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Abstract
Background: Cytokines secreted by immune cells and activated glia play central roles in both the
pathogenesis of and protection from damage to the central nervous system (CNS) in multiple
sclerosis (MS).

Methods: We have used gene array analysis to identify the initial direct effects of cytokines on
CNS glia by comparing changes in early gene expression in CNS glial cultures treated for 6 hours
with cytokines typical of those secreted by Th1 and Th2 lymphocytes and monocyte/macrophages
(M/M).

Results: In two previous papers, we summarized effects of these cytokines on immune-related
molecules, and on neural and glial related proteins, including neurotrophins, growth factors and
structural proteins. In this paper, we present the effects of the cytokines on molecules involved in
metabolism, signaling and regulatory mechanisms in CNS glia. Many of the changes in gene
expression were similar to those seen in ischemic preconditioning and in early inflammatory lesions
in experimental autoimmune encephalomyelitis (EAE), related to ion homeostasis, mitochondrial
function, neurotransmission, vitamin D metabolism and a variety of transcription factors and
signaling pathways. Among the most prominent changes, all three cytokine mixtures markedly
downregulated the dopamine D3 receptor, while Th1 and Th2 cytokines downregulated
neuropeptide Y receptor 5. An unexpected finding was the large number of changes related to lipid
metabolism, including several suggesting a switch from diacylglycerol to phosphatidyl inositol
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mediated signaling pathways. Using QRT-PCR we validated the results for regulation of genes for
iNOS, arginase and P glycoprotein/multi-drug resistance protein 1 (MDR1) seen at 6 hours with
microarray.

Conclusion: Each of the three cytokine mixtures differentially regulated gene expression related
to metabolism and signaling that may play roles in the pathogenesis of MS, most notably with regard
to mitochondrial function and neurotransmitter signaling in glia.

Background
Genomic analysis has been applied to investigate changes
occurring in the central nervous system (CNS) in multiple
sclerosis (MS). These include analyses of acute and
chronic active lesions, lesions from patients at different
stages of MS, and comparisons of normal appearing white
matter (NAWM) and normal appearing gray matter
(NAGM). Examination of changes in the lesions them-
selves showed numerous changes in genes related to
immune and stress responses, as might be predicted from
the pathologic changes in lesions [1-6]. Based on the
premise that some of the earliest changes in the pathogen-
esis of MS lesions would be found in NAWM, where infil-
tration of immune cells is much less prominent [7,8],
Graumann and colleagues [9] analyzed genomic changes
in NAWM from patients with secondary progressive MS
(SPMS), and found evidence for changes characteristic of
neuroprotective mechanisms initially identified in
ischemic preconditioning associated with hypoxic insult.
Dutta et al [10] examined NAGM and identified reduced
expression of nuclear-encoded mitochondrial genes, as
well as in genes related to ion homeostasis and neuro-
transmission. Several of the changes could be localized to
neurons but since glia comprise a large proportion of the
tissue samples, the relative contribution of neurons and
glia to the changes in gene expression could not be quan-
titated. More recently the same group found upregulation
of genes and proteins associated with ciliary neurotrophic
factor (CNTF) and signaling pathways in normal cortical
gray matter [11]. Subsequently, Mahad, et al [12] found
decreased expression of mitochondrial Complex IV cyto-
chrome oxidase subunits COX I and COX IV in type III MS
lesions, suggesting that the hypoxia-like damage in this
type of lesion may result from mitochondrial dysfunction.
These findings suggest that a wide range of metabolic
changes occur in both neurons and glia throughout the
MS brain, independent of the local presence of systemic
inflammatory cells, and that secretory products of
immune cells and activated glia may play central roles in
the pathogenesis of and protection from both white mat-
ter and gray matter damage in MS.

To dissect the underlying molecular changes that might
occur in glial cells exposed to secreted products of

immune cells, we are utilizing gene array analysis to com-
pare the early effects of mixtures of cytokines typical of
Th1 cells, monocyte/macrophages (M/M) or Th2 cells on
gene transcription in cultures of mixed CNS glia from rat
brain. We have initially focused on changes in gene
expression at 6 hours of exposure of CNS glia to cytokines
to identify some of the earliest primary responses that
might occur in MS brains in response to cytokines, with-
out the confound of changes in gene expression in the
inflammatory cells, especially those regulated in the Th1
and Th2 cells. We are currently examining several of the
changes in glial cell gene expression by quantitative real
time-polymerase chain reaction (QRT-PCR) to analyze
the duration of the effects, and find that some changes
persist for as long as 5 days [13,14]. In two previous
papers, we summarized the effects of these cytokine mix-
tures on immune-related molecules [15] and on neural
and glial related proteins, including neurotrophins,
growth factors and structural proteins [16]. Each of the
cytokine mixtures induced an unique and complex pat-
tern of changes after 6 hours of incubation. In this third
paper, we present the effects of the Th1, M/M and Th2
cytokine mixtures on early gene expression (6 hours) for
molecules involved in metabolism, signaling and regula-
tory mechanisms in CNS glia. A number of the changes
found are similar to those found in a gene array analysis
of changes in rat spinal cord during the course of myelin
basic protein (MBP)-induced experimental autoimmune
encephalomyelitis (EAE) [17], including changes in ion
homeostasis, mitochondrial function, neurotransmitter-
related enzymes, and a variety of signaling pathways. An
unexpected finding was the large number of changes in
early gene expression related to lipid metabolism.

The culture system we have analyzed is devoid of neurons
to enable identification of the responses of the several
types of glia to the cytokines in the absence of cross talk
with neuronal signaling. For example, although classically
thought of as neuron specific, neurotransmitter receptors
on glial cells are now known to play prominent roles in
glial differentiation [18-22], axonal/neuronal protection
[21-26], microglial activation [23] and impulse conduc-
tion along myelinated axons [24]. We are initiating stud-
ies on enriched neuronal cultures to identify the direct
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effects of the three cytokine mixtures on early gene expres-
sion in neurons for comparison with the changes found in
glia, with the goal of identifying those cytokines most sup-
portive of preventing damage and promoting normal
axonal function.

Methods
The methodology has been described in detail in the prior
papers [15,16].

Mixed CNS glial cell cultures
Mixed CNS glial cell cultures were obtained from neonatal
rat brain using a modification of the so-called "shake-off"
technique [25,26] as we described previously [27]. Fol-
lowing shakeoff of cells from the astroglial bed layer, the
time for partial removal of microglia by adherence to plas-
tic was 1 hour prior to plating on poly-lysine coated flasks.
Cells were maintained in defined medium containing 2%
fetal bovine serum for 6–8 days, then treated with the
cytokines. The composition of cultures was examined by
indirect immunofluorescence (IF) with antibodies to phe-
notypic markers for different cells types: glial acidic fibril-
lary protein (GFAP) for astrocytes [28] (Chemicon,
Temecula, CA); galactolipids (GalL) for oligodendrocytes
[28,29]; A2B5 for oligodendrocyte precursors [30] (ATCC,
Bethesda, MD); ED-1 for microglia [31] (Serotec, Raleigh,
NC), Thy1.1 for fibroblasts [32] and in glial cultures some
astrocytes [33]; anti-neurofilament heavy chain (NFh) for
neurons [34] and anti-factor VIII for endothelial cells
(Dako Corporation, Carpinteria, CA).

Cytokine mixtures
The Th1 cytokine mixture included the rat recombinant
cytokines interleukin-2 (IL-2), interferon-γ (IFN-γ) (R&D
Systems, Inc, Minneapolis), tumor necrosis factor-α (TNF-
α; BD PharMigen, San Diego, CA) and mouse granulo-
cyte-colony stimulating factor (G-CSF; PeproTech, Rocky
Hill, NJ).

The M/M cytokine mixture included the rat recombinant
cytokines IL-1α and IL-1β, IL-6, IL-12p40 (all from R&D
Systems, Inc) and TNF-α. These cytokines would be con-
sidered proinflammatory products of M1 macrophages or
microglia [35].

The Th2 cytokine mixture included the rat recombinant
cytokines IL-4, IL-5, and IL-10 (all from R&D Systems, Inc),
mouse G-CSF and purified porcine transforming growth
factor-β1 (TGF-β1; R&D Systems, Inc.). In the cognate
immune system, in some species, TGF-β1 is considered by
some to be the product of so-called Th3 cells. TGF-β1 is also
important in the development of another population of T-
cells called regulatory T-cells (Treg cells) which are pheno-
typically characterized as CD4+/CD25 high+/Fox3 [36,37].
These Treg cells may also secrete TGF-β1.

Cytokine mixtures contained 10 ng/ml of each of the con-
stituent cytokines as is typically employed many in vitro
studies of cytokine biology. For each experiment, four
groups of three T75 flasks per group were incubated either
with mixtures of Th1, Th2, M/M cytokines or additional
medium (control) for 6 hours. Three sets of separate
experiments consisting of control, Th1, M/M and Th2
stimulated cultures were performed.

Cytotoxicity
As reported [15,16], we examined the cytokine-induced
effect on cell death in mixed CNS glial cell cultures by
incubating cultures from 6 hours to 4 days with the
cytokine mixtures. Cell death was determined by uptake
of 0.4% trypan blue [38].

RNA extraction
Cultures were washed and frozen after 6 hours of incuba-
tion with cytokine mixtures or additional medium. RNA
was extracted employing TRIzol (Gibco BRL, Grand
Island, NY) followed by Qiagen RNeasy kits (Qiagen,
Valencia, CA). The RNA was quantitated at A260 nm and the
quality was assessed by at A260 nm/A280 nm. The 28S/18S
ratio was assessed using a Bioanalyzer 2100 (Agilent Tech-
nologies, Wilmington, DE), and was > 1.7 for all samples.

Expression analysis
Biotin-labeled RNA fragments were prepared and hybrid-
ized to the Affymetrix rat RG-U34A microarray at 45°C for
16 hours, as previously described [15,16]. Subsequent sig-
nal amplification was performed employing biotinylated
anti-streptavidin antibody. The RG-U34A chip contains
7,985 genes. The control and three cytokine-incubated
cultures from one experiment were analyzed with one
gene chip for each sample and three separate experiments
using different cultures were analyzed.

Data analysis
Data were analyzed by comparing the average of the rep-
licates from each of the separate 3 sets of experiments.
Affymetrix data were analyzed with dChip v1.2 to correct
for background and calculate gene expression values [39].
We analyzed values from 3 separate experiments employ-
ing the t-test in GeneSpring comparing Th1, M/M and Th2
with control. Multiple testing analyses that compare all
7,985 genes at different levels of stringency using the Bon-
feroni and false discovery value (FDV) are statistically
most rigorous, but at such high levels of stringency, there
were very few changes that reached statistical significance.
In order to increase sensitivity and allow identification of
potentially important biologic changes, we employed a
lower level of stringency [15,16]. In these screening stud-
ies at a single time point, we have arbitrarily chosen to
represent as probably significant those genes in which the
mean expression was > 2 fold (upregulation) or < -2 fold



Journal of Neuroinflammation 2009, 6:4 http://www.jneuroinflammation.com/content/6/1/4

Page 4 of 27
(page number not for citation purposes)

(downregulation) compared to expression in controls (p
< 0.2) [15]. We believe this is reasonable given that our
experiments consisted of biological replicates that are
prone to greater variability than experimental replicates. A
similar p value was used in a gene array analysis of MS
lesions [2]. The recent literature suggests that a 2-fold cut-
off using the Affymetrix platform produces a low false
positive rate [40].

Quantitative real time-polymerase chain reaction (QRT-
PCR) expression analysis
Expression of message for iNOS was analyzed by QRT-
PCR on an ABI 7500 Fast System, using ABI Taqman rat
specific gene expression assays. RNA was extracted as
above and reversed transcribed. Relative expression levels
were calculated with GAPDH as the internal reference,
using the delta-delta Ct method [41]. The values from the
treated cultures were compared to those from control.
Those ratios were averaged for the three experiments, then
expressed as fold changes in the treated cultures relative to
control for comparison with the gene array results. Each
PCR value represents the average from 2–3 separate exper-
iments.

Results
Mixed CNS glial cell cultures
As in our earlier papers, cultures consisted of approxi-
mately 35% each of oligodendrocytes and astrocytes and
10% microglia. The remaining cells were glial cell precur-
sors including A2B5 positive oligodendrocyte precursors.
Endothelial cells and neurons were not present. Viability
was > 98% in all cultures control and cytokine stimulated,
at all time points examined (6 hours to 4 days) demon-
strating the lack of cytotoxicity under these conditions.

Overview of cytokine effects on early gene expression
In the preceding papers we first described changes in CNS
glia in genes for proteins predominantly associated with
the immune system including major histocompatibility
molecules, several adhesion and extracellular matrix mol-
ecules, cytokines and chemokines and their receptors and
complement components [15]. Because of our interests in
the effects of cytokines on the production of factors
important in oligodendrocyte, axonal and neuronal func-
tion, in a second paper we compared the effects of the dif-
ferent cytokine mixtures on expression of genes for
neurotrophins, growth factors, related receptors and struc-
tural proteins [16]. This third paper summarizes our find-
ings for cytokine-induced changes in glial expression of
genes for proteins associated with metabolism, signaling
and regulation as well as neurotransmitters and ion chan-
nels. As noted, this is a series of screening experiments and
therefore Tables 1 and 2 were prepared using the criteria
of > 2 fold (increased expression) or < -2 fold (decreased
expression) with a p value of < 0.2 for one or two repli-

cates of the gene transcript [15,16]. Unknown genes
(ESTs) are not presented.

Neurotransmitters and receptors
All three cytokine mixtures had regulatory effects on mes-
sage levels for a wide range of message levels for neuro-
transmitters and their receptors as well as on transporters
involved with transmitters including glutamate, adrener-
gic, cholinergic, glycine, serotonergic, dopaminergic and
purinergic systems (Table 1). The only adrenergic receptor
affected was alpha 2 c-4, upregulated 2.5 fold (p < 0.05)
by Th1 cytokines. Among cholinergic receptors, the largest
change was for nicotinic cholinergic receptor alpha5,
downregulated -2.3 fold (p < 0.05) by Th1. Dopaminergic
receptors A3 and D1 were markedly downregulated -8 to -
14 fold by Th1 and Th2 cytokines. Among several changes
in glutamate receptors, Th1 upregulated ionotropic gluta-
mate receptor delta 1 by 2.7 fold (p < 0.01), but markedly
downregulated metabotropic glutamate receptor 7b by -
9.5 fold (p < 0.01). Neuropeptide Y receptor 5 was down-
regulated by both Th1 and MM cytokine, -18 fold (p <
0.10) and -8 fold (p < 0.20), respectively, while the sub-
stance P precursor preprotachykinin A was downregulated
-7 fold (p < 0.10) by Th2. For purinergic receptors, the
most robust changes were -3 fold (p < 0.05) downregula-
tion of P2X1by Th2, and upregulation of P2Y2 by MM
and Th2, 3.5 fold and 2.4 fold, respectively, both p < 0.05.

Ion channels
Th1, M/M and Th2 cytokines had primarily downregula-
tory effects on expression of a very large number of genes
for proteins that are components of ion channels includ-
ing Na, K, Ca and Cl channels, both voltage-gated and
non-voltage gated (Table 1). For example, Th1 and Th2
downregulated the voltage-gated alpha 1D L type Ca++
channel by -4 and -7 fold respectively, both p < 0.05. A
large number of K+ channels were downregulated by Th2
cytokines, with fewer downregulated by Th1 or MM
cytokines. The voltage-gated 1 alpha sodium channel was
robustly downregulated by Th1 and MM cytokines, -9 fold
(p < 0.05) and -7 fold (p < 0.10) respectively, while Th2
cytokines uniquely downregulated the 1 beta isoform, -
2.5 fold, p < 0.01.

ATPase ion exchangers
In addition to the effects on ion channels shown in Table
1, there were effects on several ATPase ion exchangers.
With the exception of upregulation of Ca++ATPase
(plasma membrane 1) by M/M cytokines, several ATPase
ion exchangers were downregulated by each of the
cytokine mixtures (Table 1).

Apoptosis
The cytokine mixtures induced up and down regulation of
several genes for proteins involved in control of apoptosis
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Table 1: Changes in early gene expression: neurotransmitters, ion channels and exchangers, apoptosis, mitochondria and glutathione 
metabolism

NEUROTRANSMITTERS AND RECEPTORS Th1 M/M Th2

S50879 acetylcholinesterase T subunit 2.07*

AF050662 activity and neurotransmitter-induced early gene 10 -3.89* -5.27**

AF050664 activity and neurotransmitter-induced early gene 12 2.79*

AF050661 activity and neurotransmitter-induced early gene 9 -2.91* -4.64** -3.71*

X57659 adrenergic receptor, alpha 2 c-4 2.53***

M16406 cholinergic receptor, muscarinic m1 -2.05* -2.07*

J05231 cholinergic receptor, nicotinic, alpha 5 -2.29***

L08227 cholinergic receptor, nicotinic, alpha 6 -3.26*

L31619 cholinergic receptor, nicotinic, alpha 7 -2.14** -2.29**

L31622 cholinergic receptor, nicotinic, beta 2 -2.33**

M35077 dopaminergic receptor A1 -12.11*** -14.19***

A17753 dopaminergic receptor D3 -10.31*** -5.21* -8.28**

L08493 GABA-A receptor, alpha 4 -2.0*

S56679 glutamate receptor, AMPA-selective A -3.31***

U08255 glutamate receptor, ionotropic, delta 1 2.68****

AF027331 glutamate receptor, ionotropic, kainate 5 2.15*

D13211 glutamate receptor, ionotropic, NMDA 2A -3.02** -3.50***

X96790 glutamate receptor, metabotropic 7b. -9.46**** -3.02** -3.50***

D16817 glutamate receptor. metabotropic 7 -2.19*

U28504 glutamate transporter, vesicular, family 17 -3.29*

X55246 glycine receptor, alpha 1 -3.05****

D00833 glycine receptor, alpha 1 subunit -2.21* -7.08****

X57281 glycine receptor, alpha 2 subunit -2.36***

L13600 glycine transporter 1 2.86*** 2.12***

U66274 neuropeptide Y receptor 5 -18.76** -8.72*

X56306 preprotachykinin A (substance P precursor) -7.17**

L46874 proton-driven peptide transporter. -2.10** -3.50***
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X90561 purinergic receplor P2X, ligand-gated 3 -5.56*

X80477 purinergic receptor P2X, ligand-gated 1 -3.23* -3.0***

AF020758 purinergic receptor P2X, ligand-gated 2 -3.86* -3.81*

X95882 purinergic receptor P2X, ligand-gated 7 -2.10*

U56839 purinergic receptor P2Y, G-protein coupled 2 3.51*** 2.41***

Y311433 purinergic receptor P2Y, G-protein coupled 4 -2.53*

X66842 serotonergic receptor 2B -2.09***

U20907 serotonergic receptor 4 -6.05****

ION CHANNELS

M99222 Ca++ channel, A/P type, alpha 1, splice variant -3.75*

M57682 Ca++ channel, voltage-gated, L type, alpha 1D -4.62*** -3.39* -7.36***

D26111 Cl- channel (ClC-K2L and ClC-K2S), splice variant -3.13* -2.02*

X62894 Cl- channel, voltage-gated, 1 (skeletal muscle) -2.80** -2.59*

X78461 K+ inwardly-rectifying channel, J12 (kir 3.3/IRK3) 2.05*

U69884 K+ channel, small conductance Ca++-activated -3.17* -2.55*

L35771 K+ channel, inwardly-rectifying, J5 -3.56***

L77929 K+ channel, inwardly-rectifying, J9 -2.49*

U40603 K+ channel, large conductance Ca++activated M alpha1 -3.50* -3.61*

AB010963 K+ channel, large conductance Ca++-activated M beta1 -2.20***

D10709 K+ channel, lsk1 (epithelial), E1 2.50***

AF031384 K+ channel, voltage-gated, K3 -2.45* -2.36**

AF087453 K+ channel, voltage-gated, KQT-like 2 -3.39*

AF087454 K+ channel, voltage-gated, Q3 -2.56* -2.18*

Y17606 K+ channel, voltage-gated, S1 -4.17** -3.80* -4.68*

J04731 K+ channel, voltage-gated, shaker related 2 -7.17*

X16003 K+ channel, voltage-gated, shaker related 2. -2.44*

U72410 K+ inwardly-rectifying channel, J3 (GIRK1) 2.75***

M22253 Na+ channel, voltage-gated, 1 alpha -9.23*** -6.92**

M91808 Na+ channel, voltage-gated, 1 beta -2.46****

Table 1: Changes in early gene expression: neurotransmitters, ion channels and exchangers, apoptosis, mitochondria and glutathione 
metabolism (Continued)
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AF000368 Na+ channel, voltage-gated, 9 alpha -3.36*

AA891751 Na+ channel, voltage-gated, 3 alpha (CIN3) -2.10**

Y00766 Na+ channel, voltage-gated. 3 alpha (CIN3) -2.76**

ATPase ION EXCHANGERS

M99223 Ca++ ATPase, cardiac, fast twitch 1 -3.80** -2.82* -2.70**

AA800212 Ca++ ATPase, cardiac, slow twitch 2 -2.06* -2.35*

Al172499 Ca++ ATPase, plasma membrane 1 3.0***

X76452 Ca++ ATPase, plasma membrane 4 -2.06***

AA956437 ER ATPase, peroxisome biogenesis factor 1 -2.35*

U94911 H+/K+ ATPase, nongastric, alpha 2a -2.30***

M90398 H+/K+ ATPase, nongastric, alpha 2a -2.73*

U15176 Na+/K+ ATPase, alpha 4 -3.15* -2.86*

APOPTOSIS

H31839 Bcl X 2.35**

AF025671 caspase 2 -2.93**** -2.63***

AF072124 caspase 7 3.71*** 3.17**

M33605 cytolysin -2.06*** -2.22***

Al639313 huntingtin associated protein interactive protein -2.40*** -2.34*

Al176462 programmed cell death 2 -2.47****

MITOCHONDRIA

AJ007488 16s ribosomal RNA, mitochondrial -4.1**** -2.81**

X72758 COX VIa2, Complex IV -3.16*

M20183 COX VIc1, Complex IV -3.76**

M10140 creatine kinase (muscle) -2.02* -2.01*

Al044488 ferredoxin 1 -2.27* -2.61*

D26393 hexokinase II 2.75*

X87884 mitochondrial capsule selenoprotein. -2.88*

AA799479 NADH dehydrogenase (ubiquinone), Complex I -2.43***

AA891651 NADH dehydrogenase (ubiquinone), Complex I -2.20* -2.61***

Table 1: Changes in early gene expression: neurotransmitters, ion channels and exchangers, apoptosis, mitochondria and glutathione 
metabolism (Continued)
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AI75973 NADH dehydrogenase (ubiquinone), Complex I -2.61*

X59736 sarcomeric mitochondrial creatine kinase. -5.18*

Y00497 superoxide dismutase 2 3.79*** 5.82**** 2.00**

X68041 superoxide dismutase 3 -2.96**

X59793 ubiquitous mitochondrial creatine kinase -2.61**

A04674 uncoupling protein 1, proton carrier -2.19***

GLUTATHIONE-RELATED

U73174 glutathione reductase 2.07* 2.74**

AI138143 glutathione S-transferase, theta 2 -2.04**

S72506 glutathione S-transferase, Yc2 subunit -5.0** -3.01*

AI235747 glutathione-S-transferase, alpha (Ya) -2.36* -2.22***

M81855 P-glycoprotein, multi-drug resistance 1 5.45** 5.10***

Values represent averages of fold changes from three separate experiments for each cytokine mixture compared to control. The accession 
numbers are from Genbank.
****p < 0.01; ***p < 0.05; **p < 0.10; *p < 0.20.

Table 1: Changes in early gene expression: neurotransmitters, ion channels and exchangers, apoptosis, mitochondria and glutathione 
metabolism (Continued)

Table 2: Changes in early gene expression: gene regulation, signaling, cytoplasmic transport and metabolism

TRANSCRIPTION FACTORS

U04860 aryl hydrocarbon receptor -2.48**** -2.66**

X14788 CREB 2.46* 2.02*

Hi1677 eIF5 (elongation initiation factor 5) 2.47**

Al03194 eIF5 (elongation initiation factor 5) 2,06***

Al638955 fox-1 homolog 4.83** 4.08****

L13261 hepatic nuclear factor 3 (forkhead homolog 1) 2.09***

L09647 hepatic nuclear factor 3 beta -2.23** -2.29* -2.35**

AB01774 hepatic nuclear factor 3 gamma -2.21*

X57133 hepatic nuclear factor 4 alpha -2.61** -4.80**** -3.46****

X57133 hepatic nuclear factor 4 alpha -6.63*** -3.69*** -2.92**

D10554 hepatic nuclear factor 4 alpha -2.38**

AA891041 junB 4.49*** 2.48**
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X54686 junB 2.29**** 2.83**** 2.14****

L26267 NFkappa B, p105 subunit 3.49** 3.97***

L23862 POU domain -2.47**

NUCLEAR RECEPTORS

U40064 PPAR delta 2.31** 2.06**

AB011365 PPAR gamma -5.41**** -4.52**** -2.09*

SIGNALING

L26986 adenylyl cyclase, type 8 -4.11*

U73503 calmodulin kinase II, gamma E -2.26*

U09583 fyn-related kinase (src homology)

AB007688 homer 4.03* 4.03****

AA900503 jagged 1 2.15* 2.35*

L38483 jagged 1 2.38***

U13396 Janus kinase 2 (JAK 2) 5.20*** 4.97***

U13396 Janus kinase 2 (JAK 2) 2.34***

AJ000557 Janus kinase 2 (JAK 2) 3.36***

L14951 lyn protein non-receptor kinase 2.45** 2.00*

L14782 lyn protein non-receptor kinase 2.17***

AA946094 lyn protein non-receptor kinase 2.14**

X96488 MAP kinase 12 -2.07*

M95437 phosphodiesterase 1B -2.36**

AL235758 protein kinase A, 2, regulatory subunit -2.15*

M18330 protein kinase C, delta 2.11**

U69109 protein tyrosine kinase 2B 4.59** 3.17**

AF063890 protein tyrosine kinase 2B 3.30***

Al113289 protein tyrosine phosphatase, non-receptor 2.31*** 2.45***

AF05398 ras GTPase activating protein -2.04**

U69702 receptor serine threonine kinase -2.50* -2.56*

U69702 receptor serine threonine kinase -2.56*

Table 2: Changes in early gene expression: gene regulation, signaling, cytoplasmic transport and metabolism (Continued)
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AF097887 Rho family GTPase -2.07***

AA892553 STAT 1 10.30***

X91810 STAT 3 2.49**** 2.42****

U24175 STAT 5a 3.13*** 4.41***

L27112 stress activated protein kinase alpha II 2.85***

CYTOPLASMIC TRANSPORT AND DEGRADATION OF PROTEINS

AF077354 heat shock 70 kDa protein 4 2.24**

AA799492 proteasome (prosome, macropain) alpha 6 9.69****

AA891383 proteasome (prosome, macropain) alpha 6 3.29***

D45249 proteasome activating subunit alpha 2.12***

D45250 proteasome activating subunit beta 3.68***

D21799 proteasome subunit RC7-1 2.12***

D10757 proteasome subunit R-RING 6.76****

D10757 proteasome subunit R-RING 6.45**

AJ224441 proteasome subunit R-RING -3.62** -3.78***

H31236 similar to ubiquitin-conjugating enzyme E2D 2 -2.50*

S73007 synuclein alpha (SYN 1) 2.87**

S73008 synuclein beta (SYN 2) -3.82** 2.58**

AA874859 ubiquitin ligase (NEDD 4) -2.25* -3.19***

L38482 ubiquitin-conjugating enzyme 2.01**

U56407 ubiquitin-conjugating enzyme E2D 2 -4.18*** -6.38*** -4.76***

AA685152 ubiquitin-like protein (NEDD 6) 2.71*** 2.90***

LIPID SYNTHESIS

S78687 3-OH-3-methylglutaryl CoA reductase -2.34** -2.34**

J02749 acetyl CoA acyl transferase -2.34* -2.29*

J03808 acetyl CoA carboxylase -2.40*

AB010428 cytosolic acyl CoA thioesterase 1 3.91*

M95591 farnesyl phosphate farnesyl transferase -2.11***

Al004900 fatty acid CoA ligase, long chain 2 2.47****

Table 2: Changes in early gene expression: gene regulation, signaling, cytoplasmic transport and metabolism (Continued)
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AA925424 fatty acid CoA ligase, long chain 4 -4.83*** -4.27****

M33648 mitochondrial 3-OH-3-methylglutaryl CoA synthase -2.72**

Y09333 mitochondrial acyl CoA thioesterase 2.68**

D00512 mitochondrial fatty acid acetyl CoA thiolase -2.39*

AA800303 phospholipid scramblase 3.16*

U07683 UDP-galactose ceramide galactosyl transferase -3.14*

AF047707 UDP-glucose:ceramide glycosyltransferase 2.57*** 2.61***

LIPID SIGNALING

AB00999 CDP-diacylglycerol synthase 9.91**** 6.45****

AB00999 CDP-diacylglycerol synthase 2.52*** 6.40****

AA818983 diacylglycerol kinase beta -4.21**

U10303 EDG, endothelial sphingolipid GPCR -6.17**** -2.65*

AA859981 myo-inositol monophosphatase -2.01***

D88666 phosphatidyl serine specific phospholipase A 3.08**

D00036 phospholipase A2, group 1B -4.15*

U03763 phospholipase A2, group 5 -4.17**

L14322 phospholipase C beta 1 -2.37**

STEROID AND VITAMIN D RELATED

U89280 17-beta hydroxy sterol reductase -2.81** -3.53****

X97754 17-beta hydroxy sterol reductase, type 1 -4.53***

L04619 25-OH vitamin D3 24-hydroxylase (Cyp24a1) -5.20* -4.42*

M95058 steroid 5-alpha reductase 2 -2.04**

M13646 testosterone 6-beta hydroxylase -6.91*** -2.03*

Y07534 vitamin D3 25-hydroxylase (Cyp27a1) 2.49*

MISCELLANEOUS

X02361 alpha-fetoprotein -2.50* -2.56* -2.49*

AA998229 alpha-fetoprotein -2.22**

M90065 angiotensin receptor, type 1b -5.02****

U01908 angiotensin receptor, type 2 -3.82**

Table 2: Changes in early gene expression: gene regulation, signaling, cytoplasmic transport and metabolism (Continued)
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J02720 arginase 1 4.82***

X03369 beta tubulin 2b -4.09* -4.90* -11.96***

U60758 carbonic anhydrase II 2.46* 2.10*

Al043968 caveolin 3 -2.44*

AA817854 ceruloplasmin 2.56*

L33869 ceruloplasmin 2.04*

U49049 chapsyn-110 -4.05* -4.77** -29.4****

U09538 fyn-related kinase (src homology) -2.49**

J03624 galanin 5.03** 3.22***

S57565 histamine H2 receptor -2.62** -2.17**

M11566 kallikrein S3 -2.34** -2.48**

M27217 kallikrein-related (rGK-8) -2.88**

AB005900 low density lipoprotein receptor 1 4.06** 2.18** 5.84**

AI07531 low density lipoprotein receptor 1 3.19**** 5.40***

AI030685 nestin -2.77*

U03699 nitric oxide synthase 2 (iNOS) 14.69*** 14.61***

AA892953 similar to carbonic anhydrase 2.19*

U09361 VIP receptor 2 -3.14*

Values represent averages of fold changes from three separate experiments for each cytokine mixture compared to control. The accession 
numbers are from Genbank.
****p < 0.01; ***p < 0.05; **p < 0.10; *p < 0.20.

Table 2: Changes in early gene expression: gene regulation, signaling, cytoplasmic transport and metabolism (Continued)

(Table 1) including caspase 2, downregulated -3 fold, p <
0.05 by both MM and Th2 cytokines, and caspase 7,
downregulated -3 fold by Th1 and MM cytokines.

Mitochondria and related proteins
There were cytokine mixture-induced changes in expres-
sion in genes of some mitochondrial proteins which are
listed in Table 1, including a 4–6 fold (p < 0.05) upregu-
lation of super oxide dismutase 2 (SOD2) by Th1 and
MM, and an apparent -4 fold (p < 0.01) decrease for 16S
mitochondrial ribosomal RNA.

Glutathione-related
The genes for several proteins involved in glutathione
metabolism and secretion were regulated by the different
types of mixtures of cytokines (Table 1). Subunits of glu-

tathione S-transferase were generally downregulated,
while both Th1 and MM upregulated P-glycopro-
tein(multi-drug resistance protein) by 5 fold, p < 0.10 and
p < 0.05, respectively.

Transcription factors
Th1 cytokines markedly upregulated junB, CREB and the
p105 subunit of NF κB. Both Th1 and M/M cytokines
altered expression of genes for several other transcription
factors, while the Th2 cytokines had minimal effects
(Table 2). All three cytokines markedly upregulated mes-
sage levels of junB (2–3 fold, p < 0.01) and downregu-
lated hepatic nuclear factor alpha (-3 to -7 fold, p < 0.05.).
Both Th1 and M/M cytokines upregulated the expression
of the gene for NF kappa B p105 subunit and downregu-
lated the aryl hydrocarbon receptor (Table 2).
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Nuclear receptors
Th1 and M/M cytokines upregulated the gene for peroxi-
some proliferator activator receptor δ (PPAR δ) by 2 fold
(p < 0.10), and downregulated the gene for PPAR γ by -5
fold (p < 0.01). Th2 cytokines downregulated the gene for
PPAR γ but had no effect on PPAR δ (Table 2).

Signaling
The cytokine mixtures had effects on the expression of
genes for many signal transduction molecules, some of
which are presented in Table 2. Among these are STAT1, 3
and 5, JAK2, homer and protein kinase 2 B. Of interest,
only one gene in this category was affected by Th2
cytokines, stress activated protein kinase alpha 2, upregu-
lated 3 fold (p < 0.05).

Cytoplasmic transport and degradation of proteins
Th1, M/M and Th2 cytokines had effects on the genes for
several proteins involved in synthesis, degradation and
intracellular transport of proteins including synucleins,
proteasome subunits, ubiquitin conjugating enzymes and
heat shock protein (HSP) 70 kDa (Table 2). For example,
proteasome (macropain) alpha 6 was upregulated 10 fold
(p < -.01) by Th1 cytokines, while the ubiquitin-conjugat-
ing enzyme E2D 2 was downregulated -4 to -6 fold (p <
0.05) by all three cytokine mixtures.

Lipid synthesis and signaling
As noted in Table 2, the genes for several proteins
involved in lipid metabolism and signaling were regu-
lated by the different cytokine mixtures. For example, fatty
acid CoA ligase long chain 4 was downregulated -4 to -5
fold (p < 0.05 fold) by Th1 and Mm cytokines, while
UDP-glucose ceramide glycosyl transferase was upregu-
lated 3 fold (p < 0.05). With regard to lipid signaling, CDP
diacylglycerol synthase was markedly upregulated 6–10
fold (p < 0.01) by all three cytokines, while EDG
(endothelial sphingolipid GPCR) was downregulated -6
fold (p < 0.01) by MM cytokines.

Steroid and vitamin D related
Specific genes regulating proteins involved in sterol and
vitamin D metabolism were also regulated by the cytokine
mixtures (Table 2). Thus, 17-beta hydroxyl sterol reduct-
ase was downregulated -4 to -5 fold (p < 0.05) by Th1 and
Th2 cytokines, and testosterone 6-beta hydroxylase was
downregulated -7 fold (p < 0.05) by MM cytokines.

Miscellaneous proteins
There were a large number of genes for proteins not
included in the above categories that are potentially of
importance in understanding the pathogenesis of MS, as
well as protective and reparative mechanisms. These are
listed in Table 2. Of note, Th1 and MM cytokines upegu-
lated nitric oxide synthase 2 (iNOS) by 15 fold (p < 0.05),
while Th2 cytokines markedly downregulated genes for
angiotensin receptor type 1b (-5 fold), beta tubulin 2b (-
12 fold), and chapsyn-110 (-29 fold), all p < 0.05, but
upregulated arginase and low density lipoprotein receptor
1 by 5 fold (p < 0.05).

QRT-PCR
We validated expression changes in three genes by QRT-
PCR: iNOS, the enzyme that synthesizes NO from
arginine; arginase, the enzyme that breaks down arginine,
thus limiting production of NO; and P-glycoprotein
(multi-drug resistance 1), an ABC transporter involved in
regulation of glutathione levels. As noted in Table 3, we
were able to confirm striking upregulation of the gene for
iNOS by Th1 and M/M at 6 hours employing QRT-PCR.
Although no effect on the gene for iNOS expression was
observed at 6 hours in response to Th2 cytokines on
microarray, we detected modest downregulation employ-
ing QRT-PCR. For arginase, we confirmed upregulation by
Th2, with no change induced by Th1; however, in contrast
to the array results, PCR indicated some upregulation of
arginase by MM at 6 hours, rather than no change. For P
glycoprotein, PCR showed upregulation by Th1 (in two of
three analyses) and MM, as on the gene array, but also
indicated a modest increase with Th2 rather than no
change. The results for these three genes show relatively

Table 3: QRT-PCR validation of gene array results for cytokine-
induced changes in gene expression at 6 hours

Gene Cytokine Array PCR

iNOS
Th1 14.7 35.9 +/- 18.8
M/M 14.6 371 +/- 146
Th2 NC -3.7 +/- 0.9

arginase
Th1 NC 1.05 +/- 0.28
M/M NC 5.37 +/- 2.03
Th2 4.82 20.9 +/- 5.16

P glycoprotein
Th1 5.4 2.51 +/- 2.54
M/M 5.1 3.77 +/- 1.84
Th2 NC 1.99 +/- 0.28

RNA extracts from 2 experiments for iNOS and 3 experiments for 
arginase and P glycoprotein were analyzed by QRT-PCR, as described 
in Methods. Values are averages +/- range. In agreement with the gene 
array results, Th1 and M/M cytokines markedly upregulated 
expression of iNOS in the mixed glial cultures; Th2 cytokines 
upregulated arginase; and Th1 and M/M cytokines upregulated P 
glycoprotein. Differences from the gene array were a decrease in 
iNOS by Th2, an increase in arginase by M/M and an increase in P 
glycoprotein by Th2 cytokines.
Values for iNOS, +/- range; values for arginase and P glycoprotein, +/- 
S.D.
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good agreement, and indicate that the arrays are not giv-
ing false positive results, but in some instances may give
false negative results, suggesting that PCR may be more
sensitive than the gene array.

Discussion
In our two preceding papers, we showed marked differen-
tial early effects of Th1 cytokines, M/M cytokines and Th2
cytokines on glial expression of a variety of genes, includ-
ing those for immune-related molecules [15] and for neu-
rotrophins, growth factors and structural proteins [16]. In
addition, following the 6 hours of cytokine exposure used
in these studies, we saw changes in expression of a large
number of genes involved in signaling, regulation and
metabolism. Some of these changes might be predicted
from known effects of cytokines in vitro and in EAE or MS
tissue, while other changes were unexpected. In contrast
to the in vivo studies, our examination of an early 6 hour
time point provides information about what might be
some of the initial responses of glia per se to these
cytokines.

Neurotransmitters and receptors
Glial cells have been reported to express different neuro-
transmitters and receptors as well as transporters for these
transmitters [23,42-45]. With increasing evidence that
both oligodendrocyte and neuronal/axonal damage may
be caused by glutamate induced toxicity [46-50], and that
other glutamate receptors may be protective [51], the
effects of cytokine mixtures on different GluR may influ-
ence and modify the effects of glutamate. AMPA, kainate
and NMDA receptors may be important in oligodendro-
cyte toxicity in MS and EAE [52-57] whereas upregulation
of metabotropic GluRs (mGluRs) may provide protection
[58]. The effects of upregulation of AMPA, NMDA and
kainate GluR on neuronal death are well recognized [59].
It is of interest that Th1 and M/M upregulated GluRs asso-
ciated with cell toxicity whereas all three cytokine mix-
tures markedly downregulated metabotropic mGluR7b.
The group III mGluRs, including mGluR7, inhibit produc-
tion of RANTES induced in astroglia by TNF-α or IFN-γ
[60]. We previously reported upregulation of the gene for
RANTES by Th1 and M/M cytokines [15].

The role of other transmitters in glial cell function is not
as well understood. In addition to receptors for well estab-
lished neurotransmitters and classically described ion
channels (Ca++, K+ and Na+), we detected effects on
genes for the purinergic P2X receptors, some of which
serve as ligand gated ion channels [61], and the P2Y recep-
tors which act as G protein coupled receptors when ligated
by extracellularly released nucleotides, as occurs in
inflammation and other stressful conditions within the
CNS. The purinergic receptors modify the response of
astrocytes to cytokines such as IL-1β and TNF-α and mod-

ify astrocyte functions including Ca++ influx [62-64], as
well as modulating transport of other ions [65]. The P2X7
receptor is found in resting and activated microglia in epi-
leptic brain and several other neurologic diseases [66],
and plays a role in microglial proliferation [61] and
migration [23]. The P2X7 receptor is expressed in reactive
astrocytes and microglia/macrophages in MS lesions [62],
and is transiently upregulated by the M/M cytokine IL-1β
in cultured fetal human astrocytes, resulting in increased
iNOS activity [64]. We noted modest downregulation of
the gene for the P2X7 receptor with M/M at 6 hours in our
mixed glial cultures, suggesting that the mixture of
cytokines or the presence of other glial cell types may
modulate the glial responses to IL-1β, or that upregulation
seen in vivo and in vitro in other studies may be a second-
ary response occurring at later time points.

The different cytokine mixtures had variable effects on a
large number of receptors for several other transmitters
including dopaminergic, serotonergic, cholinergic, adren-
ergic and melanocortin as well as the previously discussed
purinergic receptors. The downregulation of the genes for
the D1 and D3 dopamine receptors by the cytokine mix-
tures was especially striking. All three types of glia are
known to express dopamine receptors, and D3 dopamine
receptors may play roles in oligodendroglial differentia-
tion and myelination [67], as well as protection of oli-
godendrocytes against glutamate oxidative stress and
oxygen glucose deprivation [68]. Binding of neurotrans-
mitters to their receptors on microglial cells seem to be
important in microglial function [23].

It is also of interest that several of the neuronal nicotinic
acetylcholine receptors are involved in downregulation of
proinflammatory immune reactions in the systemic
immune system, in particular the nicotinic α7 receptor
[69,70], which we found downregulated by both M/M
and Th2 cytokine mixtures. Further, attenuation of
cholinergic signaling with the acetylcholinesterase inhibi-
tor physostigmine results in inhibition of CNS inflamma-
tion and development of EAE [71]. Conversely, we found
that M/M cytokines upregulated the gene for the acetyl-
cholinesterase T subunit, which could lead to increased
acetylcholinesterase and a decreased "protective" cholin-
ergic response.

Expression of genes for several transporters for glutamate
and glycine were also observed along with changes in the
genes for the R5 receptor for neuropeptide Y receptor 5
and preprotachykinin A (precursor of substance P). The
role of such receptors and transporters in glial cells is not
clear. Of interest, changes were found in activity of neuro-
transmitter-induced early genes 9, 10 and 12. It is not
known if these cytokine mixtures have a similar effect on
the same genes and their proteins in various subpopula-
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tions of neurons. If they do, this would have major impli-
cations on neuronal and axonal dysfunction in MS and
other diseases characterized by CNS inflammation and/or
microglial activation [72], as well as symptoms in patients
with MS such as depression, memory loss, abnormalities
in other cognitive functions, fatigue and pain.

Ion channels
We observed cytokine induced changes in gene expression
for many ion channels including Na+, K+ and Ca++ chan-
nels. It is well established that glial cells have a wide vari-
ety of ion channels which are important in glial cell
function [21,73-77] and that expression of some of these
have been reported to be affected by cytokines in glial cells
and neurons, as well as other types of cells [21,78-81].
Cytokine effects on ion channels and ion exchangers
clearly are important in axonal and neuronal function and
viability as well as likely contributing to symptomatology
in patients with MS [82-86]. Changes in genes for ion
channels have been reported in the CNS in MS and EAE
[2,87].

There have been reports of inflammatory mediators such
as inducible nitric oxide synthase (iNOS) inducing upreg-
ulation of certain Na channels in neurons [84,88]. We
observed significant effects on gene expression for a wide
variety of ion channels in glial cells at 6 hours of incuba-
tion suggesting a direct effect of cytokines on expression of
genes for some or all of these channels in glia. Changes in
the distribution of ion channels could contribute to glial
cell dysfunction. If similar changes were induced directly
in neurons/axons, these changes could contribute to plas-
ticity as well as to axonal and neuronal cell death. While
such changes in neuronal ion channels and failure and
reversal of ion exchangers, particularly Ca++ exchangers
[89,90], could result from failure of mitochondrial energy
metabolism [10,91], our results also raise the possibility
of axonal dysfunction and ultimately death by direct effect
of cytokines on expression of genes for ion channels and
ATPase ion exchangers (see below). The cytokine mixtures
also likely regulate ion channels on inflammatory cells
such as lymphocytes, and ion channels are known to
affect lymphocyte function [92].

ATPase ion exchangers
Th1 downregulated the genes for Na+/K+ ATPase, α4
polypeptide and Ca++ transporting ATPase. M/M upregu-
lated the genes for Ca++ transporting ATPase and Ca++
ATPase, plasma membrane 1. Th2 likewise downregu-
lated the genes for several ATPase ion transporters includ-
ing Na+/K+ ATPase α4 polypeptide, Ca++ transporting
ATPase, Ca++-pumping ATPase isoform 4, H+/K+-ATPase
α2 gene, alternatively spliced and H+/K+ ATPase, nongas-
tric, α polypeptide, nongastric; and the Na+/H+ ion
exchanger (Table 1).

Apoptosis
The possible role of oligodendrocyte cell death through
apoptosis via caspases [93] or via other pathways to cell
death [94] in MS lesions continues to be controversial,
and it is likely that apoptosis as a mediator of oli-
godendrocyte death varies in different lesions [95]. Neu-
ronal cell death by what appears to be apoptosis is also
seen [96]. Up and downregulation of expression of vari-
ous genes for proteins involved in apoptosis including
caspases and Bcl X were noted. Th1 and M/M cytokines
both induced upregulation of the genes for caspase 7, a
downstream effector caspase involved in caspase-depend-
ent apoptosis [97], and Bcl X, a protein which inhibits
apoptosis [98,99]. M/M cytokines downregulated the
gene for caspase 2, a caspase implicated in oligodendro-
cyte cell death via the p75 receptor [93]. The gene for
cytolysin (a constituent of lymphocyte toxic granules) was
downregulated by both Th1 and Th2 cytokines, and Th2
and M/M cytokine mixtures both downregulate the gene
for the protein programmed cell death 2.

Mutations in the gene for the protein huntingtin (Htt)
result in Huntingon's chorea. Htt interacts with several
proteins. One of these proteins is called htt-interacting
protein (HIP-1). When HIP1 is bound to normal Htt, it
inhibits apoptosis in certain neurons and Htt seems to be
involved in endocytosis as well [100-103]. In addition
abnormal huntingtin interferes with normal ubiquitin-
proteosome function and one could readily postulate that
downregulation of proteins such as HIP-1 that interact
with htt could also lead to abnormal protein aggregation
such is seen in many degenerative diseases including
Huntington's disease, where it is the htt that is qualita-
tively abnormal [104]. There was downregulation of the
gene for HIP-1 by Th1 and M/M cytokines.

Changes in expression of mitochondrial protein genes,
including genes associated with some apoptotic path-
ways, were noted (see below).

Mitochondria and related proteins
Changes in mitochondrial related genes have been noted
in MS cortical gray matter in patients with long-standing
chronic MS [10], and failure in mitochondrial associated
energy metabolism may be important in axonal and neu-
ronal degeneration and cell death [89,91]. Most of the
detected changes were reduced expression of genes, partic-
ularly components of complex I, III and IV. Decreased
expression of COX subunits I and IV (Complex IV) has
been detected in oligodendroglia, astroglia and axons, but
not in microglia, in acute Type III MS lesions [12]. In our
CNS glial cultures, we found predominately downregula-
tion of genes associated with mitochondria. Th1 cytokines
upregulated genes for hexokinase II and superoxide dis-
mutase 2 (Mn++ SOD2), and downregulated genes for
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NADH dehydrogenase (Complex I), COX VIa and COX
VIc (Complex IV), ferredoxin 1, and perhaps for 16s ribos-
omal RNA, which is a component of the large subunit of
the mammalian mitochondrial ribosome, responsible for
synthesis of 13 proteins localized in the inner mitochon-
drial membrane [105]. This latter finding has yet to be
confirmed. M/M cytokines upregulated genes for SOD2
and down regulated the genes for NADH dehydrogenase
and creatine kinases. Th2 cytokines down regulated genes
for NADH dehydrogenase and 16S ribosomal RNA. Th1
down regulated the gene for SOD3, an extracellular Cu++/
Zn++ SOD. None of the cytokine mixtures had an effect on
the gene for the mitochondrial protein Cu++/Zn++ SOD1;
some familial forms of amyotrophic lateral sclerosis (ALS)
are associated with mutations in this gene [106]. One
could postulate that inflammatory cytokines, perhaps
products of activated microglia, at first stimulate tran-
scription of genes for some mitochondrial enzymes, but
decreased expression of the 16S subunit of the mitochon-
drial ribosome could lead to ongoing downregulation of
genes and their proteins critical for mitochondrial func-
tion in oligodendrocytes and neurons.

Glutathione-related
We observed effects on the genes for several proteins
involved in glutathione metabolism and secretion. Glu-
tathione serves a protective function by reducing the effect
of free radicals produced via oxidative stress [107,108],
and the cytokine mixtures had significant effects on genes
for several proteins involved in synthesis, regulation and
release of glutathione. Th1 upregulated the gene for P-
glycoprotein/multidrug resistance protein 1/MDR1 (P-
glycoprotein/ABCB1), as did M/M cytokines. MDR1,
which in addition to inhibiting the therapeutic effects of
drugs, has effects on vascular structures and influences
secretion of glutathione by cells such as astrocytes [109-
111]. In addition to astrocytes, it has been detected in
microglia, oligodendrocytes, endothelial cells and neu-
rons [112,113]. Glutathione is more abundant in astro-
cytes than in other brain cell types, which may contribute
to the relative resistance of astrocytes to ischemia and
other pathologic processes that involve oxidative stress.
Changes in glutathione may also contribute to the relative
vulnerability of oligodendrocytes and precursors at differ-
ent stages of maturation to oxidative stress [107,114-116].
Glutathione also modulates prostaglandin metabolism
[117]. We describe cytokine modulation of expression of
several genes associated with prostaglandin metabolism
[15], and prostglandin D synthase has been reported to be
upregulated in MS lesions [2].

Transcription factors
Some genes for transcription factors were upregulated,
quite predictably, such as NF-κB p105 in the presence of
IL-1 or TNF-α (Th1 and M/M cytokines). Cyclic AMP

response element binding protein 1 (CREB) was upregu-
lated in response to Th1 cytokines.

The upregulation of the gene for CREB by Th1 cytokines
may result from the effect of TNF-α[118], although M/M
cytokines which also contain this cytokine did not appear
to have the same effect.

Jagged 1 is a transcription factor reported to be upregu-
lated in astrocytes by TGF-β and through Hes and notch1
leads to inhibition of myelination [119], although its
presence may not be necessary to inhibit myelination
[120]. Given the report of upregulation of jagged 1 by
TGF-β in astrocytes [119], an unexpected finding in our
experiments was upregulation of jagged 1 by Th1 and M/
M cytokine mixtures which do not contain TGF-β and the
failure of the Th2 cytokine mixture, which contains this
cytokine/growth factor, to upregulate jagged 1. These dif-
ferences could relate to differences in the target tissues
(single cell types versus mixtures of different cell types),
species and/or effects of a single cytokine versus mixtures
of cytokines, effects of some of the induced proteins and
their influence on downstream signaling. At 6 hours none
of the cytokine mixtures had any discernable effect on
expression of notch1 or Hes.

In addition we observed effects on gene expression of
other transcription factors including hepatic nuclear fac-
tors (HNF), POU and elongation initiation factor 5,
important in initial stress responses.

Nuclear receptors
PPARs are nuclear receptors originally associated with lipid
metabolism but subsequently found to also be involved in
cellular differentiation. Th1 and M/M cytokines both upreg-
ulated the gene for PPAR δ and down regulated the gene for
PPAR γ, whereas Th2 cytokines down regulated the gene for
PPAR γ and had no effect on the gene for PPAR δ. TNF-α, a
component of both the Th1 and M/M cytokine mixtures, has
been reported to down regulate the gene for PPAR δ [121].
This is another potential example of differences in the effects
of single cytokines versus mixtures of cytokines. Ligation of
PPAR γ results in down regulation of inflammatory
responses and can inhibit EAE [122,123] and has lead to
studies to evaluate such agents, which are used in the treat-
ment of diabetes and hyperlipidemia, as therapy for MS.
Activation of PPAR δ with different ligands than those that
react with PPAR γ causes activation and accelerates differen-
tiation of oligodendrocytes in vitro [124]. How the differen-
tial regulation of the PPARs affects inflammation and the
potential for favorably influencing remyelination through
these receptors is not as yet clear.

Signaling
Th1 and M/M cytokines markedly upregulated Janus
kinase 2 (JAK) as well as several members of the STAT
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family, in keeping with the well known activation of the
JAK/STAT pathway by inflammatory cytokines. Studies in
brain ischemia indicate that increased signaling via the
JAK/STAT pathway occurs predominantly in microglia
rather than astroglia or neurons [125]. We found a 10 fold
increase in STAT 1 with Th1 cytokines, consistent with an
increase in STAT 1 identified by gene array analysis in
both chronic and active MS lesions [126].

The gene for homer, a key protein in Group I metabo-
tropic GluR signaling, was upregulated by Th1 and Th2
cytokines [127-130]. In addition there were effects on
expression for genes of protein kinase C, protein kinase A,
protein tyrosine kinase 2B, CaM kinase II, Rho family
GTPase, receptor serine threonine kinase, lyn protein non-
receptor kinase and fyn-related kinase. Fyn, the only src
family kinase, is upregulated during oligodendrocyte dif-
ferentiation [131] and signals through Rho family
GTPases to regulate their morphologic maturation [132].

Cytoplasmic transport and degradation of proteins
Th1 cytokines upregulated the genes for α synuclein and
for several proteasome proteins and ubiquitin-like pro-
tein (NEDD 6), and down regulated the genes for protea-
some subunit R-RING (although as noted upegulated
other transcripts of the R-RING subunit), β synuclein
(SYN 2), receptor serine threonine kinases, ubiquitin
ligase (NEDD 4), and ubiquitin conjugating enzyme E2D
2. M/M cytokines upregulated the genes for NEDD 6 and
SYN2, and downregulated the genes for ubiquitin-conju-
gating enzyme E2D 2, NEDD 4 and proteasome subunit
R-RING. Th2 cytokines downregulated the genes for ubiq-
uitin conjugating enzyme E2D 2 and similar to ubiquitin-
conjugating enzyme E2D 2. If changes in the expression of
these genes result in changes in the level of these proteins,
it would imply that inflammation could contribute to the
changes in these proteins seen in sporadic forms of several
degenerative disorders where synucleins and ubiquitin
aggregation have been described [133,134]. The synu-
cleins, considered neuronal proteins, are involved in syn-
aptic function and have chaperone functions as well
[135,136]. Th1 cytokines upregulated α-synuclein, which
has been detected transiently in rat oligodendrocytes in
vitro [137] and in inclusions in glial cells in some CNS dis-
eases including multisystem atrophy (MSA) [138]. Protea-
somes are involved in transport of protein degradation
products as well as in transport of MHC proteins and anti-
gen within antigen presenting cells (APC).

Heat shock proteins (HSP) are upregulated in response to
several types of cell stress stimuli [139]. One of several
functions of HSP is acting as chaperones to help in normal
transport of other proteins within the cytoplasm of many
cell types. M/M cytokines upregulated the gene for heat
shock protein (HSP) 70 kDa. Interestingly upregulation of

the gene for α/β crystalline which also serves as a stress
response protein has been reported to be increased in MS
lesions [2].

Lipid synthesis
Th1 cytokines altered gene expression for several enzymes
involved in synthesis of fatty acids and phospholipids
(Table 2). Both Th1 and M/M cytokines downregulated
message of the gene for HMGCoA reductase, the principal
regulatory enzyme for cholesterol and other isoprenoids.
Interestingly statins, which are inhibitors of this enzyme,
are being tested as treatment for MS [139-142] because they
inhibit experimental autoimmune encephalomyelitis
(EAE), an animal model for MS. The mechanisms include
decreased farnesylation causing a Th1 to Th2 shift and
monocyte/macrophage inflammation [141,143-145], and
perhaps alteration of other signaling pathways [16].

UDP-glucose:ceramide glycosyltransferase is upregulated
in the presence of TNF-α (Th1 and M/M cytokines). This
enzyme is involved in ceramide metabolism as part of both
ceramide induced cell death via TNF-R type I signaling
pathways, as well as catalyzing the initial step in ganglio-
side synthesis. Th1 cytokines also downregulated the gene
for UDP-galactose ceramide galactosyltransferase (member
8 of the UDP-glucuronosyl transferase family). This
enzyme is markedly upregulated during differentiation of
oligodendroglia and synthesizes galactocerebroside, the
major glycolipid of myelin and precursor to sulfatide. An
early response to inflammatory cytokines has not been pre-
viously reported for the gene or the protein.

Notably Th1 cytokines upregulated the gene for phos-
pholipid scramblase, which translocates phospholipids
from one surface of the plasma membrane to the other.

In our initial paper we reported that Th1 and M/M
cytokines induced robust upregulation of genes for ABC
transporter 1, which among its several functions, translo-
cates phosphatidyl choline and cholesterol to the outer
membrane leaflet in astrocytes and neurons [146], and for
ABC transporter 2, active in oligodendrocytes during mye-
lination [147]. The ABC transporters are also important in
intraceullar transport of other proteins including peptide
epitopes with MHC class I molecules [15].

Lipid signaling
Th1 cytokines downregulated the gene for diacyl glycerol
kinase beta, which phosphorylates diacyglycerol to pro-
duce phosphatidic acid, leading to termination of diacylg-
lyceryol signaling via PKC, Ras GTPase and other
signaling pathways.

IL-2, one of the components of the Th1 mixture, upregu-
lates diacylglycerol kinase in myelin [148], raising the
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possibility that oligodendroglia are upregulating this gene
in response to the Th1 cytokines. In addition, the gene for
CDP-diacylglycerol synthase, the enzyme that synthesizes
phosphatidyl inositol from phosphatidic acid, is robustly
upregulated by both Th1 and M/M cytokines, suggesting a
switch from diacylglycerol to phosphatidyl inositol medi-
ated signaling pathways. Conversely, the gene for myo-
inositol monophosphatase was downregulated by M/M
cytokines; this enzyme, the key enzyme inhibited by lith-
ium, generates free inositol from inositol-3-phosphate
derived from glucose-6-phosphate, and regulates levels of
inositol available for synthesis of phosphatidyl inositol
and its multi-phosphorylated derivatives critical for intra-
cellular signaling and trafficking as well as calcium home-
ostasis. It is of note that lithium is currently being
evaluated as a treatment of amyotrophic lateral sclerosis
based on its effects on inositol pathways [149-152].

Sphingosine-1-phosphate plays a key role in cell survival
and inflammatory responses [153]; the gene for one of its
receptors, EDG (endothelial sphingolipid GPCR) was
down regulated by both M/M and Th2 cytokines. There
has been a phase II trial in patients with MS of an oral
agent called FTY72, which binds to the EDG (S1P) recep-
tor (endothelial differentiation sphingolipid G-protein
coupled receptor) [154]. A large Phase III study is under-
way. Inhibition of this receptor both blocks emigration
from and favors homing of lymphocytes to secondary
lymph structures, ostensibly without affecting T-cell via-
bility or inhibiting memory T-cells. In experimental ani-
mals other inflammatory cells, such as monocytes and
mature dendritic cells, are also affected and the protein is
also found on endothelial cells. The drug has also been
used in studies of treatment of other immune disorders
[155-160] The S1P receptor EDG is also found in the CNS
on glial cells [161-163]. The roles of S1P and its G-cou-
pled receptor in the normal CNS are not known. It has
recently been shown that activation of S1P results in
changes in glial cells in vitro [164,165]. If FTY720 gains
access to the CNS there is the potential to modulate the
activity of S1P with uncertain consequences for the
patient.

Steroid and vitamin D related
Several genes coding for enzymes involved in steroid
metabolism were downregulated by each of the three
cytokine mixtures, including the gene for testosterone 6-
beta-hydroxylase, markedly downregulated by M/M
cytokines. Of note, Th1 cytokines upregulated the gene for
vitamin D3 25-hydroxylase, the enzyme catalyzing the
first step in activation of dehydrocholesterol to the active
hormone, 1, 25-hydroxy vitamin D3. However, both M/M
and Th2 cytokines down regulated 25-OH vitamin D3 24-
hydroxylase, a key step in the inactivation of the active
form of vitamin D3 [166]. Both are mitochondrial

enzymes and members of cytochrome p450 family. In
several studies vitamin D3 dietary supplementation pre-
vented the onset and progression of EAE. In MBP-induced
EAE in mice, the treated animals showed marked
decreases in chemokines, iNOS and CD11b+ recruitment
into the CNS, perhaps due to activated T cell apoptosis
[167]. One large study found that vitamin D3 supplemen-
tation reduced the risk of developing MS [168], while four
smaller studies suggested a reduction in exacerbations
(reviewed in Brown, 2006) [169]. Our findings suggest
that both M/M and Th2 cytokines might act to attenuate
the effects of the active forms of vitamin D3.

Miscellaneous proteins
The classically proinflammatory Th1 and M/M cytokines
markedly upregulated the gene for iNOS, a critical protein
in generation of NO, which gives rise to related reactive
oxygen species such as peroxynitrite [170]. Increases in
iNOS have been reported in the CNS in EAE and in MS
[171-174]. There is evidence that NO could directly or
indirectly, by forming peroxynitrite, damage oligodendro-
cytes, myelin and neurons/axons [175]. Reactive nitrogen
species can also influence neuronal Na channels and thus
cause damage, especially with rapid firing bare axons
[171,176]. It has also been suggested that NO could have
an immumodulatory effect on inflammatory cells. NO
production in inflammatory cells and in glial cells is
induced by iNOS. As described in Results, employing
QRT-PCR we confirmed the upregulation of expression of
the gene for iNOS by Th1 and M/M cytokine mixtures and
also found modest downregulation of the gene in
response to Th2 cytokines (Table 3).

Galanin is a peptide in the CNS and PNS which is upreg-
ulated in response to injury [177,178]. While originally
described in various neurons it has been demonstrated in
glia as well.[179,180] and has a positive effect on neurite
growth, cell survival and regeneration [181-183] as well as
involved in interactions with hormones [184,185], pain
signaling pathways [186,187] and other CNS functions
[188,189]. Galanin receptors are also co-localized with
cholinergic receptors in astroglia [190]. During oli-
godendrocyte differentiation, the gene for galanin is
markedly downregulated [191]. Therefore upregulation
by Th1 and M/M cytokines may represent an early attempt
of oligodendroglia to return to a less differentiated state,
one capable of proliferation.

The alpha-fetoprotein that is increased in the serum of
women in the last trimester of pregnancy has been shown
to have immunosuppressive effects in EAE as well as in
experimental autoimmune myasthenia gravis (EAMG)
[192-195]. It also can suppress autoreactivity in vitro to
two respective autoantigens, MBP and acetylcholine
receptor (AChR). This has lead to the suggestion that it
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may be one of several factors responsible for inhibition of
disease activity during the third trimester of pregnancy in
patients with MS as well as MG. It is of some interest that
expression of the gene for this potentially immunosup-
pressive protein is downregulated by Th1 and M/M
cytokines.

Nestin, an intermediate filament protein, is a marker of
early neuronal cell development. It is also a marker of
other progenitor cells, particularly glial cells in the CNS,
and may be involved in cell proliferation [196-199]. The
proinflammatory Th1 cytokine mixture down regulated
the gene for nestin, which would be compatible with an
inhibitory effect of such cytokines on neuronal and glial
cell precursors.

VIPR2 binds VIP, a peptide shown to induce release of
cytokines and other factors from glial cells [200,201].
Downregulation of this protein by Th1 cytokines secreted
by infiltrating inflammatory cells or endogenous glia
would inhibit the release of both cytokines and growth
factors by glial cells.

We detected M/M induced upregulation of a gene tran-
script for angiotensin receptor 2 (ATR2), whereas Th1
cytokines down regulated expression of the same tran-
script and Th2 cytokines down regulated a different ATR2
transcript. M/M cytokines upregulated the gene for ATR 1.
ATR 2 is expressed by endothelial cells as well as glial cells.
ATR1 is also expressed by endothelial cells as well as other
cells within the CNS. Angiotensin and ATR are involved
with interactions with VEGF and other molecules and
may be involved in CNS cell death via apoptosis [202-
204]. Increased expression of the gene for angiotensin, the
ligand for angiotensin receptors, has been described in
studies of MS brain tissue [205,206].

Two unexpected and novel findings were the marked
decreases in expression of the genes for chapsyn-110 and
beta tubulin by Th2 cytokines. Chapsyn-110 is a member
of the PSD95/SAP90 protein family. The protein is found
in postsynaptic densities in somatic/dendritic neuronal
processes, and interacts with the C-terminus of subunits
of the NMDA GluR and shaker-type potassium channel
[207,208]. The protein is linked indirectly to microtu-
bules and involved in clustering of the receptors and ion
channels; its presence and function in glia have not been
previously reported. The marked down regulation of cha-
psyn-110 along with that of beta tubulin in glia may lead
to potentially neuroprotective disruption of signaling
through NMDA receptors and potassium channels in
these cells.

Ceruloplasmin is a metal binding protein which is
increased in response to inflammatory signals. In the

brain ceruloplasmin is important as a binder of iron, and
in the absence of ceruloplasmin (aceruloplasminemia),
iron is able to induce tissue injury by increasing lipid per-
oxidation [209-211]. M/M cytokines upregulated the
expression of the gene for ceruloplasmin whereas Th1 and
Th2 cytokines had no effect. Effects on genes for iron
binding proteins if resulting in sufficient increase in pro-
tein would down regulate free iron induced lipid peroxi-
dation, whereas a reduction or even a failure of increase in
such proteins could result in cell damage or even death.

Caveolins are a group of proteins that are important in the
structure of cell membranes including neurons and mye-
lin. They are components of the so called "lipid rafts",
important constituents of plasma membranes. Caveolins
1, 2 and 3 are upregulated in spinal cord of rat with EAE
with caveolin 3 being expressed by astrocytes [212],
although at 6 hours in vitro Th1 cytokines down regulated
the expression of the gene for caveolin 3.

Arginase 1 is involved in synthesis of polyamines which
have been shown to improve axonal regeneration on mye-
lin substrates [213]. Th2 upregulated the gene for this pro-
tein, which would favor axonal regeneration. Th2
cytokines, particularly IL-4, stimulate production of argi-
nase by macrophages, and there is an inverse relationship
between production of iNOS induced by Th1 cytokines
and arginase induced by Th2 cytokines in these cells [214-
216]. By inhibiting production of nitric oxide, arginase
may also play a neuroprotective role for motor neurons
deprived of trophic factors [217]. Recently, loss of argin-
ase 1 was shown to increase proliferation of neural stem
cells [218]. One could postulate that the microglia may be
the glial cells upregulating the gene for arginase in our sys-
tem.

Overview
In this paper and the preceding two [15,16], we have iden-
tified responses to cytokines that would be predicted from
analysis of MS tissue, others identified following treat-
ment of individual glial types in culture, and yet others
that have not been previously reported. Among the genes
predicted from analysis of MS plaques are those related to
hypoxic/ischemic responses, inflammatory responses and
neuroprotective responses. Most strikingly, our finding
that transcription of these genes in glia is changed within
6 hours of exposure to the cytokines implicates the glia as
primary responders in the amplification or suppression of
damage in white matter. In this paper, we report early
changes in a wide variety of genes related to neurotrans-
mitter signaling and ion homeostasis in glial cells. The
most striking changes were the decreases induced by Th1
cytokines in dopaminergic receptors, metabotropic gluta-
mate receptor 7b, and a receptor for neuropeptide Y. Iden-
tification of which glial type is responding and whether
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these changes result in long-lasting changes in gene
expression, function, and interaction with neurons prom-
ise to be informative. With regard to changes in mitochon-
drial enzymes, the pattern of changes with Th1 cytokines
was quite distinct from that seen with M/M cytokines,
while Th2 cytokines induced only a few more modest
changes. With Th1 cytokines, marked downregulation of
the COX VI subunit was seen; this differs from the
decrease in the COX IV subunit reported in MS tissue, and
may provide a clue to the very earliest changes occurring
in mitochondrial function in glia exposed to proinflam-
matory cytokines, as may the very early downregulation of
the 16s mitochondrial ribosomal RNA, which would
effect all of the 13 mitochondrial encoded genes. Upregu-

lation by Th1 of genes for transcription factors such as
junB, NF-κB and CREB might be predicted, while the
decreases in HNF3 and 4 and the increase in the genes for
the fox-1 homolog and jagged 1 by Th1 cytokines in glia
have not been previously reported. Again, the many
changes seen in expression of genes for proteasome, ubiq-
uitin and synuclein proteins with Th1 cytokines might be
anticipated, but stand in contrast to the relatively few
changes seen in response to M/M and Th2 cytokines.
Finally, lipid synthesis and signaling pathways have not
been extensively explored in glia in response to cytokines;
most notably, decreases by Th1 at 6 hours in the genes
coding for synthesis of galactocerebroside implicate
changes in oligodenroglial function, since the lipid serves

Table 4: Summary of most upregulated and downregulated gene expression

MOST UPREGULATED MOST DOWNREGULATED

Th1 Th1
nitric oxide synthase 2 (iNOS) neuropeptide Y receptor 5
STAT 1 dopaminergic receptor A1
CDP-diacylglycerol synthase dopaminergic receptor D3
proteasome (prosome, macropain) alpha 6 glutamate receptor, metabotropic 7b.
proteasome subunit R-RING Na+ channel, voltage-gated, 1 alpha
P-glycoprotein, multi-drug resistance 1 K+ channel, voltage-gated, shaker related 2
Janus kinase 2 (JAK 2) hepatic nuclear factor 4 alpha
fox-1 homolog PPAR gamma
protein tyrosine kinase 2B fatty acid CoA ligase, long chain 4
caspase 7 17-beta hydroxy sterol reductase, type 1
cytosolic acyl CoA thioesterase 1 diacyl glycerol kinase beta
superoxide dismutase 2 ubiquitin-conjugating enzyme E2D 2

M/M M/M
nitric oxide synthase 2 (iNOS) neuropeptide Y receptor 5
CDP-diacylglycerol synthase glycine receptor, alpha 1 subunit
superoxide dismutase 2 Na+ channel, voltage-gated, 1 alpha
STAT 5a testosterone 6-beta hydroxylase
P glycoprotein (multi-drug resistance) ubiquitin-conjugating enzyme E2D 2
Janus kinase 2 (JAK 2) EDG, endothelial sphingolipid GPCR
homer dopaminergic receptor D3
NF kappa B, p105 subunit glutathione S-transferase, Yc2 subunit
purinergic P2Y receptor 2 beta tubulin 2b
caspase 7 hepatic nuclear factor alpha
protein tyrosine kinase 2b chapsyn-110
Ca++ ATPase, plasma membrane 1 PPAR gamma

Th2 Th2
CDP-diacylglycerol synthase chapsyn-110
low density lipoprotein receptor 1 dopaminergic receptor A1
arginase 1 beta tubulin 2b
fox-1 homolog dopaminergic receptor D3
stress activated protein kinase alpha II Ca++ channel, voltage-gated, L type alpha 1D
K+ inwardly-rectifying channel, J3 (GIRK1) preprotachykinin A (substance P precursor)
jun B serotonergic receptor 4
purinergic P2Y receptor 2 purinergic receptor P2X, ligand-gated 3
glycine transporter 1 angiotensin receptor, type 1b
carbonic anhydrase II ubiquitin-conjugating enzyme E2D 2
CREB K+ channel, voltage-gated S1
superoxide dismutase 2 25-OH vitamin D3 24-hydroxylase
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as the precursor for sulfatide, shown to be critical for
maintaining normal architecture and function at the
nodes. The decrease in the gene for diacyl glycerol kinase
and increase in CDP-diglyceride synthase suggests an early
switch in signaling pathways within glia.

Table 4 summarizes the largest changes seen with each of
the three cytokine mixtures, with the 12 most upregulated
genes arranged in order from highest to lowest, and the 12
downregulated genes from most downregulated to least
downregulated. While the magnitude of change in gene
expression does not necessarily reflect the extent of bio-
logical relevance, the summary illustrates a number of
changes in common between Th1 and M/M cytokines, as
predicted by their predominance of proinflammatory
cytokines. Very few genes were upregulated by Th2
cytokines in the categories analyzed in this study, only the
12 genes shown in the table.

Vascular/Ischemia/Hypoxia
It has been reported that certain MS lesions have features
characteristic of ischemic or hypoxic injury to oli-
godendrocytes [12,219] although inflammatory cells, par-
ticularly macrophages, are present in the lesions. Studies
of normal appearing white matter in MS, employing gene
array technology, have also shown changes in patterns of
gene regulation consistent with ischemia and the response
to ischemia [9]. It has also been suggested that local ang-
iogenesis occurs in EAE and in MS [220]. We have identi-
fied early effects of these cytokine mixtures on molecules
that are important in vascular pathology and angiogenesis
as well as upregulated in ischemia and hypoxia. Obvi-
ously this includes a vast number of genes and gene prod-
ucts involved in transcription, cell signaling,
mitochondrial function and apoptosis along with many
others.

In addition to the changes in genes for proteins associated
with apoptosis and mitochondria, in our current and
prior studies [15,16], we found that Th1 cytokines upreg-
ulated other genes reported to be regulated in the CNS in
ischemia including adhesion molecules (ICAM-1,
VCAM), cytokines and chemokines and their receptors
(IL-1β, MCP-1), death and survival proteins (Bcl-X), pro-
teases and inhibitors (MMP-9) and growth factors (FGF 1
and NGFRp75). Th1 cytokines did not affect the gene for
e-selectin but upregulated the gene for its ligand. Among
other genes for proteins regulated in CNS ischemia, Th1
cytokines down regulated genes for neurotrophins and
their receptors (BDNF, NT3 and trkB), and cytokines,
chemokines and their relevant receptors (several related to
TGF-β). M/M cytokines upregulated genes for cell adhe-
sion molecules (ICAM-1, VCAM), HSP 70, cytokines,
chemokines and receptors (IL-1β, IL-1R type 1, IL-6, MCP-
1), FGF 5 and 10, and MMPs and inhibitors (MMP9,

TIMP-1) and downregulated genes of interest for response
to ischemia, including TGF-β3, NT3, and FGF2. Th2
cytokines upregulated ischemia related genes for growth
factors (BDNF, FGF 10 and 14, FGF-R1), cytokines and
chemokines and receptors (IL-6, IL-1R type I and TGF-
βR2) and down regulated genes for IL-1R type I, and NT3.
Differential expression of many of these genes were
reported in the NAWM of some patients with MS [9].

As previously reported [15,16], Th1, M/M and Th2
cytokines had varying effects on the genes for molecules
that are involved in altering in the cells of the blood brain
barrier including several adhesion molecules and MMPs
although our cultures do not contain endothelial cells.
Some of these molecules are undoubtedly important in
glial cells as well. In a previous study, we detected upreg-
ulation of the gene for VEGF [16]. Upregulation of VEGF
could contribute to endothelial cell proliferation seen in
some MS lesions producing local hypoxia and oligoden-
droglial death. The function of VEGF in glial cells as well
as other non-glial non-neuronal cells, such as pericytes,
which conceivably might be in our cultures is not known.
Since inflammatory cytokines were able to upregulate the
gene for VEGF as well as other genes that are associated
with ischemia and the response to ischemia, our data sug-
gests that cytokine release secondary to inflammation can
lead to changes compatible with hypoxia and perhaps to
induction of hypoxia itself.

We recognize the limitations of microarray analysis as
well as gene expression studies since post-transcriptional
and post-translational changes are not detected. In addi-
tion proteins such as receptors may be present in suffi-
cient amount to be ligated and involved in a biologic
process without requiring additional protein in the short
run and thus no upregulation of gene for that protein.
Nevertheless as a screening technique to obtain an over-
view of proteins that may be important in a particular
process as well as the complexities of the effect of a mix-
ture of factors on a mixture of cells, we believe that this is
a promising approach. In addition microarray technology
allows discovery of unexpected findings in complex exper-
iments. Such findings may turn out to be both interesting
and important.
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