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PREFACE

The dissertation is devoted to the study of the so-called pessimistic version of the bilevel

programming problems in finite-dimensional spaces. Bilevel programming deals with

a broad class of problems in hierarchical optimization that consist of minimizing some

(upper level or leader’s) objective function F : <n × <m → < subject to upper-level

constraints x ∈ Ω ⊂ <n and (x, y) ∈ gphS ⊂ <m×<n. Here gphS stands for graph of the

solution mapping to another (lower-level or follower’s problem) parametric optimization

problem given by S(x) := argmin{ f(x, y) | y ∈ K(x) } with the cost function f :

<n × <m → < and the constraint set K(x) ⊂ <m. This problem can be ill posed since

the follower’s problem may have many solutions and responses for every (or some) fixed

leader’s variables. In the so-called “pessimistic” case, or “strong” case, the leader has no

possibility to influence the follower’s choice, i.e., the leader has to minimize the damage

resulting from an unwelcome selection of the follower by considering the worst solution

in S(x) with respect to the leader’s goal:

minϕp(x) subject to x ∈ Ω

where ϕp(x) := max {F (x, y) | y ∈ S(x) }.

The purpose of this dissertation is to establish, by a variety of techniques from convex,

nonconvex and nonsmooth analysis, first order necessary and sufficient optimality con-

ditions for pessimistic bilevel programming problems (PBLPPs). Problems of this type

intrinsically nonsmooth even for smooth initial data and can be treated using appropriate
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tools of modern variational and generalized differentiation developed by Mordukhovich.

This dissertation is organized as follows: In Chapter 1, we analyze the pessimistic

bilevel programming problems. Here we present a literature review, formulation of the

PBLPPs, and an illustration of two practical problems, which emphasize the study of

PBLPPs. We study the existence of the optimality conditions and then we look for

various reformulations of PBLPPs. Pessimistic bilevel programming problems can be

reformulated as generalized semi infinite programs, static minimax programs in the para-

metric constraint case, implicit programs, and mathematical programs with equilibrium

constraints. Pessimistic version of bilevel programming problems consists of three level

optimization and using the imposed assumption, the so-called reformulation assumption

(RA), PBLPPs can be reduced to two level optimization problems, which indeed help us

to obtain necessary optimality conditions.

Staring with Chapter 2, we study optimality conditions for PBLPPs. Chapter two is

devoted to obtaining the optimality conditions using the techniques of the so-called im-

plicit programming approach. We begin with assuming, so-called key implicit assumption

(KIA) that there exists a Lipschitz selection y(x) ∈M(x) := argmax{F (x, y) | y ∈ S(x) }

near the optimal solution (x̄, ȳ). Then we formulate the PBLPP as implicit programming

problem and hence we obtain optimality conditions using tools of modern variational anal-

ysis. We also obtain the optimality conditions for continuous and Fréchet differentiable

selection relaxing the Lipschitz continuity. We study constructions of the coderivative of

selection mapping and present sufficient conditions for our basic assumptions.

Chapter 3 consists of three main sections for which we consider PBLPPs with dif-
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ferentiable data, convex data and Lipschitz data. For each case we study constructions

or estimations of subdifferentials of marginal function and obtain necessary optimality

conditions treating the PBLPP as static minimax programs with parametric constraints,

i.e., by writing min
x∈Ω

(
max
y∈S(x)

F (x, y)

)
which is equivalent to

min
x∈Ω

(
max
y∈K(x)

[F (x, y)− µf(x, y)] + µv(x)

)
provided that the assumption (RA) holds near

the optimal point (x̄, ȳ).

In Chapter 4, we obtain necessary optimality conditions for PBLPPs using the well-

known technique the so-called duality programming approach. Here we relax the con-

vexity assumption and consider the non convex PBLPPs. Imposing the invexity type

assumption, we reformulate the PBLPPs as mathematical programs with equilibrium

constraints and hence we obtain necessary optimality conditions.

When the rational reaction set has finite cardinality, but not singleton, we can equiv-

alently reformulate the PBLPP as min
x∈Ω

(
max
i=1̄,r

[
F̃i(x) := F (x, yi(x)) := (F ◦ yi)(x)

])
or

min
(x,ω)∈Ω×<

ω subject to F̃i(x) − ω ≤ 0 i = 1, 2, . . . , r where S(x) = { yi(x) | i =

1, 2, . . . , r where r > 1; yi(x) solves the follower’s problem (lx) }. Then using the tools

of modern variational analysis and generalized differentiation we present necessary op-

timality conditions. In the last part of Chapter 5, we present some special classes of

PBLPPs, which guarantee the existence of a finite number of rational responses.

Pessimistic formulation for the bilevel programs results in three level optimization

and existence of the optimal solutions and optimality conditions depend on the value

function, feasible set, and solution set to the lower level problems. For the reader’s con-

venience in the appendices, we present some properties of marginal function, feasible
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set, and solutions set to the lower level problems from the nonsmooth optimization and

stability theory.

Samarathunga Dassanayaka

Wayne State University, Michigan

August 2010

A great discovery solves a great problem but there is a grain of discovery in the

solution of any problem. Your problem may be modest; but if it challenges your

curiosity and brings into play your inventive faculties, and if you solve it by your

own means, you may experience the tension and enjoy the triumph of discovery.

∼ George Polya
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1

Chapter 1

Analysis of Pessimistic Bilevel Programming

Problem

1.1 Problem Formulation and Basic Concepts

1.1.1 Motivation and Introduction

Bilevel programming problems are of growing interest both from theoretical and practical

points of view. Optimization problems are encountered in a wide variety of domains such

as experts and their guesses (as in the case of expert evaluation analysis), members of

a group and their votes (voting models), various indicators of quality of a system and

their values (decision making based on many criteria), and starting characteristics as

well as partitions of objective into classes that they generate (classification problems).

Generally speaking, hierarchical optimization problems or multilevel optimization prob-

lems play an important role in optimization decision problems including the engineering

and experimental natural science regional planning, management, and economics prob-

lems, network design, and etc. Bilevel optimization problems are the first step to study

hierarchical optimization problems. The framework of bilevel optimization problems is

that there are both leader-level and follower-level problems, where each problem has its

own objective function, and interactions between the two problems. Two players seek

to optimize their individual objective functions. The first player (also called the leader)
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must take into account the reaction (or any possible reaction when non unique) of the

second player (also known as the follower). Such a problem can be ill posed, since the

lower level (follower’s problem) may have many solutions and responses for every (or

some) fixed leader’s variables. In the so-called “optimistic case,” many optimal reactions

of the follower are possible and the follower is assumed to choose in favor of the leader.

In this case, the upper level problem can be modeled using a bilevel formulation. These

programs are quite difficult nonconvex optimization problems. The reader is referred to

monographs; [5], [8], [13], [57], [79], [80], surveys; [6], [7], [9], [86], journal papers; [10],

[11], [12], [22], [34], [46], [67], [68], [87], [88], [90], [91], and the references therein, for

comprehensive studies, solutions methods, techniques, algorithms, optimality conditions,

and various applications.

Alternatively, the so-called pessimistic formulation refers to the case where the leader

protects himself/herself against the worst possible situation. See also [9], [8], [84], and

the references therein.

The scope of this dissertation is mainly related to pessimistic bilevel programming

problems (PBLPPs). To be more precise, the problem framework can be described as the

following: Let the follower make his/her decision by solving a parametric optimization

problem:

min
y
f(x, y) subject to y ∈ K(x), (1.1.1)

where the decision variable of leader-level is x ∈ Ω ⊂ <n, the decision variable of follower-
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level is y ∈ <m, f : <n × <m → < is a follower’s objective function and K(x) ⊂ <m

is the constraint set (or the feasible set) for the followers problem. The lower-level

problem is parameterized by x. Define the solutions set mapping of the follower’s problem

S : <n ⇒ <m by

S(x) := argmin{ f(x, y) | y ∈ K(x) }. (1.1.2)

Then the leader’s problem consists in minimizing

‘ min ’
x

F (x, y) subject to y ∈ S(x) and x ∈ Ω, (1.1.3)

where F : <n ×<m → < and Ω ⊂ <n is a closed set.

Since the leader controls only the variable x, the problem (1.1.3) is well defined only

in the case when the optimal solution set S(x) is uniquely determined for all parameter

values x ∈ Ω. Quotation marks have been used to express the ambiguity in the definition

of the leader’s problem in the case of multiple optimal solutions in the follower’s problem

for some parameter values. An interesting example of this matter can be found in [9].

To overcome this ambiguity, at least two approaches, known as optimistic and pes-

simistic, have been suggested. Both approaches rest on the introduction of a new lower

level problem:
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BLPP

↗

−→

↘

S(x) is uniquely determined for all x

Optimistic Bilevel Programming Problem

Pessimistic Bilevel Programming Problem

Optimistic bilevel programming can be applied if the leader assumes that the follower

will always take an optimal solution, which is the best one from the leader’s point of view.

The optimistic position seems not to be possible without any trouble at least in the cases

when cooperation is not allowed, (e.g., in games of human being against nature), or if

the follower’s seriousness of keeping the agreement is not granted. Then when the leader

is not able to influence the follower’s choice, he/she has the way out of this unpleasant

situation to bound the damage resulting from an undesirable selection of the follower.

This leads to the pessimistic bilevel programming problem (PBLPP):

minϕp(x) subject to x ∈ Ω, (1.1.4)

where

ϕp(x) := max {F (x, y) | y ∈ S(x) }. (1.1.5)

1.1.2 Problem Formulations and Terminology

The pessimistic bilevel programming problem (PBLPP), with which we are concerned,

is the following:
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(PBLPP )



minϕp(x) subject to x ∈ Ω, where

ϕp(x) := max{F (x, y) | y ∈ S(x) }, and

S(x) := argmin { f(x, y) | y ∈ K(x) }.

Terminology:

Other important pessimistic bilevel programming problems terminology, definitions and

notation are itemized below.

• The relaxed feasible region (or constraint region),

Ψ = { (x, y) ∈ <n+m | x ∈ Ω, y ∈ K(x) }.

• For a given (fixed) vector x ∈ Ω, the lower-level feasible set is

K(x) = { y ∈ <m | g(x, y) ≤ 0, h(x, y) = 0 }.

• For a given x ∈ Ω, the follower’s problem (or lower level problem is),

min
y
f(x, y) such that y ∈ K(x).

• For each x ∈ Ω, the lower-level reaction set (or rational reaction set is),

S(x) = { y ∈ <m | y ∈ argmin{ f(x, y) | y ∈ K(x) } }.
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Every y ∈ S(x) is a rational response. For a given x, S(x) is an implicitly de-

fined multivalued function of x that may have empty values for some values of its

argument.

• The feasible set of the leader, also known as the induced region (or inducible region)

IR = { (x, y) ∈ <n+m | x ∈ Ω, y ∈ S(x) }.

• When cooperation of the leader and the follower is not allowed, or if the leader is

risk-averse and wishes to bound the damage resulting from and undesirable selec-

tion, we have

ϕp(x) := max {F (x, y) | y ∈ S(x) }

denotes the worst upper level objective function value achievable on the rational

reaction set.

• The follower’s problem or pessimistic bilevel programming problem is,

minϕp(x) subject to x ∈ Ω.

1.2 Existence of Optimality Conditions

This bilevel programming problem has an implicitly determined set of feasible solutions

and it is usually a nonconvex optimization problem with a nondifferentiable objective

function. Hence local optimal solutions may exist. To define the notion of a locally
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optimal solution, usual tools from optimization are applied to the PBLPP.

Definition 1.2.1 (pessimistic optimal solution). A point (x̄, ȳ) with ȳ ∈ S(x̄) and

x̄ ∈ Ω is a local pessimistic optimal solution if

F (x̄, y) ≤ F (x̄, ȳ) for all y ∈ S(x̄) and

there exist ε > 0 such that

ϕp(x̄) ≤ ϕp(x) for all x such that x ∈ Ω, with ‖ x− x̄ ‖< ε.

It is called a global pessimistic optimal solution if ε =∞ can be selected.

Remark 1.2.2. (x̄, ȳ) is a local pessimistic optimal solution to PBLPP if and only if x̄ is

a local optimal solution to min
x∈Ω

ϕp(x) and ȳ is a globally optimal solution to max
y∈S(x̄)

F (x̄, y).

Equivalently, (x̄, ȳ) is a local pessimistic optimal solution to PBLPP if and only if x̄ is

a local optimistic solution to min
x∈Ω

F (x, ỹ(x)), where ỹ(x) solves(globally) max
y∈S(x)

F (x, y) for

each x in a neighborhood of x̄ with ỹ(x̄) = ȳ.

Sensitivity theory of parametric non-linear programming (see for more details, [14],

[15], [17], [18], [19], [23], [38], [52], [70], [72], [73], and [95]) provides us with the existence,

characterization, and related properties of ỹ(x) near x̄.

Remark 1.2.3. A pessimistic optimal solution does not necessarily exist, even if the

objective functions are continuous and Ω and K(x) ≡ K are compact spaces. The

following example is evidence.
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Example 1.2.4 (nonexistence of pessimistic optimal solutions [47]). Let f(x, y) =

(x− 1
2
)y and F (x, y) = −xy be the corresponding objective functions. Also let K(x) ≡

K = [0, 1] and Ω = [0, 1]. Then with the previous notations, we have:

S(x) =



{1} if 0 ≤ x < 1
2

[0, 1] if x = 1
2

{0} if 1
2
< x ≤ 1

ϕp(x) =



{−x} if 0 ≤ x < 1
2

{0} if x = 1
2

{0} if 1
2
< x ≤ 1

Also, inf
x∈Ω

ϕp(x) = −1
2

but ϕp(x) is not lower semicontinuous at x = −1
2

and, hence the

optimal solution does not exist.

Theorem 1.2.5 (existence of pessimistic optimal solutions [9]). Pessimistic bilevel

programming problem (PBLPP) has an optimal solution if the following conditions are

satisfied.

(i) F is lower semicontinouse,

(ii) S : <n ⇒ <m is lower semicontinuous at all points with x ∈ Ω, and

(iii) the set { (x, y) | y ∈ K(x), x ∈ Ω } is nonempty and compact.

Remark 1.2.6. Sufficient conditions for the lower semicontinuity of the rational reaction

set are available in the optimization literature. See the appendices and the references

therein for sufficient conditions for the lower semicontinuity of the solution set S(x).

In addition to nonconvex and nondifferentiable behavior of PBLPP, another major

drawback arises when the lower level problem is nonconvex. If the lower level problem is
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nonconvex for fixed parameter value x, the computation of a globally optimal solution in

the lower level problem can be computationally intractable (especially tracing the global

solution set mapping for a varying parameter). In this case it can be considered as being

helpful to modify the bilevel program such that a locally optimal solution in the lower

level problem is searched for instead of a globally optimal solution. But as it is shown

in an example in [9], this can completely change the existence of optimal solutions of the

PBLPP. Let’s consider the following example.

Example 1.2.7 (global versus local). Let f(x, y) = y3 − 3y and F (x, y) = (x + 1)2.

Also let Ω = [−3, 2] and K(x) = { y | y−x ≥ 0 }. Then, if we consider S(x) to be the set

of global optimal solutions to the lower level problem, then pessimistic optimal solution

does not exist. But, if S(x) denotes the set of locally optimal solutions to the lower level

problem, we have

ϕp(x) =


4 if x ∈ [−3, 1]

(x+ 1)2 if x ∈ (1, 2]

So, inf
x∈Ω

ϕp(x) = 4 and all points x ∈ [−3, 1] are optimal solutions.

The reason for this behavior is that the point-to-set mapping of globally optimal

solutions of a parametric problem is generally not lower semicontinuous if the convex-

ity assumption is dropped. Being aware of the difficulties arising when global optimal

solutions of nonconvex optimization problems are to be computed, some authors use op-

timality definitions, which determine whole sets of optimal solutions. To circumvent this
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unpleasant situation, Vogel (2002) has defined a weaker notion of pessimistic solutions.

Definition 1.2.8 (weak pessimistic optimal solution). Let us define

ρ(x) := sup {F (x, y) | y ∈ S(x) },

where S(x) is the solution set of the lower level problem (local or global), and

%(x) := inf {ρ(x) | x ∈ Ω }.

A point x̄ with x̄ ∈ Ω is a weak pessimistic solution to the bilevel programming problem

if, there exist ȳ ∈ S(x̄) and sequence {xk }∞k=1 ⊂ dom S such that

lim
k→∞

xk = x̄, lim
k→∞

ρ(xk)→ %, and F (x̄, ȳ) = %.

Theorem 1.2.9 (existence of weak pessimistic optimal solutions [9]). Let { (x, y) |

y ∈ S(x), x ∈ Ω } be nonempty and bounded. Then the PBLPP has a weak pessimistic

solution.

The existence of solutions of pessimistic bilevel programming problem has been inten-

sively investigated by Loridan and Morgan and their co-authors. The interested reader

can find the corresponding results and discussions in Aboussoror [1], Aboussoror and

Loridan [2, 3], Lignola and Morgan [45], Loridan and Morgan [47, 48, 49], Marhfour

[56], and Tian and Zhou [83]. Henceforth we assume the existence and look at necessary

optimality conditions, which is the main aim of this work.
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1.3 Applications of Pessimistic Bilevel Programs

Pessimistic programs naturally arise in economics, engineering, optimization under uncer-

tainty, and several other application areas. Among other practical applications, in what

follows, we consider two examples that are formulated as pessimistic bilevel programs.

Example 1.3.1 (principle-agent problem [84]). The principle-agent problem illus-

trates the difficulty to design contracts under incomplete and asymmetric information.

Assume that agent A is supposed to perform a task for principal P . The generated profit

ρ of that task is a function of the effort φ ∈ [0, 1] that A puts into the task. Since P

cannot observe φ, he/she designs an incentive-based contract, i.e., apart from a fixed

salary, he/she pays A a fraction β of the observable task profit ρ(φ). P wants to choose

β in such a way that his/her part of the profit is maximized. The setting can be cast as

a Stackelberg game: P , the leader, moves first by deciding on the contract parameter β.

After he/she has observed β, A (the follower) chooses the effort φ∗ that maximizes his

utility u(β, φ). Anticipating A′s decision, P wants to choose a contract parameter β that

maximizes his/her part of the profit, i.e., (1− β)ρ[φ∗(β)].

In the following, assume that A′s utility is determined by u(β, φ) = s(β, φ) − r(φ),

where s(β, φ) = 10 + βρ(φ) denotes his/her salary and r(φ) = φ + (5[φ − 0.5]+)2 repre-

sents A′s reluctance to work. The profit generated by the task outcome is determined by

ρ(φ) = 5φ2. With this notation, P ′s optimization problem can be described as follows:

max
β∈[0,1]

min
φ∈φ∗(β)

{5(1− β)φ2},
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where φ∗ = argmax
φ∈[0,1]

{10 + 5βφ2−φ− (5[φ− 0.5]+)2} denotes the set of optimal efforts for

a given contract design β. The model maximizes P ′s worst-case profit anticipating that

A will choose any of his optimal responses.

Example 1.3.2 (production planing [84]). Two companies A andB produce the same

product and need to decide on their production quantities. Company A is the market

leader and has decided first on a quantity xA ∈ [0, 200]. Company B, on the other hand,

is a follower and decides on a quantity xB ∈ [0, 100] after observing A′s decision. The

market price for the product depends on the aggregated supply xΣ = xA + xB and is

determined by p(xΣ) = 100 − 0.3xΣ, while the (constant) unit production costs are 50

for both companies. A and B want to maximize their profits.

The profits of companies A and B amount to ρi(xA, xB) = {p(xA + xB) − 50}xi,

i ∈ {A,B}. Company A′s decision problem can be written as follows:

max
xA∈[0,200]

min
xB∈x∗B(xA)

{[50− 0.3(xA + xB)]xA},

where x∗B(xA) = argmax
xB∈[0,100]

{[50−0.3(xA +xB)]xB} denotes B′s set of optimal responses to

a given production quantity of A. The objective is to maximize company A′s worst-case

profit.
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1.4 Reformulations, Assumptions and Properties

1.4.1 Representation of Optimal Solutions to the Lower Level Problem

Geometric Representation

Recall the lower level problem

l(x) : min
y
f(x, y) subject to y ∈ K(x),

and let K(x) = { y ∈ <m | g(x, y) ≤ 0, h(x, y) = 0 }, where the perturbation parameter

x runs over Ω that is a closed subset of <n.

Definition 1.4.1.

Partially Convex Parametric Optimization Problem: By a partially convex para-

metric programming problem we mean that y → f(x, y) is convex in y for each x

and the set K(x) is convex for each x. (i.e., gi(x, .), i = 1, . . . , p are convex and

hj(x, .), j = 1, . . . , q, are affine linear for each fixed x).

Fully Convex Parametric Optimization Problem: By a fully convex parametric

programming problem we mean that f(x, y) is convex with respect to both x and

y, and that gphK is a convex set.

Let us assume the following:

• f , g := (g1, g2, . . . , gp)
T and h := (h1, h2, . . . , hq)

T are twice continuously differen-

tiable on Ω×<m;

• for each x ∈ Ω, l(x) is a partially convex programming problem.
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Then the S(x) is closed and convex (but may be empty), and we have the representation:

S(x) = { y ∈ <m | 0 ∈ ∇yf(x, y) +N(y,K(x)) }

= { y ∈ <m | 0 ∈ ∇yf(x, y) + ∂yδK(x, y) }, (1.4.1)

where δK(x, y) = δK(x)(y) denotes the indicator function of the set K(x).

Variational Inequality Representation

Definition 1.4.2 (parametric variational inequality). Let F : <n ×<m → <m be a

function and C : <n ⇒ <m be a set-valued map with (possibly empty) closed and convex

values; i.e., for each x ∈ <n, C(x) is a closed and convex subset of <m. The parametric

variational inequality with parameter x, denoted by V I(F (x, .), C(x)), is defined by

find y ∈ C(x) such that (v − y)TF (x, y) ≥ 0 for all v ∈ C(x).

And let SOL(F (x, .), C(x)) := { y ∈ C(x) | (v − y)TF (x, y) ≥ 0 ∀ v ∈ C(x) } be the

solution set to the parametric variational inequality V I(F (x, .), C(x)).

Now if f : <n ×<m → < is C1, and K(x) is convex, we have

argmin{ f(x, y) | y ∈ K(x) } ⊆ SOL(∇yf(x, y), K(x)).

Furthermore, if f(x, .) is convex, then S(x) = SOL(∇yf(x, y), K(x)).
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KKT Representation

Now fix some x̄ ∈ Ω and assume the extended Slater constraint qualification (ESCQ)

holds at x̄; i.e., there exists ȳ := y(x̄) ∈ <m such that g(x̄, ȳ) < 0 and h(x̄, ȳ) = 0. Then

we have

N(y,K(x)) = {
p∑
i=1

ui∇yg(x, y)+

q∑
i=1

vi∇yh(x, y) | u(x) ∈ <p+, v(x) ∈ <q,

ui(x)gi(x, y) = 0, for i = 1, 2, . . . , p }. (1.4.2)

So,

S(x) = { y(x) ∈ K(x) | 0 ∈ ∇yf(x, y) +N(y,K(x)) } (1.4.3)

= { y(x) ∈ <m | ∃ u(x) ∈ <p+ and v(x) ∈ <q such that

∇yL(x, y(x), u(x), v(x)) = 0, u(x)Tg(x, y) = 0, y(x) ∈ K(x) }

= { y(x) ∈ <m
∣∣∣∣ 0 ∈


∇yL(x, y(x), u(x), v(x))

−g(x, y(x))

h(x, y(x))

+

N<m×<p
+×<q(y(x), u(x), v(x)) }, (1.4.4)

where ∇yL(x, y(x), u(x), v(x)) := ∇yf(x, y) +
∑p

i=1 ui∇yg(x, y) +
∑q

i=1 vi∇yh(x, y). For

more details, see [70].
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Another Simple Representation [54]

Suppose that for each fixed x ∈ Ω. We have

• f(x, .) is twice continuously differentiable and convex function on y ∈ <m;

• K(x) is a convex subset of <m;

• ȳ ∈ S(x).

Then we have

S(x) =

 y ∈ K(x)

∣∣∣∣ 〈∇yf(x, ȳ), y − ȳ〉 = 0

∇2
yf(x, ȳ)(y − ȳ) = 0

 . (1.4.5)

Marginal Function Representation

We associate the lower level nonlinear parametric problem with a so-called value function

or marginal function, µ : <n → <̄, defined by

µ(x) :=


inf{ f(x, y) | y ∈ K(x) } if K(x) 6= Ø

∞ otherwise.

Remark 1.4.3.

• Note that µ(·) may take the value −∞, because problem l(x) may not have a

solution. The value ∞ is assigned to µ(·) by the convention that the infimum over

the empty set is equal to∞. In general the value function µ(·) is not differentiable,

neither convex, nor Lipschitz even if the functions f, g and h are. In spite of this
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eventual bad behavior of µ(·), this function enables us to reformulate the bilevel

programming problem as follows:

S(x) =

 y ∈ <m
∣∣∣∣ f(x, y)− v(x) = 0,

y ∈ K(x)

 (1.4.6)

The reader is referred to [87] and the bibliographies therein for more details.

• By definition, S is a point-to-set valued mapping, which maps x ∈ <n to the set of

global optimal solutions of problem l(x). Also we define the local optimal solution

set by

Sloc(x) := { y ∈ K(x) | there exists ε > 0 with

f(x, y) ≤ f(x, z) for all z ∈ K(x)
⋂

vε(y) }.

Then

� f(x, y)− ν(x) = 0 and g(x, y) ≤ 0 if and only if y ∈ S(x);

� y ∈ Sloc(x) does not imply that f(x, y)− ν(x) = 0;

� y ∈ Sloc(x) implies that f(x, y)− ν(x) ≥ 0 and g(x, y) ≤ 0 but the opposite is

not true.

Penalty Function Representations

Definition 1.4.4 (semi-Lipschitz condition). A function h : <n → < is said to satisfy

a semi-Lipchitz condition relative to Θ ⊂ <n if there exists a constant (modulus) l ≥ 0
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such that

h(x)− h(x/) ≤ l‖x− x/‖ ∀x ∈ Θ, x/ /∈ Θ.

A function satisfying a semi-Lipschitz condition relative to Θ does not need to be

Lipschitz continuous on Θ, although a (globally) Lipschitz continuous function always

satisfies a semi-Lipschitz condition with respect to any set. In fact, an arbitrary function

satisfies a semi-Lipschitz condition relative to any of its level sets.

Proposition 1.4.5 ([91]). Suppose that for each x ∈ Ω ⊂ <n we have

• K(x) is a closed subset of <m;

• f(x, .) satisfies a semi-Lipschitz condition relative to the set K(x) with modulus

l(x);

• let π : <n ×<m → <+ and β : <n → <+ be functions satisfying β(x) > l(x) and

π(x, y) =


≥ β(x)dK(x, y) if y /∈ K(x)

= 0 otherwise,

where dK(x, y) := dist(y,K(x)).

Then we have

S(x) = argmin{ f(x, y) + π(x, y) | y ∈ <m }. (1.4.7)

Definition 1.4.6 (equi-Lipschitz continuous). The f : <n × <m → < is said to be
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equi-Lipschitz continuous in y with constant l if l > 0 and for all x ∈ Ω we have

|g(x, y)− g(x, y/)| ≤ l ‖ y − y/ ‖ for all y, y/.

Proposition 1.4.7 ([91]). If f is equi-Lipschitz continuous in y with constant l, then

for any τ ≥ l we have

S(x) = argmin{ f(x, .) + τdΩ(x, .) | y ∈ <m }. (1.4.8)

The reader is referred to Zhang [91, 92, 90] for comprehensive details.

In the optimization literature, the reader can find explicit and implicit representations

of the rational reaction set. Among the marvelous techniques that are available in the

literature, the reader is referred to [21], [34], [71] and [77] for representations of rational

response and rational reaction set.

1.4.2 Reformulation and Basic Assumptions

A pessimistic bilevel programming problem is a three stage programming problem. So

to derive the optimality conditions for PBLPP, it is wise to think about the reduction

methods and basic assumption, which simplify the problem. Here we are going to make

the following assumption that will help us to deriving optimality condition for PBLPP.

Assumption 1.4.8 (reformulation assumption (RA)). Let x ∈ Ω be fixed and ỹ(x) be a
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(global) optimistic solution to the lower level problem l(x). Suppose that there exist

µ̄ > 0 such that

F (x, ỹ(x))− F (x, y) + µ̄(f(x, y)− v(x)) ≥ 0 for all y ∈ K(x)\S(x).

With this assumption one has the following result.

Theorem 1.4.9. Let ỹ(x) be a (global) optimistic solution to the lower level problem

l(x). Suppose that the assumption (RA) holds at ỹ(x) for each x ∈ Ω. Then ỹ(x) is a

global solution to:

max F (x, y) subject to y ∈ S(x)

if and only if ỹ(x) is a global solution to:

max [F (x, y)− µ(f(x, y)− v(x))] subject to y ∈ K(x)

for all µ ≥ µ̄. Furthermore, the optimal values are equal.

Proof. Let ỹ(x) be a (global) optimistic solution to the lower level problem l(x). Suppose

that the assumption (RA) hold at ỹ(x) for each x ∈ Ω.

If ỹ(x) is a global solution to:

max F (x, y) subject to y ∈ S(x),



21

then ỹ(x) ∈ S(x) and F (x, ỹ)− F (x, y) ≥ 0 for all y ∈ S(x). Let µ ≥ µ̄ and consider

F (x, ỹ)− µ(f(x, ỹ)− v(x))− (F (x, y)− µ(f(x, y)− v(x)))

= F (x, ỹ)− F (x, y) + µ(f(x, y)− v(x)) as ỹ(x) ∈ S(x)

≥ F (x, ỹ)− F (x, y) + µ̄(f(x, y)− v(x)) as µ ≥ µ̄.

If y ∈ S(x), then

≥ F (x, ỹ)− F (x, y) as f(x, y)− v(x) = 0

≥ 0.

Now if y ∈ K(x), then by the assumption (RA) we have

F (x, ỹ)− F (x, y) + µ̄(f(x, y)− v(x)) ≥ 0 for all y ∈ K(x).

Also, ỹ(x) ∈ S(x)⇒ ỹ(x) ∈ K(x).

So, ỹ(x) is a global solution of the problem

max F (x, y)− µ(f(x, y)− v(x)) subject to y ∈ K(x).

Conversely, suppose that ỹ(x) solve (globally):

max F (x, y)− µ(f(x, y)− v(x)) subject to y ∈ K(x)



22

for all µ ≥ µ̄.

Then

F (x, ỹ)− µ(f(x, ỹ)− v(x))− (F (x, y)− µ(f(x, y)− v(x))) ≥ 0 ∀ y ∈ K(x)

F (x, ỹ)− (F (x, y)− µ(f(x, y)− v(x))) ≥ 0 for all y ∈ S(x)

F (x, ỹ)− F (x, y) ≥ 0 for all y ∈ S(x).

So, ỹ(x) is a global solution to:

max F (x, y) subject to y ∈ S(x).

Remark 1.4.10. If the assumption (RA) holds, then by the above theorem, ỹ(x) solves

max
y∈S(x)

F (x, y) if and only if ỹ(x) solves min
y∈K(x)

[µf(x, y)− F (x, y)]. But in this case the

optimal values are not equal.

1.4.3 Sufficient Conditions for the Assumption(RA) and Lower Bound for µ̄

Remark 1.4.11. Assumption (RA) is clearly equivalent to the following:

0 < sup
y∈K(x)\S(x)

x∈Ω

|F (x, y)− F (x, ỹ(x))|
f(x, y)− v(x)

<∞.

Remark 1.4.12. Assumption (RA) is equivalently reduced to the following:

Let (x̄, ȳ) be a local pessimistic optimal solution to the PBLPP with ỹ(x̄) = ȳ. Let
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x ∈ N(x̄) be arbitrary and ỹ(x) ∈ S(x). Suppose that

• the functions f , and F are real valued;

• F (x, ỹ(x)) and v(x) are finite;

• ∃ δ > 0 and µ̄ > 0 such that

F (x, y)− F (x, ỹ(x)) ≤ µ̄(f(x, y)− v(x))

for all y ∈ K(x)\S(x) with f(x, y)− v(x) < δ.

Then the assumption (RA) is satisfied.

Theorem 1.4.13. Suppose that:

• F (x, .) is Lipschitz continuous in y with uniformly in x with Lipschitz constant l.

i.e., |f(x, y)− f(x, y/)| ≤ l ‖ y − y/ ‖ for all y, y/ ∈ K(x), and x ∈ Ω.

• The lower level problem { l(x) | x ∈ Ω } has a uniformly weak sharp minima.

i.e.,∃α > 0 such that f(x, y)− v(x) ≥ αd(y, S(x)) for all y ∈ K(x) and x ∈ Ω.

• let ỹ(x) solve max
y∈S(x)

F (x, y).

Then there exists µ̄ > 0 such that

F (x, ỹ(x))− F (x, y) + µ(f(x, y)− v(x)) ≥ 0 for all y ∈ K(x) and µ ≥ µ̄.
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Proof. Fix x ∈ Ω. Let ỹ(x) ∈ S(x). Also let ŷ(x) = ProjS(x)(y). Then consider

F (x, ỹ)− F (x, y) ≥ F (x, ŷ)− F (x, y) as ỹ(x) solve max
y∈S(x)

F (x, y)

≥ −l ‖ y − ŷ ‖ as F is u.Lipschitz continuous in y

= −ld(y, S(x))

≥ −lα(f(x, y)− v(x)) by weak sharp minima.

So, there exists µ̄ = lα > 0 such that,

F (x, ỹ(x))− F (x, y) + µ(f(x, y)− v(x)) ≥ 0 for all y ∈ K(x) and µ ≥ µ̄.

Theorem 1.4.14. Suppose that f(x, .) and F (x, .) are convex and concave in y for all x

respectively. Let ỹ(x) ∈ S(x) and assume the following qualification conditions hold true:

(QC) ∂yf(x, ỹ(x))
⋂
∂+
y F (x, ȳ(x)) 6= ∅.

Then the assumption(A) holds at ỹ(x) with µ̄ = 1.

Proof. Let p ∈ ∂yf(x, ỹ(x))
⋂
∂+
y F (x, ỹ(x)).

Then p ∈ ∂yf(x, ỹ(x)) and p ∈ ∂+
y F (x, ỹ(x))

This implies

〈p, y − ỹ(x)〉 ≤ f(x, y)− f(x, ỹ(x)) for all y

〈p, y − ỹ(x)〉 ≥ F (x, y)− F (x, ỹ(x)) for all y
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So, F (x, y)− F (x, ỹ(x)) ≤ f(x, y)− f(x, ỹ(x)) for all y ∈ K(x).

i.e., F (x, ỹ(x))− F (x, y) + (f(x, y)− v(x)) ≥ 0 for all y ∈ K(x).

1.5 Relations to Other Problems

1.5.1 Generalized Minimax Reformulations of PBLPP

Let us recall the pessimistic bilevel programming problem

min
y
f(x, y) subject to y ∈ K(x);

ϕp(x) := max {F (x, y) | y ∈ S(x) };

minϕp(x) subject to x ∈ Ω.


PBLPP

So PBLPP can be written as;

min
x∈Ω

(
max
y∈S(x)

F (x, y)

)
. (1.5.1)

A problem of this form is the static minimax problem in the parametric constraint case.

In particular, under the assumption (A), PBLPP can be equivalently written as

min
x∈Ω

(
max
y∈K(x)

[F (x, y)− µf(x, y) + µv(x)]

)
. (1.5.2)

Now, if we assume that K(x) = K (i.e., feasible set of the follower does not depends
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on x), we can formulate the problem as follows:

min
x∈Ω

(
max
y∈K

[F (x, y)− µf(x, y) + µv(x)]

)
. (1.5.3)

Then the problem becomes much simpler and is called the static minimax problem in the

non-parametric constraint case.

Remark 1.5.1. The objective function is nonsmooth. That is a major drawback deriving

the optimality condition using minimax technique.

1.5.2 Weak Stackelberg Problem

Now consider the following two-level optimization problem corresponding to a Stackelberg

game (SG):

Stackelberg Game:



Find x̄ ∈ Ω ⊂ <n such that :

sup
y∈S(x̄)

F (x̄, y) = inf
x∈Ω

(
sup
y∈S(x)

F (x, y)

)
,

whereS(x) is the set of solutions to the lower level problem l(x) :

min
y
f(x, y) subject to y ∈ Y ⊂ <m.

Problem (SG) is called the weak Stackelberg problem and can be interpreted as a two-

player nonzero-sum noncooperative game, see [56] and the references therein for more
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details. Let us introduce the following notation:

ϕp(x) := sup
y∈S(x)

F (x, y) and ϕ(x) := inf
x∈Ω

(φp(x)).

Definition 1.5.2 (Stackelberg solution [47]).

(i) Any x̄ ∈ Ω verifying ϕ = φp(x̄) is called a Stackelberg solution.

(ii) Any pair (x̄, ȳ) verifying ϕ = φp(x̄) and y ∈ S(x̄) is called a Stackelberg equilibrium

pair.

Remark 1.5.3. Clearly, following relations hold. Any global pessimistic optimal solution

is a Stackelberg equilibrium point. Conversely, any Stackelberg solution (x̄, ȳ) need not

be a global pessimistic solution, but if (x̄, ȳ) is a Stackelberg solution with F (x̄, ŷ) =

sup
y∈S(x̄)

F (x̄, y), then (x̄, ŷ) is a pessimistic global solutions to PBLBB.

1.5.3 Semi-Infinite Reformulations of PBLPP

Generalized Semi-Infinite Reformulations of PBLPP

Recall the PBLPP:

min
x∈Ω

(
max
y∈S(x)

F (x, y)

)
.

This is equivalent to the following epi-graphical reformulation:

min τ
(x,τ)∈Ω×<

subject to F (x, y)− τ ≤ 0 for all y ∈ S(x),
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i.e., min τ subject to (x, τ) ∈M,

where M := { (x, τ) ∈ Ω×< | F (x, y)− τ ≤ 0 for all y ∈ S(x) }

with S(x) = { y ∈ <m | f(x, y) − v(x) ≤ 0, g(x, y) ≤ 0 }, which is a generalized

semi-infinite programming problem (GSIP).

Standard Semi-Infinite Reformulations of PBLPP

As opposed to a standard semi-infinite optimization problem (SIP), the possibly infi-

nite index set of inequality constraints is independent of the parameter in a GSIP. The

standard semi-infinite reformulation of PBLPP is possible under the assumption (RA).

Under the assumption (RA), PBLPP is equivalent to:

min
x∈Ω

(
max
y∈K(x)

[F (x, y)− µ(f(x, y)− v(x))]

)
.

Let us assume that K(x) ≡ K, i.e., independent of x. Now look at the epi-graphical

reformulation:

min τ subject to (x, τ) ∈M

where M := { (x, τ) ∈ Ω×< | F (x, y)−µ(f(x, y)− v(x))− τ ≤ 0 for all y ∈ K }, which

is a standard semi-infinite programming problem.
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1.5.4 Implicit Programming Reformulations of PBLPP

Let x ∈ Ω be fixed and also let max
y∈S(x)

F (x, y) = F (x, ỹ(x)), where ỹ(x) is a any globally

solution to max
y∈S(x)

F (x, y) for each x ∈ Ω. Then the PBLPP can be written as:

minF (x, ỹ(x)) subject tox ∈ Ω

where ỹ(x) solve(globally) max
y∈S(x)

F (x, y) for each x ∈ Ω.

Under the assumption (RA), this can be further simplified as:

minF (x, ỹ(x)) subject tox ∈ Ω,

where ỹ(x) solve (globally) max
y∈K(x)

[F (x, y)− µf(x, y)] for each x ∈ Ω.

1.5.5 MPEC Reformulations of PBLPP

Consider the PBLPP:

min
x∈Ω

(
max
y∈S(x)

F (x, y)

)
.

Under the assumption (RA) this equivalent to:

min
x∈Ω

(
max
y∈K(x)

[F (x, y)− µ(f(x, y)− v(x))]

)
.
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Now we consider:

M(x) := argmax{F (x, y) | y ∈ S(x) }

= argmax{F (x, y)− µf(x, y) + µv(x) | y ∈ K(x) } by assumption (RA)

= argmax{F (x, y)− µf(x, y) | y ∈ K(x) } (1.5.4)

if K(x) is closed and F (x, .)− µf(x, .) satisfies a semi-Lipschitz condition

= argmax{F (x, y)− µf(x, y)− π(x, y) | y ∈ <m } (see section 1.4.1)

Now write −ζ(x, y) := F (x, y)− µf(x, y)− π(x, y).

Assume that ζ(x, .) is convex in y for each x. Then

M(x) = { y ∈ <m | 0 ∈ ∂yζ(x, y) }

Consequently, the PBLPP can be written equivalently as

minF (x, y),

subject to y ∈M(x), x ∈ Ω,

 (1.5.5)

which is a MPEC problems.

Another MPEC reformulation of PBLPP is possible under some assumption.
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Under the assumption (RA), PBLPP is equivalent to:

min
x∈Ω

(
max
y∈K(x)

[F (x, y)− µ(f(x, y)− v(x))]

)
.

Let K(x) = { y ∈ Y ⊂ <m | g(x, y) ≤ 0 } and write z(x, y) = F (x, y)−µ(f(x, y)−v(x)).

Now we make the following assumptions:

• for any fixed x, z(x, y) and g(x, y) are concave and convex in y, respectively;

• for any fixed x, z(x, y) and g(x, y) are continuous in y;

• Y is a convex set;

• for any fixed x, there exist y ∈ Y such that g(x, y) ≤ 0;.

• Y is non-empty and compact.

Under the above assumptions, PBLPP is equivalent to the following problem, which is a

MPEC problem:

min
(x,v)

(
max
y∈Y

(
z(x, y)− vTg(x, y)

))
,

subject to(x, v) ∈ Ω× Λ,

 (1.5.6)

where Λ = { v | v ≥ 0 }.

1.6 Nonsmooth Analysis and Tools from Variational Analysis

It is clear that dealing with non smooth functions is unavoidable when we derive optimal-

ity conditions for PBLPP and thus requires appropriate tools of generalized differentia-

tion. Various generalizations and constructions have been developed and are available in
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the literature of nonsmooth optimization. In this dissertation we use the basic/limiting

constructions by Mordukhovich, which enjoy full robust calculus and turn out to be

minimal among any constructions of this type satisfying natural properties employed

in this paper. We refer the reader to the book by Mordukhovich [59] for more details,

additional material, extensive comments, and bibliographies. Developing a geometric

approach to the generalized differentiation, we begin with the definition of a normal cone

to an arbitrary set in finite dimensions.

1.6.1 Normal Cones to Nonconvex Sets

Notation 1.6.1. For a multifunction F : <n ⇒ <m, the graph of F denoted by gphF

is defined as gphF := { (x, y) ∈ <n × <m | y ∈ F (x) }. The Kuratowski- Painleve

outer/upper limit of F as x→ x̄ is

Lim sup
x→x̄

F (x) := ∩
ε>0

cl ∪
|x−x̄|≤ε

F (x). (1.6.1)

It is the set of all limiting points lim
k→∞

yk, where yk ∈ F (xk) and xk → x̄ as k → ∞. Let

Ω be a closed subset of <n and let

P (x,Ω) := {ω ∈ Ω |‖ x− ω ‖= dist(x,Ω) } = ∪
α>0

α(x− π(x,A)) (1.6.2)

be the set of best approximations of x in Ω with respect to the Euclidean distance function

dist(x,Ω).

Definition 1.6.2 (Mordukhovich (basic, limiting) normal cone). Given x̄ ∈ Ω,
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the following closed one

N(x̄,Ω) := Lim sup
x→x̄

[cone(x− P (x,Ω))] (1.6.3)

is called the Mordukhovich (basic, limiting) normal cone to Ω at x̄. If x̄ /∈ Ω, we put

N(x̄,Ω) = ∅.

It is clear from the definition that the normal cone is robust with respect to pertur-

bations of x̄; i.e., the multifunction N(x̄,Ω) always has a closed graph. Furthermore,

N(x̄,Ω) 6= 0⇔ x̄ ∈ ∂Ω. If Ω is a convex set, then the normal cone introduced coincides

with the classical normal cone of convex analysis. In general, the normal cone may be

nonconvex in very simple situations, e.g., for the set Ω = gph |x| at 0 ∈ <2. For each

x ∈ Ω let us consider the so-called set of the prenormal/Fréchet normal cone to Ω at x

defined by

N̂(x̄,Ω) := {x∗ ∈ <n | limsup

x
Ω−→ x̄

〈x∗, x− x̄〉
‖ x− x̄ ‖

≤ 0 } (1.6.4)

and put N̂(x̄,Ω) = ∅ for x̄ /∈ Ω. Directly from the definition one can show that the set

N̂(x̄,Ω) is a closed convex cone.

Proposition 1.6.3. For any set Ω ⊂ <n and point x̄ ∈ Ω we have

N(x̄,Ω) = limsup

x
Ω−→ x̄

N̂(x̄,Ω). (1.6.5)

It is clear that N̂(x̄,Ω) ⊂ N(x̄,Ω) and the set Ω is called regular at x̄ if N(x̄,Ω) =

N̂(x̄,Ω). It happens for all convex sets as well as for “smooth” sets which are locally
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described by equality and inequality type constraints with smooth functions under well-

known Mangasarian-Fromovitz constraints qualification. On the other hand, this regu-

larity is always broken for sets locally represented as graphs of nonsmooth Lipschitzian

functions. But such sets naturally appear in the following coderivative constructions,

which are realizations of the geometric (graphical) approach to differentiation going back

to Fermat.

1.6.2 Coderivatives of Set-Valued Mappings

Let F : <n ⇒ <m be a multifunction of closed graph. The multifunction D∗F (x̄, ȳ) :

<m ⇒ <n defined by

D∗F (x̄, ȳ)(y∗) := {x∗ ∈ <n | (x∗,−y∗) ∈ N [(x̄, ȳ); gphF ] } (1.6.6)

is called the coderivative of F at the point (x̄, ȳ) ∈ gphF . We put D∗F (x̄, ȳ)(y∗) = ∅ if

(x̄, ȳ) /∈ gphF . The symbol D∗F (x̄) is used when F is single-valued at x̄ and ȳ = F (x̄). If

we replace the basic normal cone in the above coderiavtive construction by the prenormal

cone, we have the so-called contingent coderivative of F at (x̄, ȳ) defined by

D̂∗F (x̄, ȳ)(y∗) := {x∗ ∈ <n | (x∗,−y∗) ∈ N̂ [(x̄, ȳ); gphF ] }. (1.6.7)

The contingent coderivative is convex-valued and can be represented in the form

D∗F (x̄, ȳ)(y∗) := {x∗ ∈ <n | 〈x∗, v〉 ≤ 〈y∗, u〉∀(u, v) ∈ gph D̂∗F (x̄, ȳ) } (1.6.8)
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It is clear that D̂∗F (x̄, ȳ)(y∗) ⊂ D∗F (x̄, ȳ)(y∗) for all y∗ ∈ <m and if they coincide, then

the multifunction F is said to be differentially regular at (x̄, ȳ). If F is single-valued and

strictly differentiable at x̄ with the gradient ∇F (x̄), in the classical sense that

lim
x,u→ x̄

F (u)− F (x)− 〈∇S(x̄), u− x〉
‖ u− x ‖

= 0, (1.6.9)

(this is automatic the case when F is continuously differentiable around x̄), then

D∗F (x̄)(v) = {∇F (x̄)∗v} for all v ∈ <n. (1.6.10)

This shows that the coderivative is a proper extension of the adjoint derivative operator

to nonsmooth and set-valued mappings.

1.6.3 Subdifferentials of Nonsmooth Functions

Now let us consider an extended-real valued function ϕ : <n → <̄ := [∞,−∞] and assume

that |ϕ(x̄)| < ∞. Developing a geometric approach to the generalized differentiation of

extended real-valued functions, we define the following subdifferential constructions.

(i) The Mordukhovich (basic, limiting) subdifferential of ϕ at x̄ is defined by

∂ϕ(x̄) = {x∗ | (x∗,−1) ∈ N [(x̄, ϕ(x̄)); epiϕ] } (1.6.11)
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(ii) The Mordukhovich (basic, limiting) upper subdifferential of ϕ at x̄ is defined by

∂+ϕ(x̄) = {x∗ | (x∗,−1) ∈ N [(x̄, ϕ(x̄)); hypoϕ] } (1.6.12)

(iii) The presubdifferential(Fréchet/viscosity subdifferential) of ϕ at x̄ is defined by

∂̂ϕ(x̄) = {x∗ | (x∗,−1) ∈ N̂ [(x̄, ϕ(x̄)); epiϕ] } (1.6.13)

(iv) Fréchet upper subdifferential of ϕ at x̄ is defined by

∂̂+ϕ(x̄) = {x∗ | (x∗,−1) ∈ N̂ [(x̄, ϕ(x̄)); hypoϕ] } (1.6.14)

One can easily observe that

−∂̂+(−ϕ)(x̄) = ∂̂ϕ(x̄) ⊂ ∂ϕ(x̄) = −∂+(−ϕ)(x̄) (1.6.15)

This inclusion is often strict, which may happen even for Fréchet differentiable function

on <. We say that ϕ is lower regular at x̄ if ∂̂ϕ(x̄) = ∂ϕ(x̄). Similarly we define upper

regularity of ϕ at x̄ by ∂̂+ϕ(x̄) = ∂+ϕ(x̄). The class of lower regular functions includes

all convex functions, smooth functions, “max functions,” etc. The basic subdifferential is

nonconvex while the presubdifferetial is convex for an arbitrary function ϕ. If ϕ is convex,

both ∂ϕ(x̄) and ∂̂ϕ(x̄) are reduced to the classical subdifferential of convex analysis. Also

note that the sets ∂̂ϕ(x̄) and ∂̂+ϕ(x̄) may be empty simultaneously for continuous on
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<, e.g., for ϕ(x) = x
1
3 at x̄ = 0. Given a function ϕ : <n → <̄ with |ϕ(x̄)| < ∞

is Fréchet differentiable at x̄ if and only if ∂̂ϕ(x̄) 6= ∅ and ∂̂+ϕ(x̄) 6= ∅, in which case

∂̂ϕ(x̄) = ∂̂+ϕ(x̄) = {∇ϕ(x̄)}. Given a Lipschitz continuous function ϕ : <n → < around

x̄, ∂ϕ(x̄) is nonempty and compact. Also if ϕ happens to be strictly differentiable at x̄,

then ∂ϕ(x̄) = ∂+ϕ(x̄) = {∇ϕ(x̄)}. Furthermore, we have the following representations.

Consider a nonempty set Ω ⊂ <n and its indicator function δ(·,Ω) : <n → <̄ defined by

δ(x,Ω) := 0 if x ∈ Ω and δ(x,Ω) :=∞ if x /∈ Ω. (1.6.16)

Then for any x̄ ∈ Ω one has

∂̂δ(x̄,Ω) = N̂(x̄,Ω) and ∂δ(x̄,Ω) = N(x̄,Ω). (1.6.17)

Also one has the following analytical representation of subdifferential constructions

∂̂ϕ(x̄) = {x∗ | lim inf
x→ x̄

ϕ(x)− ϕ(x̄)− 〈x∗, x− x̄〉
‖x− x̄‖

≥ 0 } (1.6.18)

Given a lower semi continuous function around x̄ we also have

∂ϕ(x̄) = Lim sup
x

ϕ−→ x̄

∂̂ϕ(x) (1.6.19)

At the same time, for a given single-valued locally Lipschitzian mapping f : <n → <m
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the coderivative can be represented analytically as

D∗f(x̄) = ∂〈v, f〉(x̄) 6= ∅ for all v ∈ <m, (1.6.20)

where 〈v, f〉)(x) := 〈v, f(x)〉.

Most importantly the above noconvex constructions are rich in calculus. For compre-

hensive details, nice calculus rules and fruitful developments of nonsmooth analysis, the

reader is referred to the monographs [59] and [60] by Mordukhovich.
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Chapter 2

Implicit Programming Approach

2.1 Introduction

This chapter we devote to get necessary optimality conditions for the pessimistic bilevel

programming problem (PBLPP) using the well-known techniques of the implicit pro-

gramming approach (IPA). The procedure of obtaining necessary optimality conditions

consists of two steps: namely, step one is to get the optimality conditions with selec-

tion function, and step two is to construct the corresponding derivative of the selection

function. Having this in mind, we choose a selection function y : <n → <m by

y(x) ∈M(x) := argmax {F (x, y) | y ∈ S(x) }.

Then the PBLPP can be written as

min F (x, y(x)) subject to x ∈ Ω.

The implicit programming approach to the solutions of PBLPP is motivated by this

implicit form of the PBLP, which expresses this problem as an optimization problem

in the upper-level variable x alone. In the following sections, we look at obtaining the

optimality conditions for PBLPP under the Lipschitz selections, Fréchet differentiable

selections and continuous selections. The IPA approach involves a deep understanding
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of the sensitivity analysis and stability theory of parametric nonlinear programming.

2.2 Optimality Conditions with Lipschitz Continuous Solution

Selection

2.2.1 Basic Assumptions

Let (x̄, ȳ) be a local pessimistic optimal solution to the PBLPP. The key conceptual

assumption within the IPA approach for PBLPPs near the point (x̄, ȳ) is the following:

Assumption 2.2.1 (key implicit assumption (KIA)). Suppose there exists a neighborhood

U of x̄ and a locally Lipschitz continuous function ỹ : U → <m around x̄ such that

ỹ(x̄) = ȳ and ỹ(x) solves (globally):

max
y
F (x, y) such that y ∈ S(x)

for each x ∈ U .

Under the assumption(KIA), we can reformulate the PBLPP as follows:

min
x∈Ω

ϕp(x) := F (x, ỹ(x)) := (F ◦ ỹ)(x). (2.2.1)

Remark 2.2.2.

1. We call the above function ỹ(x) an implicit (solution) function of the problem (2.2.1).
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2. It happens that the PBLPP is equivalent to the above implicit programming prob-

lem (2.2.1) only in the case when ỹ(x) is a global optimal solution for each x. The

computation of a globally optimal solution in the problem (2.2.1) can be computa-

tionally intractable (especially tracing the global solution set mapping for varying

parameter). This will be a major drawback of this method. One of the natural

ways to avoid this difficulty is to assume that the function F (x, .) is concave in y

for each x.

3. Note that the assumption (KIA) only ensures that the problems PBLPP and (2.2.1)

are equivalent when x is near x̄.

2.2.2 Optimality Conditions

Under the assumption (KIA), we can come up with the following optimality conditions

for the pessimistic bilevel programming problem.

Theorem 2.2.3 (necessary optimality conditions). Let (x̄, ȳ) be a local pessimistic

optimal solution. Let F : <n×<m → < be strictly differentiable at this point and the set

Ω ⊂ <n be closed at x̄. If the assumption KIA is satisfies, then we have

0 ∈ ∇xF (x̄, ȳ) +D∗ỹ(x̄)(∇yF (x̄, ȳ)) +N(x̄,Ω)

or

0 ∈ ∇xF (x̄, ȳ) + ∂〈∇yF (x̄, ȳ), ỹ〉(x̄) +N(x̄,Ω).
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Proof. Assumption (KIA) implies that the PBLPP is equivalent to

min
x∈Ω

ρ(x) := F (x, ỹ(x)) := (F ◦ ỹ)(x)

for each x ∈ U . Since F is strictly differentiable at (x̄, ȳ), it is locally Lipschitz continuous

around this point. Now ỹ(x) is locally Lipschitz continuous around x̄ (by the assumption

(KIA)) implies that the composition F ◦ ỹ is also locally Lipschitz continuous around x̄.

Then by the Proposition 5.3 [60], we have

0 ∈ ∂(F ◦ ỹ)(x̄) +N(x̄,Ω).

Now by the subdifferentiation of composition, see the Theorem 1.110 [59] we have,

0 ∈ ∇xF (x̄, ȳ) +D∗ỹ(x̄)(∇yF (x̄, ȳ)) +N(x̄,Ω).

Also since ỹ(x) is Lipschitz continuous around x̄, by the Theorem 1.90 in [59],

D∗ỹ(x̄)(∇yF (x̄, ȳ)) = ∂〈∇yF (x̄, ȳ), ỹ〉(x̄). Hence the results,

0 ∈ ∇xF (x̄, ȳ) + ∂〈∇yF (x̄, ȳ), ỹ〉(x̄) +N(x̄,Ω).
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2.2.3 Constructions of Coderivative of Selection Mappings

As we have seen in optimality conditions, we need to construct the coderivative of the

implicit function. Throughout this section the differentiability properties of the solution

map and such construction are considered. Let us start with some basic assumptions and

a reformulation of the PBLPP.

Recall the assumption (RA): Let x ∈ Ω be fixed and ȳ(x) be a (global) optimistic solution

to the lower level problem l(x). Suppose that there exists µ̄ > 0 such that

F (x, ȳ(x))− F (x, y) + µ̄(f(x, y)− v(x)) ≥ 0 for all y ∈ K(x)\S(x).

With this assumption, one has the following result.

Reformulation of PBLPP: With the above assumption RA, as shown in the Chapter 1,

we have the following result. Let (x̄, ȳ) be a pessimistic optimal solution and let ȳ(x) be

a (global) optimistic solution to the lower level problem l(x) for each x near x̄. Suppose

that assumption (RA) holds at ȳ(x) for each x ∈ Ω.

Then ȳ(x) is a global solution to the problem

max F (x, y) subject to y ∈ S(x)
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if and only if ȳ(x) is a global solution to:

max [F (x, y)− µ(f(x, y)− v(x))] subject to y ∈ K(x) for all µ ≥ µ̄

if and only if ȳ(x) is a global solution to:

max [z(x, y) := F (x, y)− µf(x, y)] subject to y ∈ K(x) for all µ ≥ µ̄

Now throughout this chapter we consider the following problem

min
y

z(x, y) := µf(x, y)− F (x, y) s.t y ∈ K(x), (P(x))

where x ∈ U(∈ N(x̄)) ⊂ Ω and the solution set mapping M : <n → <m is defined by

M(x) := argmax{F (x, y) | y ∈ S(x) }

= argmin{z(x, y) := µf(x, y)− F (x, y) | y ∈ K(x) }. (by RA) (2.2.2)

Now we make the following assumptions that we are going to impose throughout this

section. The first assumption is indeed sufficient for KIA.

• We say that M possesses a Lipschitz Single-Valued Localization(LSVL) at (x̄, ȳ), if

there exist neighborhoods U of x̄ and V of ȳ and a Lipschitz selection ỹ : U → <m

such that

ỹ(x) = M(x) ∩ V for all x ∈ U and ỹ(x̄) = ȳ.
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• The problem P (x) is said to be partially convex and smooth programming problem

if z(x, ·) is smooth and convex in y and the set K(x) is a closed and convex subset

of <m for each x.

Let Ψ{f, F} := { (f, F ) |f, F : <n ×<m → <, such that f(x, ·)− F (x, ·)

is smooth and convex function in y for each x near x̄ }.

In the following, we assume that the solution set M(x) possess a Lipschitz single

valued localization ỹ(x) for each x near x̄ and study the differentiability of this vector

valued function.

Case 1: We first consider K(x) = K, i.e., K is independent of the parameter x.

Theorem 2.2.4. Let (x̄, ȳ) be a local pessimistic optimal solution to PBLPP and Let

P (x) be a partially convex and smooth problem for each x near x̄. Assume also that

∇yz : <n×<m → <m is strictly differentiable at (x̄, ȳ) and M possess a Lipschitz single-

valued localization ỹ(x) ∈ M(x) for each x near x̄. Let z̄ := −∇yz(x̄, ȳ). Then we

have

D∗ỹ(x̄)(v) ⊆ {u ∈ <n | ∃ w ∈ <m such that (u,−v) ∈ ∇(∇yz(x̄, ȳ))Tw

+D∗(NK(ȳ, z̄))w }

provided that [−(∇2
xyz(x̄, ȳ))T z = 0 and w − (∇2

yyz(x̄, ȳ))T z = 0

with (w − z) ∈ N((ȳ, z̄), gph NK)] ⇒ w = 0 and z = 0.
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In particular, the above equality holds provided that the matrix ∇2
xyz(x̄, ȳ) is of full raw

rank.

Proof. Since P (x) is partially convex smooth problem, we have

M(x) = { y ∈ K | 0 ∈ ∇yz(x, y) +N(y,K) }.

Since K is closed subset, gphN(·, K) is closed. By applying the theorem 4.44(i) in [59],

we get

D∗ỹ(x̄)(v) = D∗M(x̄, ȳ)(v)

⊆ {u ∈ <n | ∃ w ∈ <m such that (u,−v) ∈ ∇(∇yz(x̄, ȳ))Tw

+D∗(NK(x̄, ȳ, z̄))w }.

Case 2(a): Now we assume that the lower level feasible set K depends on the parameter

x and has the following functional representation:

K(x) := { y ∈ <m | gi(x, y) ≤ 0, i = 1, 2, . . . , p, hj(x, y) = 0, j = 1, 2, . . . , q }.

Let U be a neighborhood of x̄ and assume the following:

• ∇yz is continuously differentiable on U ×<m;

• For each x ∈ U , ∇yz(x, ·) is convex on <m;
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• g = (g1, g2, . . . , gp)
T and h = (h1, h2, . . . , hq)

T are twice continuously differentiable

on U ×<m;

• For each x ∈ U , g(x, ·) is convex and h(x, ·) is affine on <m;

• Assume that the Extended Slater Constraint Qualification (ESCQ) holds for each

x ∈ U.

(Under the above assumptions ESCQ is equivalent to MFCQ.)

Then as we discussed in section (1.4.1) one has

M(x) = { y ∈ <m | 0 ∈ ∇yz(x, y) +N(y,K(x)) }

=


y ∈ <m

∣∣∣∣ 0 ∈


L(x, y, u, v)

−g(x, y)

h(x, y)

+N<m×<p
+×<q(y, u, v)


,

where L(x, y, u, v) := z(x, y)+
∑p

i=1 uigi(x, y)+
∑q

j=1 vjhj(x, y) and u and v are Lagrange

multipliers.

Under the above assumptions, Lagrangian multipliers u and v do not depend on

y ∈M(x); see proposition 6.5.2[79], and it is clear that now the problem P (x) is reduced

to the case 1. That is K is independent of the parameter x. Hence one can arrive at the

coderivative construction as above.

Case 2(b): Now let us relax the above qualification condition ESCQ and have the

following theorem to cover the parameter dependent feasible set.



48

Theorem 2.2.5. Let (x̄, ȳ) be a local pessimistic optimal solution to PBLPP, and let

P (x) be a partially convex and smooth problem for each x near x̄. Assume also that

∇yz : <n × <m → <m is strictly differentiable at (x̄, ȳ) and that M possess a Lipschitz

single-valued localization ỹ(x) ∈ M(x) for each x near x̄. Let z̄ := −∇yz(x̄, ȳ). Then

we have

D∗ỹ(x̄)(v) ⊆ {u ∈ <n | ∃ w ∈ <m such that (u,−v) ∈∇(∇yz(x̄, ȳ))Tw

+D∗(NK(x̄, ȳ, z̄))w }

provided that [ v ∈ <m with 0 ∈ ∇(∇yz(x̄, ȳ))Tv +D∗(NK(x̄, ȳ, z̄))v] ⇒ v = 0.

Proof. Since P (x) is partially convex smooth problem, we have

M(x) = { y ∈ K(x) | 0 ∈ ∇yz(x, y) + N((x, y);K) },

where

N((x, y);K) :=


NK(x)(y) if K(x) 6= ∅

∅ otherwise.

Since K(x) is closed for each x near x̄, gphNK is closed around (x̄, ȳ). Now apply the

theorem 4.44(ii)[59], to get

D∗ỹ(x̄)(v) ⊆ {u ∈ <n | ∃ w ∈ <m such that (u,−v) ∈∇(∇yz(x̄, ȳ))Tw

+D∗(NK(x̄, ȳ, z̄))w }
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Remark 2.2.6.

1 If the graph of NK is locally convex around (x̄, ȳ, z̄), then NK is N -regular at this

point. And the above inequality holds as equality and ỹ(·) is strictly differentiable

at x̄. However, it is important to mention that even though K is a convex set, the

set gpf N is not a convex set.

2 Calculation of Coderivative of Normal Cone to the Feasible Set K:

In order to compute D∗(NK(x̄, ȳ, z̄))w, one needs to compute N [(x̄, ȳ, z̄); gphNk].

The computation of this object appears to be rather involved. However if K has

some special form, then one can have an explicit expression for theD∗(NK(x̄, ȳ, z̄))w

and the reader is referred to [29] and [30] for such outstanding constructions.

3 Under more restrictive assumptions, it is possible to compute the derivative of

selection mapping ỹ(x). In next section, we are going to briefly mention well-known

results in classical nonlinear programming theory.

2.2.4 Existence of Implicit Solutions

In this section, we consider the existence of the implicit solution to the problem P (x) and

hence the sufficient conditions for the assumption (KIA). The following are some of the

well-known results that provide the sufficient conditions for the assumption KIA, under

the well-known assumptions. For proofs and further information, you may look at the
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corresponding references provided.

Recall the problem P (x) with K(x) = { y ∈ <m | g(x, y) ≤ 0, h(x, y) = 0 }.

Theorem 2.2.7 ([23, 73]). Consider the problem P (x) and suppose that (x̄, ȳ) is a

solution to the problem P (x̄). Suppose that the functions f(x, y), F (x, y), g(x, y), and

h(x, y) and their partial derivatives with respect to y are continuously differentiable in a

neighborhood of (x̄, ȳ). Also suppose that one of the following condition is satisfied.

(a) LICQ and SSOSC are satisfied at ȳ ∈M(x̄).

(b) LICQ, SCC, and SOSC are satisfied at ȳ ∈M(x̄).

(c) MFCQ, SSOSC, and CRCQ are satisfied at ȳ ∈M(x̄).

Then there exist open neighborhoods U of x̄ and V of ȳ and uniquely determined locally

Lipschitz function ỹ : U → V such that ỹ(x) solve P (x) for all x ∈ U .

Remark 2.2.8. Fiacco [23] also shows that in the settings of the above theorem with

the assumption (b), the solution function ỹ(x) is C1 and one arrive at the derivative the

KKT equations. Now for simplicity we assume K(x) = { y ∈ <m | g(x, y) ≤ 0 }. Also we

assume that ∇2
yyL is positive definite. Then one has

∇ỹ(x̄) =−∇2
yyL

−1
(
I −∇yg

T
I

(
∇ygI∇2

yyL
−1∇yg

T
I

)−1∇ygI∇2
yyL

−1
)
∇2
xyL

−∇2
yyL

−1∇yg
T
I

(
∇ygI∇2

yyL
−1∇yg

T
I

)−1∇xgI

where L(x, y, u) := F (x, y) − µf(x, y)λT and gI = gI(x̄, ȳ) is the vector consisting of

active constraints gi(x̄, ȳ), i ∈ I(x̄, ȳ). See [23] and [79] for proofs and more details.

Theorem 2.2.9 ([52]). Let (x̄, ȳ) be a local pessimistic optimal solution to PBLPP. Sup-
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pose that f(x, y) and F (x, y) are twice continuously differentiable at (x̄, ȳ) with f, F ∈

Ψ{f, F}. If K(x) is a closed and convex subset of <m for each x near x̄. Then the

following are equivalent for any x near x̄ and y, v ∈ <m:

(i) y solves P (x) and v = y −∇yz(x, y)

(ii) v satisfies the parametric normal equation:

H(x, v) := ∇y(x, π(x, v)) + v − π(x, v) = 0 and y = π(x, v),

where π(x, v) := Proj(v,K(x)).

Remark 2.2.10. Once we obtain under the setting of theorem (2.4.1) a locally unique,

Lipschitz solution v = v(x) of H(x, v) = 0 near (x̄, v̄), then as in the above theorem,

this yields a locally unique Lipschitz solution ỹ(x) := π(x, v(x)) of P (x) near x̄, as

desired. Now let us look at the differentiability of the solution ỹ(x) near x̄. Unfortunately

under the above settings, this solution is not differentiable. If we assume the setting of

the Theorem (2.4.1) with condition (b) and in addition to the strict complementarity

slackness condition(SCS) holds at (x̄, ȳ), then ỹ(x) is Fréchet differentiable at x̄. Of

course the SCS is a very restrictive condition and the above coderivative estimate of the

solution vector function enables us to relax the SCS.

2.2.5 More Sufficient Conditions for KIA

Clearly, if M is single valued near x̄ and Lipschitz-like (also known as Aubin property)

around (x̄, ȳ), then we have the LSL at (x̄, ȳ). We can formulate the following sufficient
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conditions for LSL and would like to direct interested readers to [17], [39], [40], [42],

[44], [59], [73], [75] and [89] for sufficient conditions of Lipchitz-like property and single

valuedness of M .

Theorem 2.2.11 ([42, 44, 75]). For the solution set mapping M : <n ⇒ <m and

(x̄, ȳ) ∈ gphM the following are equivalent:

(a) M is a Lipschitz single-valued mapping near x̄;

(b) M is hypomonotone near (x̄, ȳ) and locally Lipschitz-like around (x̄, ȳ) ;

(c) M is premonotone near (x̄, ȳ) and locally Lipschitz-like around (x̄, ȳ);

(d) M is maximal hypomonotone near (x̄, ȳ) and locally Lipschitz-like around (x̄, ȳ);

(e) M is locally Lipschitz-like around (x̄, ȳ) with D∗M(x̄, ȳ)(0) = {0}

(f) M is single-valued near x̄ and D∗M(x̄, ȳ)(0) = {0}.

Theorem 2.2.12 ([39, 59, 73]). Assume that the P (x) is partially convex smooth pro-

gramming problem for each x near x̄. Then

M(x) = { y ∈ <m | 0 ∈ ∇yz(x, y) +N(y,K(x)) }.

And M possesses LSL at (x̄, ȳ) if one of the following conditions are satisfied:

(i) Suppose that K(x) = K.

(a) M satisfies the Strong Regularity Condition(SRC) at (x̄, ȳ).
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(b) F (x, ·) is strictly convex in y for each x near x̄, ∇2
xyz(x̄, ȳ)) is surjective and the

qualification condition:

0 ∈ ∇2
yy(z(x̄, ȳ))T z∗ +D∗(NK(ȳ, z̄))z∗ ⇒ z∗ = 0

holds.

(c) K = { y ∈ <m | Ay − b ≥ 0, Dy − c = 0 } is a non-empty polyhedral convex

set, ∇2
xyz(x̄, ȳ)) exist and positive definite on the subspace L = C − C where

C = { z | ∇yz(x̄, ȳ)T z = 0, Az ≥ 0, Dz = 0 }

(ii) Now suppose that K depend on parameter x.

(d) NK is N-regular at (x̄, ȳ, z̄) and satisfies the qualification condition:

(x∗, 0) ∈ ∇(∇yz(x̄, ȳ))T z∗ +D∗(NK(x̄, ȳ, z̄))z∗ ⇒ x∗ = z∗ = 0

2.3 Optimality Conditions with Fréchet Differentiable Solution

Selection

This section is devoted to obtaining the optimality conditions with Fréchet differentiable

sections mapping. We can relax the Lipschitz continuity by imposing the Fréchet differ-

entiability of the data. The following are optimality conditions.
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2.3.1 Optimality Conditions

Theorem 2.3.1. Recall the problem (2.2.1)

min
x∈Ω

ϕp(x) := F (x, ỹ(x)) := (F ◦ ỹ)(x).

Let (x̄, ȳ) be a local pessimistic optimal solution and let Ω be locally closed around x̄. Let

ỹ(x) ∈M(x) for each x near x̄ be Fréchet differentiable at x̄ with ỹ(x) = ȳ. Also assume

that F is Fréchet differentiable at (x̄, ȳ).

Then we have

0 ∈ ∇xF (x̄, ȳ) +∇ỹ(x̄)T (∇yF (x̄, ȳ)) + N(x̄,Ω).

Proof. Since x̄ is a local optimal solution to the problem (2.2.1),

0 ∈ ∂̂[(F ◦ ỹ)(·) + δ(·,Ω)](x̄)

F and ỹ are Fréchet differentiable at (x̄, ȳ) and x̄ respectively implies that F ◦ ỹ is Fréchet

differentiable at x̄. Hence we have

∂̂[(F ◦ ỹ)(·) + δ(·,Ω)](x̄) = ∂̂(F ◦ ỹ)(x̄) + N(x̄,Ω)

Now applying the Theorem 3.7 in [62] we have

∂̂(F ◦ ỹ)(x̄) = ∇xF (x̄, ȳ) +∇ỹ(x̄)T (∇yF (x̄, ȳ)).
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Consequently we have

0 ∈ ∇xF (x̄, ȳ) +∇ỹ(x̄)T (∇yF (x̄, ȳ)) + N(x̄,Ω).

2.3.2 Existence and Fréchet Differentiability of the Implicit Solutions

The following are some of the well-known results in classical nonlinear analysis that

guarantee the existence and Fréchet differentiability of the implicit solution function

ỹ(x) near x̄.

Theorem 2.3.2. Consider the problem P (x). Suppose that K(x) = K, (i.e., the set

K is independent of x) is a nonempty, closed, convex, polyhedral set, and the following

assumptions hold:

(a) Differentiability:

(i) ∇yf and ∇yF exist in a neighborhood of the point (x̄, ȳ) and are continuous

in (x, y) at (x̄, ȳ),

(ii) ∇xf and ∇xF exist,

(b) Convexity:

(i) f, F ∈ Ψ{f, F};

(ii) K(x) is closed and convex for each x near x̄;
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(c) ∇yz is Lipschitz continuous in (x, y) in a neighborhood of (x̄, ȳ);

(d) LSL at (x̄, ȳ); i.e., M possesses a Lipschitz single-valued localization at (x̄, ȳ);

(e) K0(ȳ) := { z | z ∈ ∪
λ>0

λ(K − ȳ),∇yz(x̄, ȳ)T z = 0 } is a subspace, i.e.,K0 = K0 ∩

(−K0).

Then there exist neighborhoods Ux of x̄ and Uy of ȳ and a Lipschitz continuous function

ỹ : Ux → Uy, which uniquely solves P (x) in Ux and which satisfies ỹ(x) ∈ ȳ + K0(ȳ) for

each x ∈ Ux such that the function ỹ(x) is Fréchet differentiable at x̄ and one has

∇ỹ(x̄) = −Z[ZT∇yz(x̄, ȳ)Z]−1ZT∇xz(x̄, ȳ)

for any matrix Z such that ZTZ is nonsingular and z ∈ K if and only if z ∈ Zy for all

y ∈ <l where l is the dimension of K ∩ (−K).

Furthermore, if in addition ∇xf and ∇xF exist in a neighborhood of (x̄, ȳ) and are

continuous at (x̄, ȳ), then ỹ(x) is continuously Fréchet differentiable at x̄.

Proof. By (a) and (b) we have

M(x) = { y ∈ K | 0 ∈ ∇yz(x, y) +NK(y) }

= { y ∈ K | 0 ∈ ∇yz(x, y)T (z − y) ≥ 0 for all z ∈ K }

Then applying Theorem 5.1 in [40] to the above variational Inequality we can obtain the

above result.
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Theorem 2.3.3. Let (x̄, ȳ) be a local pessimistic optimal solution to PBLPP and Let P (x)

be a partially convex and smooth problem for each x near x̄. Assume that K(x) = K and

let V and W be neighborhoods of ȳ and 0 ∈ <m. Suppose also the following:

(a) ∇z is Lipschitz in x uniformly in y at (x̄, ȳ) and ∇z(·, ȳ) is Fréchet differentiable

at x̄ with derivative ∇2
xyz(x̄, ȳ);

(b) there exist a function g from V to <m with g(ȳ) = ∇yz(x̄, ȳ) which strongly ap-

proximates ∇yz in y at (x̄, ȳ);

(c) there exist a function ξ : W → <m such that ξ(0) = ȳ, ξ(z) ∈ (g + NK)−1(z)

for every z ∈ W , and ξ is Lipschiz and Fréchet differentiable at 0 with derivative

∇ξ(0).

Then there exist a neighborhood U of x̄ and a function ỹ : U → <m such that ỹ(x̄) = ȳ

and ỹ(x) ∈M(x) for each x ∈ U . Also we have ỹ(·) is Lipschitz and Fréchet differentiable

at x̄ with derivative −∇ξ(0)∇2
xyz(x̄, ȳ).

Proof. Since P (x) with K(x) = K is a partially convex smooth problem, we have

M(x) = { y ∈ K | 0 ∈ ∇yz(x, y) +NK(y) }.

Now by Corollary 2.7 in [17] one has the result.
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2.4 Optimality Conditions with Continuous Solution Selection

We can further relax the assumption on the selection function. One can arrive at the

following optimality conditions for PBLPP if the selection function ỹ(x) is continuous

near x̄.

2.4.1 Optimality Conditions

Theorem 2.4.1. Consider the PBLPP. Suppose that (x̄, ȳ) is a local pessimistic optimal

solution and Ω is locally closed around x̄. Suppose also that F is Fréchet differentiable

at (x̄, ȳ) and there exist a continuous selection ỹ(x) ∈ M(x) for each x near x̄. We also

impose the following qualification conditions:

(a) ∂∞(F ◦ ỹ)(x̄) ∩ (−N(x̄,Ω)) = {0};

(b) ∂∞F (x̄, ȳ) ∩ kerD∗ỹ(x̄) = {0}.

Then we have

0 ∈ ∇xF (x̄, ȳ) +D∗ỹ(x̄)(∇yF (x̄, ȳ)).

Proof. Existence of solution selection function ỹ(x) ∈ M(x) for each x near x̄ enable us

to reformulate the PBLPP as following composite one level programming problem

min
x∈Ω

F (x, ỹ(x)) := (F ◦ ỹ)(x)

Since x̄ is a local optimal solution and under the above assumption, applying the propo-

sition 5.3[60] we have

0 ∈ ∂(F ◦ ỹ)(x̄) +N(x̄,Ω)
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Now applying the composition rule (Theorem 3.41 in [59]),

∂(F ◦ ỹ)(x̄) ⊆ ∇xF (x̄, ȳ) +D∗ỹ(x̄)(∇yF (x̄, ȳ)).

Thus we have

0 ∈ ∇xF (x̄, ȳ) +D∗ỹ(x̄)(∇yF (x̄, ȳ)).

2.4.2 Existence and the Coderivative Constructions for the Implicit Solu-

tions

Theorem 2.4.2 ([38]). Consider the problem P (x) and suppose that (x̄, ȳ) is a solution

to the problem P (x̄). Suppose that the functions f(x, y), F (x, y), g(x, y), h(x, y), and their

partial derivatives with respect to y are continuously differentiable in a neighborhood of

(x̄, ȳ). Also suppose that the SSOSC and MFCQ holds at ȳ.

Then there are neighborhoods U of x̄ and V of ȳ and uniquely determined continuous

vector function ỹ : U → V such that ỹ(x) solve P (x) for all x ∈ U and ỹ(x̄) = ȳ.

Recall the problem P (x) and the solution set M(x). If partially convex smooth problem,
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then

M(x) = { y ∈ <m | 0 ∈ ∇yz(x, y) + N(y,K(x)) }

= { y ∈ <m | −∇yz(x, y) ∈ N ((x, y);K) }

= { y ∈ <m | (x, y,−∇yz(x, y)) ∈ gph NK }

= { y ∈ <m | q(x, y) ∈ Θ } (2.4.1)

where q(x, y) = (x, y,−∇yz(x, y)), and Θ = gph NK .

Now consider the projection mapping π : <n ×<m → <m defined by

π(x, z) := ProjM(x)z. (2.4.2)

Then following properties hold.

• Since P (x) is a partially convex smooth problem, M(x) is closed and convex for

each x near x̄.

Hence π(x, z) is single-valued for each (x, z) ∈ N(x̄)×<m.

• M(x) = ∪
z∈<m
{ π(x, z) } and ỹ(x) := π(x, z) ∈M(x) for each (x, z) ∈ <n ×<m.

• Let x ∈ domM . Then π(x, z) is continuous at (x, z) for all z ∈ <m if and only if

M is continuous at x.

So if M is continuous near x̄, π(x, z) for all z ∈ <m provides a continuous selection for
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each x near x̄. And we also have the following coderivative estimate for π(x, z).

Theorem 2.4.3 (Coderivative of Projection Mapping [64]). Let x̄ ∈ domM , z̄ ∈

<m and let ỹ(x̄) = ȳ := π(x, z). Suppose that

(a) Qualification Condition:

[
(∇yq(x̄, ȳ))T u, u ∈ NΘ(q(x̄, ȳ))

]
⇒ u = 0.

(b) Calmness Condition:

P (ω) :=
{

(x, y, d) | (q(x, y), d)T + ω ∈ gph NΘ

}

is calm at every point (x̄, ȳ, d) with d ∈ NΘ(q(x̄, ȳ)) and (∇yq(x̄, ȳ))T d = z̄ − ȳ.

Now one has the estimate

D∗π(z̄, x̄, ȳ)(u) ⊆ ∪
d∈NΘ(q(x̄,ȳ))

(∇yq(x̄,ȳ))T d=z̄−ȳ

{
(t, v) | t = −w, (v,−u− w)T ∈ D∗Q(x̄, ȳ, z̄ − ȳ)(w)

}
,

where Q(x, y) := (∇yq(x, y))T NΘ(q(x, y)).

Remark 2.4.4. For the proof of the above theorem and the construction of D∗Q(x̄, ȳ, z̄−

ȳ)(w) where Q(x, y) := (∇yq(x, y))T NΘ(q(x, y)), the reader is referred to theorem 4.4 and

theorem 3.1 respectively in [64].

The reader can find more interesting approaches for solving the problem P (x) in

nonlinear optimization theory. Exact Penalty Methods, Barrier Methods, Interior Point
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Techniques, Smoothing Methods are some of the techniques also available in the literature

solving the problems P (x) and hence to obtain the solution selection function ỹ(x) and

the corresponding derivative. Here we would like to direct the interested reader to the

papers [21], [52], [71], and [77] for more details.
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Chapter 3

Minimax Programming Approach

This chapter consists of four main sections. In Section 3.1, we consider the reformulation

of the pessimistic bilevel programming problem into a programming problem which is

called the static minimax problem in the parametric constraint case. The rest of the

sections are devoted to exploring the various constructions of subdifferential of marginal

functions and applying those to get the first order optimality conditions for PBLPP. More

precisely, in Sections 3.2, 3.3 and 3.4 we consider differentiable pessimistic bilevel pro-

gramming problems (i.e., with Fréchet differentiable original data), convex and concave

PBLPPs and Lipschitzian PBLPPs respectively.

3.1 Generalized Minimax Reformulations of PBLPP

Let us recall the pessimistic bilevel programming problem (PBLPP).

l(x) : min
y
f(x, y) subject to y ∈ K(x),

m(x) : ϕp(x) := max {F (x, y) | y ∈ S(x) },

(PBLPP) : minϕp(x) subject to x ∈ Ω.

So PBLPP can be written as:

min
x∈Ω

(
max
y∈S(x)

F (x, y)

)
. (3.1.1)
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A problem of this form is called the static minimax problem in the parametric constraint

case. Recall the Subsection (1.4.2) and the reformulation of the PBLPP. In particular,

under the assumption (RA), PBLPP can be equivalently written as:

min
x∈Ω

(
max
y∈K(x)

[F (x, y)− µ(f(x, y)− v(x))]

)
= min

x∈Ω

(
max
y∈K(x)

[F (x, y)− µf(x, y) + µv(x)]

)
= min

x∈Ω

(
max
y∈K(x)

[F (x, y)− µf(x, y)] + µv(x)

)
= min

x∈Ω
[µv(x)− u(x)], (3.1.2)

where u(x) := min
y∈K(x)

[µf(x, y)− F (x, y)].

3.2 Bilevel Programming Problem with Differentiable Data

Pessimistic bilevel programming problem with differentiable original data will be consid-

ered through out this section. We assume that the objective functions of lower level and

upper level problems are Fréchet differentiable. The upper subdifferential of marginal

function will be considered first and consequently applying that construction we will

obtain the necessary optimality conditions for the PBLPP.
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3.2.1 Upper Subdifferential of Marginal Function

Let us define φ : <n → <̄ by

φ(x) :=


sup{ ρ(x, y) | y ∈ Θ(x) } if y ∈ Θ(x)

−∞ if y /∈ Θ(x)

Let θ(x, y) := ρ(x, y)− δ((x, y), gph Θ) and the set valued mapping Φ(x) := { y ∈ Θ(x) |

ρ(x, y) = φ(x) }.

Theorem 3.2.1. Let ȳ ∈ Φ(x̄) be such that |φ(x̄)| < ∞ and Φ has a local upper Lip-

schtizian selection at (x̄, ȳ) ∈ gph Φ. Then we have

(a) ∂̂+φ(x̄) = {x∗ | (x∗, 0) ∈ ∂̂+θ(x̄, ȳ) }.

(b) Furthermore, if ρ is Fréchet differentiable at (x̄, ȳ) we have

∂̂+φ(x̄) = ∇xρ(x̄, ȳ)− D̂∗Θ(x̄, ȳ)(−∇yρ(x̄, ȳ)).

Proof. Let x∗ ∈ ∂̂+φ(x̄). Then given any ε > 0, there exists δ > 0 such that

φ(x)− φ(x̄)− 〈x∗, x− x̄〉 ≤ ε ‖ x− x̄ ‖ for all x ∈ B(x̄, δ),

φ(x)− φ(x̄) ≤ 〈(x∗, 0), (x, y)− (x̄, ȳ)〉+ ε ‖ (x, y)− (x̄, ȳ) ‖ for all (x, y) ∈ B((x̄, ȳ), δ),

φ(x)− F (x̄, ȳ) ≤ 〈(x∗, 0), (x, y)− (x̄, ȳ)〉+ ε ‖ (x, y)− (x̄, ȳ) ‖ for all (x, y) ∈ B((x̄, ȳ), δ).
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Now by the definition of φ and θ we have

θ(x, y)−θ(x̄, ȳ)−〈(x∗, 0), (x, y)−(x̄, ȳ)〉 ≤ ε ‖ (x, y)−(x̄, ȳ) ‖ for all (x, y) ∈ B((x̄, ȳ), δ).

This implies that (x∗, 0) ∈ ∂̂+θ(x̄, ȳ). So ∂̂+φ(x̄) ⊂ {x∗ | (x∗, 0) ∈ ∂̂+θ(x̄, ȳ) }.

To prove the opposite inclusion, let (x∗, 0) ∈ ∂̂+θ(x̄, y∗) where y∗ ∈ M(x̄) be arbitrary.

Then

limsup
(x,y)→(x̄,y∗)

θ(x, y)− θ(x̄, y∗)− 〈(x∗, 0), (x, y)− (x̄, y∗)〉
‖ (x, y)− (x̄, y∗) ‖

≤ 0

⇒ lim
δ↓0

(
sup

(x,y)∈B((x̄,y∗),δ)

θ(x, y)− φ(x̄)− 〈x∗, x− x̄〉
‖ x− x̄ ‖ + ‖ y − y∗ ‖

)
≤ 0.

Since Φ has a local upper Lipschitzian selection at (x̄, ȳ) ∈ gph Φ, i.e., there exists

ỹ(x) ∈ Φ and l ≥ 0 such that ‖ ỹ(x)− ỹ(x̄) ‖≤ l ‖ x− x̄ ‖ for all x near x̄ with ỹ(x̄) = ȳ,

we have by taking y∗ = ȳ,

lim
δ↓0

(
sup

x∈B(x̄,δ)

θ(x, ỹ(x))− φ(x̄)− 〈x∗, x− x̄〉
(l + 1) ‖ x− x̄ ‖

)
≤ 0.

⇒ limsup
x→x̄

φ(x)− φ(x̄)− 〈x∗, x− x̄〉
‖ x− x̄ ‖

≤ 0.

⇒ x∗ ∈ ∂̂+φ(x̄).

Thus, {x∗ | (x∗, 0) ∈ ∂̂+θ(x̄, ȳ) } ⊆ ∂̂+φ(x̄).

Consequently, we have the result (a), i.e., ∂̂+φ(x̄) = {x∗ | (x∗, 0) ∈ ∂̂+θ(x̄, ȳ) }.
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To prove the part (b), consider

∂̂+θ(x̄, ȳ) = −∂̂ [−θ(x̄, ȳ)]

= −∂̂ [−F (·, ·) + δ((·, ·), gph Θ)] (x̄, ȳ).

Since F is Fréchet differentiable at (x̄, ȳ),

∂̂ [−F (·, ·) + δ((·, ·), gph Θ)] (x̄, ȳ) = −∇F (x̄, ȳ) + ∂̂ [δ((·, ·), gph Θ)] (x̄, ȳ)

= −∇F (x̄, ȳ) + N̂ [(x̄, ȳ), gph Θ] .

Consequently, we have

∂̂+φ(x̄) = {x∗ | (x∗, 0) ∈ ∇ρ(x̄, ȳ)− N̂ [(x̄, ȳ), gph Θ] }

= {x∗ | (∇xρ(x̄, ȳ)− x∗,∇yρ(x̄, ȳ)) ∈ N̂ [(x̄, ȳ), gph Θ] }

= {x∗ | ∇xρ(x̄, ȳ)− x∗ ∈ D̂∗Θ(x̄, ȳ)(−∇yρ(x̄, ȳ)) }

= {x∗ | x∗ ∈ ∇xρ(x̄, ȳ)− D̂∗Θ(x̄, ȳ)(−∇yρ(x̄, ȳ)) }.

Thus,

∂̂+φ(x̄) = ∇xρ(x̄, ȳ)− D̂∗Θ(x̄, ȳ)(−∇yρ(x̄, ȳ)).
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3.2.2 Optimality Conditions

Now let us apply the above construction to obtain optimality conditions for the pes-

simistic bilevel programming problem.

Theorem 3.2.2. Let (x̄, ȳ) be a local pessimistic optimal solution such that |ϕp(x̄)| <∞.

Assume also that M(x) := argmax {F (x, y) | y ∈ S(x) } has a local upper Lipschitzian

selection at (x̄, ȳ) and F is Fréchet differentiable at this point. Then one has

(a) D̂∗S(x̄, ȳ)(−∇yF (x̄, ȳ)) ⊆ ∇xF (x̄, ȳ) + N̂(x̄,Ω)

(b) in addition suppose that the assumption (RA) holds, f is Fréchet differentiable and

∂̂v(x̄) 6= ∅, then

0 ∈ ∇xF (x̄, ȳ)−D̂∗K(x̄, ȳ) (µ∇yf(x̄, ȳ)−∇yF (x̄, ȳ))+D̂∗K(x̄, ȳ) (∇yµf(x̄, ȳ))+N̂(x̄,Ω).

Proof. Since x̄ is a local optimal solution to min
x∈Ω

ϕp(x̄), and |ϕp(x̄)| is finite, by the

proposition 5.2[60] we have

−∂̂+ϕp(x̄) ⊆ N̂(x̄,Ω)

(a) Now by the above construction of the subdifferential of marginal function, we have

D̂∗S(x̄, ȳ)(−∇yF (x̄, ȳ)) ⊆ ∇xF (x̄, ȳ) + N̂(x̄,Ω).

(b) Under the assumption (RA), we have

ϕp(x) = µv(x)− u(x).
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−∂̂+ (µv(·)− u(·)) (x̄) ⊆ N̂(x̄,Ω),

0 ∈ ∂̂+ (µv(·)− u(·)) (x̄) + N̂(x̄,Ω),

0 ∈ −∂̂ (u(·)− µv(·)) (x̄) + N̂(x̄,Ω).

Since ϕp(x̄) is finite, this implies that u(x̄) and v(x̄) are finite and the assumption ∂̂v(x̄) 6=

∅, we have

0 ∈ −∂̂u(x̄) + ∂̂(µv)(x̄) + N̂(x̄,Ω), by [62, Theorem 3.1(i)]

0 ∈ ∂̂+(−u)(x̄)− ∂̂+(−µv)(x̄) + N̂(x̄,Ω),

0 ∈ ∂̂+

[
max
y∈K(x)

(F (·, y)− µf(·, y))

]
(x̄)− ∂̂+

(
max
y∈K(x)

− µf(·, y)

)
(x̄) + N̂(x̄,Ω).

By assumption (RA), we have M(x) = argmax{F (x, y)− µf(x, y) | y ∈ K(x) }.

Since M(x) ⊆ S(x) and M has a local upper Lipschitzian selection at (x̄, ȳ), so does S.

Then applying again the above subdifferential construction, we have

0 ∈∇x [F (x̄, ȳ)− µf(x̄, ȳ)]− D̂∗K(x̄, ȳ) (−∇y [F (x̄, ȳ)− µf(x̄, ȳ)])

−
[
−µ∇xf(x̄, ȳ)− D̂∗K(x̄, ȳ) (−∇y − µf(x̄, ȳ))

]
+ N̂(x̄,Ω),

which is equivalent to

0 ∈∇xF (x̄, ȳ)− µ∇xf(x̄, ȳ)− D̂∗K(x̄, ȳ) (µ∇yf(x̄, ȳ)−∇yF (x̄, ȳ))

+ µ∇xf(x̄, ȳ) + D̂∗K(x̄, ȳ) (∇yµf(x̄, ȳ)) + N̂(x̄,Ω).
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Thus,

0 ∈ ∇xF (x̄, ȳ)−D̂∗K(x̄, ȳ) (µ∇yf(x̄, ȳ)−∇yF (x̄, ȳ))+D̂∗K(x̄, ȳ) (∇yµf(x̄, ȳ))+N̂(x̄,Ω).

Remark 3.2.3 (Constructions of D∗S(x̄, ȳ) and D∗K(x̄, ȳ)). The construction of

coderivatives of feasible maps and solution set maps are known in optimization literature

and one can find such nice construction in [29], [30], [43], [59], [64] and [65]. Let us

consider for example the following constructions. For partially convex, smooth lower

level problem, we have

S(x) = { y ∈ <m | 0 ∈ ∇yf(x, y) + ∂yδK(x, y) }

Now let Q(x, y) = ∂yδK(x, y). Then Q is closed-graph around (x̄, ȳ, z̄ := −∇yf(x, y))

and Q is normally regular at this point as K(x) is convex for each x. Then we have

D∗S(x̄, ȳ)(y∗) = D̂∗S(x̄, ȳ)(y∗)

= {x∗<n | ∃z∗with(x∗ −∇xf(x̄, ȳ)∗z∗,−y∗ −∇yf(x̄, ȳ)∗z∗) ∈ D∗Q(x̄, ȳ, z̄)(z∗) },

provided 0 ∈ ∇f(x̄, ȳ)∗z∗ +D∗Q(x̄, ȳ, z̄)(z∗)⇒ z∗ = 0.
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3.3 Fully Convex and Concave Bilevel Programming

In this we assume that the lower objective function is fully convex (i.e., jointly convex)

while the upper level counter part is fully concave. First, let us look at the upper

subdifferential construction of value functions.

3.3.1 Upper Subdifferential of Marginal Function

Let φ̂ : <n → <̄ be given by

φ̂(x) = sup
y∈<m

ρ(x, y).

Theorem 3.3.1 ([28, Lemma 5.3]). Let ρ : <n × <m → <̄ be a concave function. If

Φ̂(x) := argmax{ ρ(x, y) | y ∈ <m } 6= ∅, then

∂̂+φ̂(x) = {x∗ ∈ <n | (x∗, 0) ∈ ∂̂+ρ(x, y) },

where y ∈ Φ̂(x) is arbitrary and 0 ∈ <m.

Now let us turn to the general case, i.e., marginal function over the parametric con-

straint set. Recall marginal function defined in Subsection (3.2.1).

Theorem 3.3.2 ([28, Theorem 5.11]). Let φ : <n → <̄ be defined in Subsection

(3.2.1), where ρ : <n × <m → < is a concave function and gph Θ ⊆ <n × <m is a

nonempty, convex set. Then we have

(a) φ is concave,
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(b) If ri(gph Θ) ∩ ri(dom ρ) 6= ∅ and Φ(x) := argmax{ ρ(x, y) | y ∈ Θ(x) } 6= ∅, then

∂̂+φ(x) = {x∗ ∈ <n | (x∗, 0) ∈ ∂̂+ρ(x, y)− N̂((x, y), gph Θ) },

(c) If ρ is Fréchet differential and Φ(x) 6= ∅, then

∂̂+φ(x) = ∇xρ(x, y)− D̂∗Θ(x, y) (−∇yρ(x, y)) ,

where y ∈ Φ(x) be arbitrary.

3.3.2 Optimality Conditions

Theorem 3.3.3. Let (x̄, ȳ) be a local pessimistic optimal solution with |ϕp(x̄)| < ∞.

Assume the following holds:

(a) Ω is closed and convex subset of <n;

(b) K : <n → <m is convex on Ω, uniformly bounded at the point x̄ and closed around

this point;

(c) f and −F are jointly convex on the set { (x, y) | y ∈ K(x), x ∈ Ω } and lower

semicontinuous.

(d) ri(gphK) ∩ ri(domF ) 6= ∅ and ∂̂(v(x̄)); 6= ∅

(e) Assumption (RA) holds.

Then we have

0 ∈ x∗ − u∗ + N̂(x̄,Ω),

where (x∗, 0) ∈ ∂̂+[F (·, y)− µf(·, y)](x̄)− N̂ [(x̄, ȳ), gphK] and

(u∗, 0) ∈ ∂̂+[−µf(·, y)](x̄)− N̂ [(x̄, ȳ), gphK] .



73

Proof. Since x̄ is a local optimal solution, ((x̄, ȳ) is a local pessimistic optimal solution)

to min
x∈Ω

ϕp(x̄), and |ϕp(x̄)| is finite, we have

−∂̂+ϕp(x̄) ⊆ N̂(x̄,Ω),

0 ∈ ∂̂+ϕp(x̄) + N̂(x̄,Ω).

By the assumption (e), one has ϕp(x) = µv(x) − u(x) where u(x) := min
y∈K(x)

[µf(x, y) −

F (x, y)] and v(x) := min
y∈K(x)

f(x, y).

Since f and −F are convex functions and K is convex mapping, u(x) is concave and v(x)

is convex on Ω.

∂̂+ϕp(x̄) = ∂̂+(u+ µv)(x̄)

= −∂̂((−u)− µv)(x̄)

⊆ −∂̂(−u)(x̄) + ∂̂(µv)(x̄) sinceu and v are finite at x̄ and ∂̂(v(x̄)) 6= ∅

= ∂̂+u(x̄) + ∂̂(µv)(x̄)

= ∂̂+( max
y∈K(·)

[F (·, y)− µf(·, y)])(x̄)− ∂̂+( max
y∈K(·)

− µf(·, y))(x̄).

Consequently, we have

0 ∈ ∂̂+( max
y∈K(·)

[F (·, y)− µf(·, y)])(x̄)− ∂̂+( max
y∈K(·)

− µf(·, y))(x̄) + N̂ .(x̄,Ω)
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Now by the Thereom (3.3.2)part (b), we have

0 ∈{x∗ ∈ <n | (x∗, 0) ∈ ∂̂+[F (·, y)− µf(·, y)](x̄)− N̂ ((x̄, ȳ), gphK) }

{u∗ ∈ <n | (u∗, 0) ∈ ∂̂+[−µf(·, y)](x̄)− N̂ [(x̄, ȳ), gphK] }+ N̂(x̄,Ω).

We have the following:

0 ∈ x∗ − u∗ + N̂(x̄,Ω),

where (x∗, 0) ∈ ∂̂+[F (·, y)− µf(·, y)](x̄)− N̂ [(x̄, ȳ), gphK] and

(u∗, 0) ∈ ∂̂+[−µf(·, y)](x̄)− N̂ [(x̄, ȳ), gphK] .

Remark 3.3.4. In addition to the assumptions of the above theorem, if F and f are

Fréchet differentiable at (x̄, ȳ), one can replace the condition ri(gphK) ∩ ri(domF ) 6= ∅

and also by part (c) of the Theorem (3.3.2) we have the optimality conditions

0 ∈ ∇xF (x̄, ȳ)−D̂∗K(x̄, ȳ) (µ∇yf(x̄, ȳ)−∇yF (x̄, ȳ))+D̂∗K(x̄, ȳ) (∇yµf(x̄, ȳ))+N̂(x̄,Ω).

3.4 Lipschitzian Bilevel Programming

Now pessimistic bilevel problem with Lipschitzian data is considered. The following is

the subdifferential estimate of marginal function.
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3.4.1 Subdifferential Estimate of Marginal Function

Theorem 3.4.1. Given ȳ ∈ Φ(x̄), assume that ρ is Lipschitz continuous around (x̄, ȳ)

and Θ is Lipschitz continuous around x̄. Then

(a) φ is Lipschitz continuous around x̄.

(b) If Φ is inner semicontinuous at (x̄, ȳ), then

∂φ(x̄) ⊂ -co
[
∪{x∗ +D∗Θ(x̄, ȳ)(y∗) | (x∗, y∗) ∈ −∂+ρ(x̄, ȳ) }

]
.

(c) If Φ is inner semicompact at x̄, then

∂φ(x̄) ⊂ -co
[
∪{x∗ +D∗Θ(x̄, y/)(y∗) | (x∗, y∗) ∈ −∂+ρ(x̄, y/), y/ ∈ Θ(x̄) }

]
.

Proof. Since ρ is Lipschitz continuous around (x̄, ȳ), and Θ is Lipschitz continuous around

x̄ by the Lemma 3.18(4) in [51], we have the Lipschitz continuity of φ around x̄.

Now, since φ is Lipschitz continuous around x̄, we have

∂φ(x̄) ⊂ -co∂ (−φ) (x̄)

= -co ∂

[
− sup
y∈Θ(·)

ρ(·, y)

]
(x̄)

= -co ∂

[
inf

y∈Θ(·)
− ρ(·, y)

]
(x̄).
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Now, if Φ is inner semicontinuous at (x̄, ȳ), then by the Theorem 3.38(i) in [59], we have

∂

(
inf

y∈Θ(·)
− ρ(·, y)

)
(x̄) ⊂ ∪{x∗ +D∗Θ(x̄, ȳ)(y∗) | (x∗, y∗) ∈ −∂+ρ(x̄, ȳ) }.

Thus we arrive

∂φ(x̄) ⊂ -co
[
∪{x∗ +D∗Θ(x̄, ȳ)(y∗) | (x∗, y∗) ∈ −∂+ρ(x̄, ȳ) }

]
,

which proves the part (b). To prove the part (c), assume that Φ is inner semicompact at

x̄. Then by Theorem 3.38(ii) in [59], we have

∂

(
inf

y∈Θ(·)
− ρ(·, y)

)
(x̄) ⊂ ∪{x∗ +D∗Θ(x̄, y/)(y∗) | (x∗, y∗) ∈ −∂+ρ(x̄, y/), y/ ∈ Θ(x̄) }.

Hence the result,

∂φ(x̄) ⊂ -co
[
∪{x∗ +D∗Θ(x̄, y/)(y∗) | (x∗, y∗) ∈ −∂+ρ(x̄, y/), y/ ∈ Θ(x̄) }

]
.

3.4.2 Optimality Conditions

Theorem 3.4.2. Let (x̄, ȳ) be a local pessimistic optimal solution, and let Ω be locally

closed around x̄. Assume the following:

(a) F is locally Lipschitz continuous (x̄, ȳ),
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(b) S is Lipschitz-like around (x̄, ȳ).

Then we have

(i) if M(x) := argmax {F (x, y) | y ∈ S(x) } is inner semi continuous at (x̄, ȳ), then

0 ∈ -co [∪{x∗ +D∗S(x̄, ȳ)(y∗) | (x∗, y∗) ∈ ∂F (x̄, ȳ) }] +N(x̄,Ω)

(ii) if M(x) := argmax {F (x, y) | y ∈ S(x) } is inner semi compact at x̄, then

0 ∈ -co
[
∪{x∗ +D∗S(x̄, y/)(y∗) | (x∗, y∗) ∈ ∂F (x̄, y/), y/ ∈M(x̄) }

]
+N(x̄,Ω)

Proof. The value function ϕp is locally Lipschitz continuous around x̄ by (a),(b), and

(c). Since x̄ is a local optimal solution to min
x∈Ω

ϕp(x) by Proposition 5.3 in [60], we have

0 ∈ ∂ϕp(x̄) +N(x̄,Ω). Now applying the above theorem, we arrive at the result.

Remark 3.4.3. Inner semicontinuity and inner semicompact assumption can be weak-

ened by µ- inner semi continuity and µ- inner semi compactness; see [63] for more details.

Theorem 3.4.4. Let (x̄, ȳ) be a local pessimistic optimal solution and let Ω be locally

closed around x̄. Assume the following:

(a) M is inner semi continuous (x̄, ȳ);

(b) K is closed and Lipschitz-like around (x̄, ȳ);

(c) Assumption (RA) satisfies;
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(d) f and F are strictly differentiable at (x̄, ȳ).

Then we have

0 ∈ -co
[
∇xµf(x̄, ȳ)−∇xF (x̄, ȳ) +D∗K(x̄, ȳ)(∇yµf(x̄, ȳ)−∇yF (x̄, ȳ))

]
+∇xµf(x̄, ȳ) +D∗K(x̄, ȳ)(∇yµf(x̄, ȳ)) +N(x̄,Ω).

Proof. Consider the pessimistic bilevel programming problem. Then by the assumption

(RA), PBLPP is equivalent to the following problem:

min
x∈Ω

(
max
y∈K(x)

[F (x, y)− µf(x, y)− v(x)]

)

min
x∈Ω

(
max
y∈K(x)

[F (x, y)− µf(x, y)] + µv(x)

)

min
x∈Ω

(
max
y∈K(x)

[F (x, y)− µf(x, y)]− max
y∈K(x)

[−µf(x, y)]

)
.

Since f and F are strictly differentiable at (x̄, ȳ), f and F are locally Lipschitzian around

(x̄, ȳ). Also, since M is inner semicontinuous at (x̄, ȳ) and M ⊂ S, S is inner semi

continuous. Thus α(x) := max
y∈K(x)

[F (x, y)− µf(x, y)] and β(x) := max
y∈K(x)

[−µf(x, y)] are

locally Lipschitz continuous around x̄; see Lemma 3.18(4) in [51]. Hence, α − β also

Lipschitz continuous around x̄. Since (x̄, ȳ) be a local pessimistic optimal solution, it is

also an optimal solution to

min
x∈Ω

(α(x)− β(x))
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under assumption (RA). Then apply Proposition 5.3 in [60] to get

0 ∈ ∂ (α(x)− β(x)) +N(x̄,Ω)

⊂ ∂α(x̄) + ∂(−β)(x̄) +N(x̄,Ω) (by the Theorem 3.36[59])

= ∂

(
max
y∈K(·)

[F (·, y)− µf(·, y)]

)
(x̄) + ∂

(
min
y∈K(·)

µf(·, y)

)
(x̄)

Then applying the above theorem and Theorem 3.38(i) in [59], we have

0 ∈ -co
[
∇xµf(x̄, ȳ)−∇xF (x̄, ȳ) +D∗K(x̄, ȳ)(∇yµf(x̄, ȳ)−∇yF (x̄, ȳ))

]
+∇xµf(x̄, ȳ) +D∗K(x̄, ȳ)(∇yµf(x̄, ȳ)) +N(x̄,Ω).
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Chapter 4

Duality Programming Approach

4.1 Introduction

Duality theory has fascinated many mathematicians since the underlying mathematical

framework has been laid down in the context of convex analysis. Duality theorems estab-

lish typical connections between a constrained minimization problem and a constrained

maximization problem. More precisely, if either problem has an optimal solution, then

so has the other and both optimal values are equal under some well-known assumptions

on original data. Over the years, many generalizations of this result relaxing the as-

sumptions have been given in the literature. The reader is referred to [27], [35], [55], [76]

and the references therein for more details. In this chapter, we study duality theorems

and see the possible extension to nondifferentiable and nonconvex data. Also, duality

theory is applied to the pessimistic bilevel programming problem to get the optimality

conditions. The basic idea of the method is that the upper level maximization can be

transformed into a minimization problem and consequently PLBPP can be equivalently

written as mathematical program with equilibrium problem. To begin, with let us look

at the following well-known duality theorems.

4.2 Duality Theory for Convex Programming Problems

Consider the following mathematical programming problem:
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(P): minf(x) subject to x ∈ X := {x ∈ <n | gi(x) ≤ 0 i = 1, 2, . . . , p }.

Theorem 4.2.1 ( Duality Theorem for Differentiable Convex Problem; Wolfe’s

Duality Theorem [53]). Let f and g be differentiable convex function on <n. Assume

that the Slater’s qualification condition is satisfied. If x̄ is an optimal solution of P, then

there exists a vector λ such that (x, λ) is optimal for the following problem:

(D) :


maxϕ(x, y) := f(x) + λg(x)

subject to (x, λ) ∈ Y := { (x, λ) ∈ <n ×<p | ∇xϕ(x, λ) = 0, λ ≥ 0 }.

Furthermore, the two problems have the same optimal value.

Theorem 4.2.2 (Duality Theorem for Nondifferentiable Convex Problem [76]).

Let f and g′is be convex and non-smooth functions. Suppose that the Slater’s qualification

condition is satisfied. Then:

(a) If x̄ is feasible for problem P, then it is optimal for P if and only if there exists

λ ∈ <p such that λ ≥ 0, λtg(x) = 0, and

0 ∈ ∂f(x̄) +
n∑
i=1

λi∂gi(x̄).

(b) If x̄ is optimal for problem P, then there exists λ̄ such that (x̄, λ̄) is optimal for
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problem:


maxϕ(x, y) := f(x) + λg(x)

subject to (x, λ) ∈ Y := { (x, λ) ∈ <n ×<p | 0 ∈ ∂f(x) +
∑p

i=1 λi∂gi(x), λ ≥ 0 }.

Next, we will extend such duality results for nonconvex and nonsmooth mathematical

programming problems.

4.3 Duality Theory for Nondifferentiable and Nonconvex Pro-

gramming Problems

Definition 4.3.1 (Invex Functions and Invex Sets).

(a) Let f : X → <̄ and x̄ ∈ X such that |f(x̄)| < ∞. Then f is called ρ- invex at

x̄ ∈ X with respect to some functions η, θ : X × X → <n, θ(x, u) 6= 0 whenever

x 6= u, if there exists a real number ρ such that for each x∗ ∈ ∂f(x̄),

f(x)− f(x̄) ≥ 〈x∗, η(x, x̄)〉+ ρ‖θ(x, x̄)‖2 x ∈ X.

The function f is called ρ-invex, if the above condition holds for each x̄ ∈ X.

(b) Let Ω ⊆ X be closed and let x ∈ Ω. We say that Ω is ρ-invex at x̄ with respect to

some functions η, θ : X × X → <n, θ(x, u) 6= 0 whenever x 6= u, if there exists a
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real number ρ such that for each x∗ ∈ N(x̄,Ω),

〈x∗, η(x, x̄)〉 ≤ ρ‖θ(x, x̄)‖2 for all x ∈ X.

Consider the following mathematical programming problem:

(P): minf(x) subject to x ∈ Ω.

(D): maxf(x) subject to x ∈ {x | 0 ∈ ∂f(x) +N(x,Ω) }.

Theorem 4.3.2 (Duality Theorem for Nondifferentiable Nonconvex Problem).

Let x̄ be an optimal solution to problem P and let f : X → <̄ be such that |f(x̄)| < ∞

and locally Lipschitz continuous around x̄. Also let Ω be closed around x̄. Suppose that

f is ρ0-invex and Ω is ρ1-invex at each feasible point of the problem D with respect to the

same function η and θ and that ρ0 − ρ1 ≥ 0.

Then one has x̄ is an global optimal solution for D and optimal values are equal.

Proof. The proof is similar to the proof of the Theorem 4.1 in [35]. Let x and z be

feasible for the problem P and D, respectively.

Then 0 ∈ ∂f(z) +N(z,Ω) implies that there exists v ∈ ∂f(z) and w ∈ N(z,Ω) such that
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v = −w. Consider

f(x)− f(z) ≥ 〈v, η(x, z)〉+ ρ0‖θ(x, z)‖2 by invexity of f

= 〈−w, η(x, z)〉+ ρ0‖θ(x, z)‖2

− ρ1‖θ(x, z)‖2 + ρ0‖θ(x, z)‖2 as N(z,Ω) is invex

= (ρ0 − ρ1)‖θ(x, z)‖2

≥ 0 as (ρ0 − ρ1) ≥ 0

So f(x) ≥ f(z).

Now since x̄ is an optimal solution to problem P , and since f is locally Lipschitz contin-

uous around x̄, we have

0 ∈ ∂f(x̄) +N(x̄,Ω).

Thus x̄ is feasible for problem D.

Now for any arbitrary feasible point z of D, one has f(x̄) ≥ f(z). This implies that x̄ is

an optimal solution of D and optimal values are equal.

Now replacing Ω with the special structure, we have the following result.

Let Ω := {x ∈ <n | gi(x) ≤ 0 i = 1, 2, . . . , p }. Consider the problem P. The point

(x, λ) is said to be a critical point for the problem P if, x is a feasible point for P, λ ∈ <p+

and

0 ∈ ∂f(x) +

p∑
1

λi∂gi(x) and λigi(x) = 0.
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Consider the dual problem (D):

maxϕ(x, y) := f(x) + λg(x)

subject to (x, λ) ∈ Y := { (x, λ) ∈ <n ×<p | 0 ∈ ∂f(x) +

p∑
i=1

λi∂gi(x), λ ≥ 0 }

Corollary 4.3.3. Assume that the point (x̄, λ̄) is a critical point for (P). Assume also

that f is ρ0-invex, gi is ρi-invex for each i = 1, 2, . . . , p with respect to the same functions

η and θ, and ρ0 +
∑p

1 ≥ 0 for each feasible point (z, λ) of D. Then one has x̄ and (x̄, λ̄)

is a global optimal for P and D respectively. Also the optimal values are equal.

4.4 Reformulation of PBLPP and Optimality Conditions

4.4.1 PBLPP with Convex Data

Recall the Pessimistic Bilevel Programming Problem:

min
x∈Ω

(
max
y∈S(x)

F (x, y)

)
.

Under the reformulation assumption, this is equivalent to the following problem:

min
x∈Ω

(
max
y∈K(x)

[z(x, y) := F (x, y)− µf(x, y) + µv(x)]

)
.

Let K(x) = { y ∈ Y ⊂ <m | g(x, y) ≤ 0 }. Now let us make the following assumptions:

(i) For any fixed x, −F (x, ·), f(x, ·), and g(x, ·) are convex for all y ∈ Y ;



86

(ii) For any fixed x, there exists y ∈ Y such that g(x, y) < 0. (i.e., Slater’s qualification

conditions holds);

(iii) Y is convex set.

Under the above assumptions (i) to (iii), by Duality Theorem one has for any fixed x,

there exists an optimal solution λ̄(x) ≥ 0 to the problem:

min
λ

(
H(x, v) := max

y∈Y

[
z(x, y)− λtg(x, y)

])
subject toλ ∈ D := {λ | λ ≥ 0; ∃max

[
z(x, y)− λtg(x, y)

]
}

Also, we have z(x, ȳ(x)) = H(x, λ̄(x)), where ȳ(x) solves the problem max
y∈S(x)

F (x, y).

Furthermore, if we assume that

(iv) For any fixed x, z(x, ·) and g(x, ·) are lower semi continuous in y, and

(v) Y 6= ∅, compact,

then one has D = {λ | λ ≥ 0 }.

Consequently, under the above mentioned assumptions, PBLPP is equivalent to the fol-

lowing problem:

min
(x,λ)∈Ω×D

[
max
y∈Y

(
F (x, y)− µf(x, y)− λtg(x, y) + µv(x)

)]
.
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Again under the duality theorem, this is equivalent to the following MPEC:


min (F (x, y)− µf(x, y)− λtg(x, y) + µv(x))

subject to 0 ∈ ∂y (F (x, y)− µf(x, y)− λtg(x, y)) +N(y, Y ), (x, λ) ∈ Ω×D.

4.4.2 Nonconvex PBLPPs

Now look at another reformulation of PBLPP relaxing the above assumptions. Again

using the Duality Theorem (4.3.2) mentioned above PBLPP can be equivalently written

as a MPEC and hence the necessary optimality conditions can be obtained. Consider

the programming problems:

min
x∈Ω

(
max
y∈S(x)

F (x, y)

)
.

(P ): max
y∈S(x)

F (x, y)

(D): minF (x, y) such that y ∈ { y | 0 ∈ −∇yF (x, y) +N(y, S(x)) }

Now we impose the following assumptions:

(i) Let (x̄, ȳ) be optimal solutions for pessimistic bilevel programming and let z̄ =

F (x̄, ȳ) where F : <n ×<m :→ <̄ is finite at this point;

(ii) F is locally Lipschitz continuous and around (x̄, ȳ);

(iii) Ω is closed around x̄;

(iv) For each x around x̄, −F (x, ·) is ρ0-invex and S(x) is ρ1-invex at each feasible

point (x, y) of D with respect to the same functions η and θ with the property that
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ρ0 − ρ1 ≥ 0.

Under the above assumption (i) to (iv), applying the above duality theorem we have,

max {F (x, y) | y ∈ S(x) } = min {F (x, y) | y ∈ { y | 0 ∈ −∂yF (x, y) +N(y, S(x)) } }

for each x near x̄. Then pessimistic bilevel programming problem is equivalent to the

following MPEC



minF (x, y)

subject to y ∈M(x) := { y | 0 ∈ −∂yF (x, y) +N(y, S(x)) }

x ∈ Ω

This is a mathematical program with equilibrium constraints (MPEQ). Now we are able

to derive the following optimality conditions.

Theorem 4.4.1 (Optimality Conditions). Suppose the above assumptions (i)-(iv)

holds. In addition let us assume the following:

(a) F (x, y) is strictly differentiable at (x̄, ȳ) and ∇yF (x, y) is strictly differentiable at

this pint.

(b) S(x) is closed for each x around x̄.

(c) the following qualification conditions holds:[
(x∗, 0) ∈ −∇ (∇yF (x̄, ȳ))t (z∗) +D∗Q(x̄, ȳ, z̄)(z∗), −x∗ ∈ N(x̄,Ω)

]
⇒ x∗ = 0
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[
(x∗, y∗) = −∇ (∇yF (x̄, ȳ))t (z∗); (x∗, y∗) ∈ −D∗Q(x̄, ȳ, z̄)(z∗)

]
⇒ x∗ = y∗ = z∗ =

0 where Q(x, y) := N(y, S(x)).

Then there are x̃∗ ∈ N(x̄,Ω) and z∗ ∈ <m such that

(−∇xF (x̄, ȳ)− x̃∗,−∇yF (x̄, ȳ)) ∈ −∇ (∇yF (x̄, ȳ))t (z∗) +D∗ (Q(x̄, ȳ, z̄)) (z∗).

Proof. By the above duality theorem for each x in a neighborhood of x̄, we have

max {F (x, y) | y ∈ S(x) } = min {F (x, y) | y ∈ { y | 0 ∈ −∇yF (x, y) +N(y, S(x)) } }

Then pessimistic bilevel programming problem is equivalent to the following MPEC



minF (x, y),

subject to y ∈M(x) := { y | 0 ∈ −∇yF (x, y) +N(y, S(x)) }, and

x ∈ Ω.

Then by theorem 5.37[60] we find x̃∗ ∈ N(x̄,Ω) and z∗ ∈ <m such that

(−∇xF (x̄, ȳ)− x̃∗,−∇yF (x̄, ȳ)) ∈ −∇ (∇yF (x̄, ȳ))t (z∗) +D∗ (Q(x̄, ȳ, z̄)) (z∗)
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4.5 Saddle Point Theorem

A point (x̄, ȳ) is said to be a saddle point of φ(x, y) on the set Ω×K if φ(x̄, y) ≤ φ(x̄, ȳ) ≤

φ(x, ȳ) for all x ∈ Ω and y ∈ K.

Lemma 4.5.1. Let Ω ⊆ <n and K ⊆ <m be bounded and closed sets. Also assume that

φ is continuous function defined on Ω ×K. Then the function φ has a saddle point on

Ω×K if and only if

min
x∈Ω

max
y∈K

φ(x, y) = max
y∈K

min
x∈Ω

φ(x, y).

Consider the pessimistic bilevel programming problem:

min
x∈Ω

(
max
y∈S(x)

F (x, y)

)
.

Theorem 4.5.2. Let (x̄, ȳ) be a global pessimistic optimal solution. Suppose that the

following holds:

(a) Ω and K(x) ≡ K are closed and convex.

(b) φ(x, y) := F (x, y)− µf(x, y) + µv(x) is continuous on Ω×K.

(c) RA holds.

(d) min
x∈Ω

max
y∈K

φ(x, y) = max
y∈K

min
x∈Ω

φ(x, y)

Then there exists y0 such that φ(x̄, ȳ) = φ(x̄, y0) and

0 ∈ ∂yφ(x̄, y0) +N(y0, K),
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0 ∈ ∂xφ(x̄, y0) +N(ȳ,Ω).

Proof. Since (x̄, ȳ) is a global pessimistic optimal solution of PBLPP, one has

φ(x̄, ȳ) ≤ min
xΩ

max
y∈K

φ(x, y) (4.5.1)

and

φ(x̄, ȳ) = max
y∈K

φ(x̄, y). (4.5.2)

Assumption (d) implies that there exits (x0, y0) ∈ Ω×K such that

φ(x0, y) ≤ φ(x0, y0) ≤ φ(x, y0) for all (x, y) ∈ Ω×K (4.5.3)

and

φ(x0, y0) = min
x∈Ω

max
y∈K

φ(x, y) (4.5.4)

By (4.5.1)-(4.5.4) we have

φ(x̄, y0) ≤ φ(x̄, ȳ) ≤ φ(x0, y0) ≤ φ(x̄, y0),

which implies

φ(x̄, y0) = φ(x̄, ȳ) = φ(x0, y0). (4.5.5)

Now by (4.5.2) and (4.5.5), φ(x̄, y) ≤ φ(x̄, y0) for all y ∈ K and by (4.5.3), φ(x̄, y0) ≤

φ(x, y0) for all x ∈ Ω
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Thus,

φ(x̄, y) ≤ φ(x̄, y0) ≤ φ(x, y0) for all (x, y) ∈ Ω×K

Since φ(x̄, y) ≤ φ(x̄, ȳ) for all y ∈ K and φ(x, ·) is Lipschitz continuous around ȳ for each

x ∈ Ω we have

0 ∈ ∂yφ(x̄, ȳ) +N(ȳ, K)

Since φ(x̄, y0) ≤ φ(x, y0) for all x ∈ Ω and φ(·, y) is Lipschitz continuous around x̄ for

each y ∈ K, we have

0 ∈ ∂xφ(x̄, y0) +N(x̄,Ω)
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Chapter 5

Optimality Conditions for PBLPPs with Finite

Rational Responses

5.1 Introduction and Basic assumptions

Let us recall the pessimistic bilevel programming problem PBLPP. Throughout this chap-

ter, it is assumed that (x̄, ȳ) is a local pessimistic optimal solution, and let U ⊂ Ω be a

neighborhood of x̄.

(PBLPP ) :



(lx) : min
y
f(x, y) subject to y ∈ K(x),

(mx) : max
y
F (x, y) subject to y ∈ S(x) := argmin{ f(x, y) | y ∈ K(x) },

(pblpp) : minϕp(x) := max
y∈S(x)

F (x, y) subject to x ∈ Ω.

Assumption 5.1.1. S(x) is finite but not singleton for each x ∈ U .

Throughout this chapter, it is assumed that the lower level problem has a finite

number of solutions. If the solution set to lower level problem is singleton, then the

optimistic and pessimistic versions coincide. Therefore, we may assume that the solution

set to the lower level problem is not singleton.

Write S(x) = { yi(x) | i = 1, 2, . . . , r where r > 1; yi(x) solves l(x) }
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Then the PBLPP can be equivalently written as

min
x∈Ω

(
max
i=1,r

[
F̃i(x) := F (x, yi(x)) := (F ◦ yi)(x)

])
, (5.1.1)

or epi-graphical formulation as

min
(x,ω)∈Ω×<

ω subject to F̃i(x)− ω ≤ 0 i = 1, 2, . . . , r. (5.1.2)

Now let us define the following sets:

I(x̄) := { i ∈ { 1, 2, . . . , r } | F̃i(x̄) = ϕp(x̄) := max
i∈1,r

F̃i(x̄) } and

Λ(x̄) := { (λ1, λ2, . . . , λr) | λi ≥ 0,
∑r

i=1 λi = 1, λi(Fi(x̄)− ϕp(x̄)) = 0 }.

5.2 Necessary Optimality Conditions

This section is devoted to get the necessary optimality conditions for PBLPP under the

above assumptions made. When the lower level problem has finite but not singleton

number of solutions we can obtain the following Fritz-John type necessary optimality

conditions. Then we study some special classes of pessimistic bilevel problems for which

there are a finite number of rational responses. Then we can obtain the following type

of necessary optimality conditions for those classes of pessimistic bilevel programming

problems.
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Theorem 5.2.1 (Necessary Optimality Conditions). Let (x̄, ȳ) be a local pessimistic

optimal solution. Assume that Ω is locally closed around x̄ and for each x near x̄, S(x)

has finite cardinality, but not singleton. Assume also the followings:

(a) F is strictly differentiable at (x̄, ȳ) and |F (x̄, ȳ)| < ∞ where ȳ = yi(x̄) for all

i ∈ I(x̄);

(b) yi : <n → <m is locally Lipschitz continuous around x̄.

Then there exists λi ≥ 0 for all i = 1, 2, . . . , r and not all equals zero such that

0 ∈
∑
i∈I(x̄)

λi∇xF (x̄, ȳ) + ∂〈∇yF (x̄, ȳ), λiyi〉(x̄) +N(x̄,Ω),

λi(F (x̄, yi(x̄))−maxF (x̄, yi(x̄))) = 0.

Proof. F is locally Lipschitz continuous around (x̄, ȳ) as F is strictly differentiable at

this point. Since yi(x) i = 1, 2, . . . , r is locally Lipschitz continuous around x̄, the com-

position Fi(x) = F (x, yi(x)) := (F ◦ yi)(x) is also locally Lipschitz continuous around x̄

for each i = 1, 2, . . . , r. This implies that the maximum function ϕp(x) := max
i∈1,r

F̃i(x) is

locally Lipschitz continuous around x̄. Now since Ω is locally closed around this point,

we have
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0 ∈ ∂ϕp(x̄) +N(x̄,Ω)

(by [60, Proposition 5.3])

⊆
⋃ ∂

∑
i∈I(x̄)

λiF̃i

 (x̄) | (λ1, λ2, . . . , λr) ∈ Λ(x̄)

+N(x̄,Ω)

(subdifferentiation of maximum function [59, Theorem 3.46(ii)])

⊆
⋃ ∑

i∈I(x̄)

λi∂F̃i(x̄) | (λ1, λ2, . . . , λr) ∈ Λ(x̄)

+N(x̄,Ω)

(sum rule for basic subdifferential [59, Theorem 3.36])

=
⋃ ∑

i∈I(x̄)

λi [∇F (x̄, ȳ) +D∗yi(x̄)(∇F (x̄, ȳ))] | (λ1, λ2, . . . , λr) ∈ Λ(x̄)

+N(x̄,Ω)

(subdifferentiation of compositions [59, Theorem 1.110(ii)])

=
⋃

(λ1,...,λr)∈Λ(x̄)

∑
i∈I(x̄)

λi∇xF (x̄, ȳ) + ∂〈∇yF (x̄, ȳ), λiyi〉(x̄)

+N(x̄,Ω).

That implies that there exits λi ≥ 0 for all i = 1, 2, . . . , r with
∑r

i λi = 1 such that

0 ∈
∑
i∈I(x̄)

λi∇xF (x̄, ȳ) + ∂〈∇yF (x̄, ȳ), λiyi〉(x̄) +N(x̄,Ω),

λi(F (x̄, yi(x̄))−maxF (x̄, yi(x̄))) = 0.
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5.3 Some Classes of Pessimistic Bilevel Programming Problems

In this section some particular classes of pessimistic bilevel programming problem will be

considered. Indeed we will consider problems for which we can assure the finite number

of optimal solutions exits. To begin with, we make the following assumptions throughout

in this section.

Assumption 5.3.1.

(a) K(x) is a polyhedral convex set for each x near x̄ and suppose that K(x) has the

following form:

K(x) :=

 y ∈ <m |
〈ai(x), y〉+ αi(x) ≤ 0; i = 1, 2, . . . , p

〈aj(x), y〉+ αj(x) ≤ 0; j = p+ 1, p+ 2, . . . , p+ q

 ;

(5.3.1)

(b) a1, . . . , ap+q ∈ C1(Ω,<m) and α1, . . . , αp+q ∈ C1(Ω,<)

(c) K is lower semi continuous closed at every point of U ⊆ Ω;

(d) K(x̄) posses at least one vertex for some x̄.

Proposition 5.3.2 ([50, Lemma 2.2]). Under the above assumptions, there exists an

open set U0 ⊆ U and k subsets J1, J2, . . . , Jk ⊆ { 1, 2, . . . , p + q } with |J1| = |J2| . . . =

|Jk| = m with Ji := { j1
i , j

2
i , . . . , j

m
i } such that for every x ∈ U0, the polyhedral convex
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set K(x) possess exactly k vertices v1(x), v2(x) . . . , vk(x) ∈ C1(U0,<m) defined by:

vi(x) = A−1
Ji

(x) (−αJi
(x)) i = 1, 2, . . . , k, (5.3.2)

where AJi
(x) denotes the matrix whose rows are aj1i (x), . . . , ajm

i
(x), and αJi

(x) denotes

the vector whose components are αj1i (x), . . . , αjm
i

(x).

5.3.1 Bilevel Programming Problem with Smooth Upper Level Objective

Functions and Smooth and Concave Lower Level Objective Functions

In this section we consider the following classes of pessimistic bilevel programming prob-

lems.

(PBLPP ) :



(lx) : min
y
f(x, y) subject to y ∈ K(x)

(mx) : max
y
F (x, y) subject to y ∈ S(x) := argmin{ f(x, y) | y ∈ K(x) }

(pblpp) : minϕp(x) := max
y∈S(x)

F (x, y) subject to x ∈ Ω.

Assumption 5.3.3.

(a) F is strictly differentiable at (x̄, ȳ) and |F (x̄, ȳ)| <∞;

(b) f ∈ C1(Ω×<m,<) and f(x, ·) is concave for every x ∈ U ;

(c) inf
y∈K(x)

f(x, y) is finite for each x ∈ U .

Then we have the following necessary optimality conditions for above-mentioned special

classes of PBLPPs.
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Theorem 5.3.4 (Necessary Optimality Conditions). Under the above assumptions

there exists v1(x), v2(x), . . . , vr(x), r ≤ k vertices of K(x) such that vi i = 1, 2, . . . , r are

continuously differentiable around x̄, and also there are lagrange multipliers λ1, λ2, . . . , λr

having the following optimality conditions:

0 ∈ Σi∈I(x̄)

[
λi∇yF (x̄, ȳ) +∇vi(x̄)t∇yF (x̄, ȳ)

]
+N(x̄,Ω),

λi(F (x̄, yi(x̄))−maxF (x̄, yi(x̄))) = 0,

λi ≥ 0 and
r∑
i

λi = 1.

Proof. Since f ∈ C(Ω×<m,<), f(x, ·) is concave for every fixed x ∈ U , and inf
y∈K(x)

f(x, y)

is finite for each x ∈ U , there exits a neighborhood U0 ⊆ U of x̄ and a function v ∈

C(U0,<m) such that v(x) is a vertex of K(x) and v(x) ∈ S(x) for all x ∈ U0; see [50,

Proposition 4.1]. Now let v1(x), v2(x), . . . , vr(x) be the vertices of K(x) at which the lower

level problem attains its minimum. So we may take now S(x) = { v1(x), v2(x), . . . , vr(x) }

where r ≤ k. Since vi(x) is C1, it is locally Lipschitz continuous around x̄. Then there

are Lagrange multipliers λ1, λ2, . . . , λr such that

0 ∈ Σi∈I(x̄)

[
λi∇yF (x̄, ȳ) +∇vi(x̄)t∇yF (x̄, ȳ)

]
+N(x̄,Ω),

λi(F (x̄, yi(x̄))−maxF (x̄, yi(x̄))) = 0,

λi ≥ 0 and
r∑
i

λi = 1.
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Example 5.3.5. Let us consider the lower level problem to be the following quadratic

programming problem:

min
y
f(x, y) :=

1

2
〈y,Qy〉+ 〈y, Px〉+ ptx+ qty subject to y ∈ K(x).

Then if Q is negative semidefinite, then the function f(x, ·) is concave for each fixed x.

Then one has S(x) ⊂ extreme points ofK(x), i.e., S(x) is finite and one has the above

necessary optimality condition of PBLPP with strictly differentiable cost functions and

quadratic (negative semidefinite) lower level programming problems.

5.3.2 Bilevel Programming Problem with Convex and Smooth Upper Level

Objective Functions

Consider the following problem:

ϕp(x) := maxF (x, y) subject to y ∈ S(x). (5.3.3)

Proposition 5.3.6 ([74, Corollary 32.3.4]). For each x ∈ Ω assume the following:

(a) S(x) is non-empty, polyhedral convex set contained in domF ;

(b) S(x) contains no lines (or equivalently S(x) has at least one extreme points if it is

closed and convex);

(c) F (x, ·) is convex and bounded above on S(x).

Then ϕp is attained at one of the (finitely many) extreme points of S(x).
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Remark 5.3.7. If the assumptions of the above proposition are satisfied, then the above

problem can be equivalently expressed as:

ϕp(x) := maxF (x, y) subject to y ∈ Se(x) := { y1(x), y2(x), . . . , yr(x) }, (5.3.4)

where Se is the set of extreme points or vertices of S(x).

(2.A) Linear Lower Level Problems

Now let us consider the pessimistic bilevel programming problem with linear lower level

problem and the upper level objective function is convex and smooth. To be more precise,

let us assume the following:

Assumption 5.3.8.

(a) F is strictly differentiable at (x̄, ȳ), |F (x̄, ȳ)| < ∞, and F (x, ·) is convex and

bounded above on S(x) for each x near x̄;

(b) f(x, y) = 〈c(x), y〉 where c ∈ C1(Ω,<m);

(c) inf
y∈K(x)

f(x, y) > −∞ for all x ∈ U .

Theorem 5.3.9 (Necessary Optimality Conditions). Under the above assumptions

there exists v1(x), v2(x), . . . , vk(x), vertices of S(x) such that vi, i = 1, 2, . . . , k, are con-

tinuously differentiable around x̄, and also there are lagrange multipliers λ1, λ2, . . . , λk
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having the following optimality conditions:

0 ∈ Σi∈I(x̄)

[
λi∇yF (x̄, ȳ) +∇vi(x̄)t∇yF (x̄, ȳ)

]
+N(x̄,Ω),

λi(F (x̄, yi(x̄))−maxF (x̄, yi(x̄))) = 0,

λi ≥ 0 and
r∑
i

λi = 1.

Proof. Under the above-mentioned assumptions on lower level problem, by Proposition

3.1 in [50] one has the following. There exists a neighborhood U0 ⊆ U of x̄, v1, v2, . . . , vl ∈

C1(U0,<m), and an integer k; 0 < k ≤ l such that

S(x) = { y ∈ <m | y = Σl
1 λivi(x), Σk

1 λi = 1, λi ≥ 0; i = 1, 2, . . . , l }

i.e., for each x ∈ U0, S(x) is polyhedral convex set.

Also, since S(x) is closed and has at least one vertex, S(x) contains no lines. Now since

F (x, ·) is convex and bounded above on S(x), we have

max
y∈S(x)

F (x, y)

is equivalent to the following problem:

max
y∈Se(x)

F (x, y),

where Se(x) = { v1(x), v2(x), . . . , vk(x) are the extreme points (or vertices) of S(x). Then
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by the above Theorem (5.3.9) one has the following necessary optimality conditions:

there are Lagrange multipliers λ1, λ2, . . . , λk having the following optimality conditions:

0 ∈ Σi∈I(x̄)

[
λi∇yF (x̄, ȳ) +∇vi(x̄)t∇yF (x̄, ȳ)

]
+N(x̄,Ω),

λi(F (x̄, yi(x̄))−maxF (x̄, yi(x̄))) = 0,

λi ≥ 0 and
r∑
i

λi = 1.

(2.B) Quadratic Lower Level Problems

Consider the following quadratic programming problem.

(lx) : min
y
f(x, y) := 1

2
〈y,Qy〉+ 〈y, Px〉+ ptx+ qty subject to y ∈ K(x).

Assumption 5.3.10.

(a) D is a symmetric positive semidefinite matrix;

(b) S(x) is not singleton or empty.

Proposition 5.3.11 ([41, Theorem 4.4], [54, Theorem 1]). Let D be a symmetric,

positive semidefinite matrix. Then f(x, ·) is convex for each fixed x and S(x) is closed

and convex. Furthermore we have

S(x) = K(x) ∩ { y ∈ <m | 〈∇yf(x, ȳ), y − ȳ〉 = 0 } ∩ { y ∈ <m | ∇2
yf(x, ȳ)(y − ȳ) = 0 },
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i.e., S(x) is polyhedral convex set. Also S(x) is finite if and only if it is a singleton or it

is empty.

Now if the upper level objective function F is strictly differentiable at (x̄, ȳ), |F (x̄, ȳ)| <

∞, and F (x, ·) is convex and bounded above on S(x) for each x near x̄ and lower level

cost function is a quadratic function as above, we can obtain the necessary optimality

conditions as above Theorem 5.3.9.

(2.C) Parametric Polyhedral Lower Level Problems

Let us consider the following parametric polyhedral lower level problem:

l(x) : min
y
f(x, y) :=

max {〈ai(x), y〉+ αi(x) | i = 1, 2, . . . , s}+ δN(y) subject to y ∈ K(x),

where a1(x), a2(x), . . . , as(x) ∈ C1(Ω,<m), α1(x), α2(x), . . . , αs(x) ∈ C1(Ω,<), δN(x) is

the indicator function of a polyhedral set, and K(x) is convex polyhedral defined as

above.

Proposition 5.3.12 ([50, Proposition 5.1(iii)]). Suppose that the optimal value func-

tion inf
y∈K(x)

f(x, y) is finite. Then there exist an open set U0 ⊂ U such that

S(x) = { y ∈ <m | y =
l∑

i=1

λivi(x),
k∑
i=1

λi = 1, λi ≥ 0, i = 1, l } for everyx ∈ U0

where v1(x), v2(x), . . . , vk(x) ∈ C1(U0,<m). i.e., S(x) is polyhedral convex set.
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Remark 5.3.13. Now if the upper level objective function F is strictly differentiable at

(x̄, ȳ), |F (x̄, ȳ)| < ∞, and F (x, ·) is convex and bounded above on S(x) for each x near

x̄, one can arrive at the above necessary optimality conditions.
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Appendix A

Overview of Classical Nonlinear Theory

We consider the following parametric nonlinear optimization problem.

min
y
f(x, y) subject to y ∈ k(x), (l(x))

where y ∈ <m is the decision variable, x ∈ <n, the perturbation parameter, f : <n×<m →

<, and K : <n ⇒ <m is a constraint map or a feasible solution map such that, for each

x ∈ <n, K(x) is a subset of <m.

In particular, our main interest lies in the inequality and equality constrained para-

metric nonlinear programming problem with:

K(x) = { y ∈ Y | g(x, y) ≤ 0, h(x, y) = 0 },

where Y ⊂ <m, g : <n ×<m → <p, h : <n ×<m → <q.

Basic Assumptions in Sensitivity Analysis and Stability Theory

The Lagrangian and the set of Karush-Kuhn-Tucker vectors for the problem l(x) are

defined as follows: Let L(x, y, u, v) = f(x, y)+uTg(x, y)+vTh(x, y) be the corresponding

Lagrange function and the vectors of Lagrange multipliers that correspond to the optimal
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solution y(x) of l(x) are defined as follows:

Λ(x, y) = { (u, v) ∈ <p+ ×<q |∇yL(x, y(x), u(x), v(x)) = 0, ui(x) ≥ 0,

ui(x)gi(x, y(x)) = 0 i = 1, . . . , p, y(x) ∈ K(x) }

Henceforth we assume that l(x) has an optimal solution for the true parameter x̄. Let

ȳ = y(x̄) and I(x̄, ȳ) = { i ∈ {1, 2, . . . , p} | gi(x̄, ȳ) = 0 } be so-called indices of active

inequality constraints.

Mangasarian Fromowits Constraint Qualification(MFCQ): We say that MFCQ

is satisfied at (x̄, ȳ) if there exist a direction d ∈ <m satisfying:

1 ∇ygi(x̄, ȳ)d < 0 for each i ∈ I(x̄, ȳ), ∇yhj(x̄, ȳ)d = 0 for each j = 1, 2, . . . , q,

and,

2 the gradient {∇yhj(x̄, ȳ) | j = 1, 2, . . . , q} are linearly independent.

Linear Independence Constraint Qualification(LICQ): We say that LICQ is sat-

isfied at (x̄, ȳ) if the set {∇ygi(x̄, ȳ), i ∈ I(x̄, ȳ),∇yhj(x̄, ȳ), j = 1, 2, . . . , q} is lineally

independent.

Strict Complementarity Slackness (SCS): We say that SCS is satisfied at (x̄, ȳ) if

for i = 1, 2, . . . , p, ui(x̄) > 0 if gi(x̄, ȳ) = 0 and ui(x̄) = 0 if gi(x̄, ȳ) < 0.

Second Order Sufficient Condition(SOSC): We say that SOSC satisfied at (x̄, ȳ)

if, the inequality; zT∇2
xxL(y(x̄), u(x̄), v(x̄), x̄)z > 0 holds true for each z 6= 0 such
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that

zT∇xgi(x̄, ȳ) = 0 for all i ∈ I(x̄, ȳ) for which ui(x̄) > 0,

zT∇xgi(x̄, ȳ) ≥ 0 for all i ∈ I(x̄, ȳ) for which ui(x̄) = 0,

zT∇xhj(x̄, ȳ) = 0 for all j = 1, 2, . . . , q.

Strong Second Order Sufficient Condition(SSOSC) The SSOSC is said to satis-

fied at (x̄, ȳ) if, for each (u, v) ∈ Λ(x̄, ȳ) and for each d 6= 0 satisfying ∇xgi(x̄, ȳ)d =

0 for all i ∈ I(x̄, ȳ) for which ui(x̄) > 0, and zT∇xhj(x̄, ȳ) = 0 for all j = 1, 2, . . . , q,

we have

dT∇2
xxL(y(x̄), u(x̄), v(x̄), x̄)z > 0

Constant Rank Constraint Qualification(CRCQ): The CRCQ is said to satisfied

for problem l(x) at a point (x̄, ȳ) if there exists an open neighborhood B((x̄, ȳ); ε),

ε > 0 such that for each subsets I ⊆ I(x̄, ȳ) and J ⊆ { 1, 2, . . . , q }, the family of

gradient vectors

{∇ygi(x, y) | i ∈ I }
⋃
{∇yhj(x, y) | j ∈ J }

has the same rank for all (x, y) ∈ B((x̄, ȳ); ε)
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Remark

• It is well-known that, under an appropriate constraint qualification(e.g (MFCQ) or

(LICQ)[(LICQ) implies (MFCQ)]), if, ȳ is a local optimal solutions of l(x), then

the Karush-Kuhn-Tuker Condition(KKT) at x̄ with (ū, v̄) holds: i.e., ȳ ∈ K(x̄) and

(ū, v̄) ∈ Λ(x̄, ȳ).

• Let functions f , g and h be continuously differentiable on {x̄} × <m and ȳ be a

locally optimal solution with x = x̄.

(a) If (MFCQ) holds at ȳ, then Λ(x̄, ȳ) is a nonempty, convex compact set.

(b) If (LICQ) holds at ȳ, then Λ(x̄, ȳ) is a nonempty, singleton set.

(c) If the problem l(x) is partially convex and (MFCQ) holds at ȳ, then Λ(x̄, ȳ) is

not empty for any ȳ ∈ S(x), and Λ(x̄, ȳ) does not depend on ȳ ∈ S(x). Also

we have S(x) = { y ∈ K(x) | Λ(x̄, ȳ) 6= ∅ }.

Historical Note on Sensitivity Analysis and Stability Theory: Overview

Sensitivity and stability analysis has its origin in parametric nonlinear programming

which was pioneered by Fiacco and McCormick. Under the LICQ, the SCS and SOSC,

Fiacco and McCormick considered the KKT system of a parametric nonlinear problem

and employed the classical implicit function theorem to obtain the existence of a lo-

cally unique, F-differentiable solution function. See [23] for more details. Robinson [73,

and the reference therein] introduced the generalized equations and used them for the

study of parametric nonlinear problem. Among the prominent contributions in these



110

papers was the concept of a strongly regular solution of a generalized equation which has

dominated much of the research in this area since its introduction. This theory made

no use of the SCS required by Fiacco and McCormick. Thus the implicit function was

not F-differentiable but B-differentiable. Robinson’s work [73] and Kojimas’s fundamen-

tal paper [38] introduced the strongly stable stationary points of parametric nonlinear

programming problem and provide a complete characterization of such points under the

MFCQ and SOSC. For more details and development of sensitivity analysis and stability

theory, reader is referred to [8, 14, 17, 18, 23, 37, 40, 59, 73, 75, 95].
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Appendix B

Properties of Marginal Functions

Let K : <n ⇒ <m be a multivalued mapping and let f : <n × <m → < be a function.

We define so-called marginal functions (or optimal value functions) ν : <n → <
⋃
{±∞}

and µ : <n → <
⋃
{±∞} defined by,

ν(x) :=


inf{ f(x, y) | y ∈ K(x) } if K(x) 6= Ø

+∞, otherwise

and

µ(x) :=


sup{ f(x, y) | y ∈ K(x) } if K(x) 6= Ø

−∞, otherwise.

Together with we define the solution set mapping S,M : <n ⇒ <m by

S(x) := argmin{ f(x, y) | y ∈ K(x) }, and M(x) := argmax{ f(x, y) | y ∈ K(x) }.

Continuity of Marginal Functions

Proposition [51, Lemma 3.18]

1 Let the mapping K be lsc at the point x̄ and

(a) the function f be usc, then the function ν is usc at x̄;
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(b) the function f be lsc, then the function µ is lsc at x̄.

2 Let the mapping K be usc and uniformly bounded at the point x̄ and

(a) the function f be lsc, then the function ν is lsc at x̄;

(b) the function f be usc, then the function µ is usc at x̄.

3 If the mapping K is continuous and uniformly bounded at the point x̄ and the

function f is continuous, then the functions ν and µ are continuous at x̄.

Proposition[26, Theorem 3.3]

For l(x), suppose that f is continuous on N (x̄ )×<m , g and h are continuously differen-

tiable on N (x̄ )×<m . Also assume that K(x) is non-empty and uniformly compact near

x̄. Then µ(x) is continuous at x̄, provided that the MFCQ holds at ȳ ∈ K(x̄).

Lipschitz Properties of Marginal Functions

Proposition

[51] If the mappingK is Lipschitz continuous on the set Ω ⊂ <n (with Lipschitz constant

l1) and the function f is Lipschitz continuous on Ω×K(Ω) (with constant l2), then

the functions ν and µ are Lipschitz continuous on Ω with the constant l = (l1 +1)l2.

[26] For problem l(x), suppose that the functions f , g and h are continuously differen-

tiable on {x̄} and the set { (x, y) ∈ <n×<m | g(x, y) ≤ 0, h(x, y) = 0 } is nonempty

and compact as well as MFCQ are satisfied at all points (x, y) with y ∈ K(x̄). Then

the optimal value function ν(x) is locally Lipschitz continuous at x̄.
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The above compactness assumption can be replaced by the inf-compactness assumption.

Inf-Compactness Assumption: There exist a number α, a compact set C ⊂ <m,

and a neighborhood N (x̄ ) of x̄ such that ν(x̄) < α and the set { y | f(x, y) ≤

α and z is feasible for l(x) } ⊂ C for all x in N (x̄ ).

Proposition [33, Proposition 1] Suppose the inf-compactness assumption holds and

LICQ holds at each y ∈ S(x̄). Then the optimal value function ν(x) is Lipschitz

continuous near x̄.

We can further weaken the above assumption and obtain the Lipschitz continuity of value

functions.

Inner-Semicontinuous: Given a set valued mapping S : <n ⇒ <m and a function

µ : <n → <̄, we say that S is µ-inner-semicontinuous at (x̄, ȳ) ∈ gphS if for

any sequence xk
µ−→ x̄, there is a sequence yk ∈ S(xk) that contains a subsequence

converging to ȳ.

Inner-Semicompact: Given a set valued mapping S : <n ⇒ <m and a function

µ : <n → <̄, we say that S is µ-inner-semicompact at x̄ with S(x̄) 6= ∅ if for

any sequence xk
µ−→ x̄, there is a sequence yk ∈ S(xk) containing a convergent

subsequence.

See [61, Theorem 5.2] for Lipschitz continuity of the marginal function under the above

inner semicontinuity assumption.
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Convexity of Optimal Value Function

convex: The point-to-set mapping R : <n ⇒ <m is called convex on a convex set

S ⊂ <n if the set gph R ∩ (S × <m) is convex, or equivalently if for all x1, x2 ∈ S

and λ ∈ (0, 1), one has λR(x1) + (1− λ)R(x2) ⊂ R(λx1 + (1− λ)x2).

essentially convex: We introduce a slight extension of the previous notion and call

R : <n ⇒ <m essentially convex on a convex set S ⊂ <n if for all x1,x2 ∈ S,

x1 6= x2, and λ ∈ (0, 1), one has λR(x1) + (1− λ)R(x2) ⊂ R(λx1 + (1− λ)x2).

It is clear that if R is convex on S, then it is essentially convex on S. Also a convex map

R on S is convex-valued on S, i.e., its value R(x) at x ∈ S is a convex set.

Proposition: [24, Proposition 2.1] Consider the general parametric optimization prob-

lem l(x). If f is jointly convex on the set { (x, y) | y ∈ K(x), x ∈ Ω}, K is essentially

convex on S, and Ω is convex, then µ is convex on Ω.

Concavity of Optimal Value Function

Definition: The point-to-set mapping R : <n ⇒ <m is called concave on a convex set

S ⊂ <n if the set gphR ∩ (S × <m) is concave, or equivalently if for all x1, x2 ∈ S

and λ ∈ (0, 1), one has λR(x1) + (1− λ)R(x2) ⊃ R(λx1 + (1− λ)x2).

Proposition [24, Proposition 3.1] Consider the general parametric optimization problem

(Px). If f is jointly concave on <n × Ω, K is convex on S, and Ω is a convex set,

then µ is concave on Ω.
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Appendix C

Properties of Feasible Sets and Solution Sets

Continuity of Set-Valued Mappings

(B-l.s.c) A set valued mapping S : X ⇒ Y is called lower semicontinuous at x̄ in the

sense of Berge (B-l.s.c) if for any open set V ⊂ Y such that V ∩ S(x) 6= ∅, there

exists δ > 0 such that for every x ∈ B(x̄, δ), S(x) ∩ V 6= ∅. Or equivalently,

S(x̄) ⊂ lim inf
x→x̄

S(x), where

lim inf
x→x̄

S(x) := { y ∈ Y | ∀xk → x̄, ∃yk : yk ∈ F (xk), k = 1, 2, . . . , yk → y}.

(H-l.s.c) A set valued mapping S : X ⇒ Y is called lower semicontinuous at x̄ in

the sense of Hausdorff (H-l.s.c) if for all ε > 0 there exists a δ > 0 such that

S(x̄) ⊂ S(x) + εB for all x ∈ x̄+ δB.

(B-u.s.c) A set valued mapping S : X ⇒ Y is called upper semicontinuous at x̄ in

the sense of Berge (B-u.s.c) if for any open set V ⊂ Y satisfying S(x̄) ⊂ V ,

there exists δ > 0 such that, for every x ∈ B(x̄, δ), S(x) ⊂ V . Or equivalently,

lim sup
x→x̄

S(x) ⊂ S(x̄), where

lim sup
x→x̄

S(x) := { y ∈ Y | ∃xk → x̄, ∃yk : yk ∈ F (xk), k = 1, 2, . . . , yk → y}.
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(H-u.s.c) A set valued mapping S : X ⇒ Y is called upper semicontinuous at x̄ in

the sense of Hausdorff (H-u.s.c) if for all ε > 0 there exists a δ > 0 such that

S(x) ⊂ S(x̄) + εB for all x ∈ x̄+ δB.

Remark

• If S is B-u.s.c at every point x ∈ X, then it is called a closed mapping. As can be

easily proved, the closedness of mapping S is equivalent to the closedness of gphS

in X × Y .

• From the definitions it follows that if S is H-l.s.c at x̄ then S is B-l.s.c at x̄.

Proposition Let the multivalued mapping S : X → CS(Y ) be uniformly bounded at

the point x̄, where CS(Y ) denote the family of all non-empty compact subsets of

the space Y . Then the mapping S is H-l.s.c (H-u.s.c) at the point x̄ if and only if

it is B-l.s.c (B-u.s.c) at this point.

For more detail see [36], [51], and references therein.

Properties of Feasible Sets

Proposition

• If functions g and h are continuous on {x̄} ×<m, then the constraint map K(x) is

a closed map at x̄.

• [79, Remark 6.3.1] Suppose that the functions g and h are continuous on {x̄}×<m

and h is continuously differentiable in y on N (x̄ ) × <m , where N (x̄ ) is a neigh-
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borhood of x̄. Also assume that the rank ∇yh(x̄, y) = q for any y satisfying

h(x̄, y) = 0 and K(x̄) 6= ∅, and clK−(x̄) = K(x̄), where K−(x̄) = { y ∈ Y |

g(x, y) < 0, h(x, y) = 0 }. Then the constraint map K(x) is continuous at x̄.

• Let the multivalued mapping K be nonempty, convex and uniformly bounded at

the point x̄. Then K is Lipschitz continuous in a neighborhood of x̄.

Definition: (Uniformly Compactness) The set valued mapping K : <n ⇒ <m is

said to be uniformly compact near x̄ ∈ <n, if for any x̄ ∈ <n, there exist a ball

B(x̄, ε) = {x ∈ <n |‖ x−x̄ ‖≤ ε }, such that cl(∪{K(x) | x ∈ B(x̄, ε) }) is compact.

Proposition [26, Proposition 3.1] Let K is uniformly compact near x̄ ∈ <n. Then K is

closed at x̄ if and only if K(x) is compact and K is upper semicontinuous at x̄.

Definition: (Quasimonotonic) The function φ is called quasimonotonic on a convex

set M ∈ <n, if φ is both quasiconvex and quasiconcave on M , i.e., if the sets

E(α) = {x ∈M | φ(x) = α } are convex for all α ∈ <̄.

Proposition [24, Proposition 2.3] Let K(x) = { y ∈ Y | g(x, y) ≤ 0, h(x, y) = 0 }. If

g is jointly quasiconvex on Y × Ω, h is jointly quasimonotonic on Y × Ω, and Y

and Ω are convex sets, then K is convex on Y .

Properties of Optimal Solutions Map

Proposition

[79, Theorem 6.3.5] If f is continuous on {x̄} × <m, and if K(x̄) is continuous map at

x̄, then S(x̄) is a closed map at x̄.
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[79, Theorem 6.3.4] If f is continuous on {x̄}×<m, and if K(x̄) is a nonempty compact

set, then S(x̄) is a nonempty compact set.

Proposition [51]

• Let the multivalued mapping K be continuous and uniformly bounded at the point

x̄, and let the function f be continuous. Then the mappings S(·) and M(·) are usc

at x̄.

• Let the multivalued mapping K be usc at the point x̄, let ν be usc at x̄ (µ be lsc

at x̄ resp.) and f be lsc.(usc., resp.). Then the mappings S(·) and M(·) are usc at

x̄.

• [8, Theorem 4.3] If the set K(x) = { (x, y) ∈ <n ×<m | g(x, y) ≤ 0, h(x, y) = 0 }

is non-empty and compact, then S(x) 6= ∅ as well as Sloc(x) 6= ∅ are compact sets

for each x ∈ { z | K(x) 6= ∅ }. In addition if MFCQ is satisfied, then S(x) is usc.

Proposition [36]

Let U(A, ε) := {x ∈ X | ∃ a ∈ A, ‖a−x‖ < ε } and let us make the following assumption.

Assumption (H1): for any ε > o there exists α > 0 and δ > 0 such that for all x ∈ B(x̄, δ)

and y ∈ ∆(x, ε) := (K(x)− U(S(x), ε)), one has f(x, y) ≥ ν(x) + α.

• Suppose thatK(·) is uniformly closed, bounded, and nonempty near x̄. Also assume

that K(·) is B-l.s.c at x̄. Then S(·) is H-l.s.c at x̄ if and only if (H1) holds.

• Suppose that the lower level problem (lx) is partially convex for every x ∈ Ω and the
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Slater conditions holds at x̄. Also assume that K(·) is uniformly closed, bounded

and nonempty near x̄. Then S(·) is H-l.s.c at x̄ if and only if (H1) holds.

For more details reader is referred to [36], [93], and the references therein.

Proposition [8]

• For convex parametric optimization problems, S(x) is closed and convex, but pos-

sibly empty. Also gphS need not be convex; see [13, pp:58-59].

• Consider the problem l(x). If MFCQ is satisfied at each point (x, y) with y ∈

Sloc(x), then S(x) ⊂ Sloc(x) ⊂ { y ∈ K(x) | Λ(x, y) 6= ∅ }. The equality hold,

i.e., S(x) = { y ∈ K(x) | Λ(x, y) 6= ∅ }, if in addition Px is a convex parametric

optimization problem.

Lipschitz Property and Coderivative of Feasible set map and Solution set Map

The reader is referred to [59] and [75] for the Lipschitz property of solution set map and

the coderivative constructions.

Definition (strict derivative [75])

For a mapping M := <n ⇒ <m, the strict derivative mapping D∗M(x̄, ȳ) : <n ⇒ <m for

M at x̄ for ȳ, where ū ∈M(x̄), is defined by

D∗M(x̄, ȳ)(u) := { z |∃τn ↓ 0, (xn, yn) −→
gphM

(x̄, ȳ), un → u,

with zn ∈ [M(xn + τnun)− yn]/τn, zn → z }
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When the multifunction happens to be a Lipschitzian mapping ỹ : <n → <m near x̄, the

strict derivative at x̄ is written as D∗ỹ(x̄) and can be obtained by

D∗ỹ(x̄)(w) =

{
z | ∃xn → x̄, τn ↓ 0 with

F (xn + τnw)− F (xn)

τn
→ z

}

For Lipschitzian mapping ỹ, single-valuedness of the strict derivative mappingD∗ỹ(x̄) cor-

responds to the classical notion of strict differentiability (hence the name “strict derivative

mapping”), and for continuously differentiable mappings, the strict derivative coincides

with the Jacobian.

Most practical questions can be reduced to problems of largest and smallest

magnitudes...and it is only by solving these problems that we can satisfy the

requirements of practice which always seeks the best, the most convenient.

∼ P.L. Čebyšew
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Bilevel programming problems are of growing interest both from theoretical and prac-

tical points of view. These models are used in various applications, such as economic

planning, network design, and so on. The purpose of this dissertation is to study the pes-

simistic (or strong) version of bilevel programming problems in finite-dimensional spaces.

Problems of this type are intrinsically nonsmooth (even for smooth initial data) and can

be treated by using appropriate tools of modern variational analysis and generalized dif-

ferentiation developed by B. Mordukhovich.

This dissertation begins with analyzing pessimistic bilevel programs, formulation of

the problems, literature review, practical application, existence of the optimal solutions,

reformulation and related to the other programming. The mainstream in studying op-

timization problems consists of obtaining necessary optimality conditions for optimality,

and the main focus of this dissertation is to obtain necessary optimality conditions for

pessimistic bilevel programming problems. Optimality conditions for the optimistic ver-
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sion of bilevel programming are extensively discussed in the literature. However, there

are just a few papers devoted to the pessimistic version of bilevel programming problems

and most of these papers concern the existence of optimal solutions. This dissertation

is devoted to establish, by a variety of techniques from convex and nonsmooth analysis,

several versions of first order necessary and sufficient optimality conditions for pessimistic

bilevel programming problems.

To achieve our goal, we first use the implicit programming techniques, and depending

on the continuous, Lipschitz, and Fréchet differentiable selections, we obtain necessary

optimality conditions. The value function technique plays a central role in sensitivity

analysis, controllability, and even in establishing necessary optimality conditions. We

consider constructions or estimations of the subdifferential of value functions and come

up with the optimality conditions using minimax programming approach treating the

cases: convex data, differentiable (strict) data, and Lipschitz data separately. We also

use the duality programming approach and obtain optimality conditions extending the

convex case to the nonconvex case. In the last chapter, we produce the necessary opti-

mality conditions for pessimistic bilevel programming with the rational reaction (optimal

solutions set of the lower level problem) set of finite cardinality, but not singleton. We

present then some classes of pessimistic bilevel programs for which there are finite rational

responses.
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