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CHAPTER 1 INTRODUCTION 

The problem of no-shows and appointments cancellation (individuals who do not arrive for 

or cancel their scheduled appointments) cause significant disturbance on the smooth operation of 

almost all scheduling systems [Bech 2005; Moore et al. 2001]. While the reasons for these no-

shows, and cancellations might vary from previous experience to personal behaviors, several 

practitioners and researchers have often neglected this important realistic aspect of the 

scheduling problem. This thesis, considers the problem of effective scheduling by predicting 

such disturbances accurately from the historical data available and incorporating them into 

scheduling using a novel optimization model. Specifically, the applicability and usefulness of the 

proposed work is demonstrated on healthcare data collected from a medical center. Due to the 

vast amounts of cost and resources involved in medical healthcare centers, such disturbances can 

incur losses of hundreds of thousands of dollars yearly [Bech 2005; Hixon et al. 1999; Rust et al. 

1995; Barron 1980]. Such disruptions not only cause inconvenience to the hospital management 

but also has a significant impact on the revenue, cost and resource utilization for almost all the 

healthcare systems. Hence, accurate prediction of no-show and cancellation probabilities and 

incorporating them into the scheduling system is a cornerstone for any non-attendance reduction 

strategy [Cayirli and Veral 2003; Ho and Lau 1992; Cote 1999; Hixon et al. 1999; Moore et al. 

2001]. 

In this research, a hybrid probabilistic model is developed to predict the probability of no-

shows and cancellations in real-time using logistic regression and Bayesian inference. In 

addition, a novel optimization model which can effectively utilize no-show probabilities for 

scheduling patients is also developed. The proposed prediction model uses both the general 

social and demographic information of the individuals and their clinical appointments attendance 
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records, and other variables such as the effect of appointment date, and clinic type. In the mean 

time, the scheduling model considers both scheduled and unscheduled patients (walk-in patients) 

simultaneously. It also formulates the effect of patients’ overflow from one slot to another. In 

addition, it takes into account the effect of patients’ assignment to undesired appointment time 

on no-show/cancellation probability.  

The result of the proposed method can be used to develop more effective appointment 

scheduling [Chakraborty et al. 2010;  Glowacka et al 2009; Gupta and Denton 2008; Hassin and 

Mendel 2008; Liu et al. 2009]. It can also be used for developing effective strategies such as 

selective overbooking for reducing the negative effect of disturbances and filling appointment 

slots while maintaining short waiting times [Laganga and Lawrence 2007; Muthuraman and 

Lawley 2008; Zeng et al 2010]. 

The organization of this thesis is as follows: the rest of this chapter discusses the relevant 

background and preliminaries of this research. Chapter 2 describes the proposed models for 

predicting disturbances in appointment scheduling and the results of applying the proposed 

models on data collected from a medical healthcare center. Chapter 3 presents the proposed 

optimization models for effective appointment scheduling in the presence of disturbances along 

with two simulated numerical examples. Finally, chapter 4 concludes our work and presents 

some future extensions of this study. 

1.1. Relevant Background 

There are wide varieties of techniques that can be used for the estimation of no-show and 

cancellation probabilities. First, the factors that can affect no-shows and cancellations are briefly 

discussed. Next, some of the related quantitative methods studied in this domain are presented.  
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1.1.1. Factors Affecting No-Shows and Cancellations 

There have been a few studies that discussed the effect of patients’ personal information 

such as age, gender, nationality, and population sector on the no-show and cancelation 

probabilities [Bean and Talaga 1995; and Glowacka 2009]. Some researchers have also 

investigated the relationship between no-show probability and factors related to the previous 

(appointments) experience of the person such as number of previous appointments, appointment 

lead times, waiting times, appointment type, and service quality [Cynthia et al 1995; Garuda et 

al. 1998; Goldman et al 1982; Dreihera et al. 2008; Lehmann et al. [2007]. A few studies also 

considered the effect of personal issues such as overslept or forgot, health status, presence of a 

sick child or relative, and lack of transportation on missing appointments [Campbell et al 2000; 

Cashman et al. 2004]. This study will consider many of these factors in our proposed model and 

also consider the effect of personal behavior such as previous appointment-keeping pattern as 

discussed in [Dove and Karen 1981] in predicting no-shows. 

1.1.2. Population based Models  

Population based techniques mainly use a variety of methods drawn from statistics and 

machine learning which can be used for predicting no-shows and cancellations [Dove and 

Schneider 1981]. These methods use the information from the entire population (dataset) in the 

form of set factors, in order to estimate the probability of no-show, cancellation and show-up. 

Logistic regression is one of the most popular statistical methods in this category that is used for 

binomial and multinomial regression, which can predict the probability of disturbances by fitting 

numerical or categorical predictor variables in the data to a logit function (Hilbe [2009]). There 

has been some work using tree-based and rule-based models which create if–then constructs to 
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separate the data into increasingly homogeneous subsets, based on which the desired predictions 

of disturbances can be made [Glowacka et al. 2009]. The problem with these population based 

methods is that although they provide a reasonable estimate, they do not differentiate between 

the behaviors of individual persons, and hence cannot update effectively especially while using 

small datasets. Another problem with these methods is that once the model has been built adding 

new data has minor effect on the result especially when the size of initial dataset is much larger 

compared to the size of the new data. In chapter 2, we compare some of above methodologies 

with our proposed approach on real-world patient scheduling data. 

1.1.3. Individual based Models  

Individual based approaches are primarily time series and smoothing methods that are used 

for predicting the probability of a disruption in an appointment. These methods utilize past 

behaviors of individuals for the estimation of future no-show and cancellation probability. Time 

series methods forecast future events such as no-shows and cancellations based on the past 

events by using stochastic models. There are different types of time series models; the common 

three classes amongst them are: the autoregressive (AR) models, the integrated (I) models, and 

the moving average (MA) models. These three classes depend linearly on previous data 

[Brockwell 2009]. Combinations of these ideas produce autoregressive moving average (ARMA) 

and autoregressive integrated moving average (ARIMA) models. Smoothing is an approximating 

function that attempts to capture important patterns in the data, while leaving out noise or other 

fine-scale structures and rapid phenomena. Many different algorithms are used in smoothing. 

Some of the most common algorithms are the moving average, and local regression [Simonoff  

1996]. Bayesian inference is a method of statistical inference in which some kind of evidence or 

observations are used to update its previously calculated probability such as improving the initial 
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estimate of disturbances probabilities [Bolstad 2007]. To use Bayes’ theorem, we need a prior 

distribution ݃ሺ݌ሻ that gives our belief about the possible values of the parameter ݌ before 

incorporating the data. The posterior distribution is proportional to prior distribution times 

likelihood ݂ሺ݌|ݕሻ: 

( ) ( ) ( )pyfpgypg || ×∝
        

( 1-1) 

If the prior is continuous, the posterior distribution can be calculated as follows: 

     ݃ሺݕ|݌ሻ ൌ ௚ሺ௣ሻൈ௙ሺ௬|௣ሻ

׬ ௚ሺ௣ሻൈ௙ሺ௬|௣ሻௗ௣భ
బ

        ( 1-2) 

 
While individual based methods are fast and effective in modeling the behavioral (no-show) 

pattern of each individual, and work well with a small dataset, they do not use the predictive 

information from the rest of the population and hence do not provide a reliable initial estimate of 

no-show and cancellation probabilities which is especially important in our problem. In chapter 

2, the performance of some of above methods will be compared with the proposed work. 

As described above, each of population based and individual based approaches have some 

advantages and disadvantages. However, none of the studies in the literature have considered 

using these methods together in order to overcome their problems and improve their 

performance. In chapter 2, a hybrid probabilistic model will be developed that combines logistic 

regression as a population based approach along with Bayesian inference as individual based 

approach for no-show and cancellation prediction. To demonstrate its effectiveness, the proposed 

model will be compared to the representative algorithms from both population based and 

individual based approaches 
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1.2. Preliminaries 

This Section introduces some of the preliminaries required to comprehend the proposed 

algorithm. First the notations used in the study are described. Next, some basics about logistic 

regression, Beta and Dirichlet distributions as the vital components of the proposed model are 

explained. Finally, more details about Bayesian update of Beta and Dirichlet distributions as the 

main procedure of the proposed algorithm for modeling the individual’s behavior are provided. 

1.2.1. Notations Used for the Probability of Disturbance Prediction Model 

Table 1 describes the notations used for the proposed prediction model. 

Table 1: Notations used for the proposed prediction model 

Notations 
Description 

i,j,k Indices of individual ሺi ൌ 1, … nሻ, appointment no. j ሺj ൌ 1, … , Jሻ, and attendance record of 
type k ሺk ൌ 0, … , Kሻ   

 ூ Database of each individual’s personal informationீܦ
 ேோ Database of appointment information and attendance records of each personܦ

ሺܨ ௜ܺ,  ௞ሻ Logistic regression modelܤ
௞ܤ௞ Vector of logistic regression parameters for attendance record of type ݇ ሺܤ ൌ

ሾߚ௞଴, ,௞ଵߚ … ,  ௞௟ሿሻߚ
௜ܺ௝  Factors affecting probability of attendance of  person i for appointment j (independent 

variables in the logistic regression model),൫ ௜ܺ௝ א ,ேோܦڀூீܦ ௜ܺ௝ ൌ ,௜௝଴ݔൣ ,௜௝ଵݔ . . , ,௜௝௟ݔ ൧൯ 
௜ܻ௝  Person ݅ attendance type for appointment ݆ (No-show, cancellation, show-up) 

௜௞̂݌
଴  Initial estimate for probability of attendance of type ݇ for person ݅ 

ቀߙ௜௝
௣௢௦, ௜௝ߚ

௣௢௦ቁ Beta distribution posterior parameters of person ݅ probability of attendance for appointment 
݆ 

෠ܲெ௢ௗ௘௟  Estimated probability of attendance by the model 
෠ܲா௠௣ Real (empirical) probability of attendance 

௝ܹ Weight for Appointment j 
ܶ Threshold for convergence of the objective function 
Improvement in the objective function at each iteration ൫ ܦ ∆ ݌ െ   ௣௔௜௥ௗ ிି௧௘௦௧൯݁ݑ݈ܽݒ

 Logistic regression model ܩܮ
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1.2.2. Binomial and Multinomial Logistic Regression 

Logistic regression is a generalized linear model used for binomial regression, which 

predicts the probability of occurrence of an event by fitting numerical or categorical predictor 

variables in data to a logit function [Agresti 2002]: 

ሻ݌ሺݐ݅݃݋݈                                                         ൌ ݌ሺ݃݋݈ 1 െ ⁄݌ ሻ                ( 1-3) 

where 10 ≤≤ p  and ( )pp −1  is the corresponding odds. The logistic function can be written as: 

      ( )kk xxe
p βββ +++−+
= ...1101

1                               ( 1-4) 

where p represents the probability of a particular outcome. Given the set of explanatory 

variables and unknown regression coefficients ( )kjj <<0,β  can be estimated using maximum 

likelihood (MLE) methods common to all generalized linear models [Hilbe 2009].  

Multinomial logistic regression is a generalization of the binomial model used when 

the dependent variable follows a multinomial distribution. The model then takes the form:  

 ቐ
௞ܲ ൌ ௘௫௣ሺ௑஻ೖሻ

ଵା∑ ௘௫௣ሺ௑஻ೖሻ಼
ೖసబ

, ݇ ൌ 1,2, … , ܭ

଴ܲ ൌ ଵ
ଵା∑ ௘௫௣ሺ௑஻ೖሻ಼

ೖసబ
                             

       ( 1-5) 

where ௞ܲ is the probability of ݇th event and ܺ is the vector of explanatory variables. The 

unknown vector of parameters ܤ௞ is typically estimated by the maximum a posteriori (MAP) 

estimation, which is an extension of maximum likelihood using regularization of the weights 

[Agresti 2002]. 
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1.2.3. Beta and Dirichlet Distributions  

Beta distribution: ( )βα ,Beta  represents a family of common continuous distributions 

defined on the interval [0,1] parameterized by two positive shape parameters, typically denoted 

by α and β  with probability density function: 

     
( ) ( )

( ) ( )
( ) 11 1,; −− −

ΓΓ
+Γ

= βα

βα
βα

βα xxxf                       ( 1-6) 

where Γ is the gamma function, and ( ) ( ) ( )βαβα ΓΓ+Γ   is a normalization constant to ensure 

that the total probability integrates to unity. The beta distribution is the conjugate prior of the 

binomial distribution. From the Bayesian statistics viewpoint, a Beta distribution can be seen as 

the posterior distribution of the parameter p of a binomial distribution after observing 1−α  

independent events with probability p  and 1−β  with probability p−1 , if there is no other 

information regarding the distribution of p  [Evans et al. 2000].  

Dirichlet distribution (denoted by ݎ݅ܦሺߙሻ) is the generalization of beta distribution to a 

family of  continuous  multivariate  probability distributions parameterized by the vector α of 

positive reals. The Dirichlet distribution of order ܭ ൒  2 with parameters ߙଵ, . . . , ௄ ൐ߙ   0 has 

a probability density function with respect to Lebesgue measure on the Euclidean space   ܴ௄ିଵ 

given by [Evans et al. 2000]: 

                                            ݂ሺߛଵ, . . , ,௄ߛ ,ଵߙ … , ௄ሻߙ ൌ ଵ
஻ሺఈሻ

∏ ௞ߛ
ఈೖିଵ௄

௞ୀଵ                   ( 1-7) 

for all γଵ, … , γ௄ ൐ 0  satisfying ∑ ௜ߛ
௄
௜ୀଵ ൏ 1 (our work incorporates ܭ ൌ 3 which is based on the 

number categories: no-show, cancellation, and show-up). The density is zero outside 

this open ሺܭ െ 1ሻ-dimensional simplex. The normalizing constant is the multinomial beta 

function, which can be expressed in terms of the gamma function: 
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ሻߙሺܤ                                            ൌ ∏ ୻ሺఈೖሻ಼
ೖసభ

୻൫∑ ఈೖ
಼
ೖసభ ൯

, ߙ ൌ ሺߙଵ, … ,  ௄ሻ                                               ( 1-8)ߙ

Dirichlet distribution is the multivariate generalization of the beta distribution (multinomial 

distribution), and conjugate prior of the categorical distribution and  multinomial distribution in 

Bayesian statistics. That is, its probability density function returns the belief that the probabilities 

of ܭ rival events given that each event has been observed ߙ௝ െ 1 times. 

1.2.4. Bayesian Update of Beta and Dirichlet Distributions 

In Bayesian statistics, a Beta distribution [Bolstad 2007] is a common choice for updating a 

prior estimate of the Binomial distribution parameter p  because:  

1. A Beta distribution is the conjugate prior of a Binomial distribution (See Section 1.2.3). 

2. Unlike a Binomial distribution, a Beta distribution is a continuous distribution, which is 

much easier to work with in terms of inference and updating. 

3. A Beta distribution has two parameters, which allows it to take different shapes, making 

it suitable for representing different types of priors. 

If ( )βα ,Beta  is used as a prior, based on the conjugacy property of Beta distribution, the 

posterior would be a new Beta posterior with parameters y+=αα '  and yn −+= ββ ' . In other 

words, Beta distribution can be updated simply by adding the number of successes y to α and 

the number of failures yn −  to β : 

 
( ) ( )ynyBetaypg −++ χα ,~|                                                 ( 1-9) 

( ) ( )
( ) ( ) ( ) 11 1| −+−−− −

+−Γ+Γ
++Γ

= βα

βα
βα yny pp
yny

nypg    .( 1-10)  
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 As discussed earlier, individual-based approaches like empirical Bayesian inference will not 

be able to provide an initial estimate of the prior distribution. Hence, before applying the 

Bayesian update, the parameters of the prior distribution should be initialized. 

[Bolstad 2007] suggests choosing parameters that match the belief about the location (mean) 

and scale (standard deviation) of the original distribution. Hence, if an initial guess of parameter 

p is available, which in our study can be obtained from population-based approaches such as 

logistic regression, Beta distribution prior parameters can be computed by solving the following 

system of Equations for α  and β . 

( ) ( )
⎪
⎪
⎩

⎪⎪
⎨

⎧

++
−

=
−

+
=

1
11
βα

βα
α

iiii

i

pp
n

pp

p
      ( 1-11) 

The point estimate of the posterior parameter p of the binomial distribution would be the 

mean of Beta distribution  
βα

α
+

of the updated Beta distribution. 

Similarly, Dirichlet distribution is a regular option for updating prior estimate of 

Multinomial distribution parameters ߙ ൌ ሺߙଵ, … ,  ௄ሻ. To use Bayes’ theorem, we need a priorߙ

distribution ݃൫ߙ௣௥௜൯ that gives our belief about the possible values of the parameter vector 

ߙ ൌ ሺߙଵ, … ,   .௄ሻ before incorporating the dataߙ

Based on earlier discussion on Dir(α) , ߙ ൌ ሺߙଵ, … ,  ௄ሻ can be used as prior density, whichߙ

results in a new Dirichlet posterior with parameters vector ܽ௞
௣௢௦ ൌ ܽ௞

௣௥௜ ൅  ௞ is theݕ ௞, whereݕ

number of occurrences of each category in the incorporated data. In other words, Dirichlet 

distribution can be updated simply by adding the new occurrence number of each category to the 

prior parameters ߙ௞:  
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                                      ݃ሺߛ|ߙሻ ൌ ୻൫∑ ௬ೖାఈೖ
಼
ೖసభ ൯

∏ ୻ሺ௬ೖାఈೖሻ಼
ೖసభ

∏ γ୩
ఈೖା௬ೖିଵ௄

௞ୀଵ                                     ( 1-12) 

The posterior mean would then be ܧሺܽ௞|ݕଵ, … , ௄ሻݕ ൌ ௬ೖା௔ೖ
∑ ௬ೖ

಼
ೖసభ ା∑ ௔ೖ

಼
ೖసభ

  with variance: 

,ଵݕ|௞ߙሺݎܸܽ                         … , ௄ሻݕ ൌ
ሺ௬಼ାఈೖሻቀ൫∑ ௬ೖା಼

ೖసభ ∑ ఈೖ
಼
ೖసభ ൯ିሺ௬಼ାఈೖሻቁ

ቆ൫∑ ௬ೖା಼
ೖసభ ∑ ఈೖ

಼
ೖసభ ൯

మ
൫∑ ௬ೖା಼

ೖసభ ∑ ఈೖ
಼
ೖసభ ାଵ൯ቇ

                         ( 1-13) 

For choosing an extended version of the procedure used for Beta distribution can be applied 

by letting ߙ௞
௣௥௜ ൌ ௞ܲ ; where ௞ܲ is the output of the multinomial logistic regression. As an 

alternative to above procedure, several researchers [Leonard 1973; Aitchison 1985; Goutis 1993; 

Forster and Skene 1994] proposed using a multivariate normal prior distribution for multinomial 

logits.  

1.2.5. Hotelling's ࢀ૛ Distribution 

In statistics, Hotelling's ܶଶ statistic [Evans et al. 2000] is a generalization of Student's t-

statistic that is used in multivariate hypothesis testing. Hotelling's ܶଶ statistic is defined as 

follows: 

ଶݐ     ൌ ݊൫ߩ െ ߩ௣൯்ܹିଵ൫ߤ െ  ௣൯      ( 1-14)ߤ

where n is a number of points (see below), ߩ is a column vector of ܭ elements and W is a ݌ ൈ

~ߩ  sample covariance matrix. If ݌ ௄ܰሺߤ, ܸሻ is a random variable with a multivariate Gaussian 

distribution and W~ ௄ܹሺܸ, ݊ െ 1ሻ (independent of  ߩ) has a Wishart distribution with the same 

non-singular variance matrix  ܸ and ݊ െ  1, then the distribution of  ݐଶ is, Hotelling's ܶଶ with 

parameters ܭ and n, where ܨ representing ܨ-distribution: 

                                                                 ௡ି௄
௡ሺ௡ିଵሻ  ௄,௡ି௄                                ( 1-15)ܨ~ଶݐ
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ܶଶdistribution can be used for pairwise comparison of the mean of two sets of 

multidimensional data ܪ଴: ߤ஽ ൌ 0 against ܪଵ: ߤ஽ ് 0, e.g. estimated and empirical probabilities 

of patient attendance. Above hypothesis can be tested using ܨ-statistic ௡ି௄
௡ሺ௡ିଵሻ  ௣,௡ି௣ whereܨ~ଶݐ

ଶݐ ൌ ݊ തܲ஽
′ ܵ௉ವ

ିଵ തܲ஽ where  and ܵ௉ವ is calculated as follows: 

    ܵ௉ವ ൌ ଵ
௡ିଵ

∑ ൫ ஽ܲ೔ െ തܲ஽൯൫ ஽ܲ೔ െ തܲ஽൯Ԣ௡
௜ୀଵ                ( 1-16) 

Also തܲ஽ ൌ ଵ
௡

∑ ஽ܲ௜
௡
௜ୀଵ  where ஽ܲ௜ ՚ ௜ଵ݌ൣ

ா௠௣ െ ௜ଵ̂݌
ெ௢ௗ௘௟, … , ௜௄݌

ா௠௣ െ ௜௄̂݌
ெ௢ௗ௘௟ ൧ is the vector of 

pairwise differences between person ݅ empirical and estimated probabilities for type ݇ א

ሺ1, … ,   .ሻ attendance, e.g. probabilities of no-show, cancellation and show-upܭ
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CHAPTER 2 PREDICTING DISTURBANCES IN APPOINTMENT 
SCHEDULING THROUGH HYBRID PROBABILISTIC MODELING 

2.1. The Proposed Algorithm for No-Show Prediction 

Algorithm 1 illustrates the flow of the steps taken by the proposed approach for estimating no-

show probability which can be categorized in three stages:  

1. Initial no-show probability estimation 

2. Bayesian update of the no-show estimate 

3. Weight optimization  

Algorithm 1:  No-show Prediction Algorithm 
Input: Input data ൫ ௜ܺ௝, ௜ܻ௝൯, Threshold parameter ܶ 
Output: Estimated no-show probability ̂݌ெ௢ௗ௘௟, Beta distribution posterior parameters൫ߙ௜௝

௣௢௦, ௜௝ߚ
௣௢௦൯, 

Logistic regression estimated parameters ܤ෠  
Procedure: 
1 /* Logistic regression*/ 
෠ܤ 2 ՚ Calculate MLE of Equation (1.4)  parameters 
଴௜௝൫̂݌ 3 ௜ܻ௝ ൌ 1| ௜ܺ௝൯ ՚ ൫ܨ  ௜ܺ௝,  ෠൯ܤ
4 ൫ߙ௜

௣௥௜, ௜ߚ
௣௥௜൯  ՚Solve system of Equation  (1-11) with ̂݌଴௜ሺ ௜ܻ ൌ 1| ௜ܺሻ 

5 /*Weight optimization*/ 

௜̂݌ 6
ோ௘௔௟ ՚

∑ ௜ܻ௝
௠
௝ୀ௟

݉ െ ݈ ൅ 1 

7 Until Equation (2-1) improvement  ܦ ൏ ܶ do 
8 ௝ܹ ՚set a value for appointments weights 
9 /*Bayesian update */ 
10 

ە
ۖۖ
۔

ۖۖ
௜௝ߙۓ

௣௢௦ ՚ ௜ߙ
௣௥௜ ൅ ෍ ൭ෑ ௜௝ఠݓ

ఠאௐ

൱ ௜ܻ௝

௜,௝ିଵ

௜,ଵ

௜௝ߚ
௣௢௦ ՚ ௜ߚ

௣௥௜ ൅  ݊௜  െ  ෍ ൭ෑ ௜௝௞ݓ
௞אௐ

൱ ௜ܻ௝

௜,௝ିଵ

௜,ଵ

 

ெ௢ௗ௘௟̂݌ 11 ՚
ఈ೔ೕ

೛೚ೞ

ఈ೔ೕ
೛೚ೞାఉ೔ೕ

೛೚ೞ  

12 തܲ ՚ ෍൫̂݌௜
ெ௢ௗ௘௟ െ ௜̂݌

ோ௘௔௟൯
௡

௜ୀଵ

݊ൗ  

13 ܵ௉ ՚
∑ ൫̂݌௜

ெ௢ௗ௘௟ െ ௜̂݌
ோ௘௔௟൯ଶ௡

௜ୀଵ െ ቂ൫∑ ൫̂݌௜
ெ௢ௗ௘௟ െ ௜̂݌

ோ௘௔௟൯௡
௜ୀଵ ൯ଶ ݊ൗ ቃ

݊ െ 1
 

଴ݐ 14 ՚ തܲ ܵ௉ √݊⁄⁄  
 

15 Return  ̂݌ெ௢ௗ௘௟  
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In the first stage, based on the dataset of individuals’ personal information ሺீܦூሻ, (such as 

gender, marital status, etc.) and their sequence of appointment information (e.g. previous 

attendance records ሺܦேோ)), a logistic regression model ܨ൫ ௜ܺ௝,  ,෠൯ is formulated (line 2). Thenܤ

using logistic regression, an initial estimate of no-show probability is calculated, given by 

pො଴୧ሺY୧ ൌ 1|X୧ሻ. As discussed in Section 1.1.2, Logistic regression bundles the information of the 

complete population together and finds a reliable initial estimate of no-show (̂݌଴௜ሻ. 

In the second stage, which is interlaced with the third stage, the initial estimate is used in a 

Bayesian update procedure to find the posterior no-show probability for each person. For this 

purpose, ̂݌଴௜ is transformed into prior parameters of a Beta distribution ൫ߙ௜
௣௥௜, ௜ߚ

௣௥௜൯ as shown in 

line 4. Next, using the attendance record of each person ൫ ௜ܻ௝൯ the posterior parameters 

൫ߙ௜
௣௢௦, ௜ߚ

௣௢௦൯ and posterior probability of no show ̂݌ெ௢ௗ௘௟ is calculated (lines 10 and 11). As 

discussed in Section 1.1.3, the reason Bayesian update procedure is applied to the output of 

logistic regression is that, typically regression models cannot consider individual patients 

behavior. Also, updating regression parameters based on new data records is both difficult and 

only marginally effective (especially when the model is already constructed on a huge dataset) in 

comparison to Bayesian update. 

In the third stage, appointments are weighted based on on a subset of factors ܹ= ሾݓଵ, … ,  ఠሿݓ

(line 8) to increase the model performance in estimating the real probability of no-show. An 

optimization procedure is used for finding the optimal value of the weights. The objective 

function of the model is to minimize the difference between the real and model estimated 

probability of no-show: 
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Where ݓଵ, … , ݌ ఠ are the weights to be optimized andݓ െ value௣௔௜௥ௗ ௧ି௧௘௦௧ is the p-value of a 

two sided statistical hypothesis testing of the paired estimated p using the model and estimated p 

using the attendance records:  

⎩
⎨
⎧

≠
=

Datalal
D

Model
D

Datalal
D

Model
D

ppH
ppH

Re
1

Re
0

:
:

         

( 2-2) 

It should be noted that the mean squared error (ܧܵܯ) can also be used as the objective 

function. However, t-statistics which is used above not only contains ܧܵܯ  in itself (ܵ௉ in the 

denominator of t statistics is a linear function of ܧܵܯ) (line 14), but also has a statistical 

distribution which makes it better choice for our optimization model. 

In (2-1), ഀݐ
మ,௡ିଵ is the percentage of points or value of t random variables with n-1 degrees of 

freedom such that the probability that ݐ௡ିଵ exceeds this value is ߙ, and ݐ଴ ൌ ௉ത

ௌು √௡⁄
  where 

തܲ ൌ ∑ ൫̂݌௜
ெ௢ௗ௘௟ െ ௜̂݌

ோ௘௔௟൯௡
௜ୀଵ ݊⁄   and ܵ௉ is calculated as follows: 

( ) ( )( )
1

ˆˆˆˆ
1

2

1
Re2Re

−

⎥⎦
⎤

⎢⎣
⎡ −−−

=
∑ ∑= =

n

npppp
S

n

i

n

i
al

i
Model
i

al
i

Model
i

p

                 
( 2-3) 

Where ̂݌௜
ோ௘௔௟ is the real rate of no-show for person ݅ calculated as ̂݌௜

ோ௘௔௟ ՚
∑ ௒೔ೕ

೘
ೕస೗

௠ି௟ାଵ
, with ௜ܻ௝ as a 

binary (random) variable representing records of no-show/show of patient i for appointment j. 

Here, l is the index of first appointment in the validation dataset which is discussed shortly, and 

m is the total number of appointments in the validation dataset for patient i. Also ̂݌௜
ெ௢ௗ௘௟  is the 
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estimated no-show probability calculated based on weighted appointments using the proposed 

model.  

The optimization procedure is as follows: at every iteration, a vector of weights is assigned to 

the appointments in validation dataset (line 8). The weighted appointments are then plugged into 

the Bayesian update mechanism for estimating the probability of no-show (lines 10 and 11). 

Next, the estimates of the proposed model and real attendance records are compared by forming 

a t- statistic (lines 12 to 14) and the p-value of the paired ݐ-test which shows the goodness of the 

assigned weights, is used for improving the initial set of weights (line 7) . This procedure 

continues until no improvement is observed. Then, the ̂݌ெ௢ௗ௘௟ of the iteration resulted in the best 

value of objective function is used as the no show estimate. 

2.2. Experimental Results 

Here the proposed method is evaluated based on a healthcare dataset of 99 patients at the 

Veteran Affairs (VA) Medical Center in Detroit. The dataset includes the following data from 

patients’ personal and appointment information: (1) sex, (2) date of birth (DOB), (3) marriage 

status, (4) medical service coverage, (4) address (zip code), (5) clinic and (6) attendance record. 

This Section is organized as follows: first data processing is discussed. Next, a stylized 

example for one patient is presented to show how the model works. Finally, the results of 

applying the model to the dataset is discussed using two types of analysis: one by defining 

training, validation and test dataset on patients, and one on appointment time. 

2.2.1. Data Preprocessing 

The data attributes in the dataset should be preprocessed before being used in the model. This 

includes: coding, dealing with missing attributes, and co-linearity elimination. Besides, because 
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of the variety of clinics (more than 150 in our case), if this explanatory variable gets directly 

used in the model, the accuracy of the logistic regression will be severely affected.  

Such problem can be addressed by clustering similar clinics respect to their no-show rate. 

While various types of clustering algorithms can be used for this purpose, since the clinics are 

originally different in type, grouping them into a set of clusters will result in clusters with 

different density and dispersion. Such characteristics can be effectively considered using 

Generalized Mixture Models (GMM) [Alpaydim 2010]. 

Figure 1(a) illustrates the histogram of clinics’ no-show probability and Figure 1 (b) shows 

the result of clustering the clinics based on their no-show probability using GMM. The final 

result which is four clusters has been verified by a team of experts. 
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(a) 
 

 

 

 

 

 

 
 
 

(b) 
 

Figure 1: (a) The histogram of clinics no-show probability, (b) The result of clustering the 
clinics based on their no-show probabilities 

Also, (1) appointment recency, (2) appointment closeness to non-working days (Saturday, 

Sunday, and holidays), and (3) clinic cluster, are considered as weighting factors (ܹ ൌ

ሾݓଵ, ,ଶݓ  ଷሿሻ. Regarding the first factor, it is reasonable that no-show records that occurred longݓ

time ago do not carry the same weight as recent no-shows. This is based on the fact that patients 

may gradually or abruptly change their behavior, which should be reflected in the model. 

 
Clinic  

Cluster 0 1 2 3 

 0.9595 0.4874 0.2197 0 ࣆ
࣌ 0.2843 0.0890 0.0904 0.1300 
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Regarding the second and third weighting factors, the study of data revealed a strong correlation 

among no-show rate and days close to holidays and clinic clusters. 

The weights discussed above are arranged in a special data structure before being applied to 

the data. For the appointment recency where more importance should be assigned to the recent 

appointments a logarithmic time framework with five weights is considered. For the appointment 

closeness to non-work days two weights are applied: one for Monday to Thursday and one for 

Friday and days before holidays. Finally, for clinics cluster, based on the groups derived using 

GMM, four weights are defined. Table 2 shows the final data structure and optimal value of the 

weights which is gained by solving Equation (2-1) using Genetic Algorithm (GA) algorithm.  

Table 2: Data structure for the weighting factors 

Appointment recency closeness to non-
work days Clinic cluster 

<1 
wk. 

<1 
mon. 

<3 
mon. 

6< 
mon. 

> 6 
mon. 

Not-
before 
holiday 

Before 
holiday 

Very 
important  … … Not 

important 

1 1 1 0.95 0.9 1 .925 1 … … 0.75. 

2.2.2. Applying the Proposed Model to a Sample Patient 

Here the procedure of no-show probability estimation for a randomly selected patient is 

explained. The selected patient is male, born on 02/5/1978, never married, degree of medical 

service coverage less than 5% with zip code 48235. Table 3 shows his appointment information 

as patterns of show/no-show from 10/13/2009 to 12/31/2009 (training dataset). Note that no-

shows are represented by 1 while shows are represented by 0. 
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Table 3: Attendance record of a sample patient 

Appointment 
No. Appointment date Clinic 

cluster 
No-

show 
1 10/13/2009 1 0 
2 10/29/2009 1 1 
3 11/10/2009 0 0 
4 11/17/2009 1 1 
5 12/2/2009 2 1 
6 12/8/2009 1 0 
7 12/9/2009 2 0 
8 12/23/2009 1 0 
9 12/23/2009 1 1

10 12/29/2009 1 0 
11 12/31/2009 0 1 

 
Using patient personal and appointment information as well as the attendance record, the 

parameters of the fitted logistic regression model are calculated in Table 4.  

Table 4: A sample logistic regression model fitted to the dataset 

Sex DOB 
Marriage 

status 

Medical 
service 

coverage 

Zip 
code 

Clinic 
cluster 

Recency 
Closeness 

to non-
workday 

Constant 

71.6917 -0.8600 6.51E-05 -0.13596 0.0180 0.0015 0.4822 0 3.0410 
 
Based on the estimated coefficients of logistic regression the probability of not showing up in 

the first appointment in the testing dataset (1/25/2010) is estimated as 0.3453=݌. This estimate is 

used for building the prior Beta(0.3453,0.6547) of the Bayesian updating procedure by solving 

Equation (1-11). Table 5 illustrates the updated parameters of Beta distribution as well as the 

estimated probability of no-show after each appointment. 
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Table 5: Bayesian update of Beta distribution parameters  
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0.3453 0.6547 0.345 
12 1/25/2010 0 1 0.9 1 1 0.35 0.695 0.655 0.515 
13 1/26/2010 1 1 0.9 0.9 0 0 0.695 1.655 0.296 
14 2/2/2010 0 1 0.9 1 0 0 0.695 2.655 0.208 
15 2/4/2010 2 1 0.9 0.75 0 0 0.695 3.655 0.160 
16 2/6/2010 2 1 0.9 0.75 0 0 0.695 4.655 0.130 
17 2/17/2010 0 1 0.9 1 0 0 0.695 5.655 0.109 
18 2/18/2010 1 1 0.9 0.9 0 0 0.695 6.655 0.095 
19 2/23/2010 0 1 0.9 1 0 0 0.695 7.655 0.083 
20 3/2/2010 1 1 0.9 0.9 0 0 0.695 8.655 0.074 
21 3/9/2010 0 1 0.9 1 1 0.35 1.045 8.655 0.108 
22 3/16/2010 0 1 0.9 1 0 0 1.045 9.655 0.098 
23 3/18/2010 2 1 0.9 0.75 0 0 1.045 10.655 0.089 

 

 As graphically illustrated in Figure 2 (a), the Bayesian update reacts quickly to each new data 

record, which means that the procedure can rapidly converge to the real distribution of no-show. 

Figure 2 (b) compares the prior and posterior distributions of no-show probability before and 

after applying testing data. It is easy to follow how the mass of the density function has moved to 

the left in the posterior which can be interpreted as decreasing the probability of no-show. 
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Figure 2: Applying the proposed model for a sample patient :(a) Real record of attendance 
and estimated probability of no-show using the proposed model (b) Prior and posterior of 
Beta distribution for modeling no-show 

2.2.2.1. Time wise Analysis  

In this Section, the performance of the proposed model is compared with a number of 

population and individual based methods based on time wise analysis. In this regard the training, 

validation and testing data are defined as follows:  appointments occurred before 6/31/2009 for 
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training, appointments between 6/31/2009 and 12/31/2009 for validation, and appointments after 

12/31/2009 for testing. Such a setting is used for all of the time-wise experiments. 

The comparing methods including: Box smoothing, autoregressive integrated moving average 

model (ARIMA), decision tree, and multiple logistic regression with same predictors as used in 

the proposed model regression part and rule-based methods. The moving window size of Box 

method is checked for the range of 1 to 7, where only 5 is considered. For ARIMA model two 

cases ARMA (1,1,0) and ARMA(2,2,0) are considered. Also, J48 and PART algorithms are used 

for building the decision tree rule-based methods.  

Figure 3 compares the Mean Squared Error (MSE) of the comparing methods. Based on MSE 

measure the proposed model performs clearly better than other methods while rule-based has the 

worst result. As can be seen from the results, in general, individual-based methods outperform 

population based methods, while bundling these methods together (as we have done in the 

proposed methods) significantly better method than both.  

Proposed 
Box 

Smoothing
ARMA (1,0,1) Decision Tree

Logistic 
regression

ARMA (2,0,2) Rule‐based

MSE 0.03098 0.0681 0.1094 0.1353 0.1494 0.1600 0.3439

0

0.1

0.2

0.3

0.4

 

Figure 3: Mean Squared Error (MSE) of the other methods used for comparison 
 

Figures 4 to 6 illustrate some of the comparing methods estimates versus real probability of 

no-show over different patients. As can be seen from Figure 4 (a), the proposed approach 
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estimates often follows the real pattern correctly. This is better illustrated in Figure 4 (b) which 

shows the absolute difference between the estimated and real probability of no-show. Here, the 

mean of differences is 0.1104 which is acceptably low. There are also few cases with absolute 

difference more than 0.5. Later analysis reveals fewer available data records for those patients.  
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Figure 4: Proposed approach performance over patients: (a) estimated versus real 
probability of no-show, (b) Absolute difference of estimated and real no-show probability 

 
Figure 5 (a) illustrates the estimates from one of the population based methods which is 

logistic regression. As can be seen, the estimates tend to have small fluctuations around an 

approximately fixed mean. Such result clearly shows that the regression models may not fully 

capture the difference among patients’ personal behaviors.  The absolute difference between the 
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estimated and real probability of no-show which is shown in Figure 5 (b) also confirms similar 

results. Here the mean of the differences is 0.1935 while the maximum difference is 0.8683 

which is considerable. Such a result is similar to other population based methods discussed 

earlier.  
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Figure 5: Logistic regression performance over patients: (a) estimated versus real 
probability of no-show, (b) Absolute difference of estimated and real no-show probability 

 
Finally, Figure 6(a) shows the results from ARIMA (1,1,0) model which is one of the 

individual based methods.  As can be seen for a large portion of patients that have real no-show 
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rate of larger than zero ARIMA can barely follow the real pattern. This can also be checked in 

Figure 6 (b) which has several differences greater than 0.5 and a few differences equal to 1. 
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Figure 6: ARIMA (1,1,0) performance over patients: (a) estimated versus real probability 
of no-show, (b) Absolute difference of estimated and real  no-show probability 
 
2.2.2.2. Patient wise Analysis  

Here the comparing methods discussed in previous Sections are studied based on a patient 

wise analysis. For this purpose, out of 99, 50 patients are randomly chosen and used for training, 

20 are randomly selected for validation and the 29 are used for testing. Figure 7 illustrate the 

results which is similar to time wise analysis of the comparing methods.  
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Box 
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Figure 7: Mean squared error (MSE) of different methods used for comparison comparing 
methods 
 

The results from Figures 2 to 7 clearly show the capability of the proposed model in 

estimating probability of non-attendance for both current and new patients of a health care 

system. 

2.2.2.3. Discussion 
  

In this Section, up to this point, a probabilistic model based on logistic regression and 

Bayesian inference has been developed to estimate the patients’ no-show probability in real-time. 

Also, the effects of appointment date and clinic on the proposed method have been modeled. 

Next, based on a dataset from a Veteran Affair medical center, the effectiveness of the approach 

has been evaluated. Our approach is computationally effective and easy to implement. Unlike 

population based methods, it takes into account the individual behavior of patients.  Also, in 

contrast to individual based methods, it can put together consolidated information from the entire 

data to provide reliable initial estimates. In the next Section, the proposed method is extended to 

consider other types of disturbances. 
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2.3. Generalization of the Proposed Algorithm for No-Show and Cancellation 

Prediction  

Algorithm 2 illustrates the pseudo code of the proposed algorithm for estimating two types of 

disruptions probabilities: no-show and cancellation. Similar to Algorithm 1, algorithm 2 consists 

of the following three main components:  

1. Initial no-show and cancellation probabilities estimation 

2. Bayesian update of the no-show and cancellation estimates 

3. Weight optimization  

Algorithm 2:  No-show and Cancellation Prediction Algorithm 
Input: Input data ൫ ௜ܺ௝, ௜ܻ௝൯, Threshold parameter ܶ 
Output: Estimated no-show and cancellation probabilities ̂݌ெ௢ௗ௘௟, Dirichlet distribution 
posterior parameters ൫ߙ௜௝

௣௢௦൯, Multinomial logistic regression estimated parameters ܤ෠௞ 
Procedure: 
1 /* Logistic regression*/ 
෠௞ܤ 2 ՚ Calculate MLE of Equation (1-5)  parameter 
௜௞̂݌ 3

଴ ൫ ௜ܻ ൌ 1,2,3| ௜ܺ௝൯ ՚ ,൫ܺ௜௝ܨ   ෠௞൯ܤ
௜௞ߙ 4

௣௥௜ ՚ ௜௞̂݌ 
଴  

5 /*Weight optimization*/ 
6 

௜ሺ௝ୀ௩మሻ௞̂݌
ா௠௣ ՚

∑ ௜ܻ௝௞
௩మ
௝ୀ௩భ

ଶݒ െ ଵݒ ൅ 1
    

7 Until Equation (2-1) improvement  ܦ ൏ ܶ do 
8 ܹ ՚set a value for the vector of appointments weights 
9 /*Bayesian update */ 
10 

௜ሺ௝ୀ௩మሻ௞ߙ
௣௢௦ ՚ ௜௞ߙ

௣௥௜ ൅  ෍ ൭ ෑ ௜௝ఠݓ
ఠאௐ

൱ ௜ܻ௝

௜,௩ଶ

௜,௝ୀ௩ଵ

 

௜ሺ௝ୀ௩మሻ௞̂݌ 11
ெ௢ௗ௘௟ ՚

ఈ೔ሺೕసೡమሻೖ
೛೚ೞ

∑ ఈ೔ሺೕసೡమሻೖ
೛೚ೞ಼

ೖసభ
  

12 ஽ܲ௜ሺ௝ୀ௩మሻ ՚ ቂ݌௜ሺ௝ୀ௩మሻଵ
ா௠௣ െ ௜ሺ௝ୀ௩మሻଵ̂݌

ெ௢ௗ௘௟ , … , ௜ሺ௝ୀ௩మሻ௄݌
ா௠௣ െ ௜ሺ௝ୀ௩మሻ௄̂݌

ெ௢ௗ௘௟ ቃ 

13 
തܲ஽ ՚ ଵ

௡
∑ ஽ܲ௜

௡
௜ୀଵ    

14       ܵ௉ವ ՚ ଵ
௡ିଵ

∑ ൫ ஽ܲ೔ െ തܲ஽൯′൫ ஽ܲ೔ െ തܲ஽൯௡
௜ୀଵ  

ଶݐ 15 ՚ ݊ തܲ஽ܵ௉ವ
ିଵ തܲ஽ 

଴ܨ 16 ՚ ௡ି௄
௡ሺ௡ିଵሻ  ଶݐ

݌ 17 െ ௣௔௜௥ௗ ிି௧௘௦௧݁ݑ݈ܽݒ ՚ ଴ܨ൫݌ ൐  ௔,௣,௡ି௄൯ܨ
18 Return  ̂݌ெ௢ௗ௘௟ 
 



29 
 

 

In the first component, based on the training dataset consisting individuals’ personal 

information ሺீܦூሻ, (such as gender, marital status, etc.) and their sequence of appointment 

information (e.g. previous attendance records ሺܦேோ)), a multinomial logistic regression model 

,൫ܺ௜௝ܨ  ,෠൯ is formulated (line 2). Then, using logistic regression, an initial estimate of no-showܤ

cancellation and show-up probabilities are calculated, given by ̂݌௜௞
଴ ൫ ௜ܻ ൌ 1,2,3| ௜ܺ௝൯ (line 3). As 

discussed in Section 1.1.2, Logistic regression bundles the information of the complete 

population together and finds a reliable initial estimate of no-show (̂݌௜௞
଴ ሻ. 

In the second component, which is interlaced with the third component, the initial estimate is 

used in a Bayesian update procedure to find the posterior no-show, cancellation and show-up 

probabilities of each person. For this purpose, ̂݌௜௞
଴  is transformed into prior parameters of a 

Dirichlet distribution ߙ௜௞
௣௥௜ as shown in line 4. Next, using the attendance record of each person 

൫ ௜ܻ௝൯ the posterior parameters ߙ௜௝௞
௉௢௦ and posterior probability of attendance ̂݌௜௝௞

ெ௢ௗ௘௟ is calculated 

(lines 10 and 11). As discussed in Section 1.1.3, the reason for applying the Bayesian update 

procedure to the output of logistic regression is that, typically regression models cannot consider 

individual patients behavior. Also, updating regression parameters based on new data records is 

both difficult and only marginally effective (especially when the model is already constructed on 

a huge dataset) in comparison to Bayesian update. 

In the third component, appointments are weighted based on a subset of factors W= 

ሾݓଵ, … , -ఠሿ (line 8) to increase the model performance in estimating the real probability of noݓ

show. An optimization procedure is used for finding the optimal value of the weights. The 

objective function of the model is to minimize the difference between the empirical and 

estimated probabilities of no-show, cancellation and show-up as follows: 
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Where ݓଵ, … , ݌ ఠ are the weights to be optimized andݓ െ  ௣௔௜௥ௗ ிି௧௘௦௧ is the p-value of a݁ݑ݈ܽݒ

one-sided statistical hypothesis testing of the paired estimated p using the model and estimated p 

using the attendance records:  
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:             ( 2-5) 

It should be noted that MSE can also be used as the objective function. However, ܨ െstatistic 

which is used above not only contains MSE information in itself (both ܵ௉ in the ܶଶ statistics and 

MSE estimate the deviation of a variable from its nominal value) (line 14), but also has a 

statistical distribution which makes it a better choice for our optimization model. 

In Equation (2-4), ܨ௔,௄,௡ି௄ is the percentage of points or value of F random variable with K 

and n-K degrees of freedom such that the probability that ܨ௣,௡ି௣ exceeds this value is ߙ, and 

଴ܨ ൌ ௡ି௄
௡ሺ௡ିଵሻ ௜ሺ௝ୀ௩ଶሻ௞̂݌ .ଶ is calculated through lines 11 -15ݐ ଶ,  whereݐ

ோ௘௔௟  in line 11, shows the real 

rate of no-show, cancellation and showing up for person ݅ calculated as  

௜ሺ௝ୀ௩ଶሻ௞̂݌
ோ௘௔௟ ൌ

∑ ௒೔ೕೖ
ೡమ
ೕసೡభ

௩ଶି௩ଶାଵ
   with ௜ܻ௝௞ as a multinomial (random) variable representing the records of 

attendance of type ݇ for patient i and appointment j. Here, ݒଵ is the index of first appointment in 

the validation dataset which is discussed shortly, and ݒଵ is the index of last appointments in the 

validation dataset for patient i. Also, ̂݌௜ሺ௝ୀ௩మሻ௞
ெ௢ௗ௘௟ ՚

ఈ೔ሺೕసೡమሻೖ
೛೚ೞ

∑ ఈ೔ሺೕసೡమሻೖ
೛೚ೞ಼

ೖసభ
  is the estimated probability of 

disruption of type ݇ calculated based on weighted appointments in validation dataset using the 

proposed model.  
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The optimization procedure is as follows: at every iteration, a vector of weights is assigned to 

the appointments in validation dataset (line 8). The weighted appointments are then plugged into 

the Bayesian update mechanism for estimating the probability of no-show (lines 10 and 11). 

Next, the estimates of the proposed model and real attendance records are compared by forming 

a ܨ-statistic (lines 12 to 16) and the p-value of the paired ܨ-test (line 17) which shows the 

goodness of the assigned weights, is used for improving the initial set of weights (line 7) . This 

procedure continues until no improvement is observed. Then, the ̂݌ெ௢ௗ௘௟  of the iteration resulted 

in the best value of objective function is used as the no-show estimate (line 18). 

2.4. Experimental Results 

For the purpose of evaluation, the performance of the proposed method is evaluated along 

with different population-based and individual-based algorithms on the extended version of the 

dataset used in the previous Section which includes 1,543 patient records with the following 

appointment information: (1) sex, (2) date of birth (DOB), (3) marital status, (4) medical service 

coverage, (4) address (zip code), (5) clinic and (6) prior attendance record in the hospital. 3-fold 

cross-validation with approximately 500 records each for training, validation and testing is 

considered for the evaluation.  

We will first discuss the preprocessing of the data and then provide a stylized example for one 

sample patient record to illustrate how the model works. Finally, the result of applying the model 

on the dataset is discussed based on two types of analysis: (i) time-wise analysis and (ii) patient-

wise analysis.  
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2.4.1. Data Preprocessing 

As discussed in Section 2.2.1, before applying the proposed model to the dataset, it should be 

preprocessed (see Section 2.2.1 for more information). Table 6 shows the result of clustering the 

clinics based on their probability of no-show, cancellation and show-up using GMM. This Table 

is an extension to the Figure 1(b) in Section 2.2.1 . In the Section 2.2.1 the clinics are grouped 

based only one type of disruption, namely no-show rate. However, here they are clustered based 

on two types of disturbances, namely no-show and cancellation.  

Table 6: The result of clustering the clinics based on their no-show, cancellation and show-
up probabilities 

  Cluster 

Attribute Parameter 0 1 2 3 4 

No-show 0.1377 1.0000 0.2167 0.3488 0.0015 ߤ 
 0.1331 0.3085 0.2692 0.1557 0.0114 ߪ

Cancellation 0.3276 0.0000 0.7833 0.0540 0.0011 ߤ 
 0.1251 0.1968 0.2692 0.0733 0.0088 ߪ

Show-up 0.5346 0.0000 0.0000 0.5972 0.9974 ߤ 
 0.1465 0.3372 0.0031 0.1523 0.0142 ߪ

 

Again, like previous Section, (1) appointment recency, (2) appointment preceding non-work 

days (Saturday, Sunday, and holidays), and (3) clinic cluster, are considered as weighting factors 

(ܹ ൌ ሾݓଵ, ,ଶݓ  ଷሿሻ, which are arranged in the data structure illustrated in Table 7. Table 7 alsoݓ

shows the optimal values of the weights used in Section 2.4.2 analysis. 
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Table 7: Data structure and optimal value of the weighting factors 
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w
is

e 1 1 1 1 0.75 0.5 1 0.90 1 1 0.9 0.81 0.62.
2 1 0.97 0.96 0.82 0.67 1 0.98 1 1 0.84 0.73 0.71 

3 1 1 1 0.87 0.78 1 0.97 1 0.87 0.81 0.80 0.75 

Pa
tie

nt
 

w
is

e 1 1 1 0.82 0.73 0.70 1 1 1 0.94 0.85 0.77 0.69 
2 1 0.99 0.75 0.61 0.58 1 0.89 1 1 0.81 0.69 0.66 
3 1 1 0.89 0.81 0.51 1 1 1 1 0.89 0.69 0.55 

 
 

2.4.2. Applying the Proposed Model to a Sample Patient 

The Section explains different steps of the proposed approach using a simple case study on a 

randomly selected patient. The patient was male, born on 02/5/1978, never married, degree of 

medical service coverage less than 5% with zip code 48235. Table 8 shows his appointment 

information as patterns of show/no-show from 10/13/2009 to 12/31/2009 (training data). Note 

that no-shows are represented by 1 while cancellation and show-ups are represented by 2 and 3 

respectively.  
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Table 8: No-show, cancellation and show-up record of a sample patient 

Appointment 
No. Appointment date Clinic 

cluster 

Weight 
Attendance 

record 
Preceding 

non-
workday 

Recency Clinic  
cluster 

1 10/1/2009 0 1 0.5 0.9 3 
2 10/8/2009 0 1 0.5 0.9 1 
3 10/9/2009 0 0.9 0.5 0.9 2 
4 10/13/2009 2 1 0.5 1 3 
5 10/13/2009 2 1 0.5 1 3 
6 10/13/2009 2 1 0.5 1 3 
7 10/15/2009 0 1 0.5 0.9 3 
8 10/15/2009 2 1 0.5 1 3 
9 10/19/2009 2 1 0.5 1 1 
10 10/19/2009 2 1 0.5 1 1 
11 10/19/2009 0 1 0.5 0.9 1 
12 10/22/2009 2 1 0.5 1 3 
13 11/6/2009 2 0.9 0.5 1 3 
14 11/6/2009 0 0.9 0.5 0.9 3 
15 12/3/2009 2 1 0.5 1 3 
16 12/18/2009 2 0.9 0.5 1 3 

 
Using the patient’s personal and appointment information as well as his previous attendance 

record, the parameters of the fitted multinomial logistic regression model are computed as shown 

in Table 9 (since we are modeling a categorical variable with three levels, namely no-show, 

cancellation and show-up, two sets of regression parameters are estimated (See Equation 1-5) . 

Table 9: A sample multiple logistic regression model fitted to the dataset 

Sex DO B
Marriage 

status

Medical 
service  

coverage Zip code
Clinic 
cluster Recency

Closeness 
to non-

workday Constant

106.605 -2.994 0.000 -0.314 -0.063 -0.002 -0.733 1.175 -0.388

168.919 -4.015 0.000 -0.234 -0.058 -0.003 -0.973 0.638 1.122

 
Based on the estimated coefficient the probability of no-show, cancellation and show-up for 

the first appointment in the testing dataset (2/1/2010) is estimated as (0,52525, 0.050374, 

0.424376). This estimate is used for building the prior Dirichlet distribution with same 

parameters. Table 10 illustrates the updated parameters of Dirichlet distribution after each 

appointment. 
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Table 10: Bayesian update of Dirichlet distribution parameters 
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0.5253 0.0504 0.4244 
18 2/1/2010 2 1 0.75 1 1 0.7626 0.0252 0.2122 
19 2/5/2010 2 0.9 0.75 1 3 0.3051 0.0101 0.6849 
20 2/5/2010 2 0.9 0.75 1 1 0.4209 0.0084 0.5707 
21 2/5/2010 0 0.9 0.75 1 3 0.2806 0.0056 0.7138 
22 2/9/2010 2 1 0.75 1 1 0.3525 0.0050 0.6424 
23 2/9/2010 2 1 0.75 1 1 0.4114 0.0046 0.5840 
24 2/9/2010 2 1 0.75 1 1 0.4604 0.0042 0.5354 
25 2/10/2010 2 1 0.75 1 1 0.5019 0.0039 0.4942 
26 2/17/2010 2 1 0.75 1 3 0.4078 0.0031 0.5890 
27 3/15/2010 2 1 0.75 1 3 0.3434 0.0027 0.6539 

 

Figure 8 (a) illustrates the changes in the estimated probabilities of no-show, cancellation and 

show-up after each new record of attendance (solid lines) plus the estimated trend (using order 

three polynomials) of each type (dashed lines). Figure 8 (a) shows how the Bayesian update 

reacts quickly to each new data record, which means that the procedure can rapidly converge to 

the real distribution of no-show. Figure 8 (b) compares the prior and posterior distributions of 

this patient attendance probability before and after applying testing data. It is easy to follow the 

movement of the probability density function to the right and upper edges of the simplex 

(indicated by the arrows) which can be interpreted as decreasing the probability of cancellation 

significantly.  
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(a) 

 

                                                 (b)                            (c)  

Figure 8: Applying the proposed model for a sample patient: (a) changing parameters 
during Bayesian update (b) prior distribution (c) posterior distribution 

 

2.4.2.1. Time wise Analysis  

This Section study the performance of the proposed model along with representatives from 

population-based and individual-based algorithms based on time-wise analysis. The training, 

validation and testing data are constructed as follows: appointments that occurred before 

11/23/2009 have been used for training; appointments between 11/23/2009 and 2/1/2010 have 

been chosen for validation, and finally, appointments after 2/1/2010 have been considered for 
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testing. The main reason for selecting the above dates is to have approximately equal number of 

data records each in the training, validation and testing datasets.  

The methods used in our comparison are the following: locally weighted scatter plot 

(LOESS), Savitzky-Golay, Box, and Gaussian which are used as smoothing techniques 

(Simonoff [1996]),  decision tree (DT), multiple logistic regression (with same predictors as used 

in the proposed model regression part) and pure multinomial Bayesian update, Bayesian Net, 

Multilayer Perceptron Neural Net (MLP) and a boosting algorithm. For setting the parameters of 

the comparison methods, the size of the moving window for Box smoothing was varied over the 

range of 1 to 7 and the optimal size (5) was considered for the comparisons. The standard 

deviation parameter of Gaussian distribution is experimented over 0.2 to 1; while 0.65 (the 

optimal value) was used. J48 was used for building the decision tree and ADABOOST PART 

[Viola and Jones 2002] algorithm is used for boosting method. For the pure Bayesian updating 

the Jeffery’s prior ሺ0.33, 0.33, 0.33ሻ is considered as the prior [Bolstad 2007]. For the 

multinomial logistic regression and smoothing methods the whole data set is used for building 

the model. 

Figure 9 illustrates the MSE of the different methods used for comparisons. Based on the 

MSE measure, the proposed model outperforms other methods, while the rule-based method has 

the worst performance. As can be seen from the results, in general, individual-based methods 

outperform population-based methods, while bundling these methods together (as in our 

proposed method) significantly improves the overall performance. 
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Figure 9: Mean Squared Error (MSE) of the studied methods for time-wise analysis 

Figures 10-12 compare the empirical and estimated probability of no-show and cancellation 

for the methods over different patients (the performance of other methods along with the source 

code is available upon request). As shown in Figure 12, the proposed approach often predicts the 

real pattern correctly with considerable small variance. 
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Figure 10: The performance of the proposed approach over different patients: estimated 
versus empirical probability of no-show and cancellation 
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Figure 11 illustrates the estimates from multinomial logistic regression, a population-based 

method. The estimates tend to have small fluctuations around an approximately fixed mean, 

though in general it somehow resembles the true pattern of the real no-show and cancellation. In 

addition, the difference between the estimated and real series significantly increases for patients 

with tendency of not cancelling their appointments (those could be either patients with good 

records of showing-up or those with high rate of no-show). Such result clearly shows that the 

regression models may not fully capture the difference among patients’ personal behaviors.   
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Figure 11: The performance of pure multinomial logistic regression over different patients: 
estimated versus empirical probability of no-show and cancellation 
 

Finally, Figure 12 shows the results from pure Bayesian update method, which is a popular 

individual-based method.  It can be seen that pure Bayesian update can basically detect the 

fluctuations in the real series correctly; however the estimates are far from the real ones in 

considerable number of cases. Further analysis revealed that such cases contain few number of 

attendance records which means that the pure Bayesian parameters update could not neutralize 

the effect of prior especially if that is far from the real case.  

 



40 
 

 

0

0.2

0.4

0.6

0.8

1

1.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Pr
ob

ab
ili
ty

Patient id

No show (Real) Cancelation (Real) No show (Bayesian) Cancelation (Bayesian)

 

Figure 12: The performance of pure Bayesian updating method over different patients: 
estimated versus empirical probability of no-show and cancellation 

2.4.2.2. Patient wise Analysis 

Here the proposed method is compared to some other methods in the literature using patient-

wise analysis. For this purpose, out of 99 patients in the database, using 3-fold cross-validation, 

33 patients were randomly chosen for training, validation and testing. Figures 13-16 illustrate 

MSE and pairwise comparison of the empirical and estimated no-show and cancellation 

probabilities of the comparing methods which reveals similar results to the time-wise analysis 

discussed in the previous Section.  
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Figure 13: Mean Squared Error (MSE) of the studied methods for patient-wise analysis 

  

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

P
ro
b
ab
ili
ty

Patient id

Empirical No‐show Empirical Cancelation Estimated No‐show Estimated Cancelation

 
Figure 14: The performance of the proposed approach over different patients: estimated 
versus empirical probability of no-show and cancellation 
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Figure 15: The performance of pure multinomial logistic regression over different patients: 
estimated versus empirical probability of no-show and cancellation 
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Figure 16: The performance of pure Bayesian updating method over different patients: 
estimated versus empirical probability of no-show and cancellation 

The results from Figures 13-16 clearly show the capability of the proposed model in 

estimating probability of disruptions for both current and hypothetical patients of a health care 

system. 

2.4.2.3. Discussion 

In this Section, the probabilistic model in the previous Section has been extended to estimate 

the individuals’ probabilities of no-show, cancellation and showing up in real-time. Also based 
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on real-world patient data collected from a Veterans Affairs medical hospital, the effectiveness 

of the approach was evaluated. The result of the proposed method can be used to develop more 

effective appointment scheduling systems and more precise overbooking strategies to reduce the 

negative effect of no-shows and fill in appointment slots while maintaining short waiting times 

which is discussed in the next chapter. 
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CHAPTER 3 AN OPTIMIZATION MODEL FOR EFFECTIVE 
APPOINTMENT SCHEDULING IN THE PRESENCE OF 
DISTURBANCES 

3.1. Introduction 

Since the proposed prediction model has been developed for and implemented in a medical 

center, this Section discussed one of the most important applications of the proposed approach in 

health care systems which is scheduling. Though, the fields discussed in this Section can be 

extended to other service industries as well. 

The estimate of the (attendance) disruptions probabilities can be effectively used in building 

robust scheduling systems [Cayirlit and Veral 2003; Gupta and Denton 2008]. A typical scenario 

in patient scheduling is that patients call a medical clinic to request an appointment with their 

physician. During the call, the scheduler assigns the patient to an available slot, a small time 

period (e.g. 30 minutes) in an operational or service period in the physician’s schedule. This is 

communicated to the patient before the call terminates and hence, the schedule is constructed 

sequentially and has dynamic nature. Most of the existing models in the literature as well as the 

first part of this Section assume the demand is precisely known and consider the problem as a 

non-sequential optimization problem. However, few of the recent methods as well as the second 

part of this Section consider the dynamic nature of the problem as sequential optimization model 

[Muthuraman and Lawley 2008].  

In practice, there is limited opportunity to adjust the schedule once the complete set of 

patients is known. However, scheduled patients might not attend or may cancel the 

appointment.The objective of the clinic is to schedule arriving appointment requests so that the 

long-run average expected net reward is maximized [Chakraborty et al. 2010]. The net reward is 

usually calculated as the expected revenue of serving patients at the scheduled time minus the 
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expected cost of (1) system waiting including physician and staff waiting due to patients’ no-

show, cancellation, etc. and (2) system over time and patients over flow due to falling behind 

schedule, walk-in patients, etc. 

Holding the common assumptions of independency in patients’ attendance distribution, the 

patient scheduling problem can be modeled as a Markov Decision Process (MDP) [Liu et al 

2009] which is an extension of Markov chains allowing choice and rewards [Feinberg and 

Shwartz 2002]. In such model the decisions are the choice of time slot assigned to each patient 

upon the appointment request, decision epochs are the times right after the appointment requests, 

and the system state at a decision epoch (which is a random variable affected by patients’ 

behavior like no-show and cancellation) is the number of appointment requests as well as 

patients in the schedule at that decision epoch. Thus, accurate estimate of the individuals’ 

probability of no-show and/or cancellation can result in a more an accurate schedule 

[Chakraborty et al. 2010; Hassin and Mendel 2008 ; and  Liu et al. 2009]. Such accurate estimate 

can also be used for estimating the state of the scheduling system based on factors such as the 

probability of overflow, system waiting, etc.  

The estimate of attendance disruption can also be used for developing selective overbooking 

strategies which is a vital component for improving patient access and stabilizing revenue when 

there is a significant chance that some scheduled patients will not show-up or cancel the 

appointment [Muthuraman and Lawley 2008]. Here, the main objective would be compensating 

for patient no-shows, and cancellation while maximizing the long-run average expected net 

reward. Because of no-shows, the clinic capacity will usually be underutilized without some 

overbooking. However, overbooking can reduce the negative effect of no-shows and fill in the 

appointment slots while maintaining short wait times [Muthuraman and Lawley 2008; and Zeng 
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et al. 2010]. This problem can be modeled using multi-objective optimization with associated 

costs and rewards serving as weighting coefficients.  

Finally, as another application of the proposed method which is not discussed in this study, 

the estimates of disruption probabilities can be used for designing proactive strategies such as 

reminder calls or some sort of penalty for encouraging high risk individuals, with elevated rate of 

no-show and cancellation [Ho and Lau 1992]. 

Table 11 describes the notation used in the proposed scheduling model. 

Table 11: Notations used in the proposed scheduling model 

Notations Description 

i,j Indices of the time slot in a sample scheduling day ሺ݅ ൌ 1, …  ሻ, and the type of patientsܫ
 ሺ݆ ൌ 1, … ,  ሻܬ

 The parameter of exponential random variable for service time ߣ
 ௜௝ represents the number ofܦ ௜௝൧ the estimate of demand for a specific date, such thatܦൣ

patients of type ݆ (patients with no-show probability range ݆) requested an 
appointment for ݅௧௛slot of the day 

ൣ ௜ܵ௝൧ The matrix of schedule for a specific day, such that ௜ܵ௝ represents the number of 
patients of type ݆ assigned for ݅௧௛slot of the day 

ሾܴ௜௞ሿ The overflow matrix for a specific day such that ܴ௜௞ is the probability that k 
patients overflow from slot i to slot ݅ ൅ 1 

ሾܳ௜௞ሿ The arrival matrix such that ܳ௜௞ is the probability that l patients arrive at the 
beginning of slot ݅  

ൣ ௜௝൧ The matrix of patients scheduled for slot ij ofܩܴܱൣ ௜ܵ௝൧ who are scheduled in their 
desired time (slot ij  of ൣܦ௜௝൧ሻ 

ൣ ௜௝൧ The matrix of patients scheduled for slot ij ofܯܱܴܨൣ ௜ܵ௝൧ while their desired slot in 
 ௜௝൧ is differentܦൣ

ൣܶ ௜ܱ௝൧ The matrix of patients in slot ij of ൣܦ௜௝൧ who assigned to a different slot in ൣ ௜ܵ௝൧  
௜௝൧ܦൣ ௜௝൧ The matrix of patient demands inܯܫܮܧൣ that are not considered in ൣ ௜ܵ௝൧ 

ൣ The reward of serving a patient in its assigned slot in the schedule ݎ ௜ܵ௝൧ 
ܿ௜ The penalty of patient overflow from the scheduled slot ݅ to the next slot (which 

can include the related overtime cost as well) 
 ݅ ௜ The number of patients receive service in slotܮ

ܶ,  The amount of time to the appointment date that the demands starts to be ݐ
considered, and the time of receiving a demand (Hence, at each stage, ܶ െ  is ݐ
the remaining time to the appointment date) 

 ݆ ሻ The rate of receiving demands for slot ݅ of the schedule from a patient of typeݐ௜௝ሺߛ
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3.2. The Proposed Optimization Model for Non-Sequential Scheduling 

Here a non-sequential optimization model will be developed for scheduling patients in a 

healthcare system while considering the effect of no-show (the proposed model can be extended 

to consider cancellation effect which is not being studied here). Also, for the economy of 

computational effort, the patients are categorized into ܬ ሺܬ ൒ 1ሻ ሺ݆ ൌ ሼ1,2, … ,  ሽሻ types byܬ

discrediting no-show probabilities. It is assumed that patients of type ݆ଵ has less probability of 

no-show comparing to patient of type ݆ଶ if ݆ଵ ൏ ݆ଶ. Furthermore, it is also assumed that each 

sample day in the schedule is divided into ܫ ሺܫ ൒ 1ሻ ሺ݅ ൌ ሼ1,2, … ,  ,ሽሻ time slots of equal lengthܫ

each of which can take one or more patients depending on their service time which is assumed to 

be an exponential random variable with mean  ଵ
ఒ
. 

Having the estimate of demand ൣܦ௜௝൧ for a specific date, such that ܦ௜௝ represents the number 

of patients of type ݆ (patients with no-show probability range ݆) requested an appointment for 

݅௧௛slot of the day, the net reward of a sample schedule ܵ can be formulated as follows 

[Muthuraman and lawley 2008]: 
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Where ௜ܵ௝ is the number of patient of type ݆ that are assigned to slot i, ௜ܺ is a random variable 

representing the number of patients showing up at the beginning of slot i, and  ௜ܻ is another 

random variable denoting the number of patients who have not received service at the end of slot 

݅ . The relationship between ௜ܺ and  ௜ܻ can be shown as:  
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{ }0,max 1 iiii LXYY −+= −              ( 3-2) 

Where ܮ௜ is the number of patients receive service in slot i. In Equation (3-2), r and ܿ௜ are the 

rewards of serving the patients in the assigned slot and the penalty of patient overflow to the next 

slot (which can include the related overtime cost as well) respectively. Therefore, the first term is 

the return from expected patient arrivals and the second term is the cost associated with the 

expected number of patients overflowed from one slot to another. 

To compute probabilities for ௜ܺ and ௜ܻ, Muthuraman and Lawley [2008] introduce two 

matrices, an arrival matrix ሾܳ௜௟ሿ such that ܳ௜௟ is the probability that ݈ patients arrive at the 

beginning of slot ݅, and an overflow matrix ሾܴ௜௠ሿ such that ܴ௜௠ is the probability that m patients 

overflow from slot ݅ to slot ݅ ൅  1. These are computed as follows: 
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where ߨ ൌ ൛ߨଵ, … , ௝ߨ ௃|ൟ  with|ߨ א ܼା (the set of positive integers) for ݆ א ∑,ܬ ௝ߨ ൌ ௝א௃ ݈ and 

 .is the set of all such vectors ߗ
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where ݈ is the number of patients arrive at the beginning of slot ݅ and ݇ is the number of patients 

overflow from slot ݅ െ 1 to slot݅. Given these Equations one can compute ܧሾ ௜ܺሿ ൌ ∑ ݈ܳ௜௟௟  and 

ሾܧ ௜ܻሿ ൌ ∑ ܴ݇௜௞௞ . Therefore, given ൣܦ௜௝൧ the objective of the model is to find the optimal 
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schedule ൣ ௜ܵ௝
כ ൧ (optimal assignment of patients to available time slots) which maximizes the net 

expected reward.  

The model discussed in Equation (3-1) is capable of considering no-show probabilities and 

does overbooking which are the cases more frequently occur in practice. Yet, it has a few 

restricting assumptions some of which are given below: 

1. Assigning patients to slots different than their desired time slot do not affect their no-

show probability. 

2. There is no walk-in patients ( patients  show-up without making an appointment) 

3. The patient demand ൣܦ௜௝൧ is precisely known. Hence, the schedule can be made non-

sequential. 

In the rest of this Section, the first two of the above assumptions will be relaxed, and in the 

following Section the third assumption is considered. 

3.3. An Optimization Model for Including changing no-show probabilities and 
walk-in Patients 
 

In order to consider complex scenarios like walk-in patients and patient no-show probability 

changes with their assignment to undesired slot, as frequently occur in practice, it is necessary to 

know the decomposition from ൣܦ௜௝൧ to ൣ ௜ܵ௝൧ which can be done by defining a set of four matrices 

with the same size of  ൣܦ௜௝൧ and represented by ൣܱܴܩ௜௝൧, ,௜௝൧ܯܱܴܨൣ ൣܱܶ௜௝൧ and ൣܯܫܮܧ௜௝൧. 

 ௜௝൧ represents patients scheduledܯܱܴܨൣ .௜௝൧ shows patients scheduled at their desired timeܩܴܱൣ

for slot ݆݅ of  ൣ ௜ܵ௝൧ while their desired slot was different. In contrast to ൣܯܱܴܨ௜௝൧, ൣܶ ௜ܱ௝൧ 

represents patients in slot ݆݅ of ൣܦ௜௝൧ who are assigned to a different slot in ൣ ௜ܵ௝൧. Finally,  

ൣ ௜௝൧ not considered inܦൣ ௜௝൧ shows patient demands inܯܫܮܧൣ ௜ܵ௝൧. Using above matrices, ൣ ௜ܵ௝൧ 
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discussed in (21) can be gained by ൣܱܴܩ௜௝൧ ൅  ௜௝൧ can be derived fromܦൣ ௜௝൧, alsoܯܱܴܨൣ

௜௝൧ܩܴܱൣ ൅ ൣܱܶ௜௝൧ ൅  ௜௝൧. Therefore, the optimal schedule will be the one that optimizes allܯܫܮܧൣ

,௜௝൧ܩܴܱൣ ,௜௝൧ܯܱܴܨൣ ൣܱܶ௜௝൧ and ൣܯܫܮܧ௜௝൧ matrices. To incorporate the above matrices into the 

optimization model, ܳ௜௟ሺܵሻ should be extended from binomial to multinomial as follows: 
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where ଵܺ௜ and ܺଶ௜ are the total number of patients of different type ሺ݆ ൌ 1, . . ,  ௜௝൧ܩܴܱൣ ሻfromܬ

and ൣܯܱܴܨ௜௝൧ appears in slot ݅ and ܲݎ௞ሺܺ௞௜ሻ can be calculated using Equation (3-3). Based 

above extensions the optimization model can be rewritten as: 
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The above model will consider changes in no-show probability by changing the patients’ 

desired time. Furthermore, the proposed structure can handle other scenarios such as walk-in 

patients which would be resulted in following model: 
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( 3-8) 

As can be seen, considering walk-in patient can be done by simply adding another column to 

,௜௝ܯܱܴܨ ,௜௝ܩܴܱ  ௜௝ matrices. The following example shows effectiveness of theܯܫܮܧ ௜௝ and݋ܶ

proposed optimization model in scheduling patients in the presence of no-show.  

3.3.1. Results on Simulated Data   

To evaluate the performance of the proposed optimization model, this Section presents a 

simple scheduling problem for a single day of 8 hours with four 2 hour slots. Three types of 

patients has been considered as follows; (i) calling patients with show-up probability of 0.9, (ii) 

calling patients with show-up probability of 0.5 and (iii) walk-in patient with show-up 

probability of 0.2. ൣܦ௜௝൧ is considered to be known and equal to [ 4 2 1; 2 3 2; 3 3 2; 5 4 3] and 

the changing show-up probability of each patients of type 1, 2, and 3 when assigning them to 

slots different from their original request is considered as 0.7, 0.1 and 0.1 respectively. Also the 

reward of serving each patient at his assigned time is fixed at 200 and the cost of each patient 

overflow is set to 40. 

Figure 17 compares the expected total profit of the proposed model and the original 

scheduling model without considering no-show (this model is simply obtained by setting all 

probabilities in the proposed model to one) under different no-show probabilities. As can be 

seen, the proposed approach uniformly performs better than the original model. In the meantime, 
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when the uncertainty increases, the difference between the two methods gets more significant. 

The main reason of this difference is the ability of the proposed method for overbooking patients 

with high rate of no-shows in order to increase the system utility. 

 

 
Figure 17: The expected total profit of the proposed non-sequential and the original 
scheduling model under different no-show probabilities for different types of patients 

Figure 18 also illustrates the expected total profit of the proposed and the original model 

under different number of demands. As can be seen, again the proposed model outperforms the 

original model and the difference is increased as the number of demands grows. 
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Figure 18: The expected total profit of the proposed non-sequential and the original 
scheduling model under number of demands 

The result of Figures 17 and 18  shows that the proposed optimization model can effectively 

use the estimate of disturbances for overbooking patients with high rate of no-shows, which 

considerably increase the system performance under different situations. 

3.4. Generalization of the Proposed Model for Sequential Scheduling 

Here we will extend the model proposed in the previous Section to consider the case of 

sequential scheduling which occurs frequently in practice. The main difference between 

sequential and non sequential scheduling is: 

1. Unlike non-sequential scheduling, in sequential scheduling during the call the scheduler 

assigns the patient to an available slot in the physician’s schedule. This is communicated 

to the patient before the call terminates and, thus, the schedule is constructed 

sequentially.  

2. Unlike non-sequential scheduling, in sequential scheduling the complete set of patients is 

not known when the schedule is generated. Schedulers do not know how many patients 

0

750

1500

2250

3000

3750

4500

34 48 52 61 70

Ex
pe

ct
ed

 to
ta
l p
ro
fit

Number of demands

Proposed model

Original model



54 
 

 

will call for appointments and eventually be added to the schedule. Also, the schedulers 

do not know how many should be added, since they have no optimal stopping criteria. 

3. Furthermore, there is little opportunity to adjust the schedule once completed.  

Using the same matrix structure as described on the previous Section, the proposed 

optimization model for solving sequential scheduling problem can be written as follows: 
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( 3-9) 

Where upper index 0 , e.g. ܱܴܩ଴, represents elements of existing demand which already have 

been scheduled, ݊݁ݓ represents the just received demand which should be decided, and ݉݁ݎ 

represents elements of estimated (remaining) demand related to future. Hence,ሾܱܴܩሿ ൌ

ሾܱܴܩ଴ሿ ൅ ሾܱܴܩ௥௘௠ሿ ൅ ሾܱܴܩ௡௘௪ሿ, and ሾܯܱܴܨሿ ൌ ሾܯܱܴܨ଴ሿ ൅ ሾܯܱܴܨ௥௘௠ሿ ൅ ሾܯܱܴܨ௡௘௪ሿ. 

As can be seen above, the new optimization model is gained by adding a constraint to the (3-

8). This constraint guarantees that objective function should not decrease at any epoch (after 

each new decision on adding/rejecting a patient). 

It should be noted that in the above model, we assume that ܱܴܩ଴+ܯܱܴܨ଴ shows the existing 

schedule and we have received a call from a patient of type ݆ for slot ݅ in a time that is ܶ day 

ahead from the desired date of appointment. There is a simple strategy to check if the new patient 

should be added to the schedule and next to find the best slot that should be assigned to him/her.  
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First, the future demand for each slot of the desired date should be predicted for the remaining 

days. Next, the optimal assignment of the remaining demands should be calculated using Section 

Equation (3-8). Finally, it should be checked if the new request can be assigned to any available 

slot to which can improve the objective function (if there are multiple slots that can improve the 

objective function then the one with maximum improvement will be chosen). Finding a slot for 

the request is equivalent to accepting the request and vice versa.  The following procedure shows 

the details of the proposed sequential optimization: 

 

Step 1. Set ܱܴܩ௜௝
଴ ൅ ௜௝ܯܱܴܨ

଴ ൌ 0 for all ݅ א א ݆ and ܫ  ݇ , ܬ  ൌ 1 and ݐ ൌ 0. 

Step 2. Wait for ݇௧௛ patient call of type ݆݅  which is received at time ݐ. 

Step 3. Predict future patient demand for the remaining time to the appointment ܶand 

obtain ܦ෡௜௝
்ି௧. 

Step 4. Using (3-8) find the optimal assignment of ܦ෡௜௝
்ି௧for the remaining demands 

൫ܱܴܩ௜௝
௥௘௠ ൅ ௜௝ܯܱܴܨ

௥௘௠൯ 

Step 5. Find the objective function ܩሺܱܴܩ௜௝
଴ ൅ ௜௝ܯܱܴܨ

଴ ൅ ௜௝ܩܴܱ
௥௘௠ ൅ ௜௝ܯܱܴܨ

௥௘௠ሻ (this is 

the objective function for the case that we are not including the ݇௧௛ patient) 

 Step 5. Check if adding the ݇௧௛ patient call to any of the available slots ൫ܱܴܩ௜௝
௡௘௪ ൅

௜௝ܯܱܴܨ
௡௘௪൯ can improve Step 5 objective function ቀܩ൫ܱܴܩ௜௝

଴ ൅ ௜௝ܯܱܴܨ
଴ ൅ ௜௝ܩܴܱ

௥௘௠ ൅

௜௝ܯܱܴܨ
௥௘௠  ൅ ௜௝ܩܴܱ

௡௘௪ ൅ ௜௝ܯܱܴܨ
௡௘௪൯ ൐ ௜௝ܩ൫ܱܴܩ

଴ ൅ ௜௝ܯܱܴܨ
଴ ൅ ௜௝ܩܴܱ

௥௘௠ ൅

௜௝ܯܱܴܨ
௥௘௠ ൯ቁ. If so ܱܴܩ௜௝

଴ ൌ ௜௝ܩܴܱ
଴ ൅ ௜௝ܩܴܱ

௡௘௪ and ܯܱܴܨ௜௝
଴ ൌ ௜௝ܯܱܴܨ

଴ ൅ ௜௝ܯܱܴܨ
௡௘௪. 
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Step 6. If ܩ൫ܱܴܩ௜௝
଴ ൅ ௜௝ܯܱܴܨ

଴ ൅ ௜௝ܩܴܱ
௥௘௠ ൅ ௜௝ܯܱܴܨ

௥௘௠  ൅ ௜௝ܩܴܱ
௡௘௪ ൅ ௜௝ܯܱܴܨ

௡௘௪൯ ൐

௜௝ܩ൫ܱܴܩ
଴ ൅ ௜௝ܯܱܴܨ

଴ ൅ ௜௝ܩܴܱ
௥௘௠ ൅ ௜௝ܯܱܴܨ

௥௘௠ ൯ for all ݅ א א  and ܫ   ,stop. Otherwise , ܬ 

go to Step 2. 

3.4.1. Estimation of Demand 

One of the key elements of the proposed approach as well as the other scheduling system is 

the demand estimation. Unfortunately, most of the methods in the field of appointment 

scheduling are based on naïve methods such as averaging the previous demands. Here, a simple 

but innovative approach is proposed which is based on the survival analysis and Bayesian update 

for demand estimation.  

Assuming that the demand for a specific day starts T days ahead (here we use days for the 

sake of simplicity, however other measure like hours, minutes, etc can also be used) the 

procedure can be summarized as follows: 

1. Using the historical data and an appropriate survival model like Weibull distribution 

estimate ߛ௜௝ሺݐሻ (ߛሺݐሻin here is equivalent to ߣሺݐሻ in survival analysis, the failure rate function)  

2. Assuming there is ܶ െ  days to the appointment date, after receiving a call from a patient ݐ

of type ݆ for slot ݅.  Update the demand as follows: 

( )∫++=
T

t ij
i

ij
Pos
ij dtttDD γ.1Pr       ( 3-10) 

In above relation ݀௜௝
௉௥௘shows the total number of received calls before the current call for 

the interval ሺ0, ׬ ሻ, 1 represents the current call, andݐ .ݐ ்ݐሻ݀ݐ௜௝ሺߛ
௧   shows the expected 

demand for the remaining time. 

3. Update ߛ௜௝ሺݐሻ using the current call and Bayesian update mechanism  
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3.4.2. Results on Simulated Data    

Here we extend our simple scheduling problem discussed in Section 3.3.1 for sequential 

scheduling. For this purpose, a period of 10 days each with 8 hours has been considered for 

receiving the calls for making the appointments for each single day like the example in the 

previous Section. The rate of incoming call is considered as ߣ ൌ 0.5 per hour and the probability 

of having a high no-show rate, low no-show rate and walk-in patient is considered as [0.7 0.2 

0.1]. The rest of the information remains the same as the ones in previous Section example.  

Figure 19 compares the expected total profit of the proposed model and the myopic 

scheduling algorithm [Muthuraman and Lawley 2008], which is one of the few sequential 

scheduling algorithms in the literature, across a sequence of 40 patient calls. 
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Figure 19: The expected total profit of the proposed sequential and the original scheduling 
model across a sequence of 40 patient calls 

As can be seen the proposed approach always makes an upper bound of the myopic approach. 

It also has considerably smaller variance which clearly represents its effectiveness in modeling 

real-world situations. 
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CHAPTER 4 CONCLUSIONS AND FUTURE DIRECTIONS 

Efficacy of any scheduling system depends highly on its ability to forecast and manage 

different types of disruptions and uncertainties. In this thesis, a probabilistic model based on 

logistic regression and Bayesian inference was developed to estimate the patients’ disruption 

probability in real-time. A non-sequential and a sequential optimization model were also 

proposed which use disruption probabilities for appointment scheduling with overbooking 

strategy. Based on data collected at Veteran Affairs medical center, the effectiveness of the 

proposed prediction model was demonstrated. Furthermore, using two numerical synthetic 

examples the performance of the optimization models were evaluated in comparison with the 

common methods in the literature. The proposed prediction model is computationally effective 

and easy to implement. Unlike population based methods, our model takes into account the 

individual behavior of patients.  Also in contrast to individual based methods it can 

accommodate vital information from the entire data collection and provide reliable initial 

estimates. In addition, the optimization model is flexible in formulating complex situations such 

as walk-in patients and changing no-show probabilities due to changing the patients’ desirable 

time which occurs frequently in practice. The proposed prediction model can be easily extended 

to consider more sophisticated cases of disruptions and different types of prior distribution. Also 

the optimization model can be further extended to consider cancellations and delays. 
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Appendix A 

Gaussian Mixture Models (GMM) and Expectation Maximization (EM) 

Algorithm  

Gaussian Mixture Models (GMM) assume data points are drawn from a distribution that can 

be approximated by a mixture of Gaussian distributions. In this regard, assuming Q  (the no-

show rate of each clinic) is the feature vector, and k is the number of components (clinic 

clusters), the mixture model can be represented as follows [Reddy et al. 2008]: 

          
( ) ( )∑ =

=Θ
k

i ii QprobaQp
1

|| θ                    (A-1) 

Where { }kkaa θθ ,...,,,..., 11=Θ  is the collection of parameters with kiai ,...,2,1,10 =∀≤≤  and 

∑ =
=

k

i ia
1

1  and ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= 22

exp
2

1|
i

i
i

QQp
σ
μ

πσ
θ . Having as a set of n, i.i.d samples 

( ) ( ) ( ){ }nqqqQ ,...,, 21=  from the above model the log-likelihood function can be rewritten as: 

                    
( ) ( )( ) ( )( )j

jk

i i
n

j

n

j
j

i qpqpQp θαθ |log|log|log
111 ∑∑∏ ===

=Θ=                  (A-2) 

Here, the goal is to find Θ that maximizes the log-likelihood function: 

             ( ){ }Θ=Θ
Θ

|logmaxargˆ QpMLE                     (A-3) 

The surface of the above likelihood function is highly nonlinear, and no closed form solution 

exists for the above likelihood function. One way to deal with this problem is by introducing a 

hidden variable Z: 
 

                                
( ) ( ) ( ) ( )( )[ ]∑ ∑= =

=
n

j

k

i j
j

i
j

i
j

ii zqpzZQp
1 1

|log|,log θαθ
               (A-4) 
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and using Expectation Maximization (EM) algorithm as follows [33]: 

 

i. Initializing parameters Θ  

ii. Iterating the following until convergence: 

E-Step:   

                
( )( ) ( ) ( )[ ]t

z
t ZQpEQ ΘΘ=ΘΘ ||,log|    (A-5) 

M- Step:   

                                                     
( ) ( )( )tt Q ΘΘ=Θ + |maxarg1                                              (A-6) 
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In spite of the success of theoretical appointment scheduling methods, there have been 

significant failures in practice primarily due to the rapid increase in the number of no-shows and 

cancelations from the individuals in recent times. These disruptions not only cause 

inconvenience to the management but also has a significant impact on the revenue, cost and 

resource utilization. In this research, we develop a hybrid probabilistic model based on logistic 

regression and Bayesian inference to predict the probability of no-shows in real-time. We also 

develop two novel non-sequential and sequential optimization models which can effectively use 

no-show probabilities for scheduling patients. Our integrated prediction and optimization model 

can be used to enable a precise overbooking strategy to reduce the negative effect of no-shows 

and fill appointment slots while maintaining short wait times. Using both simulated and real-

world data, we demonstrate the effectiveness of the proposed hybrid predictive model and 

scheduling strategy compared to some of the well-studied approaches available in the literature. 
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