i = 1, …, n} and cannot be

vertices 1 and 2. If k1 and k2 are the same, this means that there is only one

intermediate vertex (e.g., vertex 1 to vertex k and vertex k to vertex 2). If k1 and k2

are different, the multiplication function of connections can calculate this indirect

connections (e.g., if k1 = 3 and k2 = 4, the connection is vertex 1 to vertex 3, vertex

3 to vertex 4, vertex 4 to vertex 2. Also, k1 and k2 can be multiple).

Definition 6-5 Weighted network connectivity

Weighted network connectivity (WNC) represents the connection of the

network with the weights of edges in causal knowledge network.

WNC is composed by the ratio of total connections (u) and the normalized

weight (nw) distribution of each edge.

WNC ij = sum of WNC for direct edge and indirect edges

= uij × eij × pij

114

+
N
k 1 (uik1 × eik1 × pik1) × (uk2j × ek2j × pk2j) × (uk1k2 × ek1k2 × pk1k2); k1, k2

= 1,…, n; k1, k2 ≠ i, j,

where uij is the ratio of total connection and uij = rij / ti;

rij is the relation of the connection, which includes direct and indirect

connection and rij = (dij + indij);

ti is the total number of connection, which includes direct and indirect

connection, from vertex i to vertex k and ti = Σ tik = Σ(dik + indik), k = 1, …, n;

dij is the number of direct link from Vi to Vj;

indij is the number of indirect link form Vi to Vj;

nwij is a set of the normalized weights and nwij = (wij / 2 + 0.5) × eij;

pij is the measure of the distributed of weights of the edges and pij = Σ(nwij –

(0.5))2 × eij;

and 0 < nwij < 0.5 if the weight of the edge has negative, 0.5 < nwij < 1 if the

weight of the edge has positive.

In this research, a CKN with weighted edges is represented by DCR =
N
i 1

(
N
j 1 WNCij) × Cij. For example, Figure 6-4 shows two knowledge networks with

weighted edges. For the network 1, the normalized weights and network

connectivity are calculated for WNC.

The normalized weights are nw12=-0.6/2+0.5=0.2, nw13=0.75, nw21=0.75,

nw24=0.85, nw31=0.9, nw34=0.65, nw42=0.15, and nw43=0.85. The measure of the

distributed of weights is p12 = (0.2-0.5)2 × 1 / (4-1)=0.03, p13=0.02083, p21=0.02083,

p24=0.04083, p31=0.05333, p34=0.0075, p42=0.04083, p43=0.04083. The relations of

115

connection are r12=1+1=2, r13=2, r14 =2, r21=2, r23=2, r24=2, r31=2, r32=2, r34=2, r41=2,

r42=2, and r43=2. The total numbers of connection are t1=3+(2+2) ×3=15,

t1=t2=t3=t4=15. The WNC are wnc12= 0.1333 × 0.03 × 1 + 0.1333 × 0.02083 × 1 +

0.1333 × 0.0075 × 1 + 0.1333 × 0.04083 × 1 = 0.004, wnc13=0.00279, wnc14

=0.00025, wnc21=0.0028, wnc23=0.00037, wnc24=0.00545, wnc31=0.00711,

wnc32=0.00033, wnc34=0.00101, wnc41=0.00054, wnc42=0.00546, and

wnc43=0.05045. Based on this calculation, nw is 5.1, p is 2.55, WNC is 0.03557,

and DCR is 0.4626. Using the same calculation for the network 2, nw is 6.55, p is

2.9917, c is 0.07524, and DCR is 1.474376. Network 2’s DCR is higher than

network 1. It means network 2 represents approximately three times more

weighted network connectivity than network 1. Detailed discussion about this

interpretation is shown in the next sections.

Figure 6-4 Examples of knowledge network with weighted edges

116

Based on causal knowledge representation and evaluation method, the

causal knowledge evaluation is composed with network analysis interface, network

analysis manager, optimality evaluation engines (for network connectivity, causality,

and weighted network connectivity), and a knowledge-base. Network analysis

interface provides a visual presentation of a knowledge network, which is selected

for analysis by a user. A network analysis manager coordinates the network

analysis interface, optimality evaluation engines, and knowledge-base. This

manager receives a request for the network analysis from the user. Via the

manager, the received request is sent to the optimality evaluation engines for the

optimality calculation, and the requested network is displayed in the network

analysis interface. The network manager communicates with the knowledge-base

for finding the requested knowledge. Optimality evaluation engines include three

sub-engines: network connectivity, causality, and weighted network connectivity.

The network connectivity engine calculates the ratio of the connection for the

network with weighted vertices in the knowledge network, and the weighted

network connectivity engine is for the network with weighted edges. Figure 3

shows the examples of the networks with weighted vertices and edges. A causality

engine calculates the ratio of the causal relationship between the knowledge

network components. After the analysis of the network, the result of the network

analysis can be displayed in the network analysis interface based on the user’s

request.

117

The process in the causal knowledge network analysis system is illustrated in

Figure 6-5. The number in the figure indicates the sequence of analysis processes.

A user analyzes a causal knowledge network. The user selects a network and

requests the network analysis results in DCR (degree of causal representation).

The selected network and the request are sent by the network analysis interface to

the network analysis manager. The network analysis manager finds the network

from the knowledge-base and distinguishes the characteristics of the network.

There are two different causal knowledge networks in knowledge-base: a

knowledge network with weighted vertices and one with weighted edges. If the

selected network is the knowledge network with weighted vertices, a DCR with

weighted vertices is generated with network connectivity and causality. Similarly, a

DCR with weighted edges with weighted network connectivity is generated for the

knowledge network with weighted edges. The generated DCR is displayed to the

user by the network analysis interface.

118

Figure 6-5 Processes of the causal knowledge evaluation

6.5 Validation of DCR-based Causal Knowledge Evaluation

6.5.1 Comparison of Different Causal Knowledge

In the previous chapter, we defined the knowledge evaluation method for

CKN with weighted vertices and edges. The result of DCR for both networks show

network 2 has a higher degree of DCR than network 1 (Figure 6-3 and Figure 6-4).

These results are used to compare connectivity and weight of CKN. In this chapter,

the effects of weights and network connectivity are compared. The DCR results of

the CKN with weighted edges are 0.0916, 0.2964, and 0.627 for the network 1, 2,

User
Knowledge

base

Network
Analysis
Manager

Network
Connectivity

Causality

DCR
(weighted
vertices)

Weighted
Network

Connectivity

DCR
(weighted

edges)

Network
Analysis
Interface

1. NS, DRC-R 2. SN, DCR-R 3. SN, FN

4. N

5. N, DCR-R 6. DCR

7. DCR8. DCR

5-1. N, DCR-R 6-1. DCR

NS : network selection
DCR-R : DCR request
SN : selected network
FN : finding network
N : network
DCR : Degree of Causal

Representation

119

and 3, as in Figure 6-8. The result indicates the complicated network model has a

higher DCR. To validate this result, for the network model, three types of models

are tested as shown in Figure 6-6: 1) a model that has only direct edges (Network

1); 2) a model that has only direct edges with minimum indirect edges (Network 2);

and 3) a model that has more indirect edges (Network 3). For the weight of edges,

three weights are used: 0.1, 0.5, and 0.9. If the weight of each edge is 0.1, every

edge’s weight is 0.1—e.g., the edge from vertex 1 to vertex 2 is 0.1 instead of -0.6

in Figure 6-6’s Network 1.

Figure 6-6 Examples of causal knowledge network with weighted edges for

comparison

The results of these comparisons are shown in Figure 6-7. There is an

assumption, which is that the number of vertices is the same in networks. In the

network comparison, network models 2 and 3 have a higher DCR than network

model 1. Network model 2 is approximately 4.17 times, and network model 3 is

approximately 9.4 times higher. These results indicate that the DCR is higher if the

network model has more connection (number of edges). In the probability

comp

The n

These

Also,

comp

Figur

arison, the

network with

e results in

Figure 6-7

lex network

re 6-7 Com

networks w

h 0.5 is 25.

dicate that

7 shows th

k model.

parison res

with 0.5 and

8 times hig

the DCR is

he probabi

(a) Proba

(b) Netw

sults for cau

120

d 0.9 have

gher, and th

s higher if t

lity effect

ability ompa

work compa

usal knowle

higher DCR

he one with

the network

is exponen

arison

arison

edge netwo

R than netw

0.9 is 90.1

k has highe

ntially incre

ork with wei

work with 0

 times high

er probabili

eased with

ghted edge

.1.

her.

ty.

a

es

121

The similar comparison for the CKN with weighted vertices is tested. The

DCR results of the CKN with weighted vertices are 0.2133, 2.3467, and 5.3333 for

networks 1, 2, and 3, as in Figure 6-8. The similar conclusion is indicated with the

previous comparison with CKN weighted edges. The comparison test is similar with

the previous comparison with three types of network model and five different

vertices weights (0.1, 0.4, 0.5, 0.75, 0.9) with a assumption, which is that the

number of states (S) is 2 for all vertices, and the number of vertices is the same in

networks. After comparison, we indicate the weights 0.1 and 0.9 are the same and

0.5 is no effect as we expected. The results of network comparison are that

network 2 is 11 time higher and network 3 is 25 times higher than network 1. For a

probability comparison, network with 0.75 is 6.25 times higher and network with 0.1

is 16 times higher than network with 0.4. Figure 6-9’s probability comparison shows

the distribution is symmetric at 0.5 and a network comparison shows the probability

effect is exponentially increased, similar to the network with weighted edges. If the

number of states (S) is changed from 2 to 3, the probability comparison distribution

will be changed to asymmetric at 0.33.

122

Figure 6-8 Examples of causal knowledge network with weighted vertices for

comparison

(a) Probability comparison

F

T

has h

weigh

detail

6.5.2

In

whee

using

assem

assem

igure 6-9 C

The compa

igher DCR

ht increases

implement

Case Study

this chapte

l, and fuel

the propos

mbly design

mbly design

Comparison

arison resu

, 2) the netw

s with the m

tation for th

dy

er we pres

l nozzle—t

sed DCR-b

n case rep

n and deci

(b) Netw

 results for

v

lts are as f

work with h

more compl

e functions

sent and dis

to evaluate

ased metho

presents kn

sion enviro

123

work compa

causal kno

vertices

follows: 1)

higher weig

lex network

s in this netw

scuss three

e knowledg

od. All use

nowledge, w

onment (Fig

arison

owledge ne

the more c

ht has high

k. The next

work analys

e case stud

ge represe

a causal k

which is th

gure 6-10

twork with

complex ne

her DCR, 3)

chapter wi

sis method

dies—asse

entation an

knowledge

he relations

a). The wh

weighted

etwork mod

) the effect

ill show mo

.

embly desig

nd evaluatio

network. Th

ship betwee

heel and fu

del

of

ore

gn,

on

he

en

uel

124

nozzle cases illustrate the relationship of the design and maintenance aspects of

each case (Figure 6-10 c). These three cases are conducted with three different

causal knowledge: a Bayesian belief network (BBN), which is directly generated by

the domain experts; a Bayesian belief network from fuzzy cognitive map (FCM-

BBN), which is a knowledge network converted from FCM using the FCM-BBN

method from our previous research [Cheah 2007]; and a modified Bayesian belief

network from fuzzy cognitive map (FCM-BBN-M) [Kim 2008], which is a FCM-BBN

without direct edge if any indirect edge exists. Finally, this research tests these

cases with my developed CK evaluation method.

(a) Causal knowledge for assembly design

125

(b) Causal knowledge for wheel design and maintenance

(C) Causal knowledge for fuel nozzle design and maintenance

Figure 6-10 Examples of causal knowledge

126

The CK evaluation method analyzes causality of vertices, edges, and network

structure. In the assembly design case, BBN is the best CKN and is analyzed with

causality (14.44), network connectivity (7.595), and DCR (109.672). However, very

little differences among the three DCR were seen. BBN and FCM-BBN is similar

DCR in the wheel case, and FCM-BBN-M is different from them. In the fuel nozzle

case, FCM-BBN is the best CKN with significant difference. Table 6-1 shows more

test results of CK evaluation.

Table 6-1 The results of causal knowledge network analysis

Case Criterion BBN FCM-BBN FCM-BBN-M

Market-share

No. of Nodes 11 11 11

No. of Parent 20 22 15

Weight 0.76 0.567 2.241

Causality 14.44 12.481 33.614

Network

Connectivity
7.595 6.683 2.437

DCR 109.672 83.414 81.933

Wheel

No. of Nodes 10 10 10

No. of Parent 16 18 11

Weight 4.592 2.762 1.843

Causality 73.479 49.716 20.28

Network

Connectivity
4.693 7.254 2.901

DCR 344.877 360.621 58.841

Fuel nozzle No. of Nodes 30 30 30

127

No. of Parent 30 73 48

Weight 6.545 10.646 10.121

Causality 196.35 777.158 511.008

Network

Connectivity
3.121 12.485 5.706

DCR 612.853 9702.75 2916.061

6.5.3 Implementation: Knowledge Network Optimality Evaluation System (KNOES)

This work presents a new knowledge support system, called Knowledge

Network Optimality Evaluation System (KNOES), for future CAD applications in

product development. The implementation of this system will be presented with a

valve design case scenario in this chapter. The system is developed with C++, C#,

IIS, and MS SQL. C++ conducts the main function, C# is used for the web

application, IIS is Internet information service, and MS SQL is for database.

Currently, KNOES operates as a stand-alone web application. CAD and KNOES

can communicate through a common knowledge network interface. Currently an

.xdsl format is used. To fully use this system, these different applications (i.e., CAD

system, KNOES, and GeNIe) need to be set up.

Figure 6-12 We

Figure 6-

eb-based ca

11 Example

ausal desig

128

e of UGS N

gn knowledg

NX5 valve d

ge evaluatio

design

on and sup

pport systemm

129

Figure 6-13 Example of the effects of the design modification

Figure 6-14 Example of the design factors from maintenance issues

130

In this case example, a scenario is presented between the design state of a

new valve and its maintenance stage. A designer wants to create the new valve

based on an existing valve design in the product design knowledge-base. First, the

designer opens a CAD application, such as UGS NX 5, which is used for this

scenario, and searches for a valve design from product design knowledge-base.

The designer loads a valve design on the NX 5 as shown in Figure 6-11. KNOES

provides the design analysis and evaluation results for this existing design as

shown in Figure 6-12. The designer is easily able to understand the existing design

and plans the modification, because the provided result has comprehensive causal

knowledge of the design, such as DCR, knowledge network, the effects of factor’s

changes, and more. Second, the designer wants to modify this design for an

appropriate design of the new valve. The designer increases the angle of the valve.

KNOES notices the effects of this modification as shown in Figure 6-13. The effects

of the modification include not only design factors but also maintenance factors for

preventing future potential failures. Therefore, the designer is able to imagine and

understand any impacts of potential changes made to the current design. Third, the

designer completes the new valve design and sends it to a manufacturer to make

the product. The manufacturer makes the new valves, which is very popular at the

market. However, this valve has some maintenance issues when it gets to

customers. The designer and manufacturer want to identify what are the problems.

In this situation, KNOES provides the design factors relating to maintenance issues

as shown in Figure 6-14. The inputs of maintenance factors will generate the

131

outputs, which are design factors using causal knowledge reasoning in KNOES.

Therefore, the designer is able to redesign the valve appropriately. The new valve

design is stored in product design-base and the knowledge of these design and

maintenance issues are stored in product design knowledge-base for the future

reuse.

As the iteration of the product development is increased, the knowledge from

the product development is accumulated and improved. The knowledge

accumulation is an important issue, but the quality of knowledge is more significant

for KNOES. The knowledge in the evaluation system can be thoroughly obtained

from the domain expert’s knowledge acquisition to the DCR calculation. To obtain

quality DCR-analysis results, the quality of the domain expert’s knowledge must be

maintained. The collective knowledge is a significant issue in terms of knowledge

quality. Recently, the expended definition of knowledge is required in an advanced

Internet environment. Berger and Luckman defined that knowledge is all ideas that

are included when a society or social group believes that a thing exists [Berger

1996]. The definition of knowledge has evolved to the whole of the collected

experiences in the society. Not only the knowledge that some experts can

understand or generate is knowledge, but also, one, which is understood and

generated by a variety member of the society in their daily experience, is

knowledge [McCarty 1996]. Objectified knowledge is a formal and advanced

process to collect and share the distributed knowledge and intelligence [Nahapiet

1998]. Objectified knowledge is growing in cyberspace. The spread of Web 2.0 is

132

leading the changes of society and economy in order to collect and share that

objectified knowledge. The biggest change is that a user becomes a generator of

knowledge. Wikipedia is a symbolic service of the collective intelligence to

collaborate and share knowledge, and it is exponentially growing. Users of this

service expect that the trusted knowledge is generated, shared, and utilized. There

is a question about this knowledge quality in collective knowledge because the

collective knowledge can be edited by anyone. However, Nature noted that

Wikipedia comes close to encyclopedia Britannica in terms of the accuracy of its

science entries [Wales 2005]. This supports the quality of collective knowledge.

Furthermore, the methods of keeping knowledge quality in collective knowledge

are utilized, such as using real name, reviewing by experts, opening editing

processes, and levels of members. In the future, the quality effect of collective

knowledge in causal knowledge management will be investigated.

6.5 Conclusion

In this chapter, this research presents a system of causal design knowledge

evaluation and support, and a new causal knowledge evaluation method is

developed and implemented. This new causal knowledge evaluation method

compares design knowledge using degree of causal representation. The results

show that: 1) the more complex network model has higher DCR, 2) the network

with higher weight has higher DCR, 3) the effect of weight increases with the more

complex network. Next, we presented a causal knowledge evaluation system and

its validation by comparing causal knowledge through three realistic cases:

133

assembly design, wheel, and fuel nozzle. Finally, this research presents an

implementation of a causal design knowledge evaluation support system, called

KNOES, with a new valve design case, and reviewed the advantages and

disadvantages of the new product design knowledge support system. Using

KNOES, a designer is able to obtain knowledge analysis and evaluation, the

effects of any design change, and sensitivity analysis for future potential failures.

For future research, an extension of the new causal knowledge evaluation method

is required for the more complex knowledge models.

134

CHAPTER 7

DCR INDEX AND KNOWLEDGE INTEGRATION

The aim of this chapter represents DCR index and knowledge integration for

causal product design knowledge. First, DCR index is for comparison of multiple

causal knowledge with different number of vertices. DCR is strongly dependant to

number of vertices. The more number of vertices have the more DCR. DCR index

utilizes a normalization method for comparison of causal product knowledge with

different number of vertices. Second, knowledge integration is required for

obtaining a new knowledge from existing knowledge. For example, a user requests

knowledge for the heating cup. However, the knowledge base only has knowledge

for heating and cup, not heating cup. At his situation, knowledge integration can

generate a new heating cup knowledge from existing heating and cup knowledge.

Therefore, the user can obtain the knowledge for heating cup.

7.1 DCR Index

This chapter represents how to utilize DCR to compare multiple causal

knowledge. The DCR is strongly dependant to the number of vertices in the causal

knowledge network. DCR is conducted with two parts, connectivity and probability,

as presented in Chapter 6. The connectivity has more effect than the probability to

calculate DCR. The number of vertices in the causal knowledge network is most

effected parameter for calculating DCR. For example, comparing three knowledge

networks with different number of vertices (3, 6, 10). The connectivity is maximum

and probability is 0.99 (Table 7-1). Depending on the number of vertices, DCR is

135

34.5744, 12074.7334, and 115732072.2365. Since the DCRs are significantly

different, multiple causal knowledge is not able to compare with DCR. Therefore,

there is need for DCR index to compare multiple causal knowledge.

To develop DCR index, two cases should be defined (Figure 7-1), minimum

and maximum of each number of vertex. Each case has number of vertices,

connectivity, and probability. For the minimum case, connectivity is minimum (only

one connection between vertices) and probability is 0.51, which is lowest because

there is no effect on 0.5 and 1 is full effect. For the maximum case, connectivity is

maximum (every vertices are connected) and probability is 0.99, which is highest in

this research.

Figure 7-1 Examples of network for DCR

The DCR index is generated with a normalization method as show in below.

Definition DCR index

Index (I) = (A – M) X 100 / (X – M)

Network 1

V 2
(0.99)

V 4
(0.99)

V 3
(0.99)

V 1
(0.99)

Network 2

V 2
(0.51)

V 4
(0.51)

V 3
(0.51)

V 1
(0.51)

136

Where A is actual DCR, M is min. DCR, X is max. DCR.

Figure 7-2 shows the meaning of DCR index. DCR index normalizes multiple

causal knowledge to single index for comparison. Each of causal knowledge has

minimum DCR, middle DCR, and maximum DCR. However, increasing number of

vertices, the middle DCR and maximum DCR are exponentially increased. We

cannot compare the knowledge with different numbers of vertices (e.g., numbers of

vertices are 4 and 6) because DCR is strongly depended on number of vertices as

shown in Figure 7-2. After DCR indexing, one single DCR index can represent

multiple knowledge’s DCR levels. Using this DCR index, this research can

compare the knowledge with different numbers of vertices. Currently, DCR index is

conducted for the knowledge with numbers of vertices from three to eleven. The

detail result is showing in Table 7-1. Each case has minimum DCR (index is 0) and

maximum DCR (index is 100). The maximum DCR is confirmed the limitation of

DCR, which is strongly depended on numbers of vertices.

137

Figure 7-2 DCR indexing process

Table 7-1Result of DCR index with vertices 3 to 11

Min. n Mid. n Max. n

Min. 5

Min. 4

Min.3

Mid. 5

Mid. 4

Mid. 3

Max. 5

Max. 4

Max. 3

0 100

ID # of Nodes Connectivity Probability DCR Index

1
3 Minimum 0.51 0.0036 0

3 Maximum 0.99 34.5744 100

2
4 Minimum 0.51 0.0077 0

4 Maximum 0.99 262.7654 100

3
5 Minimum 0.51 0.0154 0

5 Maximum 0.99 1728.7200 100

4
6 Minimum 0.51 0.0282 0

6 Maximum 0.99 12074.7334 100

5
7 Minimum 0.51 0.0473 0

7 Maximum 0.99 98049.6898 100

6
8 Minimum 0.51 0.0738 0

8 Maximum 0.99 981411.6411 100

7
9 Minimum 0.51 0.1088 0

9 Maximum 0.99 10184059.6366 100

8
10 Minimum 0.51 0.1536 0

10 Maximum 0.99 115732072.2365 100

9
11 Minimum 0.51 0.2093 0

11 Maximum 0.99 1427091751.6989 100

138

The test of DCR index is conducted with two networks as shown in Figure 7-3.

The test is conducted with the knowledge with five vertices network. First, evaluate

five vertices network with DCR. The first three row of Table 7-2 shows the result of

evaluation with three different conditions based on connectivity and probability.

After this evaluation, increase one vertex and one edge on the five vertices

network and evaluate it. Then, increase one edge each time with the same

condition of probability (e.g., 0.51, 0.75, 0.99). The detail result is shown in Table 7-

2. One interesting finding is confirmed that the DCR normalization is conducted

correctly. The remark 1 and 2 shows the same DCR index (26.030) with different

original DCR (450, 3143.1522). If we compare the five vertices knowledge and six

vertices knowledge with maximum connectivity and 0.75 probability, the DCR index

is the same, which means these two knowledge represent the same level of causal

representation.

Figure 7-3 Example of DCR index test

A

C

B

E

D

A

C

B

E

Dvs.

F

139

Table 7-2 Result of DCR index test

7.2 Knowledge Integration

To fully understand knowledge integration, the integration environments

should be defined, such as knowledge framework, integration models, and other

considerable factors. The first factor is knowledge framework. Current product

development knowledge in product development processes is showing in Figure 7-

4. Current product development knowledge framework cannot handle recursive

product development knowledge since there is not enough method to capture

knowledge in product development processes. To overcome this problem, new

knowledge framework is required in order to handle recursive knowledge during

the product development processes. Inter-relational product development

of Nodes Connectivity Probability DCR Index Remark

5 Minimum 0.51 0.0154 0

5 Maximum 0.75 450.0000 26.030 1

5 Maximum 0.99 1728.7200 100

6 Max.+One 0.51 3.4591 0.028

6 Max.+Two 0.51 3.8246 0.031

6 Max.+Three 0.51 4.2029 0.035

6 Max.+Four 0.51 4.6072 0.039

6 Max.+One 0.75 2161.9565 17.905

6 Max.+Two 0.75 2390.3804 19.796

6 Max.+Three 0.75 2626.8261 21.755

6 Max.+Four 0.75 2879.5109 23.847

6 Max.+Five 0.75 3143.1522 26.030 2

6 Max.+One 0.99 8305.3722 68.783

6 Max.+Two 0.99 9182.8855 76.050

6 Max.+Three 0.99 10091.2151 83.573

6 Max.+Four 0.99 11061.9290 91.612

140

knowledge framework is proposed and it can handle recursive knowledge using

causal network integration.

Figure 7-4 Current product development knowledge acquisition and loss

The product development knowledge can be represented with three different

knowledge models, which are based on perspective of knowledge relationships.

Knowledge relationships include three categories for inter-relational knowledge

framework: inter-process knowledge, inter-actor knowledge, and inter-product

knowledge (Figure 7-5). First, inter-actor knowledge acquires and reuses the same

domain knowledge with different actors (designers, systems, and etc.) using causal

network belief integration. Second, inter-process knowledge acquires and reuses

different domains knowledge, which has different constraints for each domain,

using causal network structure integration method during the product development

processes. Third, inter-product knowledge acquires and reuses different domains

knowledge and different products knowledge using causal network belief

integration between different structures.

P 1 P 2 P 3 P 4 P n

Product development Knowledge

Current PDK
Missing
knowledge

Knowledge Loss

141

Figure 7-5 Knowledge relationship for product development.

7.2.1 Inter-actor Knowledge

Inter-actor knowledge acquires and reuses the same domain knowledge with

different actors (designers, systems, and etc.) using causal network integration

(Figure 7-6). In this case, one basic assumption is that a causal network structure

is the same in each domain. Inter-actor knowledge framework integrates actors’

knowledge in the same domain, because different actors have different knowledge

with the same process and product in domain. Main function of this framework is

that the accuracy of the knowledge is improved by knowledge integration with

weights, which are based on experiences, positions, number of same project

completion, and other considerable factors.

Products

Processes

Cup

Pen

Radio

Car

C
on

ce
p

t
de

si
gn

D
et

ai
l d

es
ig

n

P
ro

to
ty

pi
ng

M
an

u
fa

ct
u

ri
n

g

Customers

Designers

Systems

Actors

PD knowledge
…

…

…

142

Figure 7-6 Inter-actor knowledge integration for product development

In the Figure 7-7, inter-actor knowledge framework is integrated one single

framework, which is the same of the inter-process knowledge framework. Also, this

single framework will be able to use for inter-process knowledge framework.

P 1 P 2 P 3 P 4 P n

Product development Knowledge

P 1 P 2 P 3 P 4 P n

Inter-actor PDK

Current PDK

Knowledge Loss

Missing
knowledge

P 1 P 2 P 3 P 4 P n
P 1 P 2 P 3 P 4 P n
P 1 P 2 P 3 P 4 P n

Product development KnowledgeProduct development Knowledge

P 3P 3

P 3P 3
P 3P 3
P 3P 3

P 3P 3

143

Figure 7-7 Inter-actor knowledge framework for product development

The inter-actor knowledge framework can acquire and reuse the same

domain knowledge with different actors (designers, systems, etc.) using causal

network integration during the product development processes. Finally, I conduct

inter-actor knowledge framework and product development knowledge for this

framework for single product. The next step is applying this result to inter-process

knowledge framework, which include heterogeneous domains.

7.2.2 Inter-process Knowledge

Inter-process knowledge framework acquires and reuses different domains

knowledge, which has different constraints for each domain, using causal network

structure integration method during the product development processes. Inter-

Product development KnowledgeProduct development Knowledge

Inter-Actor PDInter-Actor PD

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP nP 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP nP 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n
P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP nP 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP nP 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

144

process knowledge framework is showing in Figure 7-8. Compared with current

product development knowledge, inter-process knowledge framework is evolutional

increasing the knowledge process-by-process. Current knowledge framework has

loosed product development knowledge during the product development processes

(Figure 7-9).

Figure 7-8 Inter-process knowledge framework vs. current knowledge framework

for product development

For example, a product development has six processes: Detailed

Requirements, Conceptual Development, System-level Design, Detail Design,

Testing and Refinement, and Production Ramp-up. Each of process has different

constraints. These constraints affect product development knowledge to add or

delete knowledge to apply constraints. Because conceptual development process

P 1 P 2 P 3 P 4 P n

Product development Knowledge

P 1 P 2 P 3 P 4 P n

Inter-process PD

Current PD

Knowledge Loss

Missing
knowledge

145

does not require a detail design aspect, the causal network structure of conceptual

development process is slightly smaller than detail design process’s one. Process

is moved from system-level design process to detail design process. The

knowledge from system-level design to detail design will be added, deleted, or

updated, which means causal network structure will be added, deleted, or updated.

Finally, production ramp-up process will have more informative causal network

structure than any other processes. Via current framework, production ramp-up

process has almost the same causal network structure with other processes.

Therefore, the result of production in inter-process knowledge framework will be

significantly improved.

Figure 7-9 Missing knowledge in current product development knowledge

framework

The inter-process knowledge framework can acquire and reuse the different

domains knowledge, which has different constraints for each domain, using causal

network structure update method during the product development processes.

P 1P 1 P 2P 2 P 3P 3 P nP n

Knowledge from Constrains

Missing
Knowledge 1

Missing
Knowledge 2

Missing
Knowledge 3

Missing
Knowledge n

146

Finally, we conduct inter-actor knowledge framework and inter-process knowledge

framework, and product development knowledge for these frameworks for single

product. The next step is applying this result to inter-product knowledge framework,

which include heterogeneous products.

7.2.3 Inter-product Knowledge

Inter-product knowledge framework acquires and reuses different domains

knowledge and different products knowledge using causal network and structure

integration between different structures. The Figure 7-10 is showing inter-product

knowledge framework, which integrates heterogeneous products’ knowledge to

general knowledge. However, this framework is not visible because heterogeneous

products do not have the same structures, even not similar. If I integrate these

heterogeneous products’ knowledge, I will have huge general knowledge, which

may not be represented by any network. Therefore, I propose unsupervised

learning to categorize this heterogeneous products’ knowledge to similar products’

knowledge. First, classify this knowledge with similar products and then integrate

this similar knowledge in categories (Figure 7-11).

147

Figure 7-10 Heterogeneous product development knowledge framework

Figure 7-11 Inter-product knowledge framework with unsupervised learning

Product development KnowledgeProduct development Knowledge

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

Inter-Product PDKInter-Product PDK

Pen PDKPen PDK

Can PDKCan PDK

Radio PDKRadio PDK

Cup PDKCup PDK

Car PDKCar PDK

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n
P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n
P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

PD knowledge

Product
Category n

Product
Category 3

Product
Category 2

Product
Category 1

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

P 1P 1 P 2P 2 P 3P 3 P 4P 4 P nP n

148

The inter-product knowledge framework can acquire and reuse different

domains knowledge and different products knowledge using causal network and

structure integration between different structures during the product development

processes. Finally, we conduct inter-product knowledge framework using

unsupervised learning for the categorization of the similar products and product

development knowledge for these frameworks for heterogeneous products. The

next chapter represents the causal network integration with inter-relational

knowledge framework for the recursive product development knowledge in product

development processes.

 7.2.4 Integration of Causal Knowledge

Knowledge integration is an intelligent knowledge acquisition method from

existing knowledge. Based on inter-relational knowledge framework, knowledge

integration includes three different cases (Figure 7-12). Case 1 is from inter-actor

knowledge framework and is only belief integration in the same structure. Case 2 is

from inter-process knowledge framework and is added the knowledge structures

for integration and is updated belief between the structures. Case 3 is from inter-

process knowledge and inter-product knowledge framework and integrates the

knowledge structures and is integrated the knowledge structures and belief. The

combination of these three cases can cover all possible integration cases in

product development knowledge.

149

Figure 7-12 Knowledge integration cases

Based on knowledge integration cases, two main function is required,

knowledge network identifier and integrator. The network identifier analyzes

number of vertices, matching of vertices, structure of the knowledge network, and

other considerable factors in knowledge. For the matching of vertices’ name,

ontological knowledge mapping, which will be addressed in section 7.2.4.1, can be

used. After analyzing the knowledge, network identifier can select the combination

of knowledge integration cases (Figure 7-12). Based on the selected combination

cases for knowledge integration, knowledge network integrator generates a new

knowledge using structure and probability integration.

A

B C

A

B C

A

B C

A

B C

A

B

A

B

A

B
C

A

B
D

D

A

B
C

D

D D

C

C

Case 1

Case 2

Case 3

150

7.2.4.1 Ontological Knowledge Mapping

To integrate heterogeneous design knowledge, which includes different

knowledge name for the same knowledge, this research proposes the ontological

causal network representation to match different knowledge name. The ontology is

one of the ways to represent product development knowledge as mentioned in

Chapter 3.5. Ontology is explicit formal specifications of the terms in the domain

and relations among them [Gruber 1993]; a formal, explicit specification of a

shared conceptualization. This research uses Bayesian belief network and

Ontology to represent product design knowledge, which means the network is BBN

and the nodes are defined by ontology (Figure 7-13).

Figure 7-13 Ontological BBN design knowledge

Design Alternative 3Design Alternative 3 Design Alternative 4Design Alternative 4

Design Alternative 1Design Alternative 1 Design Alternative 2Design Alternative 2Design ontology

CC

DD

BBAA

151

In the Figure 7-13, the design alternatives are somewhat different, but the

design ontology is the same for the specific product or part. Design alternative 1

inherits all of the nodes except node A. Design alternative 2 is the same with

design alternative 1, but the probability of nodes are may vary. Design alternative 3

inherits all of the nodes except node B. Design alternative 4 is almost same with

design alternative 1 and 2 except the arc from node C to node D. The ontological

BBN is able to use for product development knowledge reasoning and mapping.

7.2.5 Utilization of Causal Knowledge Integration

 Causal knowledge integration method is utilized for a new product design

using existing one. For example, a cup with heating/cooling function, a pen with

special logo on it, and a can with zip lock. These examples are modified existing

design or are generated by knowledge integration. In this chapter, the utilization of

causal knowledge integration is presented with a wheel design scenario. A

designer want to design a new designed automotive wheel, which is modified from

existing design, but current design knowledge is not enough to design the new

wheel. Thus, an appropriate design knowledge should be generated from existing

one. In other words, the design knowledge integration is required. The designer

opens web-based causal product design knowledge management system in order

to find existing wheel designs. In Figure 7-14 shows existing design in the system

repository. Also, the knowledge evaluation results are provided for support

designer’s decision as shown in Figure7-14's table right side (DCR and DRC

index).

152

Figure 7-14 Snapshot of causal product design knowledge management system for

knowledge integration

Among the existing designs, the designer selects two alternatives for the new

wheel design, Bad weld based and voids based knowledge. The selected

alternatives are integrated to generate a new design knowledge, which is named

newNetwork-wheel. The integration result is presented in Figure 7-15. The result of

integration provides the new design knowledge with DCR evaluation result, which

includes DCR and DCR index (Figure 7-15). Finally, the design can select the new

integrated knowledge, which can provide knowledge of two original ones for the

new wheel design.

153

Figure 7-15 Result of knowledge integration with DCR evaluation

The original knowledge networks for Bad weld based and Voids based wheel

knowledge are illustrated in Figure 7-16 (a) and (b). The analysis of these

knowledge networks are as follows: for Bad weld based knowledge, DCR is

54.7822, causality is 23.3331, network connectivity is 2.3178, and DCR index is

0.45; for Voids based knowledge, DCR is 37.5116, causality is 16.255, network

connectivity is 2.3076, and DCR index is 2.16.

154

(a) Knowledge network for Bad weld based

(b) Knowledge network for Voids based

(c) Knowledge network for newNetwork-wheel

Figure 7-16 Knowledge network for integration with the same domain

155

DCR of bad weld based knowledge is higher than voids based knowledge, but

the DCR index shows that voids based knowledge is higher than Bad weld based

knowledge. It is explained that voids based knowledge has more degree of causal

representation than the other one. Figure 7-16 (c) shows a new generated

knowledge, newNetowrk-wheel, which is analyzed that DCR is135.4674, causality

is 45.3893, network connectivity is 2.9845, and DCR index is 0.0137. This

generated knowledge can represent two knowledge with updated their beliefs for

wheel design. Based on the integrated knowledge, causal product design

knowledge management system can provide the effects of the design modification

as discussed in Chapter 6.4. Figure 7-17 presents the effects of design

modification with two wheel knowledge, bad weld based and void based. if a

designer modifies the Selection of Material among the design factors, the effects of

maintenance factors are predicted. Two maintenance factors for bad weld based

wheel knowledge are predicted, Bad Weld (0.03) and Design Fault (0.016). For the

voids based wheel knowledge, Voids (0.021) is predicted. The numbers for

maintenance factors represent the effects of the modification depended on each

knowledge network structure and belief.

156

(a) Bad Weld based wheel knowledge

(b) Voids based wheel knowledge

Figure 7-17 Effects of design modification

157

Figure 7-18 illustrates the effects of design modification (Selection of Material)

in the integrated wheel knowledge. The integrated wheel knowledge includes five

design factors and three maintenance factors. Comparison with original knowledge

and integrated knowledge indicates that 1) integrated knowledge provides more

design factors to modify a design for a new product, 2) integrated knowledge

predicts more maintenance factors to indicate the effects of the design modification,

3) integrated knowledge is enough to include the original knowledge in the

representation of the effects of the modification. The integrated wheel knowledge

provides more knowledge to a designer and the designer can make better decision

for a new product design. This is one objective of using causal product design

knowledge management system.

Figure 7-18 Effects of design modification in integrated wheel knowledge

158

The utilization of knowledge integration in the same domain is presented and

a utilization of knowledge integration in the different domain is following. Figure 7-

19 (a) and (b) illustrate bad weld based wheel knowledge and tire knowledge,

which are in different domains. Two of knowledge vertices for each knowledge are

identical and others are totally different. The analysis of these knowledge networks

are as follows: for bad weld based knowledge, DCR is 54.7822, causality is

23.3331, network connectivity is 2.3178, and DCR index is 0.45; for Tire knowledge,

DCR is 15.4235, causality is 7.7007, network connectivity is 2, and DCR index is

5.8669. DCR of bad weld based knowledge is higher than tire knowledge, but the

DCR index shows that tire knowledge is higher than bad weld based knowledge. It

is explained that tire knowledge has more degree of causal representation than the

other. The integrated wheel tire knowledge is presented in Figure 7-19 (c). It is

integrated by knowledge network structure and beliefs. It shows a new generated

knowledge, newNetowrk-wheel-tire, which is analyzed that DCR is137.485,

causality is 41.7467, network connectivity is 3.2933, and DCR index is 0.14.

(a) Bad weld based wheel knowledge

159

(b) Tire knowledge

(c) Integrated wheel tire knowledge

Figure 7-19 Knowledge network for integration with different domains

160

Figure 7-20 presents the effects of design modification with two original

knowledge with different domains, bad weld based wheel and tire knowledge. if a

designer modifies the Selection of Material for bad weld based wheel knowledge

and Material for tire knowledge among the design factors, the effects of

maintenance factors are predicted. Two maintenance factors for bad weld based

wheel knowledge are predicted, Bad Weld (0.03) and Design Fault (0.016). For the

tire knowledge, Design Fault (0.1) and Size Fault (0.003) are predicted.

(a) Bad weld based wheel knowledge

161

(b) Tire knowledge

Figure 7-20 Effects of the design modification

Figure 7-21 illustrates the effects of design modification (Selection of Material

and Material) in the integrated wheel knowledge. The integrated wheel knowledge

includes five design factors and three maintenance factors. To compare between

original knowledge and integrated knowledge, Selection of Material is selected for

bad weld based wheel knowledge, Material is selected for tire knowledge, and

Selection of Material or Material is selected for integrated knowledge. For the bad

weld based wheel knowledge and integrated knowledge (Figure 7-20 (a) and 7-21

(a)), the effects of integrated knowledge provide more knowledge to make better

decision; 1) Size Fault (0.348) has more effects than others (0.048, 0.017) in

integrated knowledge, but Bad Weld (0.03) has more effects than Design Fault

162

(0.016) in bad weld based wheel knowledge, 2) even Bad Weld (0.03) has more

effects than Design Fault (0.016) in bad weld based wheel knowledge, Design

Fault (0.48) has more effects than Bad Weld (0.017) in integrated knowledge. For

the tire knowledge and integrated knowledge (Figure 7-20 (b) and 7-21 (b)), the

results of comparison is similar with the ones between bad weld based wheel

knowledge and integrated knowledge.

(a) For bad weld based wheel knowledge

163

(b) For tire knowledge

Figure 7-21 Effects of design modification in integrated wheel-tire knowledge

The integrated knowledge, which is within the same domain and in different

domain, represents more knowledge than original knowledge. These results

indicate that the integrated knowledge includes additional knowledge from tire

knowledge and bad weld based wheel knowledge to provide better design decision

for a new product design.

7.3 Conclusion

To use DCR evaluation method, one limitation of this method should be

overcome. The limitation of DCR method is that it is strongly dependant with the

number of vertices in causal knowledge network. This limitation restricts the

comparison of multiple causal knowledge for selecting better design knowledge in

product development. To overcome this limitation, new evaluation index, which is

164

called DCR index, is developed. Using DCR index, multiple causal knowledge with

different number of nodes are compared. In this research, based on knowledge

relationship, the new knowledge integration method is developed. The knowledge

relationship classifies product development knowledge into three categories: inter-

process, inter-actor, and inter-product knowledge in order to integrate

heterogeneous existing product development knowledge. Based on these

categories, the cases of the causal knowledge integration is developed. Finally, the

innovative knowledge integration method is validated with wheel case.

165

CHAPTER 8

IMPLEMENTATION

8.1 Causal Design Knowledge Management System

In this research, web-based causal product design knowledge management

system is developed with .net based developing environment (Figure 8-1). The

detail developing environment is as follows: 1) the computer is PC based, 2)

operating system is Microsoft Windows XP Professional SP2, 3) the database

management system is MS SQL Express with ODBC for database connection, 4)

basic programming language is C++, C#, and HTML/ASP for functions and web

interface, 5) web server is Microsoft Internet Information Service, 6) and

developing platform is Microsoft Visual Studio 2008. This developing environment

is one of most popular configurations in web-based client and server system. The

Visual Studio developing platform can easily connect C++ functions and C# web

page development. In this platform, also, the Internet Information Service is ready

to deploy the web service because all developing software is based on Microsoft

applications.

166

Figure 8-1 .net based developing environment

Based on this developing environment, the web-based causal product design

knowledge management system is implemented. The basic concept of this system

is that a cad user wants to modify the existing design for a new one. The design

support system can provide effects of the modification in real time as shown in

Figure 8-2. The effects of the modification are based on causal knowledge

inference using Bayesian belief network. Thus, the prediction of the modification

includes the design and maintenance aspects of the product. This support system

can be stand alone or API for CAD application.

Visual Studio

MS SQL

C++

Internet Information Service

HTML / ASP

ODBC

Windows

Ontology

DB connection

Language

Web Server

User Interface

Platform

OS

DBMS

Meta-data

167

Figure 8-2 Basic concept: design support processes

In the Figure 8-3, the system architecture of the causal product design

knowledge management is presented. This system is conducted with two main

parts, design knowledge acquisition and reuse. For the design knowledge

acquisition, the domain experts’ knowledge is obtained through causal design

management interface. The obtained knowledge is checked by causal design

manage whether the knowledge is exist or not in the causal knowledge base. If

there is the knowledge in the knowledge base, the new and existing knowledge are

integrated by the knowledge integrator, the integrated knowledge is evaluated, and

the knowledge and the evaluation results are stored to knowledge base. If there is

not existing one in the knowledge base, the new knowledge is evaluated and is

Design
Modification

Knowledge
Databases

What are the effects of the
modification in product

development life cycle (especially,
design and maintenance) ?

If the angle of valve is modified,
the flow rate, shape of valve, size, material

will be affected

168

stored with evaluation results. For the knowledge reuse, a designer requests a

specific knowledge to causal design management interface, causal design

manager searches for the requested knowledge in the knowledge base. If the

requested knowledge is in the knowledge base, the knowledge and saved

evaluation results are provided through report generator. If the requested

knowledge is not in the knowledge base, causal design manager searches for

similar alternatives and reports the alternatives to the designer with evaluation

results. If the alternatives are needed to integrate, the alternatives are integrated

by knowledge integrator and the generated knowledge is reported to designer with

evaluation results.

Figure 8-3 System architecture of the causal product design knowledge

management system

Domain
Experts

User

Knowledge
Evaluator

Knowledge
Integrator

Causal
Knowledge

base

Causal Design
Management Interface

Causal
Design

Manager

Report
Generator

Knowledge
Convertor

169

The systematic knowledge elicitation from domain experts, which is called

FCM Constructor, is implemented. Figure 8-4 (a) shows elicitation of important

variables in a specific knowledge to conduct knowledge network structure. After

conducting knowledge structure, the relationship between variables, which can be

positive or negative for the causal sign and very weak, weak, neutral, strong, very

strong for casual strength, is obtained as shown in Figure 8-4 (b). When the causal

relationship is completed, the fuzzy cognitive map is generated by FCM

Constructor (Figure 8-4 (c)). Figure 8-4 (d) represents Bayesian belief network,

which is converted from fuzzy cognitive map using FCM-BBN as mentioned in

Chapter 4.

(a) Elicitation of important variables

(b) Causal relationship between variables

170

(c) Systematical generated Fuzzy Cognitive Map

(d) Bayesian Belief Network from Fuzzy Cognitive Map

Figure 8-4 Systematic knowledge acquisition

The systematic generated causal knowledge is evaluated by DCR (Figure 8-

5). This evaluation results include number of nodes, number of incoming arcs,

171

weight, causality, network connectivity, and DCR. The main function of DCR is

implemented with C++ programming in Microsoft Visual Studio. The detail C++

codes is in the Appendix A. Also, the DCR index for multiple causal knowledge

comparison is conducted as shown in Table 8-1. The DCR index includes minimum

DCR (index is 0) and maximum DCR (index is 100) with different number of nodes

(from 3 to 11). The detail evaluation results for index generation are attached in

Appendix B.

Figure 8-5 Result of evaluation (DCR)

172

Table 8-1 Evaluation index (DCR index)

The systematic generation of new causal design knowledge is implemented.

Figure 8-6 shows causal knowledge integration with evaluation results for original

knowledge. Also, the integration analysis results are provided at the bottom of

Figure 8-6 (In this case, the knowledge networks’ structures are identical). The

integrated knowledge, which name is newNetwork.xdsl, is generated. The

evaluation of the generated knowledge is analyzed as shown in Figure 8-8. The

generated knowledge (4.8) has better DCR than two original knowledge (3.35, 2.69)

in this integration case.

ID # of Nodes Connectivity Probability DCR Index

1
3 Minimum 0.51 0.0036 0

3 Maximum 0.99 34.5744 100

2
4 Minimum 0.51 0.0077 0

4 Maximum 0.99 262.7654 100

3
5 Minimum 0.51 0.0154 0

5 Maximum 0.99 1728.7200 100

4
6 Minimum 0.51 0.0282 0

6 Maximum 0.99 12074.7334 100

5
7 Minimum 0.51 0.0473 0

7 Maximum 0.99 98049.6898 100

6
8 Minimum 0.51 0.0738 0

8 Maximum 0.99 981411.6411 100

7
9 Minimum 0.51 0.1088 0

9 Maximum 0.99 10184059.6366 100

8
10 Minimum 0.51 0.1536 0

10 Maximum 0.99 115732072.2365 100

9
11 Minimum 0.51 0.2093 0

11 Maximum 0.99 1427091751.6989 100

173

Figure 8-6 Causal knowledge integration example

Figure 8-7 Integrated knowledge (newNetwork.xdsl)

174

Figure 8-8 integrated knowledge evaluation

The knowledge network interface engine is one of useful two outcomes from

the implementation. This interface connects between knowledge inference engine

and causal product design knowledge management system (Figure 8-9). The

knowledge inference engine is a software, which is called GeNIe and is developed

by Decision Support Laboratory in University of Pittsburgh. This engine use .xdsl

file format based on xml. Thus, the causal product design knowledge management

system includes the interface engine for handling .xdsl file format. The GeNIe’s file

is readable on the knowledge management system. Also, a generated file from the

knowledge management system is readable on GeNIe. The C++ programming

codes of interface engine is attached in Appendix C.

175

Figure 8-9 knowledge network interface engine between knowledge inference

engine and causal product design knowledge management system

The causal design knowledge repository is the other of useful two outcomes.

Using this management system, database is required. After using the system, the

data are accumulated in the database and the accumulated repository includes

product design factors, product design knowledge, and knowledge evaluation

results. This causal design knowledge repository can be utilized for other

knowledge systems.

Table 8-2 Causal design knowledge repository

.xdsl
file

Id Kname Kdomain Kdate …… DCR

1 Valve automotive 03222010 16

2 Valve Aero space 02132009 18

3 Wheel Automotive 07252008 10

4 Fuel nozzle Aero space 05262007 15

…

n Product A DomainA 03262010 (20)

176

8.2 Case Study

This chapter presents and discusses three case studies—assembly design,

wheel, and fuel nozzle—to evaluate knowledge representation, evaluation, and

integration using the DCR-based method and causal knowledge integration

method. All use a causal knowledge. The assembly design case represents

knowledge, which is the relationship between assembly design and decision

environment (Figure 8-10). The wheel and fuel nozzle cases illustrate the

relationship of the design and maintenance aspects of each case (Figure 8-11 and

8-12). These three cases are conducted with three different causal knowledge: a

Bayesian belief network (BBN), which is directly generated by the domain experts;

a Bayesian belief network from fuzzy cognitive map (FCM-BBN), which is a

knowledge network converted from FCM using the FCM-BBN method from our

previous research as mentioned in Chapter 4; and a modified Bayesian belief

network from fuzzy cognitive map (FCM-BBN-M), which is a FCM-BBN without

direct edge if any indirect edge exists. Figure 8-11, 8-11, and 8-12 are one example

of each case. The three causal knowledge models for each case are attached in

Appendix D.

177

Figure 8-10 Example of assemble design

Figure 8-11 Example of wheel for automotive

178

Figure 8-12 Example of fuel nozzle for aircraft engine

Table 8-3 presents the results of case study using DCR. For the assembly

design case, BBN (109.672) has highest DCR; others are similar (83.414, 81.933).

For the wheel case, FCM-BBN-M (58.841) has lowest DCR; others are similar

(344.877, 360.621). For the fuel nozzle case, FCM-BBN (9702.75) highest DCR;

FCM-BBN-M (2916.061) has better DCR than BBN (612.853). With each case,

there are five sub criteria, number of vertices, number of incoming arcs, weight,

causality, and network connectivity. For the assembly case, DCR for FCM-BBN

(83.414) and FCM-BBN-M (81.933) are similar. However, if it is comparing the sub

criteria, FCM-BBN (6.683) has more network connectivity than FCM-BBN-M

(2.437). Oppositely, FCM-BBN (12.481) has less causality than FCM-BBN-M

(33.614). This interpretation provides more useful information to analyze a DCR

179

evaluation result; even similar DCR knowledge can analyze with sub criteria for

more details.

Table 8-3 Results of case study (DCR)

Based on DCR index (Table 8-1), currently, DCR index for fuel nozzle case is

not covered because DCR index is conducted with number of vertices from three to

eleven. Thus, assembly design and wheel cases are compared. For the assembly

design case, DCR index are BBN (0.0009463), FCM-BBN (0.00007194), and FCM-

BBN-M (0.00007066). For the wheel case, DCR index are BBN (0.00002415),

FCM-BBN (0.00002525), and FCM-BBN-M (0.00000410). The assembly design

knowledge is at least 2.7 times better than wheel knowledge with three knowledge

models.

Case Criterion BBN FCM-BBN FCM-BBN-M

Assembly design

No. of Nodes 11 11 11

No. of Parent 20 22 15

Weight 0.76 0.567 2.241

Causality 14.44 12.481 33.614

Network Connectivity 7.595 6.683 2.437

DCR 109.672 83.414 81.933

Wheel

No. of Nodes 10 10 10

No. of Parent 16 18 11

Weight 4.592 2.762 1.843

Causality 73.479 49.716 20.28

Network Connectivity 4.693 7.254 2.901

DCR 344.877 360.621 58.841

Fuel nozzle

No. of Nodes 30 30 30

No. of Parent 30 73 48

Weight 6.545 10.646 10.121

Causality 196.35 777.158 511.008

Network Connectivity 3.121 12.485 5.706

DCR 612.853 9702.75 2916.061

180

CHAPTER 9

CONCLUSTION

The US engineering industry base is facing a significant loss of knowledge due

to large numbers of employees retiring in the next decade. Problems in various

product developments including product design may arise when the expertise is no

longer available or the knowledge is forgotten. Also, most of product design

knowledge is not reusable, because product design knowledge in an organization

remains un-codified. Generally, knowledge-based system can solve or infer these

problems.

In this research, to solve knowledge retention and loss problems, a new web-

based causal product design knowledge management system are developed. For

this system, several new methodologies to capture, represent, store, and reuse

experts' domain knowledge during the product development processes. To capture

experts' domain knowledge, Chapter 4 addresses systematic knowledge

acquisition and knowledge conversion from fuzzy cognitive maps to Bayesian

belief network. For the knowledge representation formalism, Chapter 5 discusses

the mathematical definitions of this research (procedural knowledge, causal

knowledge, and knowledge transformation) and comparison and transformation

between procedural knowledge and causal knowledge in order to use causal

knowledge for knowledge representation formalism. After storing the causal

knowledge, A system of causal design knowledge evaluation and support is

presented and a new causal knowledge evaluation method is developed and

181

implemented in Chapter 6. This new causal knowledge evaluation method

compares design knowledge using degree of causal representation (DCR). The

results show that: 1) the more complex knowledge network model has higher DCR,

2) the knowledge network with higher weight has higher DCR, 3) the effect of

weight increases with the more complex knowledge network. Chapter 7 discusses

DCR index and knowledge integration. To use DCR evaluation method, one

limitation of this method should be overcome. This limitation restricts the

comparison of multiple causal knowledge for selecting better design knowledge in

product development. To overcome this limitation, new evaluation index is

developed. Using DCR index, multiple causal knowledge with different number of

nodes are compared. Knowledge integration is an intelligent knowledge acquisition

method from existing knowledge. Based on knowledge relationship, the new

knowledge integration method is developed. The knowledge relationship classifies

product development knowledge into three categories: inter-process, inter-actor,

and inter-product knowledge in order to integrate heterogeneous existing product

development knowledge. Based on this categories, the cases of the causal

knowledge integration is developed. Chapter 8 implements web-based causal

product design knowledge management system using Microsoft Visual Studio

development environments.

With up to half a million engineers set to reach retirement age in the next

decade, innovative and useful working environments, web-based collaborations,

and underlying new technologies to support creative activities related to knowledge

182

retention and knowledge exchange are very important. Also, knowledge

management is a very significant issue in product development. Knowledge

management system is conducted with various methodologies and technologies,

such as data mining, email, DBMS, and internet. Figure 9-1 illustrates a road-map

of the knowledge management system requirements, which is adapted from the

function’s road-map of the knowledge management system addressed by Gardner

Group.

This figure presents this research’s contributions and is conducted with

existing knowledge management system’s requirement and outcomes of my

research work. Vertical axis indicates the maturity of requirements and horizontal

axis is separated by requirements in knowledge management system. The

requirements include store&retrieve, send, structure&navigate, share, synthesize,

and solve. Most of the dissertation’s outcomes are located at low maturity, which

means that this research is novel in these domains. To appropriately acquire

domain experts’ knowledge, FCM Constructor is developed and is a newer

methodology in store & retrieve requirement. Causal knowledge representation

formalism is a new area in the product development since there is no research to

use causal knowledge representation. Also, knowledge transformation is a novel

method in order to represent product design knowledge because most of product

design knowledge is represented by procedural knowledge. Causal knowledge

integration is an intelligent knowledge acquisition method from existing knowledge,

which is not properly managed in current product development knowledge

183

framework. Causal reasoning is a proven technology for product development

knowledge prediction and diagnosis in order to prevent potential failures in the

product development lifecycle. DCR based causal knowledge evaluation method is

a new evaluation method in causal knowledge. No research is conducted to

evaluate causal knowledge. .xdsl file interface provides a communication

environment between totally diffent applications. Web-based conllaboration among

stakeholder, who is currently working or retired, can provide true collaboration

environment with discrete knowledge using real time based internet technology

This research extends design, technological and computational innovations in

knowledge acquisition, knowledge representation, integration of knowledge, web-

based knowledge management system to design problem solving processes.

Results from this research are expected to advance our understanding of 1)

capturing domain knowledge from experts, 2) systematic knowledge acquisition for

current working engineering knowledge retention and for keeping retired

professionals engaged in industry, 3) capturing and transforming existing

procedural engineering knowledge to better knowledge representation formalism, 4)

evaluating causal knowledge to make design decision, 5) comparing multiple

design knowledge in heterogeneous product, 6) integrating existing design

knowledge to generate refined knowledge, 7) and systematic knowledge

management using information technologies and tools. Thus, this research leads to

discovery and integration across these frontiers.

184

Figure 9-1 Contribution of the research in knowledge management system
requirement

Store &
Retrieve

Send Structure
& Navigate

Share Synthesize Solve

M
atu

rity

KMS requirments

High

Low

Linguistic
Search

Query Tool

Data
Warehousing

DBMS

Document
Management

Internet/Intranet

E‐mail

Netcasting

WWW/
HTML

Workflow

Electronic
Meeting
Support

Video
Conferencing

Discussion DB

Content
Extraction

Agents

Rule‐based
Reasoning

Neural
Network

Data
Mining

OWL/SWRL

DCR and knowledge
evaluation

Casual knowledge
network &
transformation

Casual reasoning

Web‐based
collaboration

Casual knowledge
integration

XDSL

FCM Constructor

185

APPENDIX A

C++ programming code for DCR

#include "stdafx.h"

#include <stdio.h>

#include <windows.h>

#include <objbase.h>

#include <msxml2.h>

#include <string>

#include <vector>

#include "atlstr.h"

#include <iostream>

#include <math.h>

using namespace std;

// Macro that calls a COM method returning HRESULT value:

#define HRCALL(a, errmsg) \

do { \

 hr = (a); \

 if (FAILED(hr)) { \

 printf("%s:%d HRCALL Failed: %s\n 0x%.8x = %s\n", \

 __FILE__, __LINE__, errmsg, hr, #a); \

 goto clean; \

 } \

} while (0)

typedef std::vector<std::vector<std::vector<CString>>> strVector3;

typedef std::vector<std::vector<CString>> strVector2;

typedef std::vector<CString> strVector1;

typedef std::vector<std::vector<std::vector<double>>> doubleVector3;

typedef std::vector<std::vector<double>> doubleVector2;

typedef std::vector<double> doubleVector1;

typedef std::vector<std::vector<std::vector<int>>> intVector3;

typedef std::vector<std::vector<int>> intVector2;

typedef std::vector<int> intVector1;

// Helper function that put output in stdout and debug window

// in Visual Studio:

186

void dprintf(char * format, ...)

{

 static char buf[1024000000];

 va_list args;

 va_start(args, format);

 vsprintf_s(buf, format, args);

 va_end(args);

 OutputDebugStringA(buf);

 printf("%s", buf);

}

// Helper function to create a DOM instance:

IXMLDOMDocument * DomFromCOM()

{

 HRESULT hr;

 IXMLDOMDocument *pxmldoc = NULL;

 HRCALL(CoCreateInstance(__uuidof(DOMDocument30),

 NULL,

 CLSCTX_INPROC_SERVER,

 __uuidof(IXMLDOMDocument),

 (void**)&pxmldoc),

 "Create a new DOMDocument");

 HRCALL(pxmldoc‐>put_async(VARIANT_FALSE),

 "should never fail");

 HRCALL(pxmldoc‐>put_validateOnParse(VARIANT_FALSE),

 "should never fail");

 HRCALL(pxmldoc‐>put_resolveExternals(VARIANT_FALSE),

 "should never fail");

 return pxmldoc;

clean:

 if (pxmldoc)

 {

 pxmldoc‐>Release();

 }

 return NULL;

}

VARIANT VariantString(BSTR str)

{

 VARIANT var;

187

 VariantInit(&var);

 V_BSTR(&var) = SysAllocString(str);

 V_VT(&var) = VT_BSTR;

 return var;

}

void ReportParseError(IXMLDOMDocument *pDom, char *desc) {

 IXMLDOMParseError *pXMLErr=NULL;

 BSTR bstrReason = NULL;

 HRESULT hr;

 HRCALL(pDom‐>get_parseError(&pXMLErr),

 "dom‐>get_parseError: ");

 HRCALL(pXMLErr‐>get_reason(&bstrReason),

 "parseError‐>get_reason: ");

 printf("%s %S\n",desc, bstrReason);

clean:

 if (pXMLErr) pXMLErr‐>Release();

 if (bstrReason) SysFreeString(bstrReason);

}

CString stringfromBstr (BSTR bstr){

 TCHAR szFinal[255000];

 // direct conversion from BSTR to LPCTSTR only works in Unicode

 _stprintf(szFinal, _T("%s"), (LPCTSTR)bstr);

 // _bstr_t bstrIntermediate(bstr); // convert to _bstr_t

 CString strFinal;

 // you have to go through _bstr_t to have it work in ANSI and Unicode

 _stprintf(szFinal, _T("%s"), (LPCTSTR)bstr);

 // Or using MFC

 strFinal.Format(_T("%s"), (LPCTSTR)bstr);

 return strFinal;

}

188

int findIndirect(doubleVector2 adjcentRelationData, intVector1 childNameNum,int memory, int count, int self,

intVector1 preNode, int pre)

{

 intVector1 childNameNum1;

 for (int x=0; x<childNameNum.size();x++)

 {

 int prenodecount=0;

 count=0;

 for (int y=0;y<adjcentRelationData[childNameNum[x]].size();y++)

 {

 if(adjcentRelationData[childNameNum[x]][y])

 {

 for (int z=0;z<preNode.size();z++)

 {

 if(preNode[z])

 {

 if(preNode[z]==childNameNum[x])

 {

 pre=1;

 //printf("\tDD");

 }

 }

 }

 if (childNameNum[x]==memory)

 {}

 else if (self==y||childNameNum[x]==y || pre)

 {

 pre=0;

 }

 else if (memory == y)

 {

 count++;

 preNode.push_back(childNameNum[x]);

 //printf("\t%d",count);printf("BB");

 }

 else{

 preNode.push_back(childNameNum[x]);

 childNameNum1.push_back(y);

 count+=findIndirect(adjcentRelationData, childNameNum1,memory, count, self, preNode, pre);

 childNameNum1.clear();

 }

189

 }

 }

 preNode.clear();

 }

 return count;

}

doubleVector2 getindirectrelation(doubleVector2 relationDataTemp, strVector1 matchNode, intVector1

matchNodeNum, strVector3 nodeData,doubleVector2 adjcentRelationData)

{

 doubleVector2 indirect=relationDataTemp;

 strVector1 childName;

 intVector1 childNameNum;

 intVector1 preNode;

 intVector1 childNameNum1;

 CString temp123, temp1234;

 double temp12345;

 int memory=0;

 int self=0;

 int pre=0;

 for (int i=0; i<indirect.size();i++)

 {

 self=i;

 int count1=0;

 for (int j=0;j<indirect[i].size();j++)

 {

 if (i==j)

 {}

 else

 {

 memory=j;

 for (int x=0; x<adjcentRelationData.size();x++)

 {

 for (int y=0;y<adjcentRelationData[x].size();y++)

 {

 if (x == self && adjcentRelationData[x][y])

 {

190

 childNameNum.push_back(y);

 //printf("\t%S",adjcentRelationData[x][y]);

 //printf("\t%d",count);

 }

 }

 }

 childName.clear();

 int count=0;

 for (int x=0; x<childNameNum.size();x++)

 {

 int prenodecount=0;

 for (int y=0;y<adjcentRelationData[childNameNum[x]].size();y++)

 {

 if(adjcentRelationData[childNameNum[x]][y])

 {

 for (int z=0;z<preNode.size();z++)

 {

 }

 for (int z=0;z<preNode.size();z++)

 {

 if(preNode[z])

 {

 if(preNode[z]==childNameNum[x])

 {

 pre=1;

 //printf("\tDD");

 }

 }

 }

 if (childNameNum[x]==memory)

 {}

 else if (self==y||childNameNum[x]==y || pre)

 {

 pre=0;

 }

 else if (memory == y)

 {

 count++;

 preNode.push_back(childNameNum[x]);

 }

 else{

191

 preNode.push_back(childNameNum[x]);

 childNameNum1.push_back(y);

 count+=findIndirect(adjcentRelationData, childNameNum1,memory, count, self, preNode, pre);

 childNameNum1.clear();

 }

 }

 preNode.clear();

 }

 count1=count;

 }

 }

 childNameNum.clear();

 indirect[i][j]=(double)count1;

 }

 }

 return indirect;

}

//get the relation of nodes (direct + indirect)

doubleVector2 getRelation (strVector3 nodeData)

{

 doubleVector1 relationRowData;

 doubleVector2 relationDataTemp;

 doubleVector2 adjcentRelationData;

 doubleVector1 indirectrelationRowData;

 doubleVector2 indirectrelationDataTemp;

 doubleVector1 directrelationRowData;

 doubleVector2 directrelationDataTemp;

 doubleVector2 doubletemp8;

 double temp10;

 CString temp11,temp12;

 strVector1 matchNode;

 intVector1 matchNodeNum;

 // match matrix

 for (int x=0; x<nodeData.size();x++)

 {

192

 matchNode.push_back(nodeData[x][0][0]);

 matchNodeNum.push_back(x);

 }

 //adjcent matrix

 for (int x=0;x<nodeData.size();x++)

 {

 for(int y=0;y<nodeData.size();y++)

 {

 relationRowData.push_back(0);

 }

 relationDataTemp.push_back(relationRowData);

 relationRowData.clear();

 }

 //find direct relation

 adjcentRelationData=relationDataTemp;

 for (int x=0;x<nodeData.size();x++)

 {

 for(int y=0;y<nodeData[x].size();y++)

 {

 for(int z=0;z<nodeData[x][y].size();z++)

 {

 if(y==2)

 {

 temp11=nodeData[x][y][z];

 for (int s=0;s<matchNode.size();s++)

 {

 temp12=matchNode[s];

 if (temp11==temp12)

 {

 temp10=matchNodeNum[s];

 adjcentRelationData[temp10][x]=1;

 }

 }

 }

 }

 }

 }

 directrelationDataTemp=adjcentRelationData;

193

 //find indirect relation

 indirectrelationDataTemp=getindirectrelation(relationDataTemp, matchNode, matchNodeNum, nodeData,

adjcentRelationData);

 for (int x=0;x<indirectrelationDataTemp.size();x++)

 {

 for(int y=0;y<indirectrelationDataTemp[x].size();y++)

 {

 if (x==y)

 {

 indirectrelationDataTemp[x][y]=0;

 }

 }

 }

 for (int x=0;x<relationDataTemp.size();x++)

 {

 for(int y=0;y<relationDataTemp[x].size();y++)

 {

 relationDataTemp[x][y]=directrelationDataTemp[x][y]+indirectrelationDataTemp[x][y];

 }

 }

 return relationDataTemp;

}

double getPower(double num, int p)

{

 double c=num;

 num=1;

 for (int i=0;i<p;i++)

 {

 num*=c;

 }

 return num;

}

int _tmain(int argc, _TCHAR* argv[])

{

 IXMLDOMDocument *pXMLDom=NULL;

 IXMLDOMNodeList *pNodes=NULL;

 IXMLDOMNodeList *pChildLists=NULL;

 IXMLDOMNode *pNode=NULL;

 IXMLDOMNamedNodeMap *pNodeMap=NULL;

 IXMLDOMNamedNodeMap *pChildMap=NULL;

194

 IXMLDOMNode *pNodeList=NULL;

 IXMLDOMNode *pChildList=NULL;

 IXMLDOMNode *pChildAttributeList=NULL;

 BSTR bstr = NULL;

 BSTR bstr1 = NULL;

 BSTR bstr3 = NULL;

 BSTR temp = NULL;

 VARIANT_BOOL status;

 VARIANT var,var1;

 HRESULT hr;

 long length, length1, length2, length3;

 FILE *ifs;

 FILE *ofs;

 strVector1 rowData;

 strVector1 rowData1;

 strVector1 rowData2;

 strVector2 singleData;

 strVector3 nodeData;

 strVector3 nodeData1;

 strVector3 nodeData2;

 CString strTemp, strTemp1, strTemp2, strTemp3, strTemp4;

 char address1[100];

 cout << "Insert file name1:";

 cin>>address1;

 CString add11=(CString)address1;

 BSTR add1 = add11.AllocSysString();

 char address2[100];

 cout << "Insert file name2:";

 cin>>address2;

 CString add22=(CString)address2;

 BSTR add2 = add22.AllocSysString();

 if (add1)

 {

 CoInitialize(NULL);

 pXMLDom = DomFromCOM();

 if (!pXMLDom) goto clean;

195

 VariantInit(&var);

 var = VariantString(add1);

 HRCALL(pXMLDom‐>load(var, &status), "dom‐>load(): ");

 if (status!=VARIANT_TRUE) {

 ReportParseError(pXMLDom,

 "Failed to load DOM from stocks.xml");

 goto clean;

 }

 // Query a node‐set.

 ifs=fopen("nodeInofr.txt","w");

 if (bstr) SysFreeString(bstr);

 bstr = SysAllocString(L"//nodes[0]/*");

 HRCALL(pXMLDom‐>selectNodes(bstr, &pNodes), "selectNodes ");

 if (!pNodes) {

 ReportParseError(pXMLDom, "Error while calling selectNodes ");

 }

 else

 {

 //printf("Results from selectNodes:\n");

 HRCALL(pNodes‐>get_length(&length), "get_length: ");

 int countlength=(int)length;

 for (long i=0; i<length; i++) {

 if (pNode) pNode‐>Release();

 HRCALL(pNodes‐>get_item(i, &pNode), "get_item: ");

 if (bstr) SysFreeString(bstr);

 HRCALL(pNode‐>get_nodeName(&bstr), "get_nodeName: ");

 //printf("Node (%d), <%S>:\n",i, bstr);

 if (bstr) SysFreeString(bstr);

 //HRCALL(pNode‐>get_xml(&bstr), "get_xml: ");

 // For getting attributes in a node

 HRCALL(pNode‐>get_attributes(&pNodeMap), "get_attributes: ");

 //HRCALL(pNodeMap‐>get_length(&length1), "get_length: ");

196

 for (long j=0;j<1;j++){

 HRCALL(pNodeMap‐>get_item(j,&pNodeList), "get_item: ");

 HRCALL(pNodeList‐>get_baseName(&bstr), "get_baseName: ");

 HRCALL(pNodeList‐>get_text(&bstr), "get_text: ");

 strTemp=stringfromBstr(bstr);

 rowData.push_back(strTemp);

 singleData.push_back(rowData);

 rowData.clear();

 }

 // For getting childnodes in a node

 HRCALL(pNode‐>get_childNodes(&pChildLists), "get_childNodes: ");

 HRCALL(pChildLists‐>get_length(&length2), "get_length: ");

 for (long k=0;k<length2;k++){

 HRCALL(pChildLists‐>get_item(k,&pChildList), "get_item: ");

 HRCALL(pChildList‐>get_nodeName(&bstr1), "get_nodeName: ");

 if(k==0)

 {

 strTemp1=stringfromBstr(bstr1);

 }

 strTemp2=stringfromBstr(bstr1);

 HRCALL(pChildList‐>get_attributes(&pChildMap), "get_attributes: ");

 HRCALL(pChildMap‐>get_length(&length3), "get_length: ");

 if (length3 == 0){

 }

 else

 {length3 =1;}

 // For getting attributes in a childnode

 for (long l=0;l<length3;l++){

 HRCALL(pChildMap‐>get_item(l,&pChildAttributeList), "get_item: ");

197

 HRCALL(pChildAttributeList‐>get_baseName(&bstr), "get_baseName: ");

 HRCALL(pChildAttributeList‐>get_text(&bstr), "get_text: ");

 strTemp=stringfromBstr(bstr);

 rowData.push_back(strTemp);

 }

 if ((strTemp1!=strTemp2)&&(length3!='0')){

 HRCALL(pChildList‐>get_text(&bstr3), "get_text: ");

 if (strTemp2=="probabilities"){

 strTemp2=stringfromBstr(bstr3);

 char *a=(char *)strTemp2.GetString();

 char aa[100000];

 for (int i=0;i<strTemp2.GetLength()*2+1;i++)

 {

 if(a[i] != NULL && a[i] != ' '){

 aa[i]=a[i];

 strTemp4+=aa[i];

 }

 else if (a[i] != NULL && a[i] == ' ')

 {

 rowData2.push_back(strTemp4);

 strTemp4.Empty();

 }

 else if (i == strTemp2.GetLength()*2)

 {

 rowData2.push_back(strTemp4);

 strTemp4.Empty();

 }

 }

 }

 else

 {

 strTemp=stringfromBstr(bstr3);

 char *a=(char *)strTemp.GetString();

 char aa[100000];

 for (int i=0;i<strTemp.GetLength()*2+1;i++)

 {

 if(a[i] != NULL && a[i] != ' '){

198

 aa[i]=a[i];

 strTemp3+=aa[i];

 }

 else if (a[i] != NULL && a[i] == ' ')

 {

 rowData1.push_back(strTemp3);

 strTemp3.Empty();

 }

 else if (i == strTemp.GetLength()*2)

 {

 rowData1.push_back(strTemp3);

 strTemp3.Empty();

 }

 }

 }

 }

 }

 singleData.push_back(rowData);

 rowData.clear();

 singleData.push_back(rowData1);

 rowData1.clear();

 singleData.push_back(rowData2);

 rowData2.clear();

 nodeData.push_back(singleData);

 singleData.clear();

 }

 nodeData1=nodeData;

 nodeData.clear();

 // optimality analysis

 intVector1 parentData;

 doubleVector1 probData;

 doubleVector1 causalData;

 doubleVector1 nodeProbRowData;

 doubleVector2 nodeProbData;

 doubleVector2 relationData;

 doubleVector2 ratioData;

199

 CString doubleTemp, doubleTemp1, doubleTemp2, doubleTemp3, doubleTemp4;

 int count100=0;

 double total=0;

 //Get the number of parents

 for (int x=0;x<nodeData1.size();x++)

 {

 for(int y=0;y<nodeData1[x].size();y++)

 {

 for(int z=0;z<nodeData1[x][y].size();z++)

 {

 if (y==2)

 {

 count100= count100+1;

 //printf("\t%d",count100);

 }

 }

 if(y==2)

 {

 parentData.push_back(count100);

 count100=0;

 }

 }

 }

 // Get the probabilities of each node

 for (int x=0;x<nodeData1.size();x++)

 {

 for(int y=0;y<nodeData1[x].size();y++)

 {

 for(int z=0;z<2;z++)

 {

 if (y==3)

 {

 doubleTemp=nodeData1[x][y][z];

 nodeProbRowData.push_back(_wtof(doubleTemp));

 }

 if(y==3)

 {

 nodeProbData.push_back(nodeProbRowData);

 nodeProbRowData.clear();

200

 }

 }

 }

 }

 relationData=getRelation (nodeData1);

 int maxNode= nodeData1.size();

 printf("Number of Nodes : \t%d\n",maxNode);

 for (int z=1;z<maxNode‐1;z++)

 {

 double num=1;

 double denum=1;

 for (int x=1;x<maxNode‐1;x++)

 {

 num=num*x;

 }

 for (int y=1;y<maxNode‐1‐z;y++)

 {

 denum=denum*y;

 }

 total+=(num/denum);

 }

 double temp321=1;

 for (int x=1;x<maxNode;x++)

 {

 temp321*=x;

 }

 total=((maxNode‐1)+total*(maxNode‐1)/temp321);

 doubleVector1 numParent;

 doubleVector1 prob;

 doubleVector2 ratioRelation=relationData;

 for (int i=0;i<ratioRelation.size();i++)

 {

 for (int j=0; j<ratioRelation[i].size();j++)

 {

 ratioRelation[i][j]=relationData[i][j]/total;

201

 }

 }

 for (int i=0;i<nodeData1.size();i++)

 {

 numParent.push_back(nodeData1[i][2].size());

 }

 for (int i=0;i<nodeData1.size();i++)

 {

 double temp11=0;

 double temp12=0;

 double temp13=0;

 int numState=2;

 for (int j=0;j<numState;j++)

 {

 temp13=_wtof(nodeData1[i][3][j]);

 temp13‐=0.5;

 temp12=getPower(temp13,2);

 temp11+=temp12;

 }

 temp11=temp11/(numState‐1);

 prob.push_back(temp11);

 }

 double sumNumParent=0;

 double sumProb=0;

 double sumRatioRelation=0;

 for (int i=0;i<nodeData1.size();i++)

 {

 sumNumParent+=numParent[i];

 sumProb+=prob[i];

 for (int j=0; j<ratioRelation[i].size();j++)

 {

 sumRatioRelation+=ratioRelation[i][j];

 }

 }

 double DCR=0;

 DCR=sumNumParent*sumProb*sumRatioRelation;

 printf("\nNumParent (NP): %lf\n",sumNumParent);

 printf("\nWeight (P): %lf\n",sumProb);

202

 printf("\nCausality (C): %lf\n",sumProb*sumNumParent);

 printf("\nNetwork connectivity (NC): %lf\n",sumRatioRelation);

 printf("\nDCR: %lf\n",DCR);

}

}

if (add2)

 {

 CoInitialize(NULL);

 pXMLDom = DomFromCOM();

 if (!pXMLDom) goto clean;

 VariantInit(&var);

 var = VariantString(add2);

 HRCALL(pXMLDom‐>load(var, &status), "dom‐>load(): ");

 if (status!=VARIANT_TRUE) {

 ReportParseError(pXMLDom,

 "Failed to load DOM from stocks.xml");

 goto clean;

 }

 // Query a node‐set.

 ifs=fopen("nodeInofr.txt","w");

 if (bstr) SysFreeString(bstr);

 bstr = SysAllocString(L"//nodes[0]/*");

 HRCALL(pXMLDom‐>selectNodes(bstr, &pNodes), "selectNodes ");

 if (!pNodes) {

 ReportParseError(pXMLDom, "Error while calling selectNodes ");

 }

 else

 {

 HRCALL(pNodes‐>get_length(&length), "get_length: ");

 int countlength=(int)length;

 for (long i=0; i<length; i++) {

 if (pNode) pNode‐>Release();

 HRCALL(pNodes‐>get_item(i, &pNode), "get_item: ");

 if (bstr) SysFreeString(bstr);

 HRCALL(pNode‐>get_nodeName(&bstr), "get_nodeName: ");

203

 if (bstr) SysFreeString(bstr);

 // For getting attributes in a node

 HRCALL(pNode‐>get_attributes(&pNodeMap), "get_attributes: ");

 for (long j=0;j<1;j++){

 HRCALL(pNodeMap‐>get_item(j,&pNodeList), "get_item: ");

 HRCALL(pNodeList‐>get_baseName(&bstr), "get_baseName: ");

 HRCALL(pNodeList‐>get_text(&bstr), "get_text: ");

 strTemp=stringfromBstr(bstr);

 rowData.push_back(strTemp);

 singleData.push_back(rowData);

 rowData.clear();

 }

 // For getting childnodes in a node

 HRCALL(pNode‐>get_childNodes(&pChildLists), "get_childNodes: ");

 HRCALL(pChildLists‐>get_length(&length2), "get_length: ");

 for (long k=0;k<length2;k++){

 HRCALL(pChildLists‐>get_item(k,&pChildList), "get_item: ");

 HRCALL(pChildList‐>get_nodeName(&bstr1), "get_nodeName: ");

 if(k==0)

 {

 strTemp1=stringfromBstr(bstr1);

 }

 strTemp2=stringfromBstr(bstr1);

 HRCALL(pChildList‐>get_attributes(&pChildMap), "get_attributes: ");

 HRCALL(pChildMap‐>get_length(&length3), "get_length: ");

 if (length3 == 0){

 }

 else

 {length3 =1;}

 // For getting attributes in a childnode

 for (long l=0;l<length3;l++){

 HRCALL(pChildMap‐>get_item(l,&pChildAttributeList), "get_item: ");

 HRCALL(pChildAttributeList‐>get_baseName(&bstr), "get_baseName: ");

 HRCALL(pChildAttributeList‐>get_text(&bstr), "get_text: ");

 strTemp=stringfromBstr(bstr);

204

 rowData.push_back(strTemp);

 }

 if ((strTemp1!=strTemp2)&&(length3!='0')){

 HRCALL(pChildList‐>get_text(&bstr3), "get_text: ");

 if (strTemp2=="probabilities"){

 strTemp2=stringfromBstr(bstr3);

 char *a=(char *)strTemp2.GetString();

 char aa[100000];

 for (int i=0;i<strTemp2.GetLength()*2+1;i++)

 {

 if(a[i] != NULL && a[i] != ' '){

 aa[i]=a[i];

 strTemp4+=aa[i];

 }

 else if (a[i] != NULL && a[i] == ' ')

 {

 rowData2.push_back(strTemp4);

 strTemp4.Empty();

 }

 else if (i == strTemp2.GetLength()*2)

 {

 rowData2.push_back(strTemp4);

 strTemp4.Empty();

 }

 }

 }

 else

 {

 strTemp=stringfromBstr(bstr3);

 char *a=(char *)strTemp.GetString();

 char aa[100000];

 for (int i=0;i<strTemp.GetLength()*2+1;i++)

 {

 if(a[i] != NULL && a[i] != ' '){

 aa[i]=a[i];

 strTemp3+=aa[i];

 }

 else if (a[i] != NULL && a[i] == ' ')

205

 {

 rowData1.push_back(strTemp3);

 strTemp3.Empty();

 }

 else if (i == strTemp.GetLength()*2)

 {

 rowData1.push_back(strTemp3);

 strTemp3.Empty();

 }

 }

 }

 }

 }

 singleData.push_back(rowData);

 rowData.clear();

 singleData.push_back(rowData1);

 rowData1.clear();

 singleData.push_back(rowData2);

 rowData2.clear();

 nodeData.push_back(singleData);

 singleData.clear();

 }

 nodeData2=nodeData;

 nodeData.clear();

 // optimality analysis

 intVector1 parentData;

 doubleVector1 probData;

 doubleVector1 causalData;

 doubleVector1 nodeProbRowData;

 doubleVector2 nodeProbData;

 doubleVector2 relationData;

 doubleVector2 ratioData;

 CString doubleTemp, doubleTemp1, doubleTemp2, doubleTemp3, doubleTemp4;

 int count100=0;

 double total=0;

 //Get the number of parents

 for (int x=0;x<nodeData2.size();x++)

206

 {

 for(int y=0;y<nodeData2[x].size();y++)

 {

 for(int z=0;z<nodeData2[x][y].size();z++)

 {

 if (y==2)

 {

 count100= count100+1;

 }

 }

 if(y==2)

 {

 parentData.push_back(count100);

 count100=0;

 }

 }

 }

 // Get the probabilities of each node

 for (int x=0;x<nodeData2.size();x++)

 {

 for(int y=0;y<nodeData2[x].size();y++)

 {

 for(int z=0;z<2;z++)

 {

 if (y==3)

 {

 doubleTemp=nodeData2[x][y][z];

 nodeProbRowData.push_back(_wtof(doubleTemp));

 }

 if(y==3)

 {

 nodeProbData.push_back(nodeProbRowData);

 nodeProbRowData.clear();

 }

 }

 }

 }

 relationData=getRelation (nodeData2);

 int maxNode= nodeData2.size();

 printf("Number of Nodes : \t%d\n",maxNode);

207

 for (int z=1;z<maxNode‐1;z++)

 {

 double num=1;

 double denum=1;

 for (int x=1;x<maxNode‐1;x++)

 {

 num=num*x;

 }

 for (int y=1;y<maxNode‐1‐z;y++)

 {

 denum=denum*y;

 }

 total+=(num/denum);

 }

 double temp321=1;

 for (int x=1;x<maxNode;x++)

 {

 temp321*=x;

 }

 total=((maxNode‐1)+total*(maxNode‐1)/temp321);

 doubleVector1 numParent;

 doubleVector1 prob;

 doubleVector2 ratioRelation=relationData;

 for (int i=0;i<ratioRelation.size();i++)

 {

 for (int j=0; j<ratioRelation[i].size();j++)

 {

 ratioRelation[i][j]=relationData[i][j]/total;

 }

 }

 for (int i=0;i<nodeData2.size();i++)

 {

 numParent.push_back(nodeData2[i][2].size());

 }

 for (int i=0;i<nodeData2.size();i++)

208

 {

 double temp11=0;

 double temp12=0;

 double temp13=0;

 int numState=2;

 for (int j=0;j<numState;j++)

 {

 temp13=_wtof(nodeData2[i][3][j]);

 temp13‐=0.5;

 //printf("\n%lf",temp13);

 temp12=getPower(temp13,2);

 //printf("\n%lf",temp12);

 temp11+=temp12;

 }

 temp11=temp11/(numState‐1);

 prob.push_back(temp11);

 }

 double sumNumParent=0;

 double sumProb=0;

 double sumRatioRelation=0;

 for (int i=0;i<nodeData2.size();i++)

 {

 sumNumParent+=numParent[i];

 sumProb+=prob[i];

 for (int j=0; j<ratioRelation[i].size();j++)

 {

 sumRatioRelation+=ratioRelation[i][j];

 }

 }

 double DCR=0;

 DCR=sumNumParent*sumProb*sumRatioRelation;

 printf("\nNumParent (NP): %lf\n",sumNumParent);

 printf("\nWeight (P): %lf\n",sumProb);

 printf("\nCausality (C): %lf\n",sumProb*sumNumParent);

 printf("\nNetwork connectivity (NC): %lf\n",sumRatioRelation);

 printf("\nDCR: %lf\n",DCR);

209

}

}

int nodeData1cnt=1;

int nodeData2cnt=1;

 for (int x=1;x<nodeData1.size();x++)

 {

 nodeData1cnt++;

 }

 for (int x=1;x<nodeData2.size();x++)

 {

 nodeData2cnt++;

 }

 printf("\n\nFirst network ‐> number of nodes:%d \n", nodeData1cnt);

 printf("Second network ‐> number of nodes:%d \n", nodeData2cnt);

int matchNodecnt=0;

int matchParentcnt=0;

bool matchParent=1;

int match1 [100][2] ={0} ;

int match2 [100][2] ={0} ;

 for (int x=0;x<nodeData1.size();x++)

 {

 for (int y=0; y<nodeData2.size();y++)

 {

 if (nodeData1[x][0][0] == nodeData2[y][0][0])

 {

 ++matchNodecnt;

 match1[x][0]=1;

 match2[y][0]=1;

 if (nodeData1[x][2].size() == nodeData2[y][2].size())

 {

 for (int f=0; f<nodeData1[x][2].size();f++)

 {

 for (int g=0; g<nodeData2[y][2].size(); g++)

 {

210

 if (nodeData1[x][2][f] == nodeData2[y][2][g])

 {

 matchParentcnt++;

 }

 else

 {

 matchParent = 0;

 }

 }

 }

 if (nodeData1[x][2].size()==matchParentcnt)

 {

 match1[x][1]=1;

 match2[y][1]=1;

 }

 }

 }

 else

 {

 matchParent = 0;

 }

 }

 }

 if (matchParent)

 {

 printf("the number of matched node is %d \n ", matchNodecnt);

 printf("the networks' structure are identical \n");

 strVector3 nodeData3 = nodeData1;

 for (int i=0; i<nodeData3.size();i++)

 {

 for (int j=0; j<nodeData3[i][3].size();j++)

 {

 double a =wcstod(nodeData1[i][3][j],NULL);

 double c =wcstod(nodeData2[i][3][j],NULL);

 double b = (a+c)/2;

 nodeData3[i][3][j].Format(_T("%lf"),b);

 }

211

 }

 ofs=fopen("newNetwork.xdsl","w");

 fprintf(ofs, "<?xml version=\"1.0\" encoding=\"ISO‐8859‐1\"?>\n");

 fprintf(ofs, "<smile version=\"1.0\" id=\"newNetwork\" numsamples=\"1000\">\n");

 fprintf(ofs, "\t<nodes>\n");

 for (int x=0;x<nodeData3.size();x++)

 {

 fprintf(ofs, "\t\t<cpt id=\"%s",(LPCTSTR)nodeData3[x][0][0]);

 fprintf(ofs, "\" diagtype=\"target\" ranked=\"true\">\n");

 fprintf(ofs, "\t\t\t<state id=\"%s",(LPCTSTR)nodeData3[x][1][0]);

 fprintf(ofs, "\" fault=\"true\" />\n");

 for (int k=1;k<nodeData3[x][1].size();k++)

 {

 fprintf(ofs, "\t\t\t<state id=\"%s",(LPCTSTR)nodeData3[x][1][k]);

 fprintf(ofs, "\" />\n");

 }

 fprintf(ofs, "\t\t\t<parents>" /*, (LPCTSTR)nodeData3[x][2][0]*/);

 for (int y=0;y<nodeData3[x][2].size();y++)

 {

 fprintf(ofs, " %s",(LPCTSTR)nodeData3[x][2][y]);

 }

 fprintf(ofs, " </parents>\n");

 fprintf(ofs, "\t\t\t<probabilities>"/*, (LPCTSTR)nodeData3[x][3][0]*/);

 for (int z=0;z<nodeData3[x][3].size();z++)

 {

 fprintf(ofs, " %s",(LPCTSTR)nodeData3[x][3][z]);

 }

 fprintf(ofs, " </probabilities>\n");

 fprintf(ofs, "\t\t</cpt>\n");

 }

 fprintf(ofs, "\t</nodes>\n");

 fprintf(ofs, "\t<extensions>\n");

 fprintf(ofs, "\t\t<genie version=\"1.0\" app=\"GeNIe 2.0.3092.0\" name=\"newNetwork\"

faultnameformat=\"nodestate\">\n");

 int aa=48;

 int ab=87;

 int ac=147;

212

 int ad=257;

 for (int x=0;x<nodeData3.size();x++)

 {

 fprintf(ofs, "\t\t\t<node id=\"%s", (LPCTSTR)nodeData3[x][0][0]);

 fprintf(ofs, "\">\n");

 fprintf(ofs, "\t\t\t\t<name>%s ", (LPCTSTR)nodeData3[x][0][0]);

 fprintf(ofs, "</name>\n");

 fprintf(ofs, "\t\t\t\t<interior color=\"e5f6f7\" />\n");

 fprintf(ofs, "\t\t\t\t<outline color=\"000080\" />\n");

 fprintf(ofs, "\t\t\t\t\n");

 fprintf(ofs, "\t\t\t\t<position>%d %d %d %d</position>\n", aa, ab, ac, ad);

 fprintf(ofs, "\t\t\t</node>\n");

 aa=aa+25;

 ab=ab+25;

 ac=ac+25;

 ad=ad+25;

 }

 fprintf(ofs, "\t\t</genie>\n");

 fprintf(ofs, "\t</extensions>\n");

 fprintf(ofs, "</smile>\n");

 }

 else

 {

 if (matchNodecnt == nodeData1.size() && matchNodecnt == nodeData2.size())

 {

 printf("the number of matched node is %d \n ", matchNodecnt);

 printf("the networks have the same number of matched node and differnet structures \n");

 strVector3 nodeData3 = nodeData1;

 int probcnt[100]={0};

 for (int x=0;x<nodeData3.size();x++)

 {

 for (int h=0; h<nodeData2.size();h++)

 {

 if (nodeData1[x][0][0]==nodeData2[h][0][0])

 {

 if (match1[x][1]==1 && match2[h][1]==1)

 {

 }

 else if (match1[x][1]==0 && match2[h][1]==0)

213

 {

 for (int y=0;y<nodeData3[x][2].size();y++)

 {

 probcnt[x]++;

 }

 for (int j=0;j<nodeData3[x][2].size();j++)

 {

 for (int k=0;k<nodeData2[h][2].size();k++)

 {

 if (nodeData3[x][2][j]==nodeData2[h][2][k])

 {

 }

 else

 {

 probcnt[x]++;

 }

 }

 }

 }

 }

 }

 }

 double a = 0.0;

 double c = 0.0;

 double b = 0.0;

 for (int i=0; i<nodeData3.size();i++)

 {

 for (int y=0; y<nodeData2.size(); y++)

 {

 if (nodeData1[i][0][0]==nodeData2[y][0][0])

 {

 if (match1[i][1]==1 && match2[y][1]==1)

 {

 for (int j=0; j<nodeData3[i][3].size();j++)

 {

 a =(double)wcstod(nodeData1[i][3][j],NULL);

 c =(double)wcstod(nodeData2[y][3][j],NULL);

 b = (double)(a+c)/2;

 nodeData3[i][3][j].Format(_T("%lf"),b);

 }

214

 }

 }

 }

 }

 ofs=fopen("newNetwork.xdsl","w");

 fprintf(ofs, "<?xml version=\"1.0\" encoding=\"ISO‐8859‐1\"?>\n");

 fprintf(ofs, "<smile version=\"1.0\" id=\"newNetwork\" numsamples=\"1000\">\n");

 fprintf(ofs, "\t<nodes>\n");

 for (int x=0;x<nodeData3.size();x++)

 {

 fprintf(ofs, "\t\t<cpt id=\"%s",(LPCTSTR)nodeData3[x][0][0]);

 fprintf(ofs, "\" diagtype=\"target\" ranked=\"true\">\n");

 fprintf(ofs, "\t\t\t<state id=\"%s",(LPCTSTR)nodeData3[x][1][0]);

 fprintf(ofs, "\" fault=\"true\" />\n");

 for (int k=1;k<nodeData3[x][1].size();k++)

 {

 fprintf(ofs, "\t\t\t<state id=\"%s",(LPCTSTR)nodeData3[x][1][k]);

 fprintf(ofs, "\" />\n");

 }

 fprintf(ofs, "\t\t\t<parents>" /*, (LPCTSTR)nodeData3[x][2][0]*/);

 for (int h=0; h<nodeData2.size();h++)

 {

 if (nodeData1[x][0][0]==nodeData2[h][0][0])

 {

 if (match1[x][1]==1 && match2[h][1]==1)

 {

 for (int y=0;y<nodeData3[x][2].size();y++)

 {

 fprintf(ofs, " %s",(LPCTSTR)nodeData3[x][2][y]);

 }

 }

 else if (match1[x][1]==0 && match2[h][1]==0)

 {

 for (int y=0;y<nodeData3[x][2].size();y++)

 {

 fprintf(ofs, " %s",(LPCTSTR)nodeData3[x][2][y]);

 }

 for (int j=0;j<nodeData3[x][2].size();j++)

 {

 for (int k=0;k<nodeData2[h][2].size();k++)

 {

215

 if (nodeData3[x][2][j]==nodeData2[h][2][k])

 {

 }

 else

 {

 fprintf(ofs, " %s",(LPCTSTR)nodeData2[h][2][k]);

 printf("AAA");

 }

 }

 }

 }

 }

 }

 fprintf(ofs, " </parents>\n");

 fprintf(ofs, "\t\t\t<probabilities>"/*, (LPCTSTR)nodeData3[x][3][0]*/);

 for (int y=0;y<nodeData2.size();y++)

 {

 if (match1[x][1]==1 && match2[y][1]==1)

 {

 for (int z=0;z<nodeData3[x][3].size();z++)

 {

 fprintf(ofs, " %s",(LPCTSTR)nodeData3[x][3][z]);

 }

 break;

 }

 else if (match1[x][1]==0 && match2[y][1]==0)

 {

 for (int z=0;z<nodeData3[x][3].size();z++)

 {

 fprintf(ofs, " %s",(LPCTSTR)nodeData3[x][3][z]);

 }

 for (int j=nodeData3[x][3].size(); j<pow(2.0,probcnt[x]+1);j++)

 {

 fprintf (ofs, " %lf", 0.5);

 }

 break;

 }

 }

 fprintf(ofs, " </probabilities>\n");

 fprintf(ofs, "\t\t</cpt>\n");

 }

 fprintf(ofs, "\t</nodes>\n");

 fprintf(ofs, "\t<extensions>\n");

216

 fprintf(ofs, "\t\t<genie version=\"1.0\" app=\"GeNIe 2.0.3092.0\" name=\"newNetwork\"

faultnameformat=\"nodestate\">\n");

 int aa=48;

 int ab=87;

 int ac=147;

 int ad=257;

 for (int x=0;x<nodeData3.size();x++)

 {

 fprintf(ofs, "\t\t\t<node id=\"%s", (LPCTSTR)nodeData3[x][0][0]);

 fprintf(ofs, "\">\n");

 fprintf(ofs, "\t\t\t\t<name>%s ", (LPCTSTR)nodeData3[x][0][0]);

 fprintf(ofs, "</name>\n");

 fprintf(ofs, "\t\t\t\t<interior color=\"e5f6f7\" />\n");

 fprintf(ofs, "\t\t\t\t<outline color=\"000080\" />\n");

 fprintf(ofs, "\t\t\t\t\n");

 fprintf(ofs, "\t\t\t\t<position>%d %d %d %d</position>\n", aa, ab, ac, ad);

 fprintf(ofs, "\t\t\t</node>\n");

 aa=aa+25;

 ab=ab+25;

 ac=ac+25;

 ad=ad+25;

 }

 fprintf(ofs, "\t\t</genie>\n");

 fprintf(ofs, "\t</extensions>\n");

 fprintf(ofs, "</smile>\n");

 }

 else

 {

 printf("the number of matched node is %d \n ", matchNodecnt);

 printf("the networks have differnet number of matched node and differnet structures \n");

 strVector3 nodeData3 = nodeData1;

 double a = 0.0;

 double c = 0.0;

 double b = 0.0;

 for (int i=0; i<nodeData3.size();i++)

 {

 for (int y=0; y<nodeData2.size(); y++)

 {

217

 if (nodeData1[i][0][0]==nodeData2[y][0][0])

 {

 if (match1[i][1]==1 && match2[y][1]==1)

 {

 for (int j=0; j<nodeData3[i][3].size();j++)

 {

 a =(double)wcstod(nodeData1[i][3][j],NULL);

 c =(double)wcstod(nodeData2[y][3][j],NULL);

 b = (double)(a+c)/2;

 nodeData3[i][3][j].Format(_T("%lf"),b);

 }

 break;

 }

 else if (match1[i][1]==0 && match2[y][1]==0)

 {

 for (int j=0; j<nodeData3[i][3].size();j++)

 {

 a =(double)wcstod(nodeData1[i][3][j],NULL)/2;

 nodeData3[i][3][j].Format(_T("%lf"),a);

 }

 break;

 }

 }

 }

 }

 ofs=fopen("newNetwork.xdsl","w");

 fprintf(ofs, "<?xml version=\"1.0\" encoding=\"ISO‐8859‐1\"?>\n");

 fprintf(ofs, "<smile version=\"1.0\" id=\"newNetwork\" numsamples=\"1000\">\n");

 fprintf(ofs, "\t<nodes>\n");

 for (int x=0;x<nodeData3.size();x++)

 {

 fprintf(ofs, "\t\t<cpt id=\"%s",(LPCTSTR)nodeData3[x][0][0]);

 fprintf(ofs, "\" diagtype=\"target\" ranked=\"true\">\n");

 fprintf(ofs, "\t\t\t<state id=\"%s",(LPCTSTR)nodeData3[x][1][0]);

 fprintf(ofs, "\" fault=\"true\" />\n");

 for (int k=1;k<nodeData3[x][1].size();k++)

 {

 fprintf(ofs, "\t\t\t<state id=\"%s",(LPCTSTR)nodeData3[x][1][k]);

 fprintf(ofs, "\" />\n");

 }

 fprintf(ofs, "\t\t\t<parents>" /*, (LPCTSTR)nodeData3[x][2][0]*/);

218

 for (int y=0;y<nodeData3[x][2].size();y++)

 {

 fprintf(ofs, " %s",(LPCTSTR)nodeData3[x][2][y]);

 }

 fprintf(ofs, " </parents>\n");

 fprintf(ofs, "\t\t\t<probabilities>"/*, (LPCTSTR)nodeData3[x][3][0]*/);

 for (int z=0;z<nodeData3[x][3].size();z++)

 {

 fprintf(ofs, " %s",(LPCTSTR)nodeData3[x][3][z]);

 }

 fprintf(ofs, " </probabilities>\n");

 fprintf(ofs, "\t\t</cpt>\n");

 }

 for (int x=0; x<nodeData3.size(); x++)

 {

 for (int y=0; y<nodeData2.size(); y++)

 {

 if (match1[x][0]==0 && match2[y][0]==0)

 {

 if (match1[x][1]==0 && match2[y][1]==0)

 {

 if(nodeData1[x][0][0]==nodeData2[y][0][0])

 {}

 else

 {

 fprintf(ofs, "\t\t<cpt id=\"%s",(LPCTSTR)nodeData2[y][0][0]);

 fprintf(ofs, "\" diagtype=\"target\" ranked=\"true\">\n");

 fprintf(ofs, "\t\t\t<state id=\"%s",(LPCTSTR)nodeData2[y][1][0]);

 fprintf(ofs, "\" fault=\"true\" />\n");

 for (int k=1;k<nodeData2[y][1].size();k++)

 {

 fprintf(ofs, "\t\t\t<state id=\"%s",(LPCTSTR)nodeData2[y][1][k]);

 fprintf(ofs, "\" />\n");

 }

 //if (nodeData3[x][2][0])

 fprintf(ofs, "\t\t\t<parents>" /*, (LPCTSTR)nodeData3[x][2][0]*/);

 for (int k=0;k<nodeData2[y][2].size();k++)

 {

 fprintf(ofs, " %s",(LPCTSTR)nodeData2[y][2][k]);

 }

 fprintf(ofs, " </parents>\n");

 fprintf(ofs, "\t\t\t<probabilities>"/*, (LPCTSTR)nodeData3[x][3][0]*/);

219

 for (int z=0;z<nodeData2[y][3].size();z++)

 {

 double a = (double)wcstod(nodeData2[y][3][z],NULL);

 a=a/2;

 fprintf(ofs, " %lf",a);

 }

 fprintf(ofs, " </probabilities>\n");

 fprintf(ofs, "\t\t</cpt>\n");

 }

 }

 }

 }

 }

 fprintf(ofs, "\t</nodes>\n");

 fprintf(ofs, "\t<extensions>\n");

 fprintf(ofs, "\t\t<genie version=\"1.0\" app=\"GeNIe 2.0.3092.0\" name=\"newNetwork\"

faultnameformat=\"nodestate\">\n");

 int aa=48;

 int ab=87;

 int ac=147;

 int ad=257;

 for (int x=0;x<nodeData3.size();x++)

 {

 fprintf(ofs, "\t\t\t<node id=\"%s", (LPCTSTR)nodeData3[x][0][0]);

 fprintf(ofs, "\">\n");

 fprintf(ofs, "\t\t\t\t<name>%s ", (LPCTSTR)nodeData3[x][0][0]);

 fprintf(ofs, "</name>\n");

 fprintf(ofs, "\t\t\t\t<interior color=\"e5f6f7\" />\n");

 fprintf(ofs, "\t\t\t\t<outline color=\"000080\" />\n");

 fprintf(ofs, "\t\t\t\t\n");

 fprintf(ofs, "\t\t\t\t<position>%d %d %d %d</position>\n", aa, ab, ac, ad);

 fprintf(ofs, "\t\t\t</node>\n");

 aa=aa+25;

 ab=ab+25;

 ac=ac+25;

 ad=ad+25;

 }

 for (int x=0; x<nodeData3.size(); x++)

 {

 for (int y=0; y<nodeData2.size(); y++)

 {

 if (match1[x][0]==0 && match2[y][0]==0)

220

 {

 if (match1[x][1]==0 && match2[y][1]==0)

 {

 if(nodeData1[x][0][0]==nodeData2[y][0][0])

 {}

 else

 {

 fprintf(ofs, "\t\t\t<node id=\"%s", (LPCTSTR)nodeData2[y][0][0]);

 fprintf(ofs, "\">\n");

 fprintf(ofs, "\t\t\t\t<name>%s ", (LPCTSTR)nodeData2[y][0][0]);

 fprintf(ofs, "</name>\n");

 fprintf(ofs, "\t\t\t\t<interior color=\"e5f6f7\" />\n");

 fprintf(ofs, "\t\t\t\t<outline color=\"000080\" />\n");

 fprintf(ofs, "\t\t\t\t\n");

 fprintf(ofs, "\t\t\t\t<position>%d %d %d %d</position>\n", aa, ab, ac, ad);

 fprintf(ofs, "\t\t\t</node>\n");

 aa=aa+25;

 ab=ab+25;

 ac=ac+25;

 ad=ad+25;

 }

 }

 }

 }

 }

 fprintf(ofs, "\t\t</genie>\n");

 fprintf(ofs, "\t</extensions>\n");

 fprintf(ofs, "</smile>\n");

 }

 }

nodeData1.clear();

nodeData2.clear();

clean:

 if (bstr) SysFreeString(bstr);

 if (&var) VariantClear(&var);

 if (pXMLDom) pXMLDom‐>Release();

 if (pNodes) pNodes‐>Release();

 if (pNode) pNode‐>Release();

 CoUninitialize();

 return 0;

}

221

APPENDIX B

Evaluation results for DCR index generation

Figure B-1 Evaluation results with three vertices

Figure B-2 Evaluation results with four vertices

222

Figure B-3 Evaluation results with five vertices

Figure B-4 Evaluation results with six vertices

223

Figure B-5 Evaluation results with seven vertices

Figure B-6 Evaluation results with eight vertices

224

Figure B-7 Evaluation results with nine vertices

Figure B-8 Evaluation results with ten vertices

225

APPENDIX C

C++ programming code for knowledge interface engine

// Helper function to create a DOM instance:

IXMLDOMDocument * DomFromCOM()

{

 HRESULT hr;

 IXMLDOMDocument *pxmldoc = NULL;

 HRCALL(CoCreateInstance(__uuidof(DOMDocument30),

 NULL,

 CLSCTX_INPROC_SERVER,

 __uuidof(IXMLDOMDocument),

 (void**)&pxmldoc),

 "Create a new DOMDocument");

 HRCALL(pxmldoc‐>put_async(VARIANT_FALSE),

 "should never fail");

 HRCALL(pxmldoc‐>put_validateOnParse(VARIANT_FALSE),

 "should never fail");

 HRCALL(pxmldoc‐>put_resolveExternals(VARIANT_FALSE),

 "should never fail");

 return pxmldoc;

clean:

 if (pxmldoc)

 {

 pxmldoc‐>Release();

 }

 return NULL;

}

VARIANT VariantString(BSTR str)

{

 VARIANT var;

 VariantInit(&var);

 V_BSTR(&var) = SysAllocString(str);

 V_VT(&var) = VT_BSTR;

 return var;

}

226

void ReportParseError(IXMLDOMDocument *pDom, char *desc) {

 IXMLDOMParseError *pXMLErr=NULL;

 BSTR bstrReason = NULL;

 HRESULT hr;

 HRCALL(pDom‐>get_parseError(&pXMLErr),

 "dom‐>get_parseError: ");

 HRCALL(pXMLErr‐>get_reason(&bstrReason),

 "parseError‐>get_reason: ");

 printf("%s %S\n",desc, bstrReason);

clean:

 if (pXMLErr) pXMLErr‐>Release();

 if (bstrReason) SysFreeString(bstrReason);

}

CString stringfromBstr (BSTR bstr){

 TCHAR szFinal[255000];

 // direct conversion from BSTR to LPCTSTR only works in Unicode

 _stprintf(szFinal, _T("%s"), (LPCTSTR)bstr);

 // _bstr_t bstrIntermediate(bstr); // convert to _bstr_t

 CString strFinal;

 // you have to go through _bstr_t to have it work in ANSI and Unicode

 _stprintf(szFinal, _T("%s"), (LPCTSTR)bstr);

 // Or using MFC

 strFinal.Format(_T("%s"), (LPCTSTR)bstr);

 return strFinal;

}

227

APPENDIX D

Three knowledge models for Assembly design, Wheel, and Fuel nozzle cases

(a) BBN

(b) FCM-BBN

228

(c) FCM-BBN-M

Figure D-1 Assembly design knowledge networks

229

(a) BBN

(b) FCM-BBN

230

(c) FCM-BBN-M

Figure D-2 Wheel knowledge networks

231

(a) BBN

232

(b) FCM-BBN

233

(c) FCM-BBN-M

Figure D-3 Fuel nozzle knowledge networks

234

REFERENCES

[Alederson 1997] Alderson, J., Clapham, C., and Steel, D., (1997),“Metalinguistic

knowledge, language aptitude, and language proficiency,”

Language Teaching Research, Vol. 1, pp 93–121.

[Arkell 2007] Arkell, D., (2007), “Get our heads into it,” Boeing Frontiers.

[Baker 2006] Baker, S.,(2006), "Open-source Moves into Prosthetics,"

www.businessweek.com/the_thread/blogspotting/archives/2006/

02/open-source_mov.html.

[Barnard 2003] Barnard, Y. and Rothe, A., (2003), "Knowledge management in

engineering: supporting analysis and design processes in

innovative industries," Building the knowledge Economy, Issues,

Application, Case studies, IOS Press, pp. 931-938.

[Barr 1983] Barr, A., and Feigenbaum, E., (1983), "Handbook of artificial

intelligence," Los Altos: Kaufmann.

[Baxter 2007] Baxter, D., Gao J., Case, K., Harding, J., Young, B., Cochrane,

S., and Dani, S., (2007), “An Engineering Design Knowledge

Reuse Methodology Using Process Modelling,” Research in

Engineering Design, Vol. 18, No. 1, pp 37-48.

[Berger 1996] Berger, P. L., and Luckman, T., (1996), "The Social Construction

of Reality," New York: Anchor Books.

[Blakler 1995] Blackler, F., (1995), “knowledge, knowledge work and

organization: an overview and interpretation,” organization

235

studies, 16, pp. 1021-1046.

[Blanton 2007] Blanton, G., and Burke, F., (2007), "Carrier Team One

Knowledge Management: The Challenges,", APQC's 12th

Annual Knowledge Management Conference and Training,

Houston, TX, May7-11.

[Boot 2007] Boot, L. and Murphy, G.L., (2007), "subtyping as a knowledge

preservation strategy in category learning," Memory & cognition,

Vol. 35, No. 3, pp. 432-443.

[Briand 1993] Briand, L., Basili, V., and Hetmanski, C., (1993), “Developing

interpretable models with optimized set reduction for identifying

high-risk software components,” IEEE Transactions on Software

Engineering, 19 (11), pp. 1028 - 1044.

[Busby 1999] Busby, J.S., (1999), “The Problem with Design Reuse: An

Investigation into Outcomes and Antecedents,” Journal of

Engineering Design, Vol. 10, No. 3, pp 277-297.

 [Cheah 2007] Cheah, W.P., Kim, K.Y., Yang, H.J., Choi, S.Y., and Lee, H.J.,

(2007), “A Manufacturing-Environmental Model using Bayesian

Belief Networks for Assembly Design Decision Support,” Lecture

Notes in Artificial Intelligence, Accepted, The 20th Int.

Conference on Industrial, Engineering & Other Applications of

Applied Intelligent Systems (IEA/AIE 2007), Kyoto.

[Chen 1993] Chen, J., (1993), “Predicting system based on combining an

236

adaptive predictor and a knowledge base as applied to a blast

furnace,” Journal of Forecasting, 12 (2), pp. 93 – 102.

[Chen 2001] Chen, J., (2001), “A predictive system for blast furnaces by

integrating a neural network with qualitative analysis,”

Engineering Applications of Artificial Intelligence, 14, pp. 77 – 85.

[Cloonan 1993] Cloonan, M.V., (1993), "The preservation of knowledge," Library

Trends, Spring.

[Cycorp 2004] Cycorp, Inc. <http://www.cyc.com/cyc> May 20, 2004.

[Daconta 2003] Daconta, M.C., Obrst, L.J., and Smith, K.T., (2003), “The

Semantic Web: A Guide to the Future of XML, Web Services,

and Knowledge Management,” Wiley Publishing, Inc.,

Indianapolis.

[Das 2004] Das, B., (2004), “Generating Conditional Probabilities for

Bayesian Networks: Easing the Knowledge Acquisition Problem,”

Journal CoRR, cs.AI/0411034, 2004.

[Davenport 1998] Davenport, T. H., and Prusak, L. (1998), “Working Knowledge,”

Harvard Business School Press, Boston, Malhotra, Y. Beyond

Hi-Tech Hidebound.

[Dean 1989] Dean, T., and Kanazawa, K., (1989) “A model for reasoning

about persistence and causation,” Computational Intelligence,

5(3), pp.142-150.

[DeLong 2003] DeLong, D. and Mann, T., (2003), "Stemming the brain drain,"

237

Outlook 2003, No. 1.

[DeLong 2004] DeLong, d. W., (2004), “Lost knowledge : confronting the Threat

of an Aging Workforce”, Oxford University Press.

[Dieter 2001] Dieter, G.E., (2001), “Engineering Design: A materials and

processing approach”, McGraw-Hill Higher Education, Third

edition, USA, ISBN: 0-07-366136-8.

[Dong 1998] Dong, A and Agogino, A.M., (1998) “Managing design

information in enterprise-wide CAD using ‘smart drawings’,”

Computer-Aided Design, Vol. 30 (6), 425-435.

[Engineous 2005] 2005 Engineous International Symposium & Workshop, Novi, MI.

USA, October 10-12, 2005

[Feigenbaum 1983] Feigenbaum, E.A., and McCorduck, P., (1983), “The Fifth

Generation,” Addison-Wesley, Reading, MA.

[Fensel 2001] Fensel, D., (2001), “Ontologies: A Silver Bullet for Knowledge

Management and Electronic Commerce,” Springer-Verlag Berlin

Heidelberg.

[Fikes 1971] Fikes, R.E. and Nilsson, N.J., (1971), “Strips: a new approach to

the application of theorem proving to problem Solving,” Artificial

Intelligence, Vol. 2, pp189–208.

[Finger 1998] Finger, S., (1998), “Design reuse and design research - keynote

paper,” In: Engineering Design Conference '98, Brunel

University, UK, Professional Engineering Publishing Ltd.

238

[FIPER 2001] FIPER, (2001) National Institute of Standard Technolgy Annual

Review on FIPER, General Electric Aircraft Engines, Springdale,

OH, December 12-13.

[Fox 1992] Fox, M.S., (1992) “The TOVE Project: Towards A Common-

sense Model of the Enterprise,” Enterprise Integration

Laboratory Technical Report.

[Fox 1998] Fox, M.S., and Gruninger, M., (1998), “Enterprise Modelling,” AI

Magazine, AAAI Press. pp. 109-121.

[Friedman 1998] Friedman, N., (1998), “The bayesian structural em algorithm,” In

G.F. Cooper and S. Moral, editors, Uncertainty in Artificial

Intelligence, proceedings of the Fourteenth Conference,

Madison, Wisconsin, Morgan Kaufmann, pp. 129-138.

[Gable 2005] Cable, G.G., (2005), "The enterprise system lifecycle: through a

knowledge management lens," Strategic Change, Vol. 14, Issue

5, pp. 255-263.

[Gable 2005] Gable G.G., (2005), “The enterprise system lifecycle: through a

knowledge management lens,” Strategic change, Vol. 14 (5),

255-263.

[Gazeau 1998] Gazeau, M., (1998), "The management of the Knowledge,"

Etasts de Veille, pp 1-8.

[Gilchrist 1993] Gilchrist, W., (1993), “Modeling Failure Modes and Effects

Analysis,” International Journal of Quality & Reliability

239

Management, 10(5).

[Giles 2005] Giles, J., (2005), "Internet encyclopedias go head to head,"

Nature, Vol. 438, pp. 900-901.

[Gopnik 2002] Gopnik, A., Glymour, C., (2002), “Causal maps and Bayes nets:

a cognitive and computational account of theory-formation”, in: P.

Carruthers, S. Stich, M. Siegal (Eds.) The Cognitive Basis of

Science, Cambridge University Press, pp. 117-132.

[Gopnik 2004] Gopnik, A., Glymour, C., Sobel, D.M., Schulz, L.E., Kushnir, T.,

Danks, D., (2004), “A theory of causal learning in children:

causal maps and Bayes nets”, Psychological Review, Vol. 111

(1), pp. 3-32.

[Gruber 1993] Gruber, T.R., (1993), “A Translation Approach to Portable

Ontology Specification.” Knowledge Acquisition. 5(2), pp. 199-

220.

[Gruninger 2003] Gruninger, M., Sriram, R.D., Cheng, J., Law, K., (2003),

“Process Specification Language for Project Information

Exchange,” International Journal of IT in Architecture,

Engineering & Construction.

[Halmos 1960] Halmos, P.R., (1960), "Naive Set Theory," D. Van Nostrand

Company, Princeton, NJ.

[Hansen 2006] Hansen, V.L., (2006), “Functional Analysis,” World Scientific,

Mathematics.

240

[Harrison 1988] Harrison, W., (1988), “Using software metrics to allocate testing

resources,” Journal of Management Information Systems, 4 (4),

pp. 93-105.

[Horváth 1998] Horváth, I., Pulles, J.P.W., Bremer, A.P., and Vergeest, J.S.M.,

(1998), ”Towards an Ontology-based Definition of Design

Features.” SIAM Workshop on Mathematical Foundations for

Features in Computer Aided Design, Engineering, and

Manufacturing.

[Horvitz 1998] Horvitz, E., Breese, J., Heckerman, D., Hovel, D., and

Rommelse, K., (1998), “The Lumiere Project: Bayesian User

Modeling for Inferring the Goals and Needs of Software Users,”

Proceedings of the Conference of the Uncertainty in Artificial

Intelligence, pp. 256-265.

[Howard 1998] Howard, R., (1998), “Uncertainty about probability: A decision-

analysis perspective,” Risk Analysis, 8, pp. 91-98.

[Huang 1999] Huang, G.Q. and Mak, K.L., (1999) “Design for manufacturing

and assembly on the Internet,” Computers in Industry, Vol. 38

(1), 17-30.

[Huang 2000] Huang, G.Q. and Mak, K.L., (2000), “WeBid: A Web-based

Framework to Support Early Supplier Involvement in New

Product Development,” Robotics and Computer Integrated

Manufacturing, Vol. 16 (2-3), 169-179.

241

[ISIGHT 2002] ISIGHT, (2002), International iSIGHT Users’ Conference and

FIPER Workshop, Washington, D.C, July 15 -18.

[Iyer 2005] Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., and Ramani, K.,

(2005), “Shape-based searching for product lifecycle

applications,” Computer-Aided Design 37, pp. 1435-1446.

[Jordan 1998] Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., Saul, L.K., (1998),

“An introduction to variational methods for graphical models,” In

M.I. Jordan, editor, Learning in Graphical Models. Kluwer,

Dordrecht, the Netherlands.

[Kan 2001] Kan, H.Y., Duffy, V.G. and Su, C.J., (2001), “An Internet Virtual

Reality Collaborative Environment for Effective Product Design,”

Computers In Industry, Vol. 45 (2), 197-213.

[Kim 1983] Kim, J.H., Pearl, J., (1983), “A computational model for

combined causal and diagnostic reasoning in inference systems,”

In procedding s IJCAI-83, 190-193, Karlsruhe, Germany.

[Kim 2008] Kim, Y.S., Kim, K.Y., Cheah, W.P., Yang, H.J., (2008), “ CAUSAL

DESIGN KNOWLEDGE ACQUISITION BY CONSTRUCTING

BBN THROUGH FCM,” Proceedings of the ASME 2008

International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference, August

3-6, Brooklyn, New York, USA

[Kitamura 2002] Kitamura, Y., Sano, T., Namba, K., and Mizoguchi R., (2002) “A

242

Functional Concept Ontology and Its to Automatic Identification

of Functional Structures.” Advanced Engineering Informatics,

16(2), pp. 145-63.

[Kitamura 2003] Kitamura, Y., and Mizoguchi R., (2003) “Ontology-based

Description of Functional Design Knowledge and Its Use in a

Functional Way Server,” Expert Systems with Application, 24(2),

pp. 153-66.

[Kitamura 2004a] Kitamura, Y., and Mizoguchi R., (2004), “Ontology-based

Systematization of Functional Knowledge,” Unpublished

manuscript for Journal of Engineering Design.

[Kitamura 2004b] Kitamura, Y., Kashiwase, M., Masayoshi, F., and Mizoguchi, R.,

(2004), “Deployment of an Ontological Framework of Function

Design Knowledge,” Unpublished manuscript for Advanced

Engineering Informatics.

[Knowledge 1999] Knowledge Management: Strategic Information Systems for the

New World of Business, Working Paper, BRINT Research

Institute, 1999.

[Kosko 1988] Kosko, B., (1988), “Hidden patterns in combined and adaptive

knowledge networks”, Proceedings of the IEEE International

Conference on Neural Networks, pp. 377-393.

[Kosko 1995] Kosko, B., (1995), “Combining fuzzy systems”, Proceedings of

the IEEE International Conference on Fuzzy Systems, pp. 1855-

243

1863.

[Kosko 1997] Kosko, B., (1997), “Fuzzy Engineering”, Prentice-Hall,

Englewood Cliffs, NJ.

[KPMG 1998] KPMG Management Consulting. Case Study: Building a

Platform for Corporate Knowledge, 1998.

[Kumar 1994] Kumar, V., Glicksman, J. and Kramer, G.A., (1994), “A SHAREd

Web To Support Design Teams,” in IEEE Proceedings of the

Third workshop on Enabling Technologies: Infrastructure for

collaborative Enterprises, April 17-19, Morgantown, West

Virginia, pp.178-182.

[Lanubile 1997] Lanubile, F., and Visaggio, G., (1997), “Evaluating predictive

quality models derived from software measures: lessons

learned,” Journal of Systems and Software, 38, pp. 225 – 234.

[Lauritzen 1988] Lauritzen, S.L., Spiegelhalter, D.J., (1988), “Local computations

with probabilities on graphical structures and their application to

expert systems (with discuss),” Journal of the Royal Statistical

Society, Series B, 50(2), pp. 157-224.

[Lauritzen 1995] Lauritzen, S.L., (1995), “The EM algorithm for graphical

association models with missing data,” Computational Statistics

and Data Analysis, 19, pp. 191-201.

[Ledbetter 2007] Ledbetter, D., and Dixon, N., (2007), "Core Practices to Elicit

and Convert Tacit Knowledge from Subject Matter Experts to

244

Explicit Knowledge," APQC's 12th Annual Knowledge

Management Conference and Training, Houston, TX, May7-11.

[Liebowitz 2001] Liebowitz, J., (2001), "Knowledge Management: Learning from

Knowledge Engineering," CRC press.

[Lin 1996] Lin, J., Fox, M. S., and Bilgic, T., (1996), “A Requirement

Ontology for Engineering Design,” Concurrent Engineering:

Research and Applications. Sage Publications, Inc. 4(3), pp.

279-91.

 [Liu 2001] Liu, Z.Q., (2001), “Causation, Bayesian networks and cognitive

maps”, ACTA Automatica Sinica, Vol. 27 (4), pp. 552-566.

[Long 1989] Long, W., (1989), “Medical Diagnosis Using A Probabilistic

Causal Network,” Applied Artificial Intelligence, 3(2-3), pp. 367-

383.

[Lutters 1997] Lutters, D., Streppel, A.H., Kals, H.J.J., (1997), “The role of

information structures in design and engineering processes,” 3rd

Workshop on Product Structuring.

[Malhotra 1999] Malhotra, Y., (1999), “Beyond Hi-Tech Hidebound, Knowledge

Management: Strategic Information Systems for the New World

of Business,” Working Paper, BRINT Research Institute.

[Mandler 2004] Mandler, J. M., (2004), "The Foundations of Mind: Origins of

Conceptual Thought," New York, NY: Oxford University Press.

[Markus 2001] Markus, M.L., (2001), “Toward a theory of knowledge reuse:

245

types of knowledge reuse situations and factors in reuse

success,” Journal of Management Information Systems, Vol. 18,

No. 1, pp 57-93.

[Maryam 2001] Maryam, A., and Dorothy, E.L., (2001), “Review: Knowledge

Management and Knowledge Management Systems:

Conceptual Foundations and Research Issues,” MIS Quarterly,

25(1), pp. 107-136.

[Matsumoto 2005] Matsumoto, I.T., Stapleton, J., Class, J., andThorpe, T., (2005),

"A knowledge-capture report for mulitdisciplinary design

environments," Library Hi Tech News incorporating On-line and

CD notes, Vol. 9, No. 3, pp. 83-92.

[McCarty 1996] McCarty, E.D., (1996), "Knowledge as Culture – The new

sociology of knowledge," London and New York: Routledge.

[McQueen 1998] McQueen, R., (1998), “Four Views of Knowledge and

Knowledge Management,” in Proceedings of the Fourth

Americas Conference on Information Systems, E. Hoadley and I.

Benbasat (eds.), pp. 609-611.

[Mizoguchi 2003] Mizoguchi, R., (2003), “Tutorial on Ontological Engineering Part

1: Introduction to Ontological Engineering,” New Generation

Computing. Ohm-Sha & Springer, 21(4), pp. 365-84.

[Nadkrni 2004] Nadkarni, S., and Shenoy, P., (2004), “A Causal Mapping

Approach to Constructing Bayesian Networks”, Decision

246

Support Systems, Vol. 2, pp.259-281.

[Nahapiet 1998] Nahapiet, J. and Ghoshal, S., (1998), “Social Capital, Intellectual

Capital and the Organizational Advantage," in Lesser, Eric L.(ed.)

2000. Knowledge and social Capital: Foundations and

Applications. Oxford: Butterworth-Heinemann.

[Neville 1986] Neville, M., (1986), “Monitoring behavior and supervisory

control,” Handbook of perception and human performance, New

York, Wiley-Interscience, pp.40-51.

[Niebel 1994] Niebel, B.W., (1994), “Engineering Maintenace Management,”

Marcel Dekker.

[O.Dell 1998] O.Dell, C., and Grayson, C. J., (1998), “If Only We Knew What

We Know: Identification and Transfer of Internal Best Practices,”

California Management Review 40(3), pp. 154-174.

[O'Hara 2002] O'Hara, K. and Shadbolt, N., (2002), "Managing Knowledge

Capture Economic Technological and Methodological

Considerations," Technological and Methodological

Considerations. Technical Report, Dept of Electronics &

Computer Science, University of Southampton.

[Open 2008] Open Prosthetics, (2008), "The Open Prosthetics Project: An

Initiative of the Shared Design Alliance," www.sharddesign.org.

[OpenMoko 2008] OpenMoko, (2008), OpenMoko, www.openmoko.com.

[Patton 1989] Patton, R.J., Frank, P.M., and Clark, R.N., (1989), “Fault

247

diagnosis in dynamic systems, theory and application,” Control

engineering series, London, Prentice Hall.

[PDSEC 2007] 2007 PDSEC Workshop on Systems Engineering, PLM and its

impacts, May 27,2007, Detroit, MI, USA.

[Pearl 2000] Pearl, J., (2000), “Causality: Models, Reasoning, and Inference,”

Cambridge University Press.

[Pearl 1986] Pearl, J., (1996), “Fusion, Propagation, and Structuring in Belief

Networks,” Artificial Intelligence, 29(3), pp. 241-288.

[Pearl 1998] Pearl, J. (1998), “Probabilistic Reasoning in Intelligent Systems:

Networks of Plausible Inference,” Morgan Kauffmann, San

Mateo, CA.

[Polanyi 1958] Polanyi, M., (1958), "Personal knowledge," Chicago: University

of Chicago Press.

[Polanyi 1967] Polanyi, M., (1967), "The tacit dimension," London: Routledge &

Kegan Paul Ltd.

[Pomerrol 2001] Pomerrol, J.C., and Brezillon, P., (2001), “about some

relationships between knowledge and context,” lecture note in

computer science, 2116, pp. 461-464.

[Rangan 2005] Rangan, R.M., Rohde, S.M., Peak R., Chadha, B., and

Bliznakov, P., (2005), "Streamlining Product Lifecycle Processes:

A Survey of Product Lifecycle Management Implementations,

Directions, and Challenges," Journal of Computing and

248

Information Science in Engineering, Vol. 5, Issue 3, pp. 227-237.

[Rebane 1987] Rebane, G., and Pearl, J., (1987), “The Recovery of Causal

Poly-trees from Statistical Data,” Proceedings, 3rd Workshop on

Uncertainty in AI, (Seattle, WA) pp. 222-228.

[Roberts 2003] Roberts, M.L., and Ashton, R.H., (2003), “Using declarative

knowledge to improve information search performance,” Journal

of the American Taxation Association, 25(1), pp. 21-38.

[Romhardt 1997] Romhardt, K., (1997), "Processes of Knowledge Preservation:

Away from a Technology Dominated Approach," 21st Annual

German Conference on AI'97, Freiburg, Germany, September.

[Ruggles 1998] Ruggles, R., (1998), “The State of the Notion: Knowledge

Management in Practice,” California Management Review 40(3),

pp. 80-89.

[Ryle 1949] Ryle, G., (1949), "The concept of mind," London: Hutchinson &

Company.

[Schacter 1996] Schacter, D. L., (1996), "Searching for memory: The brain, the

mind, and the past," New York: Basic Books.

[Schlenoff 1999] Schlenoff, C., Ivester, R., Libes, D., Denno, P., and Szykman, S.,

(1999), “An Analysis of Existing Ontological Systems for

Applications in Manufacturing and Healthcare,” NISTIR 6301,

National Institute of Standards and Technology, Gaithersburgh,

MD.

249

[Shahin 1999] Shahin, T.M.M., Andrews, P.T.J., and Sivaloganathan, S., “A

design reuse system,” Proc. the Institution of Mechanical

Engineers, Part B: Journal of Engineering Manufacture. Vol. 213,

No. 6, pp 621-627, 1999.

[Shneiderman 2007] Shneiderman, B., (2007), "Creativity Support Tools:

Accelerating Discovery and Innovation," Communications of the

ACM, Vol. 50, No. 12, pp. 20-32.

[Simani 2006] Simani, S., and Fantuzzi, C., (2006), “Dynamic system

identification and model-based fault diagnosis of an industrial

gas turbine prototype,” Mechatronics, 16, pp. 341–363.

[Skaanning 2000] Skaanning, C., Jensen, F., and Kjaerulff, U., (2000), “Printer

Troubleshooting Using Bayesian Networks,” In R. Loganantharaj,

G. Palm, Eds., Intelligent Problem Solving, Methodologies and

Approaches, LNCS 1821, pp. 367-379.

[Spirtes 1991] Spirtes, P., and Glymour, C., (1991), “An algorithm for fast

recovery of sparse causal graphs,” Social Science Computer

Review, 9, pp. 62-72.

[Spirtes 1993] Spirtes, P., Glymour, C., and Scheines, R., (1993), “Causation,

Prediction, and Search,” New York: Springer-Verlag.

[Sriram 1993] Sriram, D. and Logcher, R., (1993), “The MIT Dice Project,”

IEEE Computer, Vol. 26 (1), PP. 64-65

[Suh 2000] Suh, E., Youn, S., and Yoo, K., (2000), “Development of a

250

Methodology for Building a Knowledge Map,” proceedings of

IFORMS/KORMS 2000.

[Szykman 2001] Szykman, S., Sriram, R. D., and Regli, W. C., (2001), “The role

of knowledge in next-generation product development systems,”

Journal of Computing and Information Science in Engineering, 1,

pp. 3-11.

[Taber 1987] Taber, W.R., Siegel, M., (1987), “Estimation of expert weights

with fuzzy cognitive maps”, Proceedings of the IEEE

International Conference on Neural Networks, pp. 319-325.

[Taber 1991] Taber, W.R., (1991), “Knowledge processing with fuzzy cognitive

maps”, Expert Systems with Applications, Vol. 2 (1), pp. 82-87.

[Taber 2007] Taber, R., Yager, R.R., Helgason, C.M., (2007), “Quantization

effects on the equilibrium behavior of combined fuzzy cognitive

maps”, International Journal of Intelligent Systems, Vol. 22 (2),

pp. 181-202.

[Tang 2007] Tang, A., Nicholson, A., Jin, Y., and Han, J., (2007) “Using

Bayesian Belief Networks for Change Impact Analysis in

Architecture Design,” Journal of Systems and Software, 80(1),

pp. 127-148.

[Tapscott 2006] Tapscott, D. and Williams, A.D., (2006), "Wikimomics: How

Mass collaboration Changes Everything," Penguin Group (USA).

[Thierry 1993] Thierry, M.C., Salomon, M., Van Nunen, J., and Van

251

Wassenhove, L., (1993), “N. Strategic production and operations

management issues in product recovery management,” Rapport,

Note(s) 19, pp. 1989-1993.

[Ullman 1997] Ullman, D.G., (1997), “The mechanical design process,” 2nd ed.

New York, McGraw-Hill.

[Uschold 1998] Uschold, M., King, M., Moralee, S., and Zorgios Y., (1998), “The

Enterprise Ontology” The Knowledge Engineering Review. 13,

Special Issue on Putting Ontologies to Use.

[Verma 1990] Verma, T., and Pearl, J., (1990), “Equivalence and Synthesis of

Causal Models,” Proceedings of the Sixth Conference on

Uncertainty in Artificial Intelligence, Cambridge, MA, pp. 220-227.

[Vesely 1981] Vesely, W.E., Goldberg, F.F., Roberts, N.H., and Haasl, D.F.,

(1981), “Fault Tree Handbook,” NUCLEAR REGULATORY

COMMISSION WASHINGTON DC.

[W3C-WWW 1992]World Wide Web Consortium, (1992), “World Wide Web-

Summary.”

[Wales 2005] Wales, J., (2005), “Internet encyclopaedias go head to head,”

Special Report December 2005, Nature, 438, pp. 900-901.

[Wan 1999] Wan, Y.H., Marzuki, K., and Syed, A.F.S.Z., (1999), “Transformer

fault diagnosis using fuzzy logic interpretations,” Instrument Asia

Technical Symposium’99, Singapore, p. 10.

[Yoo 2006] Yoo, K., (2006), “Knowledge-based Knowledge Management

252

System deploying Ubiquitous computing Technologies: Toward

the Intelligent and Autonomous Knowledge Acquisition,”

Unpublished doctoral dissertation, Pohang University of Science

and Technology, Pohang, South Korea.

 [Zack 1998] Zack, M., (1998), “An Architecture for Managing Explicated

Knowledge,” Sloan Management Review.

253

ABSTRACT

CAUSAL PRODUCT KNOWLEDGE MANAGEMENT

by

YUN SEON KIM

December 2010

Advisor: Dr. Kyoung-Yun Kim

Major: Industrial Engineering

Degree: Doctor of Philosophy

The US engineering industry base is facing a significant loss of knowledge

due to large numbers of employees retiring in the next decade. Problems in various

product developments including product design may arise when the expertise is no

longer available or the knowledge is forgotten. Also, most of product design

knowledge is not reusable, because product design knowledge in an organization

remains un-codified. Generally, knowledge-based system can solve or infer these

problems. However, knowledge-based systems have been developed solely

through the use of rule-based approach, which allows for easy modeling of expert

reasoning, but such an approach is not general and for a specific use; thus,

existing experience and analyses show that this approach has serious limitations

on associations between observable findings and diagnostic hypotheses.

Furthermore, the product development knowledge cannot be appropriately

acquired, represented, and reused by these techniques. To address these

254

challenges, this research develops new methodologies and tools to capture,

represent, store, and reuse domain knowledge from experts and implement a novel

web-based causal product design knowledge management system to

systematically utilize the knowledge from experts, who are currently working or

retired. The particular emphasis is on these research areas: 1) design knowledge

acquisition, 2) causal knowledge representation, 3) causal knowledge evaluation

and index, 4) causal knowledge integration, 5) and causal design knowledge

management system.

255

AUTOBIOGRAPHICAL STATEMENT

Yun Seon Kim is a Research Associate of the Department of Industrial and

Manufacturing Engineering, Wayne State University. He has been involved in

product development knowledge management research for the past four years. He

areas of research interest are in product development decision making,

telerehabilitation, artificial intelligence, semantic web, and knowledge management.

He has a Ph.D. in Industrial Engineering from the Department of Industrial and

Manufacturing Engineering, Wayne State University, an MSc. in Information

Sciences from the School of Information Sciences at the University of Pittsburgh,

and B.As. in Computer Sciences and Management from Handong Global

University in Pohang, South Korea.

	Wayne State University
	DigitalCommons@WayneState
	1-1-2010

	Causal Product Knowledge Management
	Yun Seon Kim
	Recommended Citation

