
Wayne State University

Wayne State University Associated BioMed Central Scholarship

2009

Development and evaluation of new mask
protocols for gene expression profiling in humans
and chimpanzees
Donna M. Toleno
University of Southern California, dtoleno@gmail.com

Gabriel Renaud
National Human Genome Research Institute, National Institutes of Health, renaudg@mail.nih.gov

Tyra G. Wolfsberg
National Human Genome Research Institute, National Institutes of Health, tw62w@nih.gov

Munirul Islam
Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, mislam@med.wayne.edu

Derek E. Wildman
Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, dwildman@med.wayne.edu

See next page for additional authors

This Article is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University
Associated BioMed Central Scholarship by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Toleno et al. BMC Bioinformatics 2009, 10:77
doi:10.1186/1471-2105-10-77

Available at: http://digitalcommons.wayne.edu/biomedcentral/130

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/biomedcentral
http://dx.doi.org/10.1186/1471-2105-10-77


Authors
Donna M. Toleno, Gabriel Renaud, Tyra G. Wolfsberg, Munirul Islam, Derek E. Wildman, Kimberly D.
Siegmund, and Joseph G. Hacia

This article is available at DigitalCommons@WayneState: http://digitalcommons.wayne.edu/biomedcentral/130

http://digitalcommons.wayne.edu/biomedcentral/130


BioMed Central

Page 1 of 12
(page number not for citation purposes)

BMC Bioinformatics

Open AccessMethodology article
Development and evaluation of new mask protocols for gene 
expression profiling in humans and chimpanzees
Donna M Toleno1, Gabriel Renaud2, Tyra G Wolfsberg2, Munirul Islam3, 
Derek E Wildman3, Kimberly D Siegmund4 and Joseph G Hacia*1

Address: 1Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90089, USA, 2National Human 
Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA, 3Center for Molecular Medicine and Genetics, Wayne State 
University School of Medicine, Detroit, MI 48201, USA and 4Department of Preventive Medicine, University of Southern California, Los Angeles, 
CA 90089, USA

Email: Donna M Toleno - dtoleno@gmail.com; Gabriel Renaud - renaudg@mail.nih.gov; Tyra G Wolfsberg - tw62w@nih.gov; 
Munirul Islam - mislam@med.wayne.edu; Derek E Wildman - dwildman@med.wayne.edu; Kimberly D Siegmund - kims@usc.edu; 
Joseph G Hacia* - hacia@usc.edu

* Corresponding author    

Abstract
Background: Cross-species gene expression analyses using oligonucleotide microarrays designed
to evaluate a single species can provide spurious results due to mismatches between the
interrogated transcriptome and arrayed probes. Based on the most recent human and chimpanzee
genome assemblies, we developed updated and accessible probe masking methods that allow
human Affymetrix oligonucleotide microarrays to be used for robust genome-wide expression
analyses in both species. In this process, only data from oligonucleotide probes predicted to have
robust hybridization sensitivity and specificity for both transcriptomes are retained for analysis.

Results: To characterize the utility of this resource, we applied our mask protocols to existing
expression data from brains, livers, hearts, testes, and kidneys derived from both species and
determined the effects probe numbers have on expression scores of specific transcripts. In all five
tissues, probe sets with decreasing numbers of probes showed non-linear trends towards
increased variation in expression scores. The relationships between expression variation and probe
number in brain data closely matched those observed in simulated expression data sets subjected
to random probe masking. However, there is evidence that additional factors affect the observed
relationships between gene expression scores and probe number in tissues such as liver and kidney.
In parallel, we observed that decreasing the number of probes within probe sets lead to linear
increases in both gained and lost inferences of differential cross-species expression in all five tissues,
which will affect the interpretation of expression data subject to masking.

Conclusion: We introduce a readily implemented and updated resource for human and
chimpanzee transcriptome analysis through a commonly used microarray platform. Based on
empirical observations derived from the analysis of five distinct data sets, we provide novel
guidelines for the interpretation of masked data that take the number of probes present in a given
probe set into consideration. These guidelines are applicable to other customized applications that
involve masking data from specific subsets of probes.
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Background
The development of gene expression microarray technol-
ogy over a decade ago has revolutionized the analysis of
the transcriptomes from numerous organisms. The earli-
est gene expression microarrays focused on widely-used
experimental organisms, such as Arabidopsis thaliana [1],
Mus musculus [2], Saccharomyces cerevisiae [3], Drosophila
melanogaster [4], and Caenorhabditis elegans [5], in addi-
tion to humans [6]. In the intervening years, the number
of commercially available species-specific whole genome
expression microarrays has dramatically increased. Never-
theless, there are numerous species, such as African great
apes (bonobos, chimpanzees, and gorillas), for which
whole genome expression microarrays are not commer-
cially available.

In such cases, gene expression is often conducted using
microarrays designed to evaluate a closely-related species
or organism (reviewed in ref. [7]). Several groups have
employed commercially available human oligonucleotide
microarrays comprised of multiple 25 mer probes to
obtain gene expression profiles from African great ape tis-
sues and cultured cells [8-14]. However, similar to obser-
vations from cross-species resequencing analyses [15,16],
this comes at a price of underestimating the abundance of
orthologous transcripts with poor affinity for the arrayed
probes due to mismatches, as discussed in references [17-
19].

One approach to address this problem is to remove
(mask) data from probes predicted to have poor affinity
for orthologous transcripts based on sequence informa-
tion (reviewed in ref. [7]). This has been made possible by
the development and use of algorithms that can map
short oligonucleotide probe sequences to entire genomes
and other sequence databases (e.g. methods described in
references [20-30]). Several different strategies exist that
range from masking all probes not perfectly matched to a

given transcriptome [8,13,31] to masking only those
probes with unfavorable hybridization properties based
on predicted thermodynamic properties [32]. While mul-
tiple groups have examined the relationship between the
number of probes within a probe set and the properties of
resultant gene expression scores (e.g. references
[27,33,34]), its effect on the comparative analysis of
human and chimpanzee cross-species gene expression
data sets has not been discussed in detail.

Here, we developed updated mask protocols for the anal-
ysis of human and chimpanzee gene profiles with com-
monly used Affymetrix human oligonucleotide
microarrays. We first describe the development of new
mask files which only retain data from probes that are per-
fectly matched to a single human and single chimpanzee
genomic sequence. Next, we apply these masks to an exist-
ing publicly available oligonucleotide microarray gene
expression data set representing five tissues derived from
six humans and five chimpanzees [13]. We quantify the
effects that altering the number of probes measuring the
abundance of a given transcript have on intra- and inter-
species gene expression comparisons. Based on our obser-
vations, we suggest general rules for the interpretation of
gene expression scores using masking protocols.

Results
Properties of individual probes
We developed an algorithm to rapidly map short
sequence tags to complete genomes (Renaud and Wolfs-
berg, unpublished) and used it to determine how many
times each probe in the Human Genome U133Plus2
microarray (Affymetrix) had an exact match in the human
and chimpanzee genomes. The bulk of the probes (86%)
in the U133Plus2 microarray have exactly one match in
the human genome (Table 1, Fig. 1). This is in contrast to
67% of the probes matching one time in the chimpanzee

Table 1: Classification of probes in the Affymetrix U133Plus2 microarray

Human genome
No matches Multiple matches One match Total

Chimpanzee Genome No match 38,659
(6.40%)

4,745
(0.79%)

122,682
(20.30%)

166,086
(27.49%)

Multiple matches 214
(0.04%)

23,350
(3.86%)

9,827
(1.63%)

33,391
(5.53%)

One match 3,246
(0.54%)

10,568
(1.75%)

390,967
(64.70%)

404,781
(66.99%)

Total 42,119
(6.97%)

38,663
(6.40%)

523,476
(86.63%)

604,258
(100%)

Human Genome Build 36.1 and Chimpanzee Genome Build 2.1 were used in these analyses.
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genome. Overall, 64.7% of individual probes showed one
match in both the human and chimpanzee genomes.

We assigned probes into nine categories based upon the
number of matches (0, 1, or Multiple) with the human
(H) and chimpanzee (C) genomes (Methods). These
included: 0H_0C, 0H_1C, 0H_MC, 1H_0C, 1H_1C,
1H_MC, MH_0C, MH_1C, and MH_MC. The 1H_1C and
MH_MC categories are among the easiest to justify. The
former involves conserved single gene sequences in both
species while the latter at least in part reflects multi-copy
gene families in humans and chimpanzees. The 1H_0C
category reflects consequences of fixed sequence differ-
ences between the human and chimpanzee genomes.
Below, we will discuss possible reasons for the remaining
six probe categories, with the understanding that
sequence errors or polymorphisms could influence each
case.

Affymetrix currently employs a system in which the anno-
tation of each probe set is classified into one of five cate-
gories based on the evidence available for the probe set
interrogating the intended gene of interest. The five cate-
gories are designated A, B, C, E, and R, with A indicating
the most direct evidence for a probe/transcript relation-
ship. Of the 358 probe sets for which 11 probes are
0H_0C (no match to the chimpanzee or human genome),
182 (~51%) were provided an A level annotation. In con-

trast, ~81% of the 4,648 probe sets for which 11 probes
are 1H_1C (match once in both species) were provided an
A-level annotation. In addition to these sequence quality
issues, probes designed to overlap splice junctions absent
in human genomic sequences will also fall into the
0H_0C category.

Possible explanations for the 1H_MC, MH_1C, and
MH_0C probe categories include assembly errors of
multi-copy genomic regions, duplication or loss of genetic
material in either lineage, or mutations in duplicated seg-
ments. The classification of probes in the two remaining
categories (0H_MC and 0H_1C) was unexpected since
these require one or more matches in the chimpanzee and
none in the human genome. This could arise due to the
positioning of probe sequences across splice junctions
found in human cDNA sequences. Such probes would not
match the human genome; however, they could match
processed pseudogene sequences present in the chimpan-
zee genome.

Since our downstream cross-species (i.e. human versus
chimpanzee) gene expression analyses would focus on
data derived from the 1H_1C probes, we next evaluated
the percentage of 1H_1C probes that were located in
orthologous regions of the chimpanzee and human
genomes. We determined if regions are orthologous by
using the liftOver tool provided by the UCSC Genome
Bioinformatics Group http://genome.ucsc.edu/cgi-bin/
hgLiftOver. We started with the coordinates of sequences
that had a single hit in the human genome (1H), and used
the liftOver tool to map them to the chimpanzee genome.
We then compared the liftOver coordinates to the coordi-
nates that we had obtained by aligning the sequences to
the chimp genome. If a liftOver coordinate was within
100-nt of our coordinate, we counted the chimp hit as
occurring in an orthologous region. Of the 390,967
sequences that have a single hit to both genomes
(1H_1C), 388,044 (99.3%) hit orthologous regions in the
chimpanzee and human genomes.

We then explored in further detail the 2923 1H_1C
sequences that did not map to orthologous regions by lift-
Over. A total of 2488 of the 2923 sequences are either in
an intron or an exon of a human gene, or within 5-kb
upstream or downstream. Likewise, 2,021 of the 2,488
sequences were also in an intron or an exon of a chimpan-
zee gene, or within 5-kb upstream or downstream. Of
these 2,021 genes, 1,660 are predicted to be human/chim-
panzee orthologs.

Taking this additional information into consideration, we
conclude that 389,704 (99.7%) of the 1H_1C probes map
to orthologous regions in the chimpanzee and human
genomes. This is especially impressive since the chimpan-

Classification of the 604,258 probes within the Affymetrix U133Plus2 microarrayFigure 1
Classification of the 604,258 probes within the 
Affymetrix U133Plus2 microarray. The pie chart depicts 
the relative percentage of probes comprising each of the nine 
probe categories described in the Methods section.
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zee genome assembly used is of lower quality than the
human, which would result in some probes being falsely
identified as not mapping to orthologous regions in both
genomes. Overall, these observations strongly support the
use of 1H_1C probes for the analysis of human and chim-
panzee gene expression profiles.

General properties of probe sets
A total of 91.4% of probe sets (49,957 total) in the
Human Genome U133Plus2 microarray had at least one
probe removed in the initial masking process (i.e. con-
tained at least one probe not in the 1H_1C category). In
addition, 3,674 probe sets were completely eliminated
from the most basic masking analysis (mask0, Table 2).
These included 48 probe sets in the AFFX control category,
which by design are not expected to match the human or
chimpanzee genomes.

Next, we considered how many of the nine probe catego-
ries were represented in a given probe set. For each speci-
fied category, we determined the number of probe sets
containing six or more probes (Fig. 2). These are desig-
nated as being 'category-enriched' probe sets. Interest-
ingly, we noted deficits in the number of annotated genes
in certain category-enriched probe sets. At the time of
analysis, 37% of the 54,675 probe sets were annotated
with a unique NCBI Entrez GeneID. A total of 2,371
(51%) of the 4,648 1H_1C_11 probe sets were annotated
with unique Entrez Gene IDs. However, only 70 (8.1%) of
the 0H_0C category-enriched probe sets (N = 862) were
annotated. Likewise, only 289 (19.7%) of the MH_MC
category-enriched probe sets (N = 1,464) were annotated.
Strikingly, no Entrez GeneID was provided for any of the
0H_1C category-enriched probe sets (N = 35).

Effect of probe number on estimates of intra- and 
interspecies expression variation
Next, we sought to explore broad effects of masking on
expression estimates between species. Since we are focus-

ing on 1H_1C probes for expression estimates in both
species, a major question concerns the effects of reducing
the number of probes in a given probe set on gene expres-
sion scores. For this analysis, we applied mask1 to the
entire gene expression set (five tissues for all humans and
chimpanzees) and calculated the median interquartile
range (IQR) of expression scores for all probe sets as a
function of the number of remaining probes (Fig. 3, red
circles). We considered probe sets comprised of odd and
even numbers of remaining probes separately since the
RMA median polishing algorithm calculates expression
scores from such probe sets slightly differently [35]. This
arises from differences in the formulas for determining
the median in data sets consisting of odd and even num-
bers of observations. We propose that the effects of these
differences may be enhanced by the small number of
probes in each probe set.

As would be expected, the median IQR decreased with an
increasing number of probes. However, the relationship
was not linear, with a faster decrease occurring when there
were five or fewer probes than for probe sets with at least
six probes measured. Adjusting for whether the number of
probes was odd or even, the change in slope is statistically
significant (adjusted P < 0.05 for all tissue types). This can
be observed from the trend lines (red), generated using a
breakpoint at either five probes for the even numbers of
probe sets or six for the odd numbers. This reduction in
slope supports a requirement of at least six probes in order
to have improved stability of the gene expression meas-
ure. Similar results were obtained for the corresponding
intraspecies IQR comparisons (Additional Files 1 and 2,
red circles and lines). The only intraspecies comparison
that did not achieve statistical significance at the 0.05 level
was for the human testes (adjusted P for change in slope
= 0.10).

Afterwards, we sought to determine if random probe
masking could lead to the observed relationships between

Table 2: Classification of probe sets based on number of 1H_1C probes

Filter Minimum # of 1H_1C probes in a probe set # of probe sets remaining

Mask0 1 51,001
Mask1 2 49,956
Mask2 3 48,876
Mask3 4 47,506
Mask4 5 45,402
Mask5 6 42,093
Mask6 7 37,103
Mask7 8 29,907
Mask8 9 21,192
Mask9 10 12,125
Mask10 11 4,967

Note that 54,675 probe sets are present in the U133Plus2 microarray.
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median IQR and probes remaining in probe sets. To
address this question, we generated a total of nine hun-
dred simulated masked data sets wherein we removed N1–

9 probes from each of the 4,648 1H_1C_11 probe sets.
Overall, this entailed generating one hundred simulated
data sets for each N probes removed. We recalculated
median interspecies IQRs (Fig. 3, black lines) and median
intraspecies IQRs (Additional Files 1 and 2, black lines)
for each of these simulated masked data sets. For all tis-
sues, we observed that the median interspecies and
intraspecies IQRs derived from these simulated masked
data always increase with decreasing numbers of probes
within probe sets.

A comparison of lines fit to the simulated data and real
masked interspecies data (combining all human and
chimpanzee data) separately, found that the estimated
slopes vary for three of the five tissues studied (kidney,
liver, and testis) (F-test on 2df P < 0.05). In contrast, the
observed relationships between median IQRs and probe
numbers in the actual mask1 brain and heart expression

data showed a striking resemblance to the relationships
found in the simulated masked brain expression data (Fig.
3A–D).

We sought to address the possibility that factors, such as
the rates of evolution, have a substantial influence on the
patterns of expression variation observed in different tis-
sues as a function of 1H_1C probe number. For example,
it has been demonstrated in the initial analysis of the cur-
rent data set that patterns of differences in gene expression
and gene sequences are similar in humans and chimpan-
zees [13]. As a first step to approach this issue, we calcu-
lated dN/dS ratios for RefSeq transcripts corresponding to
approximately 20,000 probe sets in both the human and
the chimpanzee lineages (see Additional File 3 and Meth-
ods). We chose to analyze dN/dS ratios since they provide
a commonly used means of measuring rates of evolution,
taking nonsynonymous (dN) and synonymous (dS) sub-
stitutions per site into consideration. In bulk, we found
that the nucleotide substitution rates of RefSeq transcripts
expressed in a given tissue do not significantly vary in rela-

Classification of the 54,675 probe sets within the Affymetrix U133Plus2 microarrayFigure 2
Classification of the 54,675 probe sets within the Affymetrix U133Plus2 microarray. The composition of probe 
sets with respect to probe categories is depicted. The height of each bar represents the number of probe sets (Y-axis) that 
contain a least one probe in the indicated category (X-axis). The gray segment of each bar represents the number of probe 
sets where less than six probes of the indicated category are present. The black segment comprising each bar represents the 
number of probe sets where more than six probes of the indicated category are present.
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tion to the number of 1H_1C probes within the corre-
sponding probe set (Additional File 4). Based on our
metrics, the bulk rates of evolution of expressed genes do
not explain the discussed relationships between median
IQR and probes remaining in probe sets for the five tis-
sues. However, it should be note that these analyses are
limited by the quality of current genomic sequence infor-

mation for mammals such as the common chimpanzee.
Thus, this issue could be revisited with improved drafts
and annotations of these genomes.

Effect of probe number on inferences of cross-species 
differential gene expression
Thereafter, we focused on quantifying the effect(s) that
probe number has on inferences of differential expression
between humans and chimpanzees. For each tissue, we
identified 1H_1C_11 probe sets that showed differential
expression across species (see Methods for details). Then,
we compared the list of differentially expressed genes in a
given simulated data set to the list of differentially
expressed genes originally observed in the same tissue.
This allowed us to calculate the median and range for each
of the following: (i) overlap, (ii) gain, and (iii) loss of
inferences of differential expression in the simulated data
sets relative to that generated from the original 1H_1C_11
probe sets in each tissue.

Overall, we observed linear increases in both the gained
and lost inferences of differential expression in relation-
ship to decreasing numbers of probes sampled within a
probe set (Fig. 4). While this was consistent for all five tis-
sues, probe sets with odd and even numbers of remaining
probes behaved slightly differently. Probe sets with even
numbers of remaining probes showed more comparable
increases in false negative and positive rates with decreas-
ing probe number in all tissues (Fig. 4A, C, E, and 4G),
except heart (Fig. 4I). Probe sets with odd numbers of
remaining probes showed steeper increases in lost relative
to gained inferences with decreasing probe number (Fig.
4B, D, F, H, and 4J).

To illustrate the effects of masking, we compared the infer-
ences of differential gene expression using mask5 (requir-
ing at least 6 1H_1C probes in a probe set) and unmasked
data (Additional File 5). For each of the five tissues, the
application of the mask drastically reduces inferences of
higher expression in humans relative to chimpanzees, as
shown by comparing panels A, C, E, G, and I with B, D, F,
H, and J. This is consistent with earlier comparative anal-
yses of human and non-human primate transcriptomes
which demonstrated that masking was essential to remove
false inferences of differential gene expression caused by
mismatches between arrayed human probes and non-
human primate transcripts (reviewed in ref. [7]).

Discussion and conclusion
Strategies for cross-species gene expression analysis
Without appropriate signal processing, the analysis of
multi-species gene expression data sets generated using a
single oligonucleotide microarray platform can result in
heavily biased inferences of differential expression
(reviewed in reference [7]). One means to address this

Effects of probe number on the variation of gene expression scoresFigure 3
Effects of probe number on the variation of gene 
expression scores. Median interquartile ranges (IQRs) of 
expression scores (Y-axes) for the indicated tissue from all 
humans and chimpanzees are plotted in red relative to the 
number of 1H_1C probes remaining in a probe set (X-axes). 
Median IQRs are plotted in black for simulated data wherein 
different numbers of probes were randomly sampled from 
1H_1C_11 probe sets (see text for details). Note that only 
probe sets expressed in a given tissues are considered in this 
analysis (see Methods). Data from even (Panels A, C, E, G, 
and I) and odd numbers of remaining probes (Panels B, D, F, 
H, and J) in probe sets are presented separately due to inher-
ent differences in the way the median polish algorithm 
employed by RMA processes them. Two-slope red and black 
lines are provided for the actual and simulated data, respec-
tively (see Methods). The tissue from which the data was col-
lected is indicated in each panel.
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problem is to identify individual probes with poor
hybridization specificity and sensitivity for any the species
compared and remove them from analysis. Ideally, this
screening would be performed based on cDNA sequences
in all species under consideration. However, for numer-
ous species, such as chimpanzee, publicly available cDNA
sequence data is limited. Thus, we conducted our analyses
based on the latest releases of the human and chimpanzee
genome sequences even though we recognize our inability
to query exon-exon junctions or consider polymorphic
sequence in either or both species.

However, this computational approach leads to an addi-
tional source of error in expression measures due to the
variation in the number of probes remaining in a probe
set. The interpretation of masked data sets requires an ad
hoc decision regarding the minimum number of probes
required to calculate a gene expression score. Inevitably,
some information will be lost in the masking process
because some probe sets will need to be excluded when
too few probes are remaining to reliably estimate gene
expression.

Using simulated data sets comprised of over 4,000 tran-
scripts, we noted that the gained and lost inferences of dif-
ferential gene expression increased in a linear fashion
with decreasing probe number. However, the rates of
change were tissue-dependent. The issue of minimal num-
bers of probes necessary to generate reliable expression
scores has been investigated by Lu et al. [28]. Using the
related Affymetrix Human Genome U133A platform, they
measured differential expression on ten artificial data sets
generated from the U133A Latin Square experiment (see
http://www.affymetrix.com/support/technical/
sample_data/datasets.affx). Based on elegant analyses of
IQRs and false discovery rates in control probe sets, inter-
rogating spike-in bacterial and phage transcripts, and
human transcript probe sets, the authors concluded that a
minimum of four probes is necessary to generate a reliable
gene expression score. Although similar in spirit, these
analyses cannot be readily compared to the current study
due to dramatic differences in experimental design, data
processing, and definitions of differential gene expression
(2-fold vs. 1.2-fold and a corrected Bayes moderated t-test
P < 0.05).

Overall, there is strong agreement between the analyses of
Lu et al. [28] and the current study that reducing probe
number to less than four leads to substantially different
results relative to the full complement of 11 probes. This
is especially relevant for the analysis of data from oligonu-
cleotide microarrays where only four probes are used to
interrogate exon abundance in the human transcriptome,
as described in reference [33].

Effects of probe number on the inferences of differential gene expressionFigure 4
Effects of probe number on the inferences of differ-
ential gene expression. The median number of gained 
(black) and lost (red) inferences of differential gene expres-
sion (Y-axes) in simulated data sets subjected to random 
probe masking relative to actual data are plotted against the 
number of probes in a probe set (X-axes) (see text for 
details). Error bars represent the observed range of inferred 
differential gene expression in the simulated data sets. Red 
and black data points are slightly off-set for visual clarity. 
Data from probe sets with even (Panels A, C, E, G, and I) and 
odd numbers of remaining probes (Panels B, D, F, H, and J) 
are presented separately, as described in Figure 3. The tissue 
from which the data was collected is indicated in the lower 
left hand corner of each panel. Note the different scales on 
the y-axes for heart and testes.
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Conclusions from the empirical data
The data set of Khaitovich and colleagues [13] provides
cross-species expression comparisons of the size and com-
plexity necessary to evaluate the effects of probe masking
on expression scores in different contexts (i.e. tissues).
Based on our comparative analysis of simulated and
actual data sets, we found that random probe masking by
itself can largely account for the observed relationships
between expression variability and the numbers of probes
within probe sets in some tissues (i.e. brain), but not oth-
ers (i.e. testes) (Fig. 3). This implies that in testes, addi-
tional factors are strongly influencing the relationships
observed in the actual masked data. Given the rapid rates
of sequence evolution of fertilization-related genes [36]
and relatively slow rates of evolution of brain-expressed
genes [37], our observations may reflect relationships
between sequence conservation, which can affect the
number of 1H_1C probes in a probe set, and expression
profiles in human and chimpanzee tissues. However, this
is complicated by the fact that a single nucleotide differ-
ence between human and chimpanzee transcripts could
result in masking all probes in one probe set and no
probes in another. Overall, additional investigations into
the relationships between the rates of sequence and
expression evolution, as first addressed in the initial anal-
ysis of the Khaitovich data set [13], are warranted.

In addition, we observed that lost and gained inferences
of differential expression across species increased with
decreasing numbers of probes in probe sets (Fig. 4). How-
ever, it should be noted that these observations are
strongly influenced by the criteria used to define differen-
tial gene expression. Intriguingly, this relationship was
affected by the odd or even nature of the number of
remaining probes in a probe sets. Probe sets with even
numbers of remaining probes showed comparable
increases in the lost and gained inferences of differential
expression across species while probe sets with odd num-
bers of remaining probes showed a skewing towards more
lost inference of differential expression than gained. This
could be influenced by the way in which RMA uses
median polishing methods in data processing [35,38].
Similarly, the choice of criteria and algorithms to identify
differentially expressed genes will strongly influence
results [39]. As with the normalization RMA platform, we
chose the functions available in the limma package for
differential gene expression analysis due to widespread
use of the package [40,41].

Overall, we conclude that the choice of mask to apply to
the human and chimpanzee gene expression data set con-
sidered in this study is highly dependent upon the general
goals of the meta-analysis. Due to specialized require-
ments for data quantity and quality, no single mask
design is optimal for all applications. Based on our

median IQR analyses (Fig. 3, Additional Files 1 and 2),
probe sets comprised of 6 or more 1H_1C probes consist-
ently showed similar properties. This metric would pro-
vide expression estimates for 89% of the probe sets in the
U133Plus2 microarray which have at least 1H_1C probe
(i.e. 42,093 of 51,001 probe sets, see Table 2). A slightly
less conservative approach would be to apply a mask of
requiring 4 or more 1H_1C probes, extrapolating from
the analyses described in reference [28]. This metric
would provide expression estimates for 93.1% (47,506)
of the probe sets with at least 1H_1C probe (Table 2). The
relative percentages of probe sets interrogated in these two
examples are similar. Thus, we recommend that less strin-
gent masks (mask0, mask1, and mask2) be used for
exploratory analyses wherein the number of transcripts
with expression scores need to be maximized while more
stringent masks (mask3 or higher) be used for more rigor-
ous evaluations of inter- and intraspecies variation.

Additional applications for masks
In principle, our methods are applicable towards the
development of masks for different microarray designs
and other cross-species probe masking applications. For
example, it is desirable to eliminate probes overlapping
common polymorphisms that could affect gene expres-
sion data within a given species [42,43]. Likewise, it could
be useful to mask probes that overlap splice junctions and
thus selectively evaluate the abundance of differentially
spliced transcripts. Multiple groups have applied masks to
update annotation data and partition out unique sets of
probes which each map to a single gene or transcript def-
inition [24-30,44-48]. In the future, mask strategies may
be useful for isolating or eliminating the effects of copy
number and structural variation on downstream gene
expression analyses [49].

Methods
Mapping of individual probe sequences to the human and 
chimpanzee genomes
The Human Genome U133Plus2 microarray (Affymetrix)
contains 604,258 perfect match (PM) 25 mer probes
organized into 54,675 probe sets which interrogate the
relative abundance of ~47,000 human transcripts. For this
microarray, 20,112 unique National Center for Biotech-
nology Information (NCBI) Entrez GeneIDs were
mapped to Affymetrix probe designations using the Bio-
conductor R environment hgu133plus2ENTREZID in the
annotation package hgu133plus2.db [50].

Since we used the RMA (robust multi-array average) algo-
rithm [35,38,51], which only considers PM probes in
downstream data processing, we discard all information
from mismatch (MM) probes, originally designed by
Affymetrix to correct for cross-hybridization, from our
analysis. For clarity of presentation, we refer to PM probes
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in the microarray as 'probes'. The probe sequences were
obtained from the publicly available NetAffx™ Analysis
Center web site http://www.affymetrix.com/analysis/
index.affx[52].

In order to evaluate the probe sequences in the Human
Genome U133Plus2 microarray, we developed a new
algorithm that quickly and accurately aligns tens of thou-
sands of short sequences to complete genomes or tran-
scriptomes (Renaud and Wolfsberg, manuscript in
preparation). This algorithm identifies all sequences with
exact matches to a genome (i.e., 100% identity over 100%
of the length of the query), and can also be used to iden-
tify all sequences that align with a specific number of mis-
matches. We used this algorithm to align each probe
sequence to both strands of the human (NCBI Build 36.1)
and chimpanzee genomes (Build 2 Version 1, Oct. 2005
from the Chimpanzee Sequencing and Analysis Consor-
tium). For each probe, it was determined if its sequence
matched the human genome zero (0H), one (1H), or
multiple times (MH) and whether its sequence matched
the chimpanzee genome zero (0C), one (1C), or multiple
times (MC) (Table 1, Fig. 1). We define the term 'match'
as requiring all 25 bases in a given probe to be identical to
a segment of the interrogated genome, that is, we did not
allow for any mismatches between the probe and the
genome.

Probes were placed into nine distinct categories based on
their relationship to both genomes: 0H_0C, 0H_1C,
0H_MC, 1H_0C, 1H_1C, 1H_MC, MH_0C, MH_1C, and
MH_MC. Afterwards, each of the 54,675 probe sets was
classified based on the abundance of probes within each
of these nine categories (Fig. 2).

Creation of mask files
The cdf environment and the probe environment were
downloaded as the R packages hgu133plus2cdf and
hgu133plus2probe from the Bioconductor website http:/
/www.bioconductor.org/[50] and installed locally to a
defined R libraries directory. Using the C shell (tcsh), the
path to the local R libraries directory was specified with
the environment variable R_LIBS in the ".cshrc" shell star-
tup script (see Additional File 6). The package Custom-
CDF was used to remove probes which did not fit the
criteria for inclusion in the gene expression summaries
from the cdf environment [24,53]. CustomCDF and all R
packages used other than those present in the default
installation, were installed using biocLite to ensure the
installation of all dependencies.

Application of masks
The Bioconductor package affy [54] was used to import
the fifty-five .cel files generated in a previous study of
genome-wide expression profiling of human and chim-
panzee tissues [13]. The .cel files provide one fluorescent

intensity value for each probe in the Human Genome
U133Plus2 microarray used in each experiment. These .cel
files represent fifty-five gene expression profiling analyses
of brain, heart, kidney, liver and testes, each derived from
six humans and five chimpanzees (11 total individuals).
The function ReadAffy from the R package affy was used
resulting in an AffyBatch object. Masking was accom-
plished using the "removeprobe" function in the R pack-
age CustomCDF. The "removeprobe" function alters the
cdf environment to create the masked version of the data
[24,53].

We generated a series of masks that only retained probes
with a single match to both the human and chimpanzee
genomes (1H_1C) (see Additional File 6 for detailed
instructions and Additional File 7 for all the information
necessary to generate these masks). We named these
masks based on the number of probe sets that contained
more than N probes after initial masking. For example,
maskN retains only probe sets with more than N probe(s)
remaining after the initial filtering step. Therefore, as
mask number (N) increases, the number of probe sets
used for interrogating gene expression is reduced (Table
2). Note that the original analyses of the data sets under
consideration used an earlier draft of the chimpanzee
genome [55] for mask generation [13].

We used the RMA algorithm [35,38] for signal processing
and to generate expression values for each set of masked
data with the "rma" function in the Bioconductor affy
package. Thus, RMA is used to summarize only the probe
intensities specified in the modified environment. We
report expression measures as log base 2 values. Although
we chose RMA as our summarization method, other algo-
rithms could be used. However, caution should be taken
when applying algorithms that consider data from mis-
match (MM) probes, originally designed by Affymetrix to
correct for cross-hybridization in the intended (here,
human) transcriptome analyses. In such cases, the mask
should also discard data from perfect match (PM)/mis-
match (MM) probe pairs where the MM probe now per-
fectly matches at least sequences in the second species
(here, chimpanzee) under consideration, as discussed in
reference [32].

Probe number and variability of expression scores
We used the kOverA function in the Bioconductor genefil-
ter package to select probe sets that interrogated expressed
transcripts (herein defined as having a minimum expres-
sion criteria of > 100 unit gene expression score in at least
four of the five chimpanzees or at least five of the six
humans surveyed, unlogged data) in a given tissue of
interest. The data were further partitioned so that the
expressed transcripts were categorized by the number of
probes remaining in their respective probe sets after the
initial masking procedure. As a means of surveying varia-

http://www.affymetrix.com/analysis/index.affx
http://www.affymetrix.com/analysis/index.affx
http://www.bioconductor.org/
http://www.bioconductor.org/
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tion in gene expression scores, we calculated the median
interquartile range (IQR) of the selected probe set as a
function of the number of remaining probes for each tis-
sue in (i) humans alone, (ii) chimpanzees alone, and (iii)
all humans and all chimpanzees. Mask1 was used for this
procedure to prevent the exploration of probe sets with
only one probe remaining.

The association between median IQR and number of
probes is studied using linear regression. A two-slope line
is fit using two predictor variables; the first predictor is the
number of probes (2–11) and the second predictor takes
on zero when the number of probes is less than the break-
point and takes on the difference between the number of
probes and the breakpoint when the number of probes is
larger. A test of the coefficient for the second predictor var-
iable equaling zero is a test of a change in slope for the
broken line. In general, one can chose the breakpoint that
maximizes the fit of the two lines in terms of variance
explained and then test if the slopes for the two lines vary
taking into account the multiple testing that occurs in
finding the best fit. However, the limited number of
probes (five even- or five odd-numbered, excluding a
value of one) would not permit us to take advantage of
this approach. Instead, we chose five or six as a break
point depending on whether we were modeling the even
numbered or odd numbered probes. When modeling all
probes combined we used a breakpoint of 5.5, and used a
covariate to adjust for whether the observation was for a
probe set with an even or odd number of probes. The
breakpoints used are supported by results from previous
papers studying the association between IQR and number
of probes [28]. At the same time, if we capture non-linear-
ity through the use of a quadratic term that does not
require the specification of a breakpoint, our conclusions
remain the same (data not shown). Hypotheses were
tested by comparing nested models and computing F-
tests. Changes in slopes between simulated and real data
are tested by including interaction terms for the two slope
predictor variables with a variable denoting data source
(simulated or real). Because of the larger number of
median IQRs for the simulated data, we chose to model
the simulated data using the means of the 100 replicates
for each number of probes.

Probe number and inferences of differential expression
To quantify the effects that the number of probes within a
probe set have on inferences of differential expression, we
first calculated gene expression scores in all fifty-five .cel
files using the mask1 procedure. Afterwards, we identified
genes that were differentially expressed across species
(herein defined as having a 1.2-fold change, Bayes moder-
ated t-test P < 0.05 corrected for multiple comparisons
with the Benjamini and Hochberg procedure [56] and a
minimum expression criteria of > 100 units in at least four
of the five chimpanzees or at least five of the six humans

surveyed) using the limma (Linear Models for Microarray
Analysis) package [41,57]. We were particularly interested
in data obtained from probe sets containing 11 probes
(i.e. the number of probes present in a typical U133Plus2
microarray probe set). The designation 1H_1C_11 was
used to indicate a perfectly matching set of 11 out of 11
probes. There were 4,648 such 1H_1C_11 probe sets
remaining in the masked microarray data.

Next, we generated simulated mask1 files that included all
the probes listed in the mask1 file with additional mask-
ing of X probes (ranging from one to nine) randomly
selected from each 1H_1C_11 probe set. We generated
one hundred simulated mask1 files for each value of X.
Each of these nine hundred masked data sets was consid-
ered in the downstream analysis of gene expression scores
for the fifty-five .cel files.

Probe number and rates of evolution
Rates of nucleotide substitution on the human and chim-
panzee lineages were calculated using PAML v. 3.15 [58]
and published publicly available multiple sequence align-
ments of mammalian genes [59], as described in [60]. A
total of 19,995 probe sets in the U133Plus2 microarray
could be assigned both a single RefSeq ID (based on the
publicly available NetAffx™ Analysis Center web site) and
a corresponding dN/dS ratio (Additional File 3). This
information provided the basis for comparing numbers of
1H_1C probes in probe sets with rates of molecular evo-
lution.
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Additional file 4
Relationships between numbers of probes remaining after masking and 
rates of evolution. The relationships between the number of 1H_1C probes 
in a probe set and the rates of evolution of corresponding RefSeqs are pro-
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Additional file 5
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probe sets showing differential expression based on masked and unmasked 
data sets.
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Additional file 6
Instructions for the application of masks for the analysis of human and 
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microarrays. We provide instructions for the application of masks for the 
analysis of human and chimpanzee data obtained from Affymetrix 
U133Plus2 gene expression microarrays.
Click here for file
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Additional file 7
Master mask file. This is the master mask file that can be applied for cross-
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