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CHAPTER 1 INTRODUCTION

The problem of no-shows and appointments cancellation (individuals who do not arrive for
or cancel their scheduled appointments) cause significant disturbance on the smooth operation of
almost all scheduling systems [Bech 2005; Moore et al. 2001]. While the reasons for these no-
shows, and cancellations might vary from previous experience to personal behaviors, several
practitioners and researchers have often neglected this important realistic aspect of the
scheduling problem. This thesis, considers the problem of effective scheduling by predicting
such disturbances accurately from the historical data available and incorporating them into
scheduling using a novel optimization model. Specifically, the applicability and usefulness of the
proposed work is demonstrated on healthcare data collected from a medical center. Due to the
vast amounts of cost and resources involved in medical healthcare centers, such disturbances can
incur losses of hundreds of thousands of dollars yearly [Bech 2005; Hixon et al. 1999; Rust et al.
1995; Barron 1980]. Such disruptions not only cause inconvenience to the hospital management
but also has a significant impact on the revenue, cost and resource utilization for almost all the
healthcare systems. Hence, accurate prediction of no-show and cancellation probabilities and
incorporating them into the scheduling system is a cornerstone for any non-attendance reduction
strategy [Cayirli and Veral 2003; Ho and Lau 1992; Cote 1999; Hixon et al. 1999; Moore et al.

2001].

In this research, a hybrid probabilistic model is developed to predict the probability of no-
shows and cancellations in real-time using logistic regression and Bayesian inference. In
addition, a novel optimization model which can effectively utilize no-show probabilities for
scheduling patients is also developed. The proposed prediction model uses both the general

social and demographic information of the individuals and their clinical appointments attendance



records, and other variables such as the effect of appointment date, and clinic type. In the mean
time, the scheduling model considers both scheduled and unscheduled patients (walk-in patients)
simultaneously. It also formulates the effect of patients’ overflow from one slot to another. In
addition, it takes into account the effect of patients’ assignment to undesired appointment time

on no-show/cancellation probability.

The result of the proposed method can be used to develop more effective appointment
scheduling [Chakraborty et al. 2010; Glowacka et al 2009; Gupta and Denton 2008; Hassin and
Mendel 2008; Liu et al. 2009]. It can also be used for developing effective strategies such as
selective overbooking for reducing the negative effect of disturbances and filling appointment
slots while maintaining short waiting times [Laganga and Lawrence 2007; Muthuraman and

Lawley 2008; Zeng et al 2010].

The organization of this thesis is as follows: the rest of this chapter discusses the relevant
background and preliminaries of this research. Chapter 2 describes the proposed models for
predicting disturbances in appointment scheduling and the results of applying the proposed
models on data collected from a medical healthcare center. Chapter 3 presents the proposed
optimization models for effective appointment scheduling in the presence of disturbances along
with two simulated numerical examples. Finally, chapter 4 concludes our work and presents

some future extensions of this study.

1.1. Relevant Background

There are wide varieties of techniques that can be used for the estimation of no-show and
cancellation probabilities. First, the factors that can affect no-shows and cancellations are briefly

discussed. Next, some of the related quantitative methods studied in this domain are presented.



1.1.1. Factors Affecting No-Shows and Cancellations

There have been a few studies that discussed the effect of patients’ personal information
such as age, gender, nationality, and population sector on the no-show and cancelation
probabilities [Bean and Talaga 1995; and Glowacka 2009]. Some researchers have also
investigated the relationship between no-show probability and factors related to the previous
(appointments) experience of the person such as number of previous appointments, appointment
lead times, waiting times, appointment type, and service quality [Cynthia et al 1995; Garuda et
al. 1998; Goldman et al 1982; Dreihera et al. 2008; Lehmann et al. [2007]. A few studies also
considered the effect of personal issues such as overslept or forgot, health status, presence of a
sick child or relative, and lack of transportation on missing appointments [Campbell et al 2000;
Cashman et al. 2004]. This study will consider many of these factors in our proposed model and
also consider the effect of personal behavior such as previous appointment-keeping pattern as

discussed in [Dove and Karen 1981] in predicting no-shows.

1.1.2. Population based Models

Population based techniques mainly use a variety of methods drawn from statistics and
machine learning which can be used for predicting no-shows and cancellations [Dove and
Schneider 1981]. These methods use the information from the entire population (dataset) in the
form of set factors, in order to estimate the probability of no-show, cancellation and show-up.
Logistic regression is one of the most popular statistical methods in this category that is used for
binomial and multinomial regression, which can predict the probability of disturbances by fitting
numerical or categorical predictor variables in the data to a logit function (Hilbe [2009]). There

has been some work using tree-based and rule-based models which create if-then constructs to



separate the data into increasingly homogeneous subsets, based on which the desired predictions
of disturbances can be made [Glowacka et al. 2009]. The problem with these population based
methods is that although they provide a reasonable estimate, they do not differentiate between
the behaviors of individual persons, and hence cannot update effectively especially while using
small datasets. Another problem with these methods is that once the model has been built adding
new data has minor effect on the result especially when the size of initial dataset is much larger
compared to the size of the new data. In chapter 2, we compare some of above methodologies

with our proposed approach on real-world patient scheduling data.

1.1.3. Individual based Models

Individual based approaches are primarily time series and smoothing methods that are used
for predicting the probability of a disruption in an appointment. These methods utilize past
behaviors of individuals for the estimation of future no-show and cancellation probability. Time
series methods forecast future events such as no-shows and cancellations based on the past
events by using stochastic models. There are different types of time series models; the common
three classes amongst them are: the autoregressive (AR) models, the integrated (I) models, and
the moving average (MA) models. These three classes depend linearly on previous data
[Brockwell 2009]. Combinations of these ideas produce autoregressive moving average (ARMA)
and autoregressive integrated moving average (ARIMA) models. Smoothing is an approximating
function that attempts to capture important patterns in the data, while leaving out noise or other
fine-scale structures and rapid phenomena. Many different algorithms are used in smoothing.
Some of the most common algorithms are the moving average, and local regression [Simonoff
1996]. Bayesian inference is a method of statistical inference in which some kind of evidence or

observations are used to update its previously calculated probability such as improving the initial



estimate of disturbances probabilities [Bolstad 2007]. To use Bayes’ theorem, we need a prior
distribution g(p) that gives our belief about the possible values of the parameter p before
incorporating the data. The posterior distribution is proportional to prior distribution times

likelihood f (y|p):

glply)ecglp)x f(y|p) (1-1)

If the prior is continuous, the posterior distribution can be calculated as follows:

g@Xf(yIp)
—_— 1-2
Jy 9@)%f(yIp)dp (1-2)

g(ly) =

While individual based methods are fast and effective in modeling the behavioral (no-show)
pattern of each individual, and work well with a small dataset, they do not use the predictive
information from the rest of the population and hence do not provide a reliable initial estimate of

no-show and cancellation probabilities which is especially important in our problem. In chapter

2, the performance of some of above methods will be compared with the proposed work.

As described above, each of population based and individual based approaches have some
advantages and disadvantages. However, none of the studies in the literature have considered
using these methods together in order to overcome their problems and improve their
performance. In chapter 2, a hybrid probabilistic model will be developed that combines logistic
regression as a population based approach along with Bayesian inference as individual based
approach for no-show and cancellation prediction. To demonstrate its effectiveness, the proposed
model will be compared to the representative algorithms from both population based and

individual based approaches



1.2. Preliminaries

This Section introduces some of the preliminaries required to comprehend the proposed

algorithm. First the notations used in the study are described. Next, some basics about logistic

regression, Beta and Dirichlet distributions as the vital components of the proposed model are

explained. Finally, more details about Bayesian update of Beta and Dirichlet distributions as the

main procedure of the proposed algorithm for modeling the individual’s behavior are provided.

1.2.1. Notations Used for the Probability of Disturbance Prediction Model

Table 1 describes the notations used for the proposed prediction model.

Table 1: Notations used for the proposed prediction model

Description
Notations
ijk Indices of individual (i = 1, ...n), appointment no. j (j = 1, ...,]), and attendance record of
typek (k=0,...,K)
De¢; Database of each individual’s personal information
Dyr Database of appointment information and attendance records of each person
F(X;,By) | Logistic regression model
By Vector of logistic regression parameters for attendance record of type k (By =
[Bro: Bicrs -+ » Bra)
Xij Factors affecting probability of attendance of person i for appointment j (independent
variables in the logistic regression model),(Xl-j € Dg;VDyg, Xij = [xijo,xl-jl, . .,xiﬂ,])
Y;j Person i attendance type for appointment j (No-show, cancellation, show-up)
Do, Initial estimate for probability of attendance of type k for person i
( leOS’ 5_05 Beta distribution posterior parameters of person i probability of attendance for appointment
J
pModel Estimated probability of attendance by the model
pEmMP Real (empirical) probability of attendance
w; Weight for Appointment j
T Threshold for convergence of the objective function
D Improvement in the objective function at each iteration ( Ap —valueygirq F_test)
LG Logistic regression model




1.2.2. Binomial and Multinomial Logistic Regression

Logistic regression is a generalized linear model used for binomial regression, which
predicts the probability of occurrence of an event by fitting numerical or categorical predictor

variables in data to a logit function [Agresti 2002]:
logit(p) = log(p/1 - p) (1-3)
where 0 < p <1 and (p/1 - p) is the corresponding odds. The logistic function can be written as:

1
p= 1+e*(ﬂo+ﬂlxl+~-»+ﬂkxk)

(1-4)
where p represents the probability of a particular outcome. Given the set of explanatory
variables and unknown regression coefficients /,(O <j< k) can be estimated using maximum

likelihood (MLE) methods common to all generalized linear models [Hilbe 2009].

Multinomial logistic regression is a generalization of the binomial model used when

the dependent variable follows a multinomial distribution. The model then takes the form:

_ exp(XByg) _
P, = —1+Z’;f=oexp(XBk)' =12,..,K

: (1-5)

Ph=—F7
0™ 143K exp(xBy)

where P, is the probability of k™ event and X is the vector of explanatory variables. The
unknown vector of parameters B is typically estimated by the maximum a posteriori (MAP)

estimation, which is an extension of maximum likelihood using regularization of the weights

[Agresti 2002].



1.2.3. Beta and Dirichlet Distributions

Beta distribution: Beta (a, ) represents a family of common continuous distributions

defined on the interval [0,1] parameterized by two positive shape parameters, typically denoted
by « and g with probability density function:

flx e, pB)= %x“”(l—x)‘” (1-6)

where T'is the gamma function, and T'(« + #)/T'(a)I' () is a normalization constant to ensure
that the total probability integrates to unity. The beta distribution is the conjugate prior of the
binomial distribution. From the Bayesian statistics viewpoint, a Beta distribution can be seen as
the posterior distribution of the parameter p of a binomial distribution after observing a —1
independent events with probability p and g -1 with probability 1— p, if there is no other
information regarding the distribution of p [Evans et al. 2000].

Dirichlet distribution (denoted by Dir(a)) is the generalization of beta distribution to a
family of continuous multivariate probability distributions parameterized by the vector a of
positive reals. The Dirichlet distribution of order K > 2 with parameters a4,..., ax > 0 has
a probability density function with respect to Lebesgue measure on the Euclidean space RX~1
given by [Evans et al. 2000]:

1

-1
s k=1 v (1-7)

f()/1i"'y1(i Ay, ""aK) =

forall y,,...,v, > 0 satisfying >X ¥ < 1 (our work incorporates K = 3 which is based on the
number categories: no-show, cancellation, and show-up). The density is zero outside
this open (K — 1)-dimensional simplex. The normalizing constantis the multinomial beta

function, which can be expressed in terms of the gamma function:



K r
B(a) = %a = (ay, ..., ax) (1-8)

Dirichlet distribution is the multivariate generalization of the beta distribution (multinomial
distribution), and conjugate prior of the categorical distribution and multinomial distribution in
Bayesian statistics. That is, its probability density function returns the belief that the probabilities

of K rival events given that each event has been observed a; — 1 times.

1.2.4. Bayesian Update of Beta and Dirichlet Distributions

In Bayesian statistics, a Beta distribution [Bolstad 2007] is a common choice for updating a

prior estimate of the Binomial distribution parameter p because:

1. A Beta distribution is the conjugate prior of a Binomial distribution (See Section 1.2.3).

2. Unlike a Binomial distribution, a Beta distribution is a continuous distribution, which is

much easier to work with in terms of inference and updating.

3. A Beta distribution has two parameters, which allows it to take different shapes, making

it suitable for representing different types of priors.
If Beta(a,p) is used as a prior, based on the conjugacy property of Beta distribution, the
posterior would be a new Beta posterior with parameters a'=a+y and f'= f+n—y. In other
words, Beta distribution can be updated simply by adding the number of successes yto « and

the number of failures n—y to f§:

g(ply)~ Beta(a+y,x+n-y) (1-9)
_ T+a+p) et (y | \rmyepe 1-10
g(p|y) F(y+a)F(n—y+,B)p (1 p) ( )
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As discussed earlier, individual-based approaches like empirical Bayesian inference will not
be able to provide an initial estimate of the prior distribution. Hence, before applying the

Bayesian update, the parameters of the prior distribution should be initialized.

[Bolstad 2007] suggests choosing parameters that match the belief about the location (mean)
and scale (standard deviation) of the original distribution. Hence, if an initial guess of parameter
p is available, which in our study can be obtained from population-based approaches such as
logistic regression, Beta distribution prior parameters can be computed by solving the following

system of Equations for ¢ and f.

b= a

atp 1-11

pi(l_pi): pi(l_pi) ( )
n a+p+1

The point estimate of the posterior parameter p of the binomial distribution would be the

mean of Beta distribution of the updated Beta distribution.

a+pf

Similarly, Dirichlet distribution is a regular option for updating prior estimate of
Multinomial distribution parameters a = (@, ..., ax). To use Bayes’ theorem, we need a prior
distribution g(ap”) that gives our belief about the possible values of the parameter vector

a = (ay, ..., ag) before incorporating the data.

Based on earlier discussion on Dir(a) ,a = (a4, ..., @) can be used as prior density, which
results in a new Dirichlet posterior with parameters vector aios = a,fri + Yi, where yy, is the
number of occurrences of each category in the incorporated data. In other words, Dirichlet

distribution can be updated simply by adding the new occurrence number of each category to the

prior parameters ay:
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T(ZK_, ye+ay)

K agtyr—1
T Toeran) [Ti=1vx (1-12)

glaly) =

Yrtag

——* ——  with variance:
Zlk(=1 Yk‘l'zlk(=1 ag

The posterior mean would then be E (ay |y, ..., V) =

Or+a)(Shoy vt ey ) -k+an))

(Z§<(=1 Vit z:Ik(=1 “k)z(zlk(ﬂ Vit z:Ik(=1 “k+1)>

Var(aklylf""yl() = < (1'13)

For choosing an extended version of the procedure used for Beta distribution can be applied

by letting a,fri = P, ; where P, is the output of the multinomial logistic regression. As an
alternative to above procedure, several researchers [Leonard 1973; Aitchison 1985; Goutis 1993;
Forster and Skene 1994] proposed using a multivariate normal prior distribution for multinomial

logits.

1.2.5. Hotelling's T? Distribution

In statistics, Hotelling's T2 statistic [Evans et al. 2000] is a generalization of Student's -
statistic that is used in multivariate hypothesis testing. Hotelling's T? statistic is defined as

follows:

t2 =n(p— ) W(p - i) (1-14)

where n is a number of points (see below), p is a column vector of K elements and W'is ap X
p sample covariance matrix. If p~Ng(u,V) is a random variable with a multivariate Gaussian
distribution and W~Wy(V,n — 1) (independent of p) has a Wishart distribution with the same
non-singular variance matrix V and n — 1, then the distribution of t? is, Hotelling's T? with

parameters K and n, where F representing F-distribution:

t?~Fyn-x (1-15)
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T?distribution can be used for pairwise comparison of the mean of two sets of

multidimensional data H,: up = 0 against Hy: yup # 0, e.g. estimated and empirical probabilities

n—K

of patient attendance. Above hypothesis can be tested using F-statistic oy t2~Fp'n_p where
t? = nPpSp, " P, where and Sp,, is calculated as follows:
1 5 5\
Spp =73 iy (Po, = Pp)(Pp, — Pp) (1-16)

5 _1lyn Emp _ ~Model Emp _ ~Model ] :
Also Pp —;Zi=1 Pp; where Pp; « [pu — P el — Pig ]1s the vector of

pairwise differences between person i empirical and estimated probabilities for type k €

(1, ..., K) attendance, e.g. probabilities of no-show, cancellation and show-up.
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CHAPTER 2 PREDICTING DISTURBANCES IN APPOINTMENT
SCHEDULING THROUGH HYBRID PROBABILISTIC MODELING

2.1. The Proposed Algorithm for No-Show Prediction

Algorithm [ illustrates the flow of the steps taken by the proposed approach for estimating no-
show probability which can be categorized in three stages:

1. Initial no-show probability estimation
2. Bayesian update of the no-show estimate

3. Weight optimization

Algorithm 1: No-show Prediction Algorithm

Input: Input data (X ijr Yi j), Threshold parameter T

Output: Estimated no-show probability pM°9¢!, Beta distribution posterior parameters(ag-os, 505),
Logistic regression estimated parameters B

Procedure:

1 /* Logistic regression™®/
2 B « Calculate MLE of Equation (1.4) parameters
3 oYy = 1UXy) < F(Xi; B)
4 (alp”,ﬁipn) «Solve system of Equation (1-11) with py;(Y; = 1]|X;)
5 /*Weight optimization™/
m Vi
6 AReal J=
G — |
7 Until Equation (2-1) improvement D < T do
8 W; «<set a value for appointments weights
9 /*Bayesian update */
10 it
et cat+ Y ([Twna )t
,1 \wew
ij-1
e entre = 3 (o )
i1 kew
AModel a?jos

RN et i

n
12 P Z(ﬁlg\/lodel — pReat) /n

i=1

. R 2 . R 2
I3 ?=1(leodel _ leeal) _ [(Z?:l pModel _ leeal)) /n]
Sp «

_ n—1

14 to < P/Sp/\n

15 Return pModel
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In the first stage, based on the dataset of individuals’ personal information (Dg;), (such as
gender, marital status, etc.) and their sequence of appointment information (e.g. previous

attendance records (Dyg)), a logistic regression model F (Xl- f?) is formulated (/ine 2). Then,

j»
using logistic regression, an initial estimate of no-show probability is calculated, given by
Poi(Y; = 1|X;). As discussed in Section 1.1.2, Logistic regression bundles the information of the
complete population together and finds a reliable initial estimate of no-show (py;).

In the second stage, which is interlaced with the third stage, the initial estimate is used in a

Bayesian update procedure to find the posterior no-show probability for each person. For this
purpose, Py; is transformed into prior parameters of a Beta distribution (afm, ﬁip ri) as shown in
line 4. Next, using the attendance record of each person (Yi j) the posterior parameters

(aP?, BP**) and posterior probability of no show pM°4€l is calculated (lines 10 and 11). As
discussed in Section 1.1.3, the reason Bayesian update procedure is applied to the output of
logistic regression is that, typically regression models cannot consider individual patients
behavior. Also, updating regression parameters based on new data records is both difficult and
only marginally effective (especially when the model is already constructed on a huge dataset) in
comparison to Bayesian update.

In the third stage, appointments are weighted based on on a subset of factors W= [wy, ..., w,]
(line 8) to increase the model performance in estimating the real probability of no-show. An
optimization procedure is used for finding the optimal value of the weights. The objective

function of the model is to minimize the difference between the real and model estimated

probability of no-show:
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N
N

J+ p(t0 >t J
,n—1 ,n—1

ST: (2-1)
Wees W, € (0,1)

max p — valuepm.,,edf,fm = p(t0 < —t

® |
© |

Where wy, ..., w,, are the weights to be optimized and p — valueygirg ¢—tes: 1S the p-value of a
two sided statistical hypothesis testing of the paired estimated p using the model and estimated p

using the attendance records:

H : Model _ Re al Datal
0o-Pp Pp (2-2)
I_[1 . p glodel % p gc al Datal

It should be noted that the mean squared error (MSE) can also be used as the objective
function. However, t-statistics which is used above not only contains MSE in itself (Sp in the
denominator of t statistics is a linear function of MSE) (line 14), but also has a statistical

distribution which makes it better choice for our optimization model.

In (2-1), ta, _, is the percentage of points or value of 7 random variables with n-/ degrees of
>

freedom such that the probability that t,,_; exceeds this value is a, and t, = sl/.;\/ﬁ where
P

P =3 (pModel — pReal) /n and Sp is calculated as follows:

2:1:1 (f?iMndel B [")iReal )2 _ |:(Zlnl (}5 ;\@del . [A)I_Real ))2 /n:l

S, = 2-3
» o (2-3)

m
Yj=1Yij
m—-1+1’

Where pRe4 is the real rate of no-show for person i calculated as pRe® «

with Y;; as a
binary (random) variable representing records of no-show/show of patient i for appointment ;.

Here, [/ is the index of first appointment in the validation dataset which is discussed shortly, and

m is the total number of appointments in the validation dataset for patient i. Also pM°%e! is the
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estimated no-show probability calculated based on weighted appointments using the proposed

model.

The optimization procedure is as follows: at every iteration, a vector of weights is assigned to
the appointments in validation dataset (/ine 8). The weighted appointments are then plugged into
the Bayesian update mechanism for estimating the probability of no-show (lines 10 and 11).
Next, the estimates of the proposed model and real attendance records are compared by forming
a t- statistic (lines 12 to 14) and the p-value of the paired t-test which shows the goodness of the
assigned weights, is used for improving the initial set of weights (line 7) . This procedure

Model

continues until no improvement is observed. Then, the p of the iteration resulted in the best

value of objective function is used as the no show estimate.

2.2. Experimental Results

Here the proposed method is evaluated based on a healthcare dataset of 99 patients at the
Veteran Affairs (VA) Medical Center in Detroit. The dataset includes the following data from
patients’ personal and appointment information: (1) sex, (2) date of birth (DOB), (3) marriage

status, (4) medical service coverage, (4) address (zip code), (5) clinic and (6) attendance record.

This Section is organized as follows: first data processing is discussed. Next, a stylized
example for one patient is presented to show how the model works. Finally, the results of
applying the model to the dataset is discussed using two types of analysis: one by defining

training, validation and test dataset on patients, and one on appointment time.

2.2.1. Data Preprocessing

The data attributes in the dataset should be preprocessed before being used in the model. This

includes: coding, dealing with missing attributes, and co-linearity elimination. Besides, because
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of the variety of clinics (more than 150 in our case), if this explanatory variable gets directly

used in the model, the accuracy of the logistic regression will be severely affected.

Such problem can be addressed by clustering similar clinics respect to their no-show rate.
While various types of clustering algorithms can be used for this purpose, since the clinics are
originally different in type, grouping them into a set of clusters will result in clusters with
different density and dispersion. Such characteristics can be effectively considered using

Generalized Mixture Models (GMM) [Alpaydim 2010].

Figure 1(a) illustrates the histogram of clinics’ no-show probability and Figure 1 (b) shows
the result of clustering the clinics based on their no-show probability using GMM. The final

result which is four clusters has been verified by a team of experts.
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Figure 1: (a) The histogram of clinics no-show probability, (b) The result of clustering the
clinics based on their no-show probabilities

Also, (1) appointment recency, (2) appointment closeness to non-working days (Saturday,
Sunday, and holidays), and (3) clinic cluster, are considered as weighting factors (W =
[wi, w,, w3]). Regarding the first factor, it is reasonable that no-show records that occurred long

time ago do not carry the same weight as recent no-shows. This is based on the fact that patients

may gradually or abruptly change their behavior, which should be reflected in the model.
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Regarding the second and third weighting factors, the study of data revealed a strong correlation

among no-show rate and days close to holidays and clinic clusters.

The weights discussed above are arranged in a special data structure before being applied to
the data. For the appointment recency where more importance should be assigned to the recent
appointments a logarithmic time framework with five weights is considered. For the appointment
closeness to non-work days two weights are applied: one for Monday to Thursday and one for
Friday and days before holidays. Finally, for clinics cluster, based on the groups derived using
GMM, four weights are defined. Table 2 shows the final data structure and optimal value of the

weights which is gained by solving Equation (2-1) using Genetic Algorithm (GA) algorithm.

Table 2: Data structure for the weighting factors

. closeness to non- L
Appointment recency work days Clinic cluster
<1 <1 <3 6< >6 Not- Before Very Not
wk mon mon mon mon before holiday | important | " | °° | important
' ) ' ' ’ holiday
1 1 1 0.95 0.9 1 925 1 0.75.

2.2.2. Applying the Proposed Model to a Sample Patient

Here the procedure of no-show probability estimation for a randomly selected patient is
explained. The selected patient is male, born on 02/5/1978, never married, degree of medical
service coverage less than 5% with zip code 48235. Table 3 shows his appointment information
as patterns of show/no-show from 10/13/2009 to 12/31/2009 (training dataset). Note that no-

shows are represented by 1 while shows are represented by 0.
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Table 3: Attendance record of a sample patient

1 10/13/2009 1 0
2 10/29/2009 1 1
3 11/10/2009 0 0
4 11/17/2009 1 1
5 12/2/2009 2 1
6 12/8/2009 1 0
7 12/9/2009 2 0
8 12/23/2009 1 0
9 12/23/2009 1 1
10 12/29/2009 1 0
11 12/31/2009 0 1

Using patient personal and appointment information as well as the attendance record, the

parameters of the fitted logistic regression model are calculated in Table 4.

Table 4: A sample logistic regression model fitted to the dataset

Marriage Medical i Clinic Closeness
Sex DOB g service P Recency | tonon- | Constant
status code cluster
coverage workday
71.6917 -0.8600 6.51E-05 | -0.13596 | 0.0180 | 0.0015 0.4822 0 3.0410

Based on the estimated coefficients of logistic regression the probability of not showing up in

the first appointment in the testing dataset (1/25/2010) is estimated as p=0.3453. This estimate is

used for building the prior Beta(0.3453,0.6547) of the Bayesian updating procedure by solving

Equation (1-11). Table 5 illustrates the updated parameters of Beta distribution as well as the

estimated probability of no-show after each appointment.
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Table 5: Bayesian update of Beta distribution parameters

= = Weight
g g > A © -g-
£ £ oS g < ‘3 ‘Z" o5 § £ § a B &
2 2as 3 88<¥| g8 8| 7 | 29 E
Qo o = | 2 o bt =5 o =} 7
<z <3S co|oesz| @ |05 2 | 2= i
0.3453 | 0.6547 @ 0.345
12 1/25/2010 0 1 0.9 1 1 0.35 0.695 | 0.655 0.515
13 1/26/2010 1 1 0.9 0.9 0 0 0.695 | 1.655 0.296
14 2/2/2010 0 1 0.9 1 0 0 0.695 | 2.655 0.208
15 2/4/2010 2 1 0.9 0.75 0 0 0.695 | 3.655 0.160
16 2/6/2010 2 1 0.9 0.75 0 0 0.695 | 4.655 0.130
17 2/17/2010 0 1 0.9 1 0 0 0.695 | 5.655 0.109
18 2/18/2010 1 1 0.9 0.9 0 0 0.695 | 6.655 0.095
19 2/23/2010 0 1 09 1 0 0 0.695 | 7.655 0.083
20 3/2/2010 1 1 0.9 0.9 0 0 0.695 | 8.655 0.074
21 3/9/2010 0 1 0.9 1 1 0.35 1.045 | 8.655 0.108
22 3/16/2010 0 1 09 1 0 0 1.045 | 9.655 0.098
23 3/18/2010 2 1 0.9 0.75 0 0 1.045 | 10.655 | 0.089

As graphically illustrated in Figure 2 (a), the Bayesian update reacts quickly to each new data
record, which means that the procedure can rapidly converge to the real distribution of no-show.
Figure 2 (b) compares the prior and posterior distributions of no-show probability before and
after applying testing data. It is easy to follow how the mass of the density function has moved to

the left in the posterior which can be interpreted as decreasing the probability of no-show.




22

1 -
=== Estimated
Probability of no-
2 0.8 / \ show
)
@
° i == Real record of
c 0.6
e attendance
3]
3 04 \ /
©
K]
[
o
0.2 >
o -
1 2 3 4 5 6 7 8 9 10 11 12
Appointment no.
(@)
9
------ Prior
8 Posterior H
7 | -
6 |- -
1
1
51 i
1
g \
4|\ R
1
1
1
3H B
\
\
2L \\\ i
\\\
1 .- B
O L L L T L
o] 10 20 30 40 50 60 70
X
(b)

Figure 2: Applying the proposed model for a sample patient :(a) Real record of attendance
and estimated probability of no-show using the proposed model (b) Prior and posterior of
Beta distribution for modeling no-show

2.2.2.1. Time wise Analysis
In this Section, the performance of the proposed model is compared with a number of
population and individual based methods based on time wise analysis. In this regard the training,

validation and testing data are defined as follows: appointments occurred before 6/31/2009 for



23

training, appointments between 6/31/2009 and 12/31/2009 for validation, and appointments after

12/31/2009 for testing. Such a setting is used for all of the time-wise experiments.

The comparing methods including: Box smoothing, autoregressive integrated moving average
model (ARIMA), decision tree, and multiple logistic regression with same predictors as used in
the proposed model regression part and rule-based methods. The moving window size of Box
method is checked for the range of 1 to 7, where only 5 is considered. For ARIMA model two
cases ARMA (1,1,0) and ARMA(2,2,0) are considered. Also, J48 and PART algorithms are used

for building the decision tree rule-based methods.

Figure 3 compares the Mean Squared Error (MSE) of the comparing methods. Based on MSE
measure the proposed model performs clearly better than other methods while rule-based has the
worst result. As can be seen from the results, in general, individual-based methods outperform
population based methods, while bundling these methods together (as we have done in the

proposed methods) significantly better method than both.

0.4
0.3
0.2
) [ . l
0 -
Proposed Box ARMA (1,0,1) | Decision Tree|  “O8'SUC | ARMA(2,0,2)| Rule-based
Smoothing regression
IMSE 0.03098 0.0681 0.1094 0.1353 0.1494 0.1600 0.3439

Figure 3: Mean Squared Error (MSE) of the other methods used for comparison

Figures 4 to 6 illustrate some of the comparing methods estimates versus real probability of

no-show over different patients. As can be seen from Figure 4 (a), the proposed approach
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estimates often follows the real pattern correctly. This is better illustrated in Figure 4 (b) which
shows the absolute difference between the estimated and real probability of no-show. Here, the
mean of differences is 0.1104 which is acceptably low. There are also few cases with absolute

difference more than 0.5. Later analysis reveals fewer available data records for those patients.
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Figure 4: Proposed approach performance over patients: (a) estimated versus real
probability of no-show, (b) Absolute difference of estimated and real no-show probability

Figure 5 (a) illustrates the estimates from one of the population based methods which is
logistic regression. As can be seen, the estimates tend to have small fluctuations around an
approximately fixed mean. Such result clearly shows that the regression models may not fully

capture the difference among patients’ personal behaviors. The absolute difference between the
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estimated and real probability of no-show which is shown in Figure 5 (b) also confirms similar
results. Here the mean of the differences is 0.1935 while the maximum difference is 0.8683
which is considerable. Such a result is similar to other population based methods discussed

earlier.

—M- Logistic Regression

08

o
o

No-show probability

N
ks

02

0.9 >

0.8

0.7

0.6

0.5

o 1) |

0.3

No-show probability

0.2 P &
0.1

<

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Patient id

(b)

Figure 5: Logistic regression performance over patients: (a) estimated versus real
probability of no-show, (b) Absolute difference of estimated and real no-show probability

Finally, Figure 6(a) shows the results from ARIMA (1,1,0) model which is one of the

individual based methods. As can be seen for a large portion of patients that have real no-show
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rate of larger than zero ARIMA can barely follow the real pattern. This can also be checked in

Figure 6 (b) which has several differences greater than 0.5 and a few differences equal to 1.
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Figure 6: ARIMA (1,1,0) performance over patients: (a) estimated versus real probability
of no-show, (b) Absolute difference of estimated and real no-show probability

2.2.2.2. Patient wise Analysis

Here the comparing methods discussed in previous Sections are studied based on a patient
wise analysis. For this purpose, out of 99, 50 patients are randomly chosen and used for training,
20 are randomly selected for validation and the 29 are used for testing. Figure 7 illustrate the

results which is similar to time wise analysis of the comparing methods.
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Figure 7: Mean squared error (MSE) of different methods used for comparison comparing
methods

The results from Figures 2 to 7 clearly show the capability of the proposed model in
estimating probability of non-attendance for both current and new patients of a health care

system.

2.2.2.3. Discussion

In this Section, up to this point, a probabilistic model based on logistic regression and
Bayesian inference has been developed to estimate the patients’ no-show probability in real-time.
Also, the effects of appointment date and clinic on the proposed method have been modeled.
Next, based on a dataset from a Veteran Affair medical center, the effectiveness of the approach
has been evaluated. Our approach is computationally effective and easy to implement. Unlike
population based methods, it takes into account the individual behavior of patients. Also, in
contrast to individual based methods, it can put together consolidated information from the entire
data to provide reliable initial estimates. In the next Section, the proposed method is extended to

consider other types of disturbances.
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2.3. Generalization of the Proposed Algorithm for No-Show and Cancellation

Prediction

Algorithm 2 illustrates the pseudo code of the proposed algorithm for estimating two types of
disruptions probabilities: no-show and cancellation. Similar to Algorithm 1, algorithm 2 consists
of the following three main components:

1. Initial no-show and cancellation probabilities estimation

2. Bayesian update of the no-show and cancellation estimates

3. Weight optimization

Algorithm 2: No-show and Cancellation Prediction Algorithm

Input: Input data (X ijYi ]-), Threshold parameter T
Output: Estimated no-show and cancellation probabilities pM°%¢!, Dirichlet distribution
posterior parameters (afjos), Multinomial logistic regression estimated parameters By
Procedure:
/* Logistic regression™/
B, « Calculate MLE oquuatiAon (1-5) parameter
P (Y; = 1,2,3|X;;) « F(Xi;, By)
apri o $0
ik Pik
/*Weight optimization™/

QN AN W N~

v
ZaEmp - Zjiyl Yijk
iU=vadk =, —p, + 1
Until Equation (2-1) improvement D < T do
W <«set a value for the vector of appointments weights
/*Bayesian update */

0 i,v2
pos pri
Ai(j=v)k < X T Z <1_[ Wijw) Yy

1,j=v1 \wew

~ O Co

pos
sModel  _ %ig=vpk

]] pl(]=v2)k legzl a?(?ivz)k
Emp ~Model Emp pModel

12 Ppi¢j=vy) < [pi(j=vz)1 = Di=vp)1r =+ Pig=vpk ~ Pii=vo)x ]

_ 1
13 PD (_;Z?zl PDi

1 P_)’ P

T P ST
15 t? < nPpSp, ' Pp
16 =t

Fo=Tmpt
17 D — Ualuepaird F—test < p(FO > Fa,p,n—K)

18 Return pModet
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In the first component, based on the training dataset consisting individuals’ personal
information (Dg;), (such as gender, marital status, etc.) and their sequence of appointment
information (e.g. previous attendance records (Dyg)), a multinomial logistic regression model
F (X ijr E) is formulated (/ine 2). Then, using logistic regression, an initial estimate of no-show,
cancellation and show-up probabilities are calculated, given by ﬁ?k(Yi = 1,2,3|X; j) (line 3). As

discussed in Section 1.1.2, Logistic regression bundles the information of the complete

population together and finds a reliable initial estimate of no-show (p%,).

In the second component, which is interlaced with the third component, the initial estimate is
used in a Bayesian update procedure to find the posterior no-show, cancellation and show-up
probabilities of each person. For this purpose, py), is transformed into prior parameters of a

Dirichlet distribution afk” as shown in line 4. Next, using the attendance record of each person

(v; j) the posterior parameters afj‘,’(s and posterior probability of attendance ﬁg,‘c’ del ig calculated

(lines 10 and 11). As discussed in Section 1.1.3, the reason for applying the Bayesian update
procedure to the output of logistic regression is that, typically regression models cannot consider
individual patients behavior. Also, updating regression parameters based on new data records is
both difficult and only marginally effective (especially when the model is already constructed on

a huge dataset) in comparison to Bayesian update.

In the third component, appointments are weighted based on a subset of factors W=
[wy, ..., w,] (line 8) to increase the model performance in estimating the real probability of no-
show. An optimization procedure is used for finding the optimal value of the weights. The
objective function of the model is to minimize the difference between the empirical and

estimated probabilities of no-show, cancellation and show-up as follows:
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max p - valuepaired F—test = p(FO > Fa,p,n—p)

ST (2-4)
Oﬁwqﬁl qg=1,..0
Where wy, ..., w,, are the weights to be optimized and p — valueygirq p—test is the p-value of a

one-sided statistical hypothesis testing of the paired estimated p using the model and estimated p

using the attendance records:

Re al

{Ho :pg/odez _ pgeal (2_5)
. Model
H :pp #Pp

It should be noted that MSE can also be used as the objective function. However, F —statistic
which is used above not only contains MSE information in itself (both Sp in the T? statistics and
MSE estimate the deviation of a variable from its nominal value) (line 14), but also has a

statistical distribution which makes it a better choice for our optimization model.

In Equation (2-4), F, x n—x is the percentage of points or value of /" random variable with K
and n-K degrees of freedom such that the probability that F,,_, exceeds this value is a, and

Fy = n?n_—Kl) t2, where t? is calculated through lines 11 -15. ﬁﬁ‘jiﬁ,z) i in line 11, shows the real

rate of no-show, cancellation and showing up for person i calculated as

sReal  _ YjewYik . . , '
DiGj=v2)k = Jp—pas1 with Y as a multinomial (random) variable representing the records of
attendance of type k for patient i and appointment j. Here, v; is the index of first appointment in

the validation dataset which is discussed shortly, and v; is the index of last appointments in the

pos

air . . .
validation dataset for patient i. Also, p(fSsty, « Z,<loo+ozs)k is the estimated probability of
k=1 Fij=vy)k

disruption of type k calculated based on weighted appointments in validation dataset using the

proposed model.
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The optimization procedure is as follows: at every iteration, a vector of weights is assigned to
the appointments in validation dataset (/ine 8). The weighted appointments are then plugged into
the Bayesian update mechanism for estimating the probability of no-show (lines 10 and 11).
Next, the estimates of the proposed model and real attendance records are compared by forming
a F-statistic (lines 12 to 16) and the p-value of the paired F-test (line 17) which shows the
goodness of the assigned weights, is used for improving the initial set of weights (/ine 7) . This

~Model

procedure continues until no improvement is observed. Then, the p of the iteration resulted

in the best value of objective function is used as the no-show estimate (/ine 18).

2.4. Experimental Results

For the purpose of evaluation, the performance of the proposed method is evaluated along
with different population-based and individual-based algorithms on the extended version of the
dataset used in the previous Section which includes 1,543 patient records with the following
appointment information: (1) sex, (2) date of birth (DOB), (3) marital status, (4) medical service
coverage, (4) address (zip code), (5) clinic and (6) prior attendance record in the hospital. 3-fold
cross-validation with approximately 500 records each for training, validation and testing is

considered for the evaluation.

We will first discuss the preprocessing of the data and then provide a stylized example for one
sample patient record to illustrate how the model works. Finally, the result of applying the model
on the dataset is discussed based on two types of analysis: (i) time-wise analysis and (ii) patient-

wise analysis.



2.4.1. Data Preprocessing

As discussed in Section 2.2.1, before applying the proposed model to the dataset, it should be
preprocessed (see Section 2.2.1 for more information). Table 6 shows the result of clustering the
clinics based on their probability of no-show, cancellation and show-up using GMM. This Table
is an extension to the Figure 1(b) in Section 2.2.1 . In the Section 2.2.1 the clinics are grouped

based only one type of disruption, namely no-show rate. However, here they are clustered based
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on two types of disturbances, namely no-show and cancellation.

Table 6: The result of clustering the clinics based on their no-show, cancellation and show-

up probabilities

Cluster
Attribute Parameter 0 1 2 3 4
No-show U 0.0015 0.3488 0.2167 1.0000 0.1377
o 0.0114 0.1557 0.2692 0.3085 0.1331
Cancellation u 0.0011 0.0540 0.7833 0.0000 0.3276
o 0.0088 0.0733 0.2692 0.1968 0.1251
Show-up U 0.9974 0.5972 0.0000 0.0000 0.5346
o 0.0142 0.1523 0.0031 0.3372 0.1465

Again, like previous Section, (1) appointment recency, (2) appointment preceding non-work
days (Saturday, Sunday, and holidays), and (3) clinic cluster, are considered as weighting factors

(W = [wq, wy,w3]), which are arranged in the data structure illustrated in Table 7. Table 7 also

shows the optimal values of the weights used in Section 2.4.2 analysis.
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Table 7: Data structure and optimal value of the weighting factors

. Preceding -
= Appointment Recency non-workday Clinic Cluster
2 c
= |[E| ¢ 8 B B BE|§E gE|EE zE SE zf g¢
< = z 1S 1S E Q= | 5= 28 g |85 8g|=z¢g
s|v v v ¥ % |g2f2|FF TEZE E CE
Z w.s £ | sE £ £

Q 1 1 1 0.75 0.5 1 0.90 1 1 0.9 0.81 | 0.62.

E 1 0.97 | 0.96 | 0.82 | 0.67 1 0.98 1 1 0.84 | 0.73 | 0.71

0]

?, 3 1 1 1 0.87 | 0.78 1 0.97 1 0.87 | 0.81 | 0.80 | 0.75
2 W 1 1 1 0.82 | 0.73 | 0.70 1 1 1 094 | 0.85 | 0.77 | 0.69
% § 1 0.99 | 0.75 | 0.61 | 0.58 1 0.89 1 1 0.81 | 0.69 | 0.66
- 3 1 1 0.89 | 0.81 | 0.51 1 1 1 1 0.89 | 0.69 | 0.55

2.4.2. Applying the Proposed Model to a Sample Patient

The Section explains different steps of the proposed approach using a simple case study on a

randomly selected patient. The patient was male, born on 02/5/1978, never married, degree of

medical service coverage less than 5% with zip code 48235. Table 8 shows his appointment

information as patterns of show/no-show from 10/13/2009 to 12/31/2009 (training data). Note

that no-shows are represented by 1 while cancellation and show-ups are represented by 2 and 3

respectively.
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Table 8: No-show, cancellation and show-up record of a sample patient

Weight
Appointment . Clinic | Precedin .. Attendance
i No. Appointment date cluster non- ) Recency Clinic record
cluster
workday
1 10/1/2009 0 1 0.5 0.9 3
2 10/8/2009 0 1 0.5 0.9 1
3 10/9/2009 0 0.9 0.5 0.9 2
4 10/13/2009 2 1 0.5 1 3
5 10/13/2009 2 1 0.5 1 3
6 10/13/2009 2 1 0.5 3
7 10/15/2009 0 1 0.5 0.9 3
8 10/15/2009 2 1 0.5 1 3
9 10/19/2009 2 1 0.5 1
10 10/19/2009 2 1 0.5 1 1
11 10/19/2009 0 1 0.5 0.9 1
12 10/22/2009 2 1 0.5 1 3
13 11/6/2009 2 0.9 0.5 3
14 11/6/2009 0 0.9 0.5 0.9 3
15 12/3/2009 2 1 0.5 1 3
16 12/18/2009 2 0.9 0.5 1 3

Using the patient’s personal and appointment information as well as his previous attendance
record, the parameters of the fitted multinomial logistic regression model are computed as shown
in Table 9 (since we are modeling a categorical variable with three levels, namely no-show,

cancellation and show-up, two sets of regression parameters are estimated (See Equation 1-5) .

Table 9: A sample multiple logistic regression model fitted to the dataset

Medical Closeness
Marriage service Clinic to non-
Sex DOB status coverage Zip code cluster Recency workday Constant
106.605 -2.994 0.000 -0.314 -0.063 -0.002 -0.733 1.175 -0.388
168.919 -4.015 0.000 -0.234 -0.058 -0.003 -0.973 0.638 1.122

Based on the estimated coefficient the probability of no-show, cancellation and show-up for
the first appointment in the testing dataset (2/1/2010) is estimated as (0,52525, 0.050374,
0.424376). This estimate is used for building the prior Dirichlet distribution with same
parameters. Table 10 illustrates the updated parameters of Dirichlet distribution after each

appointment.
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Table 10: Bayesian update of Dirichlet distribution parameters

Weight Estimate Probability

[ [ c
g g P E_E 3 o s § = % o
£ £ s |82z| 5§ |EE|2=| 2 3 3
o o Q i S Lo o |=5|<€ < f,:) 83 =
g g g SR8 | £ x |©“3S|28 S & 2
<2 <o oo | &€= <2 z O 7

0.5253 0.0504 0.4244
18 2/1/2010 2 1 0.75 1 1 0.7626 0.0252 0.2122
19 2/5/2010 2 0.9 0.75 1 3 0.3051 0.0101 0.6849
20 2/5/2010 2 0.9 0.75 1 1 0.4209 0.0084 0.5707
21 2/5/2010 0 0.9 0.75 1 3 0.2806 0.0056 0.7138
22 2/9/2010 2 1 0.75 1 1 0.3525 0.0050 0.6424
23 2/9/2010 2 1 0.75 1 1 0.4114 0.0046 0.5840
24 2/9/2010 2 1 0.75 1 1 0.4604 0.0042 0.5354
25 2/10/2010 2 1 0.75 1 1 0.5019 0.0039 0.4942
26 2/17/2010 2 1 0.75 1 3 0.4078 0.0031 0.5890
27 3/15/2010 2 1 0.75 1 3 0.3434 0.0027 0.6539

Figure 8 (a) illustrates the changes in the estimated probabilities of no-show, cancellation and
show-up after each new record of attendance (solid lines) plus the estimated trend (using order
three polynomials) of each type (dashed lines). Figure 8 (a) shows how the Bayesian update
reacts quickly to each new data record, which means that the procedure can rapidly converge to
the real distribution of no-show. Figure 8 (b) compares the prior and posterior distributions of
this patient attendance probability before and after applying testing data. It is easy to follow the
movement of the probability density function to the right and upper edges of the simplex
(indicated by the arrows) which can be interpreted as decreasing the probability of cancellation

significantly.
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Figure 8: Applying the proposed model for a sample patient: (a) changing parameters
during Bayesian update (b) prior distribution (c) posterior distribution

2.4.2.1. Time wise Analysis

This Section study the performance of the proposed model along with representatives from
population-based and individual-based algorithms based on time-wise analysis. The training,
validation and testing data are constructed as follows: appointments that occurred before
11/23/2009 have been used for training; appointments between 11/23/2009 and 2/1/2010 have

been chosen for validation, and finally, appointments after 2/1/2010 have been considered for
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testing. The main reason for selecting the above dates is to have approximately equal number of

data records each in the training, validation and testing datasets.

The methods used in our comparison are the following: locally weighted scatter plot
(LOESS), Savitzky-Golay, Box, and Gaussian which are used as smoothing techniques
(Simonoff [1996]), decision tree (DT), multiple logistic regression (with same predictors as used
in the proposed model regression part) and pure multinomial Bayesian update, Bayesian Net,
Multilayer Perceptron Neural Net (MLP) and a boosting algorithm. For setting the parameters of
the comparison methods, the size of the moving window for Box smoothing was varied over the
range of 1 to 7 and the optimal size (5) was considered for the comparisons. The standard
deviation parameter of Gaussian distribution is experimented over 0.2 to 1; while 0.65 (the
optimal value) was used. J48 was used for building the decision tree and ADABOOST PART
[Viola and Jones 2002] algorithm is used for boosting method. For the pure Bayesian updating
the Jeffery’s prior (0.33,0.33,0.33) is considered as the prior [Bolstad 2007]. For the
multinomial logistic regression and smoothing methods the whole data set is used for building

the model.

Figure 9 illustrates the MSE of the different methods used for comparisons. Based on the
MSE measure, the proposed model outperforms other methods, while the rule-based method has
the worst performance. As can be seen from the results, in general, individual-based methods
outperform population-based methods, while bundling these methods together (as in our

proposed method) significantly improves the overall performance.
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Figure 9: Mean Squared Error (MSE) of the studied methods for time-wise analysis

Figures 10-12 compare the empirical and estimated probability of no-show and cancellation
for the methods over different patients (the performance of other methods along with the source
code is available upon request). As shown in Figure 12, the proposed approach often predicts the

real pattern correctly with considerable small variance.
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Figure 10: The performance of the proposed approach over different patients: estimated
versus empirical probability of no-show and cancellation
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Figure 11 illustrates the estimates from multinomial logistic regression, a population-based
method. The estimates tend to have small fluctuations around an approximately fixed mean,
though in general it somehow resembles the true pattern of the real no-show and cancellation. In
addition, the difference between the estimated and real series significantly increases for patients
with tendency of not cancelling their appointments (those could be either patients with good
records of showing-up or those with high rate of no-show). Such result clearly shows that the

regression models may not fully capture the difference among patients’ personal behaviors.
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Figure 11: The performance of pure multinomial logistic regression over different patients:
estimated versus empirical probability of no-show and cancellation

Finally, Figure 12 shows the results from pure Bayesian update method, which is a popular
individual-based method. It can be seen that pure Bayesian update can basically detect the
fluctuations in the real series correctly; however the estimates are far from the real ones in
considerable number of cases. Further analysis revealed that such cases contain few number of
attendance records which means that the pure Bayesian parameters update could not neutralize

the effect of prior especially if that is far from the real case.
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Figure 12: The performance of pure Bayesian updating method over different patients:
estimated versus empirical probability of no-show and cancellation

2.4.2.2. Patient wise Analysis

Here the proposed method is compared to some other methods in the literature using patient-
wise analysis. For this purpose, out of 99 patients in the database, using 3-fold cross-validation,
33 patients were randomly chosen for training, validation and testing. Figures 13-16 illustrate
MSE and pairwise comparison of the empirical and estimated no-show and cancellation

probabilities of the comparing methods which reveals similar results to the time-wise analysis

discussed in the previous Section.
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Figure 16: The performance of pure Bayesian updating method over different patients:
estimated versus empirical probability of no-show and cancellation

The results from Figures 13-16 clearly show the capability of the proposed model in
estimating probability of disruptions for both current and hypothetical patients of a health care

system.

2.4.2.3. Discussion

In this Section, the probabilistic model in the previous Section has been extended to estimate

the individuals’ probabilities of no-show, cancellation and showing up in real-time. Also based
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on real-world patient data collected from a Veterans Affairs medical hospital, the effectiveness
of the approach was evaluated. The result of the proposed method can be used to develop more
effective appointment scheduling systems and more precise overbooking strategies to reduce the
negative effect of no-shows and fill in appointment slots while maintaining short waiting times

which is discussed in the next chapter.
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CHAPTER 3 AN OPTIMIZATION MODEL FOR EFFECTIVE
APPOINTMENT SCHEDULING IN THE PRESENCE OF
DISTURBANCES

3.1. Introduction

Since the proposed prediction model has been developed for and implemented in a medical
center, this Section discussed one of the most important applications of the proposed approach in
health care systems which is scheduling. Though, the fields discussed in this Section can be

extended to other service industries as well.

The estimate of the (attendance) disruptions probabilities can be effectively used in building
robust scheduling systems [Cayirlit and Veral 2003; Gupta and Denton 2008]. A typical scenario
in patient scheduling is that patients call a medical clinic to request an appointment with their
physician. During the call, the scheduler assigns the patient to an available slot, a small time
period (e.g. 30 minutes) in an operational or service period in the physician’s schedule. This is
communicated to the patient before the call terminates and hence, the schedule is constructed
sequentially and has dynamic nature. Most of the existing models in the literature as well as the
first part of this Section assume the demand is precisely known and consider the problem as a
non-sequential optimization problem. However, few of the recent methods as well as the second
part of this Section consider the dynamic nature of the problem as sequential optimization model

[Muthuraman and Lawley 2008].

In practice, there is limited opportunity to adjust the schedule once the complete set of
patients is known. However, scheduled patients might not attend or may cancel the
appointment.The objective of the clinic is to schedule arriving appointment requests so that the
long-run average expected net reward is maximized [Chakraborty et al. 2010]. The net reward is

usually calculated as the expected revenue of serving patients at the scheduled time minus the
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expected cost of (1) system waiting including physician and staff waiting due to patients’ no-
show, cancellation, etc. and (2) system over time and patients over flow due to falling behind

schedule, walk-in patients, etc.

Holding the common assumptions of independency in patients’ attendance distribution, the
patient scheduling problem can be modeled as a Markov Decision Process (MDP) [Liu et al
2009] which is an extension of Markov chains allowing choice and rewards [Feinberg and
Shwartz 2002]. In such model the decisions are the choice of time slot assigned to each patient
upon the appointment request, decision epochs are the times right after the appointment requests,
and the system state at a decision epoch (which is a random variable affected by patients’
behavior like no-show and cancellation) is the number of appointment requests as well as
patients in the schedule at that decision epoch. Thus, accurate estimate of the individuals’
probability of no-show and/or cancellation can result in a more an accurate schedule
[Chakraborty et al. 2010; Hassin and Mendel 2008 ; and Liu et al. 2009]. Such accurate estimate
can also be used for estimating the state of the scheduling system based on factors such as the

probability of overflow, system waiting, etc.

The estimate of attendance disruption can also be used for developing selective overbooking
strategies which is a vital component for improving patient access and stabilizing revenue when
there is a significant chance that some scheduled patients will not show-up or cancel the
appointment [Muthuraman and Lawley 2008]. Here, the main objective would be compensating
for patient no-shows, and cancellation while maximizing the long-run average expected net
reward. Because of no-shows, the clinic capacity will usually be underutilized without some
overbooking. However, overbooking can reduce the negative effect of no-shows and fill in the

appointment slots while maintaining short wait times [Muthuraman and Lawley 2008; and Zeng
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et al. 2010]. This problem can be modeled using multi-objective optimization with associated

costs and rewards serving as weighting coefficients.

Finally, as another application of the proposed method which is not discussed in this study,

the estimates of disruption probabilities can be used for designing proactive strategies such as

reminder calls or some sort of penalty for encouraging high risk individuals, with elevated rate of

no-show and cancellation [Ho and Lau 1992].

Table 11 describes the notation used in the proposed scheduling model.

Table 11: Notations used in the proposed scheduling model

Notations Description
ij Indices of the time slot in a sample scheduling day (i = 1,...1), and the type of patients
G=1,...))
A The parameter of exponential random variable for service time
[Di j] the estimate of demand for a specific date, such that D;; represents the number of

[S]

[Rik]

[Qix]
[ORG;;]

[FROM;]

patients of type j (patients with no-show probability range j) requested an
appointment for i**slot of the day

The matrix of schedule for a specific day, such that §;; represents the number of
patients of type j assigned for i*"slot of the day

The overflow matrix for a specific day such that R;, is the probability that £
patients overflow from slot i to slot i + 1

The arrival matrix such that Q;; is the probability that / patients arrive at the
beginning of slot i

The matrix of patients scheduled for slot ij of [Si j] who are scheduled in their
desired time (slot ij of [Di j])

The matrix of patients scheduled for slot ij of [Si j] while their desired slot in
[Di j] is different

The matrix of patients in slot ij of [Di j] who assigned to a different slot in [Si j]
The matrix of patient demands in [Di j] that are not considered in [S i j]

The reward of serving a patient in its assigned slot in the schedule [Si j]

The penalty of patient overflow from the scheduled slot i to the next slot (which
can include the related overtime cost as well)

The number of patients receive service in slot i

The amount of time to the appointment date that the demands starts to be
considered, and the time of receiving a demand (Hence, at each stage, T — ¢ is
the remaining time to the appointment date)

The rate of receiving demands for slot i of the schedule from a patient of type j
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3.2. The Proposed Optimization Model for Non-Sequential Scheduling

Here a non-sequential optimization model will be developed for scheduling patients in a
healthcare system while considering the effect of no-show (the proposed model can be extended
to consider cancellation effect which is not being studied here). Also, for the economy of
computational effort, the patients are categorized into J (J = 1) (j = {1,2,...,J}) types by
discrediting no-show probabilities. It is assumed that patients of type j; has less probability of
no-show comparing to patient of type j, if j; < j,. Furthermore, it is also assumed that each
sample day in the schedule is divided into I (I = 1) (i = {1,2, ..., I}) time slots of equal length,

each of which can take one or more patients depending on their service time which is assumed to

. . . 1
be an exponential random variable with mean e

Having the estimate of demand [Dl- j] for a specific date, such that D;; represents the number
of patients of type j (patients with no-show probability range j) requested an appointment for
it"slot of the day, the net reward of a sample schedule S can be formulated as follows
[Muthuraman and lawley 2008]:

max G(S)=rY E[X,]-3 cE[Y]

ST:
(3-1)

iel SU sn
S;eZVNiel,jel
Where S;; is the number of patient of type j that are assigned to slot i, X; is a random variable
representing the number of patients showing up at the beginning of slot 7, and Y; is another
random variable denoting the number of patients who have not received service at the end of slot

i . The relationship between X; and Y; can be shown as:
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Y, =max{Y_, +X, — L0} (3-2)

Where L; is the number of patients receive service in slot i. In Equation (3-2), » and c; are the
rewards of serving the patients in the assigned slot and the penalty of patient overflow to the next
slot (which can include the related overtime cost as well) respectively. Therefore, the first term is
the return from expected patient arrivals and the second term is the cost associated with the

expected number of patients overflowed from one slot to another.

To compute probabilities for X; and Y;, Muthuraman and Lawley [2008] introduce two
matrices, an arrival matrix [Q;;] such that Q;; is the probability that [ patients arrive at the
beginning of slot i, and an overflow matrix [R;,,] such that R;,, is the probability that m patients

overflow from slot i to slot i + 1. These are computed as follows:

S;! . L
Qﬂ(S):Pr(Xi :I):ZHEQdempjj(l_pj)Su ' (3-3)
J\Tg J

where m = {7[1, ""”IJI} with m; € Z, (the set of positive integers) for j € ]}, je;m; =1 and

0 is the set of all such vectors.

R (5)- {%l%{(l ~F 1+ KRy if m=0 34)

ka, (Z+k—mpikR(i—l)k if m=0
n! (3-5)
where [ is the number of patients arrive at the beginning of slot i and k is the number of patients

overflow from slot i — 1 to sloti. Given these Equations one can compute E[X;] = Y;;1Q;; and

E[Y;] = Xk kR;;. Therefore, given [Dij] the objective of the model is to find the optimal
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schedule [Sl-*j] (optimal assignment of patients to available time slots) which maximizes the net
expected reward.
The model discussed in Equation (3-1) is capable of considering no-show probabilities and

does overbooking which are the cases more frequently occur in practice. Yet, it has a few

restricting assumptions some of which are given below:

1. Assigning patients to slots different than their desired time slot do not affect their no-
show probability.

2. There is no walk-in patients ( patients show-up without making an appointment)

3. The patient demand [Di j] is precisely known. Hence, the schedule can be made non-

sequential.

In the rest of this Section, the first two of the above assumptions will be relaxed, and in the

following Section the third assumption is considered.

3.3. An Optimization Model for Including changing no-show probabilities and
walk-in Patients

In order to consider complex scenarios like walk-in patients and patient no-show probability
changes with their assignment to undesired slot, as frequently occur in practice, it is necessary to

know the decomposition from [Di j] to [Si j] which can be done by defining a set of four matrices
with the same size of [Dij] and represented by [ORGU-], [FROMU], [TOij] and [ELIMU].
[ORGl- j] shows patients scheduled at their desired time. [F ROM; j] represents patients scheduled
for slot ij of [Sij] while their desired slot was different. In contrast to [FROML-J-], [TOU-]
represents patients in slot ij of [Dij] who are assigned to a different slot in [Sij]. Finally,

[ELIMi j] shows patient demands in [Dij] not considered in [Si j]. Using above matrices, [Sl- j]
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discussed in (21) can be gained by [ORGU] + [FROMU], also [Dij] can be derived from
[ORGL- j] + [TOi j] + [ELIMi j]. Therefore, the optimal schedule will be the one that optimizes all
[ORGL-]-], [FROML-]-], [TOL-]-] and [ELIMU-] matrices. To incorporate the above matrices into the

optimization model, Q;;(S) should be extended from binomial to multinomial as follows:

Qil(S):Pq(l)zpq(Xli+X2i :l):[ Jpran Przxﬂ (3-6)

1i» 2i

where X;; and X,; are the total number of patients of different type (j = 1,..,J)from [ORGi j]

and [FROMU-] appears in slot i and Pr,(Xj;) can be calculated using Equation (3-3). Based

above extensions the optimization model can be rewritten as:

max G(S)=r>_E[x, ]+ EX,])-¢(>_ E ]+ Elv,])
ST:
2. ORG; +3 FROM,<n,
D,-(ORG, +TO, + ELIM )= 0
>, FROM; - TO, =0
S,€ZViel,jeJ

(3-7)

The above model will consider changes in no-show probability by changing the patients’
desired time. Furthermore, the proposed structure can handle other scenarios such as walk-in

patients which would be resulted in following model:
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max G(S) = F(Ziel E[Xli ] + Ziel E[XZi ] + Z,-E, ZWGW E[X3i ])— c, (Zid E[le ] + Zid E[YZi ])
ST:
Ziel ORGij + 2561 FROMQ» < n,
Dy _(ORGU‘ +T0; + ELIM, )=0
zie[FROMij - zielTOij =0
S,-j eZViel, jelJ
(3-8)
As can be seen, considering walk-in patient can be done by simply adding another column to
ORG;

FROM;;, To;; and ELIM;; matrices. The following example shows effectiveness of the

j> Jj

proposed optimization model in scheduling patients in the presence of no-show.

3.3.1. Results on Simulated Data

To evaluate the performance of the proposed optimization model, this Section presents a
simple scheduling problem for a single day of 8 hours with four 2 hour slots. Three types of
patients has been considered as follows; (i) calling patients with show-up probability of 0.9, (ii)
calling patients with show-up probability of 0.5 and (iii) walk-in patient with show-up
probability of 0.2. [Dij] is considered to be known and equal to [ 4 2 1; 23 2;3 3 2; 54 3] and
the changing show-up probability of each patients of type 1, 2, and 3 when assigning them to
slots different from their original request is considered as 0.7, 0.1 and 0.1 respectively. Also the
reward of serving each patient at his assigned time is fixed at 200 and the cost of each patient

overflow is set to 40.

Figure 17 compares the expected total profit of the proposed model and the original
scheduling model without considering no-show (this model is simply obtained by setting all
probabilities in the proposed model to one) under different no-show probabilities. As can be

seen, the proposed approach uniformly performs better than the original model. In the meantime,
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when the uncertainty increases, the difference between the two methods gets more significant.
The main reason of this difference is the ability of the proposed method for overbooking patients

with high rate of no-shows in order to increase the system utility.
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Figure 17: The expected total profit of the proposed non-sequential and the original
scheduling model under different no-show probabilities for different types of patients

Figure 18 also illustrates the expected total profit of the proposed and the original model
under different number of demands. As can be seen, again the proposed model outperforms the

original model and the difference is increased as the number of demands grows.



53

4500
o —
3750 /
® 3000 — —n
E M
2 2250
3 "
Q
g 1500
i === Proposed model
750 === Original model
O T T T T 1
34 48 52 61 70
Number of demands

Figure 18: The expected total profit of the proposed non-sequential and the original
scheduling model under number of demands

The result of Figures 17 and 18 shows that the proposed optimization model can effectively
use the estimate of disturbances for overbooking patients with high rate of no-shows, which

considerably increase the system performance under different situations.

3.4. Generalization of the Proposed Model for Sequential Scheduling

Here we will extend the model proposed in the previous Section to consider the case of
sequential scheduling which occurs frequently in practice. The main difference between

sequential and non sequential scheduling is:

1. Unlike non-sequential scheduling, in sequential scheduling during the call the scheduler
assigns the patient to an available slot in the physician’s schedule. This is communicated
to the patient before the call terminates and, thus, the schedule is constructed
sequentially.

2. Unlike non-sequential scheduling, in sequential scheduling the complete set of patients is

not known when the schedule is generated. Schedulers do not know how many patients
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will call for appointments and eventually be added to the schedule. Also, the schedulers
do not know how many should be added, since they have no optimal stopping criteria.
3. Furthermore, there is little opportunity to adjust the schedule once completed.
Using the same matrix structure as described on the previous Section, the proposed
optimization model for solving sequential scheduling problem can be written as follows:
max G(S) = F(Ziel E[Xli ] + Ziel E[Xzi ] + Zie] ZWEW E[X3f ])_ Ci (Zie] E[le’ ] + Ziel E[Yzi ])
S.T:
Zie[ ORGU + Ziel FROMU s nj
D,-(0RG, + 10, + ELIM,;)=0
Zie[ FROMU - Ziel TOU =0
G(ORG! + FROM! + ORG[™ + FROM["" + ORG!*" + FROM ")
>G(ORG! + FROM? + ORG[" + FROM ")

S,€ZViel,jeJ
(3-9)

Where upper index 0 , e.g. ORGP, represents elements of existing demand which already have
been scheduled, new represents the just received demand which should be decided, and rem
represents elements of estimated (remaining) demand related to future. Hence,[ORG] =

[ORG®] + [ORGT®™] + [ORG™"], and [FROM] = [FROM®] + [FROM™®™] + [FROM™®"].

As can be seen above, the new optimization model is gained by adding a constraint to the (3-
8). This constraint guarantees that objective function should not decrease at any epoch (after

each new decision on adding/rejecting a patient).

It should be noted that in the above model, we assume that ORG°+FROM?® shows the existing
schedule and we have received a call from a patient of type j for slot i in a time that is T day
ahead from the desired date of appointment. There is a simple strategy to check if the new patient

should be added to the schedule and next to find the best slot that should be assigned to him/her.
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First, the future demand for each slot of the desired date should be predicted for the remaining
days. Next, the optimal assignment of the remaining demands should be calculated using Section
Equation (3-8). Finally, it should be checked if the new request can be assigned to any available
slot to which can improve the objective function (if there are multiple slots that can improve the
objective function then the one with maximum improvement will be chosen). Finding a slot for
the request is equivalent to accepting the request and vice versa. The following procedure shows

the details of the proposed sequential optimization:

Step 1. Set ORG/; + FROM), = 0 foralli € Iandj € J,k=1landt = 0.

Step 2. Wait for k" patient call of type ij which is received at time t.

Step 3. Predict future patient demand for the remaining time to the appointment T'and
obtain D];~*.

Step 4. Using (3-8) find the optimal assignment of ﬁfj_tfor the remaining demands
(ORGIf™ + FROM[™

Step 5. Find the objective function G(ORG]; + FROM]; + ORG{f™ + FROM[™) (this is

the objective function for the case that we are not including the k" patient)

Step 5. Check if adding the k" patient call to any of the available slots (OR G+
FROM;;*™) can improve Step 5 objective function (G(ORGiO]- + FROM), + ORG[™ +

FROM[f™ + ORG[* + FROM*™) > G(ORGf} + FROM{; + ORG[f™ +

i .Ifso = T i an i = it .
FROM[™)). If so ORG}; = ORG}; + ORG]** and FROM{; = FROM;; + FROM[**"
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Step 6. If G(ORG(; + FROM; + ORG]f™ + FROM[f™ + ORG[**” + FROM*") >
G(ORG}; + FROMJ; + ORG]f™ + FROM]f™ ) forall i € Iand € ], stop. Otherwise,

go to Step 2.

3.4.1. Estimation of Demand

One of the key elements of the proposed approach as well as the other scheduling system is
the demand estimation. Unfortunately, most of the methods in the field of appointment
scheduling are based on naive methods such as averaging the previous demands. Here, a simple
but innovative approach is proposed which is based on the survival analysis and Bayesian update

for demand estimation.

Assuming that the demand for a specific day starts 7 days ahead (here we use days for the
sake of simplicity, however other measure like hours, minutes, etc can also be used) the

procedure can be summarized as follows:

1. Using the historical data and an appropriate survival model like Weibull distribution
estimate y;;(t) (y(t)in here is equivalent to A(t) in survival analysis, the failure rate function)
2. Assuming there is T — t days to the appointment date, after receiving a call from a patient

of type j for slot i. Update the demand as follows:

D™ =D} +1+ [ 1y, (0)ar (3-10)

In above relation df}reshows the total number of received calls before the current call for

the interval (0,t), 1 represents the current call, and ftT t.y;;(t)dt shows the expected

demand for the remaining time.

3. Update y;;(t) using the current call and Bayesian update mechanism
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3.4.2. Results on Simulated Data

Here we extend our simple scheduling problem discussed in Section 3.3.1 for sequential
scheduling. For this purpose, a period of 10 days each with 8 hours has been considered for
receiving the calls for making the appointments for each single day like the example in the
previous Section. The rate of incoming call is considered as A = 0.5 per hour and the probability
of having a high no-show rate, low no-show rate and walk-in patient is considered as [0.7 0.2

0.1]. The rest of the information remains the same as the ones in previous Section example.

Figure 19 compares the expected total profit of the proposed model and the myopic
scheduling algorithm [Muthuraman and Lawley 2008], which is one of the few sequential

scheduling algorithms in the literature, across a sequence of 40 patient calls.
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Figure 19: The expected total profit of the proposed sequential and the original scheduling
model across a sequence of 40 patient calls

As can be seen the proposed approach always makes an upper bound of the myopic approach.
It also has considerably smaller variance which clearly represents its effectiveness in modeling

real-world situations.
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CHAPTER 4 CONCLUSIONS AND FUTURE DIRECTIONS

Efficacy of any scheduling system depends highly on its ability to forecast and manage
different types of disruptions and uncertainties. In this thesis, a probabilistic model based on
logistic regression and Bayesian inference was developed to estimate the patients’ disruption
probability in real-time. A non-sequential and a sequential optimization model were also
proposed which use disruption probabilities for appointment scheduling with overbooking
strategy. Based on data collected at Veteran Affairs medical center, the effectiveness of the
proposed prediction model was demonstrated. Furthermore, using two numerical synthetic
examples the performance of the optimization models were evaluated in comparison with the
common methods in the literature. The proposed prediction model is computationally effective
and easy to implement. Unlike population based methods, our model takes into account the
individual behavior of patients. Also in contrast to individual based methods it can
accommodate vital information from the entire data collection and provide reliable initial
estimates. In addition, the optimization model is flexible in formulating complex situations such
as walk-in patients and changing no-show probabilities due to changing the patients’ desirable
time which occurs frequently in practice. The proposed prediction model can be easily extended
to consider more sophisticated cases of disruptions and different types of prior distribution. Also

the optimization model can be further extended to consider cancellations and delays.
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Appendix A

Gaussian Mixture Models (GMM) and Expectation Maximization (EM)
Algorithm

Gaussian Mixture Models (GMM) assume data points are drawn from a distribution that can

be approximated by a mixture of Gaussian distributions. In this regard, assuming Q (the no-

show rate of each clinic) is the feature vector, and k is the number of components (clinic

clusters), the mixture model can be represented as follows [Reddy et al. 2008]:

p(010)=3" a,prob(016,) (A-1)

Where © = {al,...,ak,é’l,...ﬁk} is the collection of parameters with 0<a, <1,Vi=12,....k and

20

i

k 1 O—-u . ..
~a;=1 and 6,)= exp| — ~|. Having as a set of n, 1id samples
lel p(Q| ) O'\/E p( 2 J g

0= {q(l),q(z),...,q(")} from the above model the log-likelihood function can be rewritten as:

log p(016,)=log [T, pl¢"10)= 3" 10g>"} a.plg"6,) (A-2)

Here, the goal is to find © that maximizes the log-likelihood function:
© - = arg max{log p(Q|©)} (A-3)
The surface of the above likelihood function is highly nonlinear, and no closed form solution

exists for the above likelihood function. One way to deal with this problem is by introducing a

hidden variable Z:

logp(0.216)=3" >+ z1ogla,pla" |26,
(A-4)
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and using Expectation Maximization (EM) algorithm as follows [33]:

i.  Initializing parameters @
ii.  Iterating the following until convergence:

E-Step:
0616")=E.logp(0.7]0) 0"

M- Step:
e = argmaxQ(G) e ))

(A-5)

(A-6)
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In spite of the success of theoretical appointment scheduling methods, there have been
significant failures in practice primarily due to the rapid increase in the number of no-shows and
cancelations from the individuals in recent times. These disruptions not only cause
inconvenience to the management but also has a significant impact on the revenue, cost and
resource utilization. In this research, we develop a hybrid probabilistic model based on logistic
regression and Bayesian inference to predict the probability of no-shows in real-time. We also
develop two novel non-sequential and sequential optimization models which can effectively use
no-show probabilities for scheduling patients. Our integrated prediction and optimization model
can be used to enable a precise overbooking strategy to reduce the negative effect of no-shows
and fill appointment slots while maintaining short wait times. Using both simulated and real-
world data, we demonstrate the effectiveness of the proposed hybrid predictive model and

scheduling strategy compared to some of the well-studied approaches available in the literature.
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