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CHAPTER 1 

INTRODUCTION 

Zinc (Zn) is ubiquitous. It is an essential micronutrient in all living cells. In mammals Zn 

is the second most abundant essential trace metal. This transition metal is a component of many 

metalloproteins and thus functions either as a co-factor for many metallo-enzymes or as a 

structural element for Zn-finger or ring-finger proteins (10, 91). Since Zn
2
 is a small, 

hydrophilic, and a highly charged ion, it cannot be transported across the plasma or intracellular 

organelle membrane by passive diffusion. In excess Zn can be toxic and its regulation is vital in 

any organism. Zn is regulated with the help of chelators and a number of different Zn transporter 

proteins which help uptake and distribute it around the cell (26, 35, 77). Different types of cells 

require a different constant concentration of Zn at all times. Presence of excess free Zn ions can 

be toxic to the cell. All cells must have tightly regulated homeostatic mechanisms in order to 

preserve healthy levels and proper compartmentalization of Zn. This is accomplished through the 

actions of specialized proteins that facilitate Zn uptake, efflux and compartmentalization (28, 

125). If the integrity of genes responsible for maintenance of Zn homeostasis is compromised by 

mutations or polymorphisms, this will likely result in complex genetic variations and even 

sensitivity to dietary Zn in health and disease.  

Zn plays fundamental housekeeping role in physiology, cellular metabolism and gene 

expression. It is necessary for stabilization of thousands of protein domains and is required as a 

catalytic cofactor of more than 300 enzymes (145, 11, 10). Recent global searches within the 

human genome estimated that about 10% of the human proteome consists of potential Zn-

binding proteins (3). Thus, it is clear why a large number of biological processes are dependent 
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on Zn homeostasis. Finally, an imbalance of Zn homeostasis has complex implications in a 

human body and can ultimately contribute to the onset of chronic pathologies (157, 118).  

By consumption of meat and other sources of animal proteins, humans can obtain their 

Recommended Daily Allowance (RDA) of Zn, which is 12–15 mg/day. Animal proteins have 

high Zn content and the metal is already bound to ligands, which facilitate its absorption. 

Alternative sources of Zn include sea-foods, dairy products, cereals and even nuts (73). 

Unfortunately, majority of vegetables are not ready sources of Zn because of the presence of 

phytate, abundant in legumes and cereals. Phytate is known to chelate metal ions and inhibit their 

absorption (78). Therefore, diets low in animal proteins but rich in phytate contribute to the high 

incidence of mild–moderate Zn deficiency in developing countries (33). Although, even 

individuals feeding on a balanced diet may also undergo suboptimal intake of Zn as result of 

specific physiological status. This could be evident during pregnancy or acute inflammation 

(Table 1.2) (33). Human brain, being a mystery that it is, still has not been fully investigated for 

expression of all known members of ZIP and ZnT families. 

Based on their structural and functional features human Zn transporter proteins have been 

grouped into two families: Solute Carrier Family 39A (SLC39A), which includes mammalian 

ZRT/IRT-related proteins (ZIPs), and Solute Carrier Family 30A (SLC30A), which comprises 

mammalian ZnTs (28, 125, 28). These two transmembrane families of Zn transporters are 

believed to have opposite roles in cellular Zn homeostasis. Both ZIPs and ZnTs contain a high 

content of lipophilic amino acids (33). While ZnT transporters reduce the cytoplasmic Zn by 

promoting export of Zn out of the cell or sequestration of Zn into subcellular compartments 

during cellular Zn abundance, Zip transporters’ function is to increase the cytoplasmic Zn 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T2C-4N2TS61-2&_user=147018&_coverDate=09%2F01%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000012179&_version=1&_urlVersion=0&_userid=147018&md5=f3d0af61c0ebe51fa7f6a42bbe766a17&searchtype=a%20/%20tbl1
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concentration by enhancing Zn uptake or release of the stored Zn from subcellular compartments 

to the cytoplasm of the cell when Zn is deficient (19, 27, 47, 69, 70, 81, 82, 94, 95, 104, 121, 

122, 126, 134, 136, 137, 151, 152). Thus far, fourteen members of Zip family and ten members 

of the ZnT family have been identified through mouse and human genome analyses (68, 33). The 

fourteen ZIP-encoding genes that have been identified in the human genome have been grouped 

into four sub-families according to the molecular features of the encoded proteins. Furthermore, 

amongst these Zn transporters, seven Zip proteins (Zip1-7) and eight ZnT proteins (ZnT1-8) have 

been functionally characterized. Even though the role of ZIP transporters in humans, mice, and 

bacteria, including their contribution to overall metal-homeostasis and their mechanism of 

action, is not well understood, this defect in metal transport has been associated with numerous 

diseases (130, 146, 104). For instance, mutations in two Zn transporters have been linked to the 

Zn deficiency diseases acrodermatitis enteropathica (ZIP4) in humans and lethal milk syndrome 

(ZnT4) in mice (146, 104).  

In E.coli, the uptake of Zn is mediated by two major types of transporters: ZnuACB, 

which belongs to the cluster C9 family of (TroA-like) ATP-binding cassette (ABC) transporters, 

and ZupT, which is a member of the ZIP family of transporters (80, 84). ZupT is a broad 

substrate spectrum metal permease whose exact mechanism of action is currently unknown, but 

it has been proposed that it may involve a chemiosmotic transmembrane gradient (55). 

1.1 What are ZIP transporters? 

Maintaining metal homeostasis is one of the primary goals for organisms found 

throughout biology. In eukaryotes this is partly achieved by ZRT/IRT-like protein (ZIP) 

superfamily of metal transporters (30, 115). This superfamily has derived its name from some of 
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its first identified members (ZRT, IRT-like protein) (115). It was originally believed that these 

transporters only transported iron or zinc (115). They were also shown to transport cadmium and 

manganese (42, 43, 90, 129). In fact, the first identified member of this family, which was Iron-

regulated transporter-1 (Irt1), from Arabidopsis, while selectively binding and importing iron 

was also able to mediate transport of cadmium, manganese, and zinc (42, 43, 91, 129). Two other 

members of this family were identified in yeast. These were Zn-regulated transporter-1 (Zrt1) 

and Zrt2, which are involved in yeast’s Zn uptake (72, 71). Altogether, around 85 ZIP family 

members have been identified from bacteria, archaea and different eukaryotes, plus 15 genes in 

Arabidopsis (113). Amino acid sequences alignment groups ZIPs into four sub-families, even 

though all of the higher plant genes seem to fall into a single group (113).  

1.2 ZIPs vs. ZnTs 

In order to maintain a healthy homeostasis of such essential metals like Zn, mammals 

have been equipped with the Zn transporter (ZnT) family of proteins. ZnT family of proteins is 

believed to have an opposite role on Zn homeostasis when compared to the ZIP family. While all 

of the ZIP proteins mediate Zn uptake from the extracellular environment or intracellular 

vesicles into the cytoplasm, proteins belonging to the ZnT family are accountable for Zn efflux 

from the cytoplasm towards either intracellular vesicles or/and the extracellular space, as well as 

for Zn delivery to precise metalloproteins (81, 76). ZnT family of proteins is unique in a way that 

its members function in a tissue-, cell-, and organelle-specific manner in order to maintain the 

levels of Zn in check (94). Due to the importance of these metal transporters, it is no wonder that 

there have been ten of the members of Znt family indentified in mammals. Unlike ZIP family 

proteins, which have eight transmembrane domains, these encompass six predicted 
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transmembrane domains and thus are believed to function as multimers. Finally, Zn is the key 

regulator to the gene expression of Znt1, while dietary Zn controls the mRNA levels of Znt1 and 

Znt2 in liver, intestines, and kidneys (97, 108).  

1.3 Importance of ZIP family in plants 

For healthy growth and development plants require transition metals like Zn, Fe, Cu, and 

Mn. These are acquired from the soil and distributed around the plant depending on their needed 

concentrations within the different cells and organelles. In excess, the same metals can be toxic 

to the cell if proper regulatory mechanisms are not in place to regulate their concentrations (5). 

The membrane transport systems responsible for regulation of metal concentrations in plants 

include the ZIP family, the heavy metal (or CPx-type) ATPases (HMAs), the natural resistance-

associated macrophage proteins (Nramps), the cation diffusion facilitator (CDF) family, and the 

cation antiporters (115, 155, 51). In the last decade our knowledge of these transporter families 

has increased drastically. A summary of ZIP family members contributing to plants’ metal 

homeostasis, their metal specificity and tissue localization is outlined in Table 1.1. Their 

proposed membrane localization on the other hand can be found in Figure 1.1. Overall, possible 

transporters of all essential metals, besides Mo, have been proposed thus far (79).  

Not surprisingly, as seen in Table 1.1, ZIPs are for the most part expressed within the 

roots of the plants and their metal specificity encompasses such metals like Zn, Fe, Cd, and Mn. 

Two of them, LeIRT1 and LeIRT2, are proposed to have a broad range of metal specificity. Even 

though IRT1 preferentially transports Fe, it has also been shown to transport Mn, Cd, and Zn (42, 

43, 90, 129). Interestingly, most essential metals have at least two gene families with specificity 

for its transport. For instance, Fe can be transported by ZIPs and Nramps, while Zn is a substrate 
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for ZIPs and CDFs. Furthermore, when compared to yeast that only has 3 ZIP genes, Arabidopsis 

has a shocking 15 ZIP genes. Some of these transporters are possibly involved in active efflux 

while others in influx (153). This also contributes to the differences apparent in their affinities 

for different metals. Whereas majority of ZIP proteins transport Zn, another reason for existence 

of multiple zip genes in any given organism could be that they may differ in the metals that they 

transport in the biological context of a given organism (94). To cope with varying metal 

availabilities both high and low affinity mechanisms are needed, which is the case in yeast (34, 

147). As seen in Figure 1.1, it takes a large number of different genes, including ZIPs, to 

facilitate both uptake and efflux mechanisms in plants in order to provide responses to a variety 

of environmental stress conditions.
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Table 1.1 Proposed specificity and location of ZIP family metal transporters in plants (79) 

Name 

Family members in  

A. thaliana Proposed specificity Cellular location Main tissue expression 

ZIP 15 

   
 IRT1 

 

Fe, Zn, Mn, Cd PM Roots 

 IRT2 

 

Fe, Zn 

 

Roots 

 OsIRT1 

 

Fe 

 

Roots 

 LeIRT1 

 

Fe (broad?) 

 

Roots 

 LeIRT2 

 

broad? 

 

Roots 

 TcZNT1 

 

Zn, Cd 

 

Roots, shoots 

 TcZNT2 

 

– 

 

Roots 

 ZIPs1‐3 

 

Zn 

 

Roots 

 ZIP4 

 

Zn Plastids Roots, shoots 

 GmZIP1 

 

Zn Peribacteroid membrane Root nodules 
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Figure 1.1 

Summary of proposed transition metal transporters identified in plants thus far 

Membrane localization of some of these transporters, especially those at the plasma 

membrane is yet to be confirmed (79). 
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Plants require Fe for their normal growth and development. Unfortunately, Fe is often 

difficult to obtain from the soil due to its low solubility. Therefore, plants have evolved two 

mechanisms to conquer this problem (65, 138). Strategy II is utilized by grasses, which secrete 

phytosiderophores that chelate Fe
3+

 after which the complex is absorbed through the roots. 

Though, majority of plants depend on Strategy I that involves using reductive mechanism in 

order to mobilize Fe
3+

. By acidifying the soil, plants reduce ferric ions through a plasma 

membrane-located Fe
3+

 chelate reductase. Roots then absorb the ferrous ions with the help of a 

Fe
2+

 transporter.  

As mentioned earlier, AtIRT1, the first member of the ZIP family to be identified, was 

cloned from Arabidopsis via functional complementation of an iron-uptake-deficient yeast 

mutant (fet3 fet4) (42, 79). In roots, IRT1 is believed to be the main transporter for high affinity 

Fe uptake (21, 150). At Fe-deficient conditions, after 24 hours IRT1 mRNA is detectable (21). In 

addition, IRT1 mRNA and protein levels peak after 72 hours, while its mRNA and protein 

remain undetectable 12 hours after shifting back to Fe-adequate conditions (21). Interestingly, 

under Fe-scarce conditions, plants overexpressing AtIRT1 are also found to accumulate elevated 

concentrations of Cd and Zn than their wild type counterparts (21). This discovery was also 

supported by transport studies done in yeast (42, 90). Also, as seen in the T. caerulescens 

ecotype Ganges, the uptake of Cd but not Zn was drastically improved by Fe deficiency, and this 

might have resulted due to an increase of TcIRT1-G mRNA in root tissues (110).  

A knockout of IRT1, created in Arabidopsis, showed severe growth defects and was 

chlorotic, although application of exogenous Fe was able to rescue the condition (150). The 

protein was found to localize to the plasma membrane, and during Fe-deficient conditions it was 
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mainly expressed in the root’s external layers. In addition, IRT1 mutants showed major changes 

in their photosynthetic efficiency and developmental defects were noted which were believed to 

be consistent with Fe transport/deficiency (62, 148). Surprisingly, during Fe deficiency AtIRT2 

is also expressed in root epidermal cells (12). Yet, it was unable to substitute the loss of IRT1 

(120). It also seems to have a higher specificity for its substrates: while it was reported to 

complement Fe and Zn uptake mutants it was unable to transport Cd or Mn in yeast (149). 

Overall, these two transporters might have different functions in Arabidopsis.  

These ZIP family transporters have also been identified and studied in tomatoes. Here, 

for the most part, they are expressed in roots (40). Also as seen before, LeIRT1, but not LeIRT2, 

was robustly enhanced by Fe deficiency and it was up-regulated by P and K deficiencies in the 

root medium (153). In rice, OsIRT1, with a high homology to the AtIRT1 gene of Arabidopsis, 

just like in tomatoes was also highly expressed in roots and was induced by Fe-deficiency and 

additionally by Cu-deficiency (12). These results have an implication of a possible co-regulatory 

mechanism for some essential minerals’ transporter genes.  

Yeast complementation studies have contributed greatly to our understanding of the 

functional properties of plant ZIP transporters. It was reported that ZIP transporters 1–3 from 

Arabidopsis are able to restore Zn uptake to yeast Zn uptake mutants zrt1 zrt2; and thus were 

projected to influence transport of Zn (58, 115). In Zn-deficient plants, ZIPs 1, 3 and 4 were 

expressed in the roots, while ZIP4 was additionally found in the shoots and is expected to have a 

chloroplast-targeting sequence (58, 115). In yeast, ZRT1 was reported to be a high affinity Zn 

transporter, which is glycosylated and expressed at the plasma membrane (34). ZRT2, on the 

other hand, was reported to be a low affinity Zn transporter (115). Furthermore, another ZIP 
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homologue found in yeast, ZRT3 was reported to be involved in the mobilization of stored Zn 

from the vacuole (112). Similarly, TcZNT1, from the Zn/Cd-hyperaccumulating plant, Thlaspi 

caerulescens was shown to facilitate high-affinity Zn uptake and low-affinity Cd
 
uptake after 

expression in yeast (123). High levels of TcZNT1 were expressed in root and shoot of T. 

caerulescens, meanwhile overexpression of this transporter due to a change in Zn concentration 

resulted in amplified Zn influx in the roots (6). Finally, it was reported that TcZNT1 and TcZNT2 

were mostly expressed in roots, but their expression was not associated with Zn availability (6). 

Unlike in T. caerulescens, in the non-hyperaccumulator T. arvense, TcZNT1 and TcZNT2 were 

shown to be exclusively expressed during Zn deficiency (6).  

One of the members of the ZIP family, GmZIP1, has now been identified in soybean 

(117). According to functional complementation studies, of the zrt1 zrt2 yeast cells, GmZIP1 is 

greatly selective for Zn (117). It was also reported that yeast Zn uptake was inhibited by Cd 

(118). Unlike the previously mentioned ZIP genes, GmZIP1 was specifically expressed in the 

nodules and not in roots, stems or leaves (117). Moreover, its protein was localized to the 

peribacteroid membrane, which implicates a possible role in the symbiosis (117).  

Overall, the proposed role of ZIP transporters in Zn nutrition is well supported by the 

characterization of homologues from different species (37). Studying the above discussed metal 

transporter families in plants is crucial to humans. The knowledge elucidated can be useful in 

genetic modification of certain species, either to improve the metal quality of crops for human 

and animal nutrition or for the purposes of phytoremediation, which is a technology that uses 

plants to remove toxic elements from soil. 
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1.4 Roles of ZIPs in bacterial infections 

Integrity of the bacterial cell envelope is crucial for a large number of fundamental 

physiological processes. These include nutrient uptake, cell wall synthesis, signal transduction, 

motility, energy generation, protein folding and secretion. It has been shown that all of the ZIP 

proteins mediate Zn uptake from the extracellular environment or intracellular vesicles into the 

cytoplasm (28). It has also been shown that in mammals Zn has an important immunomodulatory 

function and is absolutely critical for innate and acquired immunity (111). Furthermore, after 

exposure to lipopolysaccharide (LPS) Zn levels decrease in the serum and Zn accumulates in the 

liver (109). Even though Zn concentrations are estimated to be in the millimolar concentrations 

within host cells, available Zn might be unattainable to bacterial pathogens and/or significantly 

reduced after activation of innate immune defenses (2, 111). Unfortunately, Znu, the high-

affinity Zn uptake system tends to mask the action of ZupT (132, 130). According to the recent 

studies, a role in pathogen fitness for ZupT, along with ZnuABC, during urinary tract infection 

was found in mice (130).  

In order to protect themselves from intracellular pathogens, infected vertebrates perform 

sequestration of extracellular Zn, but they also decrease their cellular Zn concentrations (22, 

111). The bacteria are engulfed into phagosomes, by phagocytic and antigen presenting cells of 

the immune system, which unite with lysosomes that contain antimicrobial factors. Macrophages 

and IFN-γ stimulated T cells are known to express ZIP8 (8, 7). When T cells are stimulated, 

ZIP8 associates with the lysosomal protein Lamp1, which suggests a possible association with 

the lysosome (7). Additionally, it was shown that in transfected human embryonic kidney cells 

ZIP8 is also found associated with lysosomes (8). Since ZIP8 is a member of ZRT/IRT family it 
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was no surprise that the initial studies showed that it is possibly capable of transporting Zn (8). 

Furthermore, it has been determined that T cells decrease lysosomal Zn levels upon activation of 

cells overexpressing ZIP8, while there is an increase of cytosolic Zn levels (8, 7). The above 

suggests that ZIP8 is positioned to transport Zn from the lysosome into the cytoplasm, which in 

turn disrupts zinc-dependent bacterial processes. 

 Decreasing lysosomal Zn levels is not sufficient, thus vertebrates also reduce their 

cytoplasmic Zn levels in order to combat a bacterial infection. When dendritic cells are 

stimulated with lipopolysacharide, a decreased expression of ZIP importers is observed along 

with subsequently an increased expression of ZnT Zn exporters (116, 87). As a result, cytosolic 

Zn levels are decreased (111, 116, 87). It is unknown if this alteration of Zn concentration affects 

the invasive pathogens. It has been shown that alteration of Zn levels has an impact on dendritic 

cell maturation and activation, as well as on T-cell development (156, 7, 116, 87). This makes it 

rather impossible to determine the role of modified Zn concentrations on virulence and microbial 

growth. 

 It is for certain that a decreased level of Zn can lead to a disruption of a large number of 

bacterial processes which would impact the pathogen’s ability to infect the host. Bacteria 

incorporate Zn into approximately 4–6% of all proteins (4). This essential metal is exploited in 

control of bacterial gene expression, for cellular metabolism, and as a cofactor of bacterial 

virulence factors. For instance, the iron responsive regulator Fur, alcohol dehydrogenases, lyases, 

hydrolases, and Cu/Zn superoxide dismutases are all bacterial proteins that utilize Zn (88, 11). In 

order to overcome Zn sequestration, bacteria express high affinity Zn transporters. At the 

minimum there are two kinds of Zn uptake systems that are used by bacteria. Most common one 
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is homologous to the high affinity ZnuABC transport systems, which are found in E. coli (84). In 

general, these Znu-like systems have been associated in a number of Gram-negative and Gram-

positive bacteria (84). Additional system of Zn transporters resembles the eukaryotic ZIP family 

transporters, even though its homologs have only been found in E. coli (84). 

 Worthy of mention is that bacterial Zn and Mn transporters are both a part of the cluster 9 

family of ABC transporters (84). This similarity complicated the identification of a transported 

substrate. Examples of this include the metal binding protein PsaA from Streptococcus 

pneumonia that has been shown to transport Mn in vivo although it contains Zn-coordinating 

histidine and aspartic acid residues, which are highly conserved between Zn transporters (84, 

98). Additional example is TroA, a component of the Treponema pallidum TroABC transport 

system, which is homologous to the Mn binding protein MntA from Bacillus subtilis and 

therefore was expected to transport Mn. Unfortunately, crystallographic studies along with 

heterologous expression in E. coli propose that TroA is a Zn transporter instead (84, 101, 59). It 

is sometimes difficult to predict a correct substrate for a given transporter, thus only careful 

biochemical studies could show the true colors for all of these metal transporters. 

On the other hand, inactivation of ZnuABC transport systems in quite a few bacterial 

pathogens, including Campylobacter jejuini, Salmonella enterica, Haemophilus ducreyi, 

Uropathothogenic E. coli, Brucella abortus, and Streptococcus pyogenes results in decreased 

virulence/colonization of bacteria (29, 2, 103, 130, 13, 154, 86). Other mechanisms for 

overcoming Zn sequestration could exist. At the end, more studies need to be conducted in order 

to characterize Zn acquisition systems in bacteria as well as to understand the role of Zn 

sequestration of the host and its impact on bacteria. 
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In addition to sequestering Zn, as a defense mechanism against bacterial invaders, 

vertebrates also sequester Fe and Mn (41, 144, 22). Figure 1.2 below depicts the proposed 

current model for the battle between invertebrates and bacterial pathogens for non-iron nutrient 

metals. New discoveries show a possibility that nutritional immunity might include other 

essential transition metals like copper or nickel. Along with high affinity transport systems, 

bacterial pathogens might express siderophore-like molecules to mediate the acquisition of non-

iron transition metals. This was observed in methanotrophs in which methanobactin assists 

copper acquisition through mechanisms similar to siderophore-mediated iron capture (124). Just 

like with Zn sequestration, further investigation is needed to entirely understand the battle for 

transition metals between the host and bacteria. Furthermore, studying acquisition of non-iron 

transition metals could provide useful information about the bacterial physiology which in turn 

could be useful in development of new therapeutics.  
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Figure 1.2 

The battle for transition metals between the host and bacteria  

(a) Keratinocytes express the antimicrobial compounds S100A7 and S100A15 that in turn 

sequester metals and prevent infection. After microbial infection, (b) the neutrophil proteins 

S100A8/S100A9 (calprotectin) and S100A12 bind Mn/Zn and Cu/Zn, respectively. (c) 

Activated dendritic cells alter the expression of ZIP importers and ZnT exporters, which 

results in reduced cytoplasmic levels of Zn. Expression of ZIP8 by macrophages, dendritic 

cells, and T cells results in decline of lysosomal Zn concentrations. Nramp1, widely expressed 

by phagocytic cells, transports Mn out of the lysosome. (d) In order to compete with host-

mediated Zn and Mn sequestration bacteria express high affinity metal transporters (140). 
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1.5 Expression of ZIPs and ZnTs in human body with respect to Zn imbalance 

1.5.1 Asthma linked to Zn deficiency 

 Asthma is a clear example of the importance of Zn homeostasis. This disease is 

characterized as a chronic airways inflammatory disease, which results from environmental 

factors in already genetically predisposed individuals (36). Hallmarks of asthma include 

recurring incidents of wheezing, breathlessness and chest tightness triggered by airway 

inflammation. Furthermore, an increasing number of studies have been linking asthma to Zn 

deficiency (31, 135).  

 Expression of ZIPs and ZnTs in disease pathology of asthma due to Zn imbalance is 

summarized in Table 1.2 below. According to one of the studies, individuals with low Zn 

consumption displayed a four- to five-fold higher combined risk of bronchial reactivity, atopy, 

and allergic-type symptoms than individuals with higher Zn consumption (31, 135). 

Additionally, in a 5-year follow up study, it was shown that Zn intake during pregnancy is 

negatively associated with asthma and shortness of breath in children later on in life (32). In a 

different study, Zn levels were measured in the hair of wheezy infants as well in healthy controls 

to show that Zn levels were significantly lower in infants suffering from wheezing (118). This 

sparked a theory that Zn levels, its deficiency, might contribute to the wheezing during early 

childhood (50).  

 Stainings of airway epithelium from different species had one thing in common: an 

intense Zinquin staining. Zinquin is a Zn-specific fluorescent probe, and its staining here was 

completely quenched in the presence of the Zn chelator TPEN (N,N,N',N'-tetrakis-(2-

pyridylmethyl)-ethylenediamine) (142). Labile Zn is a more dynamic, free or loosely bound form 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T2C-4N2TS61-2&_user=147018&_coverDate=09%2F01%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000012179&_version=1&_urlVersion=0&_userid=147018&md5=f3d0af61c0ebe51fa7f6a42bbe766a17&searchtype=a%20/%20bib10


18 

 

 

of Zn that is more readily exchangeable. Here, labile Zn pools were for the most part found 

associated with apical structures, which were in the proximity of cilia basal bodies (143, 15). 

Furthermore, it has been shown that a deficit of Zn results in airway epithelial cells becoming 

highly susceptible to apoptosis, which is induced by oxidants or by the FAS death receptor 

pathway (15). It was proposed that programmed cell death may be responsible for acute lung 

injury due in part to epithelial cell loss. Exhaustion of labile Zn along with tumor necrosis factor 

alpha (TNF), interferon gamma (IFN) and FAS receptor stimulation quickens caspase-3 

activation, proteolysis of E-cadherin and β-catenin, as well as cellular apoptosis. This results in 

amplified paracellular leak through monolayers of both upper airway and alveolar lung epithelial 

cultures. Surprisingly, supplementation with Zn successfully inhibited both apoptosis and 

paracellular leak (131). 

Animal models can be utilized to mimic human asthma condition. This is achieved by 

facilitating allergic airway inflammation using Balb/c mice. Following sensitizing, these mice 

are aerochallenged with ovalbumin (OVA) which leads to development of airway eosinophilia 

that is correlated with airway hyper-responsiveness, damage of airway epithelium, mucous 

hyperplasia and collagen deposition (45). The resulting airway inflammation leads to depletion 

of stainable Zn. Furthermore, when mice are fed varying diets, those with Zn limited diets (ZL, 

14 mg/kg Zn) after exposure to the allergen OVA displayed higher airways hyper-

responsiveness, along with elevated mucus cell hyperplasia and eosinophilia, when compared to 

mice fed a Zn sufficient diet (ZN, 50 mg/kg Zn) (143). After attaining airway inflammation in 

mice null for the MT-I and MT-II gene functions, the animals demonstrated significantly 

elevated eosinophils and neutrophils in broncheo-alveolar fluid when compared to wild type 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T2C-4N2TS61-2&_user=147018&_coverDate=09%2F01%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000012179&_version=1&_urlVersion=0&_userid=147018&md5=f3d0af61c0ebe51fa7f6a42bbe766a17&searchtype=a%20/%20bib34
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controls. Additionally, there were increased expressions of interleukin1β, 8-oxy-deoxyguanoside 

and nitrotyrosine (74). All of the above findings indicate that Zn and MT provide a protective 

role against antigen-induced airway inflammation (160). Finally, supplementation with Zn 

decreases infiltration of inflammatory cells after acute airways inflammation, here induced by 

OVA (161). 

 

Table 1.2 Expression of ZIPs and ZnTs in disease pathologies due to Zn imbalance (33) 
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In mice supplemented with Zn, enhanced expressions of ZIP1 and ZIP14 were observed, while a 

decline was evident in ZIP4 and ZnT4 expressions. The observed alterations in gene expressions 

of these Zn transporters, during airways inflammation, resulted as an attempt to achieve 

intracellular Zn homeostasis (96). Overall, this study showed that proteins that are responsible 

for regulating Zn fluxes are crucial in maintaining airways physiology and are important during 

the onset of inflammatory diseases.  

1.5.2 The role of Zn deficiency in Diabetes 

Disturbed glucose homeostasis and varying degrees of hyperglycemia are hallmarks of 

diabetes. Pancreas has a very intricate architecture, which is for the most part composed of 

exocrine acinar cells that synthesize and secrete the components of pancreatic juice. Also, the 

islets of Langerhans, which are scattered within the exocrine tissue, comprise the endocrine 

component of the pancreas (33). Zn, on the other hand, is found throughout the pancreas (33). 

Expression of ZIPs and ZnTs in disease pathology of diabetes due to Zn imbalance was 

summarized in Table 1.2 earlier. 

This essential metal is a vital part of pancreatic juice (33). Additionally, Zn is found to be 

more concentrated in endocrine islet cells, and even more so in the secretory vesicles of β-cells 

where it is known to stabilize the structure of insulin granules (Figure 1.3) (17, 92). Using 

Zinquin, coupled with digital image analysis, it was possible to visualize labile Zn, as well as 

measure it in intact islets and dissociated islet cells (33). Labile Zn was found to be concentrated 

in secretory vesicles (33). A scattered cytoplasmic fluorescence signal was due to an 

extragranular pool of labile Zn, which in turn could be used by the newly formed secretory 

granules (159). 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T2C-4N2TS61-2&_user=147018&_coverDate=09%2F01%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000012179&_version=1&_urlVersion=0&_userid=147018&md5=f3d0af61c0ebe51fa7f6a42bbe766a17&searchtype=a%20/%20fig1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T2C-4N2TS61-2&_user=147018&_coverDate=09%2F01%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000012179&_version=1&_urlVersion=0&_userid=147018&md5=f3d0af61c0ebe51fa7f6a42bbe766a17&searchtype=a%20/%20bib42
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Figure 1.3 

 Zinquin staining of a section of mouse pancreas (A), mouse glucagonoma α-TC1 cells (B) and 

mouse insulinoma β-TC6 cells (C). Arrows indicate two islets of Langherans surrounded by 

acinar exocrine cells (33). 

  

External stimuli like an increase in glucose concentration results in a change of 

intracellular free Zn concentration. Interestingly, it was shown in vitro that presence of 25.6mM 

glucose diminishes Zinquin staining (159). Presence of Zn ions in beta cells facilitates more than 

stabilization of insulin hexamers: it has been postulated that released Zn ions might provide a 

paracrine effect in promoting glucagon secretion, mediated by alpha cells (75). In contradiction, 

a different study reported Zn to have an inhibitory effect on glucagon secretion in isolated 

pancreata and dissociated alpha cells (46). Finally, it was also shown that Zn ions released by 

beta cells might add to their own destruction during insulin hypersecretion (85). 

 It has been predicted that Zn homeostasis might be significant in the onset and/or 

progression of diabetes. This claim has been strengthened by results from studies conducted in 

man and rodent models (1, 17). In mice, it was shown that supplementation with dietary Zn 

protected the rodents against chemically induced diabetes (66). Meanwhile, in human patients, a 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T2C-4N2TS61-2&_user=147018&_coverDate=09%2F01%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000012179&_version=1&_urlVersion=0&_userid=147018&md5=f3d0af61c0ebe51fa7f6a42bbe766a17&searchtype=a%20/%20bib46
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T2C-4N2TS61-2&_user=147018&_coverDate=09%2F01%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000012179&_version=1&_urlVersion=0&_userid=147018&md5=f3d0af61c0ebe51fa7f6a42bbe766a17&searchtype=a%20/%20bib47
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lower serum Zn concentration was observed in Type 1 diabetes when compared with healthy 

controls (139). In summary, Zn deficiency might be responsible for the decreased ability of the 

pancreas to respond to glucose, which ultimately leads to islet cell damage (1). Tyrosine 

phosphatase 1B, an enzyme which is a key regulator of the phosphorylation state of the insulin 

receptor is targeted by Zn ions that are known to display insulinomimetic effects. In addition, 

according to the recent studies local Zn deficiencies might play an important role in the 

development of insulin resistance by activation of stress pathways, with a loss of tyrosine 

phosphatase control as an end result (64, 63). 

Recently, the mouse pancreas was used to investigate the correlation between dietary Zn 

and the expression of Zn transporters (33). As a result, 16 ZIP and ZnT transporters were 

revealed to be expressed (33). Also, a human genetic study identified a SNP in the promoter 

region of the MT2A gene that is closely associated with Type 2 diabetes (52). Unfortunately, 

there is no information available on the incidence of SNPs in Zn transporter genes, as well as on 

their possible involvement in the development of pancreas-related pathologies. Disruption of Zn 

homeostasis can result from improper dietary intake of Zn, but also from impaired activity of 

proteins controlling Zn metabolism (Figure 1.4) (33). 
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Figure 1.4  

The outcome of the interaction between diet and allelic variations of genes controlling Zn fluxes 

on the balance between health and disease (33) 
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1.5.3 Link between Zn & Alzheimer's disease 

Alzheimer's disease (AD) is a polygenic neurodegenerative disorder linked to aging. Its 

hallmarks include progressive impairment of memory and cognitive abilities. The onset of AD is 

believed to be due to the abnormal accumulation and deposition of extracellular senile plaques, 

which are made up of Cu-Zn aggregates of the amyloid β-peptide (Aβ). In turn, Aβ results from 

proteolytic cleavage of the precursor APP (amyloid β-protein precursor), which is a member of 

an integral membrane glycoprotein family. There is a cysteine-rich specific domain which is 

conserved in all APP superfamily members (67). Zn ions are known to bind this domain (33).  

Numerous studies are pointing to Zn’s involvement in AD pathogenesis, as well as its 

distorted metabolism in AD’s pathology (67). Expression of ZIPs and ZnTs in disease pathology 

of Alzheimer’s due to Zn imbalance was summarized in Table 1.2 earlier. Excess Zn, in 

particular, was found associated with amyloid plaques (67). Also, the interaction of Aβ with Zn 

and other biometals was found to promote amyloid plaque aggregation and decrease its solubility 

in vitro (67). Since proper AD diagnosis can only be done post-mortem, one of the greatest tools 

to study AD is to use the transgenic mouse model Tg2576. These transgenic mice overexpress an 

isoform of human APP, which contains the K670N, and the M671L mutations (157, 141). At 3 

months these animals have normal learning and memory in spatial reference, but by 10 months 

both parameters are impaired (67). This is characteristic of Aβ plaque deposition (67). When 

these animals were treated with clioquinol, an orally bioavailable metal chelator, a significant 

inhibition of cortical amyloid accumulation was observed (18). Besides, even early-phase 

clinical trials suggested that Aβ plaque deposition can be inhibited by Zn chelation (128, 49). 

Due to high Zn concentrations in the brain, its transport and regulation here are crucial. 
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Zn is mainly accumulated in the glutamate synaptic vesicles of presynaptic nerve terminals. 

Furthermore, Zn ions inhibit postsynaptic glutamate receptors. Excitation with glutamate leads to 

a quick uptake of Zn via a saturable transport system. Following Zn uptake, Zn along with 

glutamate is resealed during neurotransmission and has been reported to reach concentrations as 

high as 300 μM in the synapse (49). Excess Zn must be removed in order to protect adjacent 

neurons: excess of extracellular Zn is toxic and could contribute to brain damage, as seen in 

transient cerebral ischemia (141, 89). 

On the contrary, Zn deficiency can also have devastating consequences in human 

physiology. It has been shown to drastically affect behavior of infants and children. Fortunately, 

there is a very tight regulation of Zn homeostasis in our brain, since brain Zn concentration is 

found to remain within a narrow range. Moreover, one study in mice, fed with a Zn-limiting diet, 

showed a decline in the expression of MT-I and ZnT1, meanwhile a Zn importer ZIP6 was found 

to be upregulated (20). This finding could suggest a possible mechanism that brain employs in 

order to preserve Zn during Zn deficiency (20). 

Overall, Zn homeostasis in the brain is maintained by the actions of metallothioneins, 

ZnTs and ZIP proteins. Similarly to other cell types, in neurons Zn is mainly found tightly bound 

to metallo-proteins. In the brain, just as seen earlier during bacterial infections, Zn is sequestered 

but into synaptic vesicles of glutamatergic neurons (122). In order to transport high 

concentrations of labile Zn, from the cell bodies to the axon terminals where it’s packaged into 

synaptic vesicles, this cell type utilizes the ZnT3 transporter (122). Interestingly, when a ZnT3(-

/-) genotype was introduced into Tg2576 mice brain development and learning abilities were not 

affected, instead it resulted in an approximately 50% reduction in amyloid burden (99). It was 
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found that ZnT3 expression was regulated by estrogen. This was no surprise, since both in 

humans and rodents there is a higher occurrence of AD in postmenopausal females when 

compared to males of equal age. Additionally, in comparison with males, in aging 

Tg2576:ZnT3(+/+) female mice there were increased levels of synaptic Zn, insoluble amyloid 

beta, along with plaques (99, 100). The above physiological attributes, which were clearly sex-

linked, were not present in Tg2576:ZnT3(-/-) (99, 100). While more studies are necessary to 

elucidate the true roles of metal transporters in the brain, their importance in the onset and 

progression of neurodegenerative diseases, like AD, is undeniable.  

In a nutshell, many factors contribute to the onset and progression of multifactorial 

diseases. As described above, these include genetic and environmental factors, such as diet. 

Using mutation screens along with linkage studies, scientists have been able to identify a number 

of mutations in several genes attributing to chronic diseases. Furthermore, numerous reports are 

singling out Zn, as well as its metabolism, as the key player in the onset of a rising number of 

chronic diseases. Therefore, research of Zn’s metabolism and regulation, by metal transporters 

like those belonging to the ZIP family, will illuminate the influence of dietary Zn on disease risk. 

1.6 ZIP’s structures & their metal-binding implications 

Searches of human and mouse genomes revealed numerous members of ZIP superfamily, 

including as many as 14 in humans. Additionally, there was a conserved subfamily that was 

identified in mice and humans. It includes three zip genes: zip1, zip2, and zip3. Furthermore, 

human ZIP1 (SLC39A1) along with ZIP2 (SLC39A2) have been shown to act as Zn transporters 

(94, 95). In these studies, Zn transport was measured in mammalian cells which were transiently 

transfected with an empty vector or a vector containing hZip1 or hZip2 cDNAs (94, 95). To 
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determine the role of these genes in Zn transport transfected K562 erythroleukemia cells 

expressing these genes were utilized (94, 95). Cells expressing hZip1 were shown to accumulate 

more Zn than control cells because of increased Zn influx (95). These cells also showed a Zn-

uptake profile that was biochemically indistinguishable from the endogenous activity (95). On 

the other hand, it was observed in cells expressing hZip2 that Zn transport was time-, 

temperature-, and concentration-dependent and saturable with an apparent K m of 3 μM (94). 

While hZip1’s activity was not energy-dependent, nor did it require K
+
 or Na

+
 gradients, it was 

stimulated by HCO3- treatment, suggesting a Zn-HCO3-cotransport mechanism (94). Finally, 

both hZip1 and hZip2 were observed to localize in the plasma membrane (94, 95). Furthermore, 

a mutation in the human ZIP4 gene (SLC39A4) was found in the genetic Zn metabolism disorder 

acrodermatitis enteropathica (152). Also, that it is responsible for encoding a Zn-regulated Zn 

transporter in mice. Since it is a conserved gene, it further underlines the fact that mammalian 

ZIP genes are vital components of the Zn homeostasis mechanism (38).  

Thus far there hasn’t been a study conducted in vivo in order to assess the three zip gene 

systemic expression and regulations. While ZIP1 mRNA has been reported to be present in most 

human tissues as well as in cultured human cell lines, zip1 mRNA was present in majority of 

adult rat and embryonic mouse tissues (95, 105). Unlike ZIP1, ZIP2 mRNA was not detected in 

human tissue RNAs (94). ZIP3’s expression is yet to be determined in any system, and zip1 and 

zip2 are still in need of characterization in adult mouse tissues. It was reported that in cultured 

prostate cell lines there is a mild hormonal regulation of ZIP1 mRNA (23). Also, in THP-1 cells 

treated with a Zn chelator, and in human monocytes, ZIP2 mRNA abundance was significantly 

elevated, while ZIP1, ZIP3, and ZIP4 mRNA abundance remained the same (25, 14).   
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1.6.1 Biochemical Characteristics of the ZIP family 

Several of the ZIP proteins have been functionally characterized and as a result are 

believed to have similar membrane topologies. This includes eight transmembrane domains, as 

well as the amino- and carboxy-terminal ends found on the outside of the plasma membrane 

(Figure 1.5) (28).  

 

 

 

Figure 1.5 

Topological model of SLC39 proteins 

8 transmembrane (TM) domains are indicated in red. The histidine-rich region in the cytoplasmic 

loop between TM III and IV, conserved histidines and charged/polar residues in TM IV and V, 

and the location of substrate specificity determinants mapped in Irt1 are also shown above (28). 
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 These domains contain conserved histidine, serine, and glycine residues within the fourth 

transmembrane domain (37). ZIP proteins are known to have a variable region, which is likely to 

contain a possible metal-binding domain that is rich in His residues (56, 28). Arabidopsis ZIP 

proteins, for instance, have a varying amino acid range, from 326 to 425 (115). This is all due to 

the variable region that is speculated to be found in cytoplasm between transmembranes III and 

IV (115). Furthermore, motifs that are found to be conserved in ZIP proteins are believed to be 

involved in metal transport or its regulation. One example of this would include a motif like 

HAGHVHIHTHASHGHTH that is a part of ZIP1, and is also conserved in a number of ZIP 

proteins (115). These proteins also contain a histidine-rich loop, which is found between third 

and fourth transmembrane domains (37, 28). Finally, there was a predicted amino acid 

conservancy of 83-93% found between all 8 transmembrane domains of the mouse and human 

ZIP1, ZIP2, and ZIP3 genes (Figure 1.6A, B, C) (37).  
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Figure 1.6A 

Sequence alignment of the mouse and human ZIP1 transmembrane domains 1-8 (37) 

In these figures the shaded regions depict conserved sequences, and the 8 putative 

transmembrane domains (TM) are highlighted with a solid line above the mouse sequences. The 

conserved 12-amino acid signature sequence that is characteristic of this subfamily is boxed for 

each ZIP. 
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Figure 1.6B 

 

Sequence alignment of the mouse and human ZIP2 transmembrane domains 1-8 (37) 
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Figure 1.6C 

 

Sequence alignment of the mouse and human ZIP3 transmembrane domains 1-8 (37) 

 

 

12-amino acid sequences, with a conserved motif: HSVFEGLAVGLQ from the human 

ZIP1, ZIP2, and ZIP3 proteins, were used to search the mouse translated high throughput 

genome sequences data base on the NCBI Protein Database server (37). The result yielded three 

different BAC entries that were derived from the C57/B6 strain of mice. The alignment of these, 

depicted in Figure 1.7 below, provided the identity of the mouse zip1, zip2, and zip3 genes (37). 

Here, the fourth transmembrane domain was aligned with a few known ZIP proteins from 

Arabidopses, yeast, and human. Conservation within the human sequences revealed the three 
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mouse ZIP proteins belonging to a subfamily. As seen with other members of the ZIP family, 

these sequences contain the conserved histidine, serine, and glycine residues (boldface). In 

addition, human and mouse ZIP1, ZIP2, and ZIP3 are a part of a smaller subfamily that shares an 

extended 12-amino acid sequence (underlined). The only exception is the one conserved amino 

acid substitution that is seen in ZIP3 (37).  

 

IRT1  ELGI I VHSVVIGLSLGATSDT 

ZIP1  EI GI VVHSV I IGI SLGASQSI 

ZIP2  I FAL CFHS IFEGIAI GLSDTK 

ZIP3  ELGI I VHSVVIGISLGASQSP 

 

ZRT1  EFGVI FHSVMI GLNLGSVGD 

ZRT2  EFG I I FHSVFVGLSLSVAGE 

 

ZIP1  VFSLALHSVFEGLAVGLQRDR 

ZIP2  LLSL SFHSVFEGLAVGLQPTV 

ZIP3  AFALSAHSVFEGLALGLQEEG 

 

ZIP1  VFSLALHSVFEGLAVGLQRDR 

ZIP2  LL SLSFHSVFEGLAVGLQATV 

ZIP3  VFALSAHSVFEGLALGLQEEG 

 

 
Figure 1.7 

Conservation within the fourth transmembrane domain revealed a subfamily of mammalian 

ZIP proteins (37) 

 

 

Arabidopsis 

Yeast 

Human 

Mouse 
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Earlier mentioned, SLC39 gene family has 14 greatly conserved members in the human 

and mouse genomes (53). As depicted in Figure 1.8, when compared to the other 12 family 

members, evolutionarily mouse ZIP14’s closest neighbor is ZIP8 (61). Noteworthy, the human 

and mouse SLC39A14 genes both contain two exons 4, which give rise to ZIP14A and ZIP14B 

alternatively-spliced variants. It is believed, that ~425 million years ago ZIP8 and ZIP14 

diverged from one another sometime following the land animal–sea animal split (53). This 

theory is based on the fact that the puffer fish, Takefugu rubripes, genome includes one gene that 

is practically identical to both mouse genes (53). Not depicted here, the human SLC39A14 and 

SLC39A8 genes are homologous to the mouse orthologs. 

 
Figure 1.8 

Phylogenetic tree of the 14 mouse ZIP domains of the Slc39 gene-encoded proteins (nearest-

neighbor joining (NNJ)-generated) (61)  
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Residues in or near transmembrane helices (TMH) IV and V are critical for efficient 

metal-uptake (129). Transmembrane domain IV is believed to contain the most conserved region 

of these proteins. It is also predicted to form an amphipathic helix, which contains a fully 

conserved histidine that may form part of an intramembranous metal binding site involved in 

transport (115, 113). Furthermore, it has been shown that the transport function after 

heterologous expression in yeast was eliminated after conserved histidines or some of the 

adjacent residues were mutated (129). A related study was done with human hZIP1 (SLC39A1), 

which indicated that histidines located within TMH and in connecting loop domains were 

essential for Zn transport (114). Although there have been a number of proposed mechanisms, 

the mechanism for ZIP-mediated metal ion transport is still unknown. One of them includes a 

bicarbonate stimulated hZIP2 and a Zn (II)/bicarbonate co-transport (94). Bicarbonate might also 

drive the metal-uptake in other ZIP-transporters, like ZIP8 (Slc39A8) and ZIP14 (Slc39A14) (60, 

53).  

While studying rvZIP14A and rvZIP14B cell lines, the Nebert lab revealed that ZIP14 

transporters uptake Cd by a temperature- and energy-dependent method, while functioning 

optimally at pH = 7.2 (61). ZIP14 proteins, in particular the B isoform, displayed a high affinity 

for Cd. Furthermore, it was observed that ZIP14-mediated Cd uptake is most inhibited by Zn
2+

, 

followed by Mn
2+

 and finally Cu
2+

. ZIP8- and ZIP14-mediated Cd uptake is dependent on 

presence of extracellular HCO
3-

, characterizing ZIP14A and ZIP14B as M
2+

/HCO
3-

 symporters, 

where M
2+

 = Zn, Mn or Cd. Finally, ZIP14A and ZIP14B were found to be located on the apical 

surface of MDCK cells (53). In Table 1.3 below, one can find a comparison between the human 
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versus mouse SLC39A8 and SLC39A14 genes and in Table 1.4 the properties of the mouse ZIP8 

and ZIP14 protein transporters (61). 

It has been observed that Cd in the environment is capable of displacing either 

endogenous Zn or Mn and then entering the epithelial cell. By forming disulfide bonds, Cd can 

demolish countless enzymes/proteins via oxidative stress. Hand-in-hand with Cd, Hg and Pb are 

also able to cause renal proximal tubular acidosis and osteomalacia, additionally Hg and Pb have 

been reported to act as competitive inhibitors of ZIP8-mediated Cd and Zn uptake (9). Platinum 

and uranium are the only other metals known to cause this human condition.  
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Table 1.3 Comparison between mouse and human Slc39A8, (ZIP8), and Slc39A14, (ZIP14), 

genes (61) 

 

 Mouse Slc39a8 gene Mouse Slc39a14 gene 

Chromosomal 

location 

Chr 3; nt 135488243(+) Chr 14; nt 70751231(-) 

Transcript distance 

spanned#a 

64,860 bp 92,502 bp 

Size of mRNA 3.1–3.3 kb 2.0 kb 

Molecular weight 

of protein 

50,082 Da 53,754 versus 53,962 Da 

Number of amino 

acids in protein 

462 489 

   

 Human SLC39A8 gene Human SLC39A14 gene 

Chromosomal 

location 

4q22–q24 8p21.2 

Transcript distance 

spanned 

88,148 bp 57,942 bp 

Size of mRNA 3.3–3.5 kb 4.6 kb 

Molecular weight 

of protein 

49,631 Da 54,056 versus 54,212 Da 

Number of amino 

acids in protein 

461 492 

 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WXH-4VRH57M-2&_user=147018&_coverDate=08%2F01%2F2009&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000012179&_version=1&_urlVersion=0&_userid=147018&md5=786cee61ba1dba8d51adbaf7a4d2d380&searchtype=a%20/%20tblfn1
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Table 1.4 Properties of the mouse ZIP8 and ZIP14 proteins (61) 

 

 

Properties ZIP8 ZIP14A ZIP14B 

Tissues in which gene is 

expressed most highly 

(assessed by Northern 

and qRT-PCR) 

Lung = testis > 

> kidney >> liver > 

> brain > duodenum 

Liver > duodenum> 

> kidney > testis> 

>brain = lung 

Liver = duodenum > 

>brain = testis > 

>kidney = lung 

Cations transported by 

mammalian cells in 

culture (always with 

HCO
3-

) 

 

Zn, Mn, Cd 

 

Zn, Mn, Cd 

 

Zn, Mn, Cd 

Km values for M
2+

 

uptake in mammalian 

cell culture 

Mn 2.2 μM; 

Cd 0.62 μM 

Mn 18 μM; 

Cd 1.1 μM 

Mn 4.4 μM; 

Cd 0.14 μM 

Cation inhibitors of Cd 

uptake in mammalian 

cell culture 

 

Mn > Hg >> Pb = Cu 

= Zn = Cs 

 

Zn >> Mn > Cu 

 

Zn >> Mn > Cu 

Cations transported by 

Xenopus oocytes 

Zn, Cd Zn, Cd Zn, Cd 

Km values for Cd 

uptake in Xenopus 

oocytes 

Zn 0.26 μM; 

Cd 0.48 μM 

Zn 0.38 μM; 

Cd 0.46 μM 

Cd 0.30 μM 

Cation inhibitors of Cd 

uptake in Xenopus 

oocytes 

 

Zn > Cu = Pb = Hg 

 

Hg = Pb > Zn > Cu >

 Fe > Mn 

 

Hg = Pb > Zn > Fe > 

Cu > Mn 
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1.7 What is known about ZupT? 

ZupT is a cytoplasmic membrane protein, which was the first characterized bacterial 

member of the ZIP family of metal ion transporters, previously only believed to be present in 

eukaryotes (57). Its gene was first discovered in Escherichia coli, and it formerly went by ygiE 

(93). Before 2002, it was believed that there were only three Zn transport systems available in 

E.coli: the efflux of Zn was mediated by the P-type ATPase ZntA and the cation diffusion 

facilitator ZitB, while during Zn deficiency Zn was taken up by the high-affinity ABC 

transporter ZnuABC (54, 127, 132). Grass et. al showed that ZupT was an additional Zn 

transporter system, which facilitated Zn’s uptake in E.coli (57). Furthermore, as seen earlier with 

other ZIP family proteins, ZupT also plays an important role in a number of different diseases. 

For instance, during urinary tract infection (UTI) in mice, Znu and ZupT were essential for 

growth in Zn-limited conditions (130). It was also reported that Znu was the main Zn transporter, 

and that the loss of Znu and ZupT had a collective effect on fitness during UTI, which in turn 

could have resulted from reduced resistance to oxidative stress and motility (130).  

Multiple reports have showed ZupT to be a transporter of broad substrate specificity (55, 

119). Besides Zn, ZupT was reported to mediate uptake of 
55

Fe
2+

 (55). It was reported that an E. 

coli strain, whose known Fe uptake systems were demolished, was able to grow in the presence 

of chelators only if zupT was expressed (55). Also, in the same strain, heterologous expression of 

Arabidopsis thaliana ZIP1 alleviated the Fe deficiency (55). Additionally, ZupT’s expression 

resulted in E. coli cells’ hypersensitivity to Co
2+

 and Mn
2+ 

(55). Along with already mentioned 

uptake of Zn, Fe, and Co, phenotypic and transport analysis reported ZupT is also involved in 

transport of Mn, but also Cd
2+

 (119). According to competition experiments ZupT showed a 
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slight preference for Zn, which was supported by kinetic parameters for Zn, when compared to 

Co and Mn (119). ZupT was also observed to transport Cu
2+

 (119). Although, copper-uptake into 

E. coli cells, and the role of ZupT in it, is physiologically not relevant because there is no 

cytoplasmic protein known that requires a copper co-factor in E. coli. Interestingly, ZupT does 

not seem to be metal regulated: expression of a Φ(zupT-lacZ) operon fusion showed that zupT is 

expressed constitutively at a low level (55).  

In silico analysis suggested that most ZIP transporters including ZupT have a topology 

comprising of eight TMH along with an expanded loop domain between TMH III and IV(129, 

114). Amino acid sequence analysis of different ZIPs revealed several conserved residues 

between eukaryotic and prokaryotic ZIP proteins, which are for the most part located in TMH VI 

and V (119). Site-directed mutagenesis has been done on a number of amino acid residues within 

the ZupT sequence with a goal to identify the residues contributing to its substrate specificities. It 

has been reported that ZupT with a H89A mutation has lost Co and Fe transport activity, while 

the S117V mutant could no longer transport Mn (119). E152D mutant, on the other hand, 

displayed general metal uptake impairment but completely lost its ability to mediate the transport 

of Zn and Mn (119). After four amino acid residues in IRT1 (H197, S198, H224, E228) were 

found to be vital for transport activity, similar residues were investigated in the shorter ZupT 

peptide at similar positions but not in conserved order (S117, H119, H148, E152) (129, 119). 

Here, only mutations H119 and H148 left the protein basically inactive (119). Furthermore, 

mutations of S117, and E152 residues also displayed distinguishing phenotypes. For instance, the 

S117V mutant lost its Mn-transport activity, along with a minor reduction in Co-uptake, while 

cells with E152D or E152A were unable to take up Zn and Cd or Zn, respectively (119). In 
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addition, mutation of E60 residue led to loss of Cd, and to some degree also Co, transport 

without having any effects on other substrates (119). In growth experiments, ZupT E60D mutant 

was similar to wild-type ZupT, but its uptake-activity was altered (119). Finally, even though the 

negative charge of this glutamate was retained, since it was mutated to aspartate, its transport 

abilities were impaired. Furthermore, this mutant’s ZupT protein was synthesized in low 

quantity, as it was barely detectable by immuno-blotting (119).  

One of the proposed mechanisms for metal uptake by ZupT included the proton motive 

force because the protonophores FCCP and CCCP were reported to inhibit the metal transport 

(119). Studies were conducted to address this issue. If metal transport by ZupT depended on 

proton force, its mechanism would be similar to that of MntH, where maximum transport is 

achieved at low pH (24). The opposite was observed for ZupT and other ZIP transporters. ZupT 

was shown to work best at physiological pH (119). Its metal uptake was independent of K
+
-, 

Na
+
- or Mg

+
-ions, thus showing that it did not participate in a substrate co-transport with these 

cations (119). ZupT’s affinity for its substrates might increase with increasing pH, and therefore 

its transport efficiency is reported to be higher at near neutral pH. Likewise, one can explain 

ZupT’s increased transport of Zn at increasing pH levels. Finally, it could be due to the pH of the 

outside environment, which could be responsible for the protonation-state of the amino acid 

residues within ZupT, that ZupT’s optimal activity was observed at pH 7.2 (119). Also, at neutral 

pH ZupT’s metal uptake into the cells was inhibited by ionophores (119). Interesting to note, 

mammalian ZIP8’s Cd-transport was energy-dependent but, similarly to ZupT, independent of 

K
+
-, Na

+
- or Cl

-
-ions (60). ZupT also seems to be unlike its eukaryotic ZIP homologues due to its 

lack of stimulation by bicarbonate (119). Alternative mechanism proposed that metal-uptake by 
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ZupT might be driven just by the concentration gradient of labile transition metal cations found 

across the plasma membrane (16). If one were to change the pH gradient across the membrane 

by let’s say two orders of magnitude: it would most likely be insufficient since the concentration 

gradient of Zn across the cytoplasmic membrane is at least 14 orders of magnitude (16).  

There was a comparison conducted between ZupT and ZIP family members from 

eukaryotes. Through the means of retroviral infection of fetal mouse fibroblast cultures with 

ZIP8 cDNA, transport kinetics of ZIP8 for Cd
2+ 

 and Mn
2+ 

 were obtained with apparent K m 

values as 2.2 and 0.69 μM as well as V max values of 73.8 and 92.1 pmol × min
-1

 × mg protein
-1

, 

respectively (60). These results were similar to the reported results from metal transport study 

with ZupT and Mn
2+

: K m 1.16 ± 0.29 μM Mn, with a V max 850 ± 90 pmol × g d.w.
-1

 × min
-1

 

(119). The reported apparent affinity of ZupT for Zn
2+

: 0.71 ± 0.14 μM Zn
2+ 

 in E. coli was in the 

same order of magnitude to what was observed for ZIP8 and Zn
2+

: K m = 0.26 μM Zn
2+

, and 

similar to what was measured for IRT1 expressed in yeast: K m = 2.8 μM Zn
2+ 

 (119, 60, 90). 

Interesting to note, metal competition studies showed that ZIP8-mediated Cd
2+ 

-transport was 

inhibited by other metal cations especially by Mn
2+

, Hg
2+ 

 and Pb
2+ 

 but not by Fe
2+ 

or Ni
2+

 (60). 

An additional study reported that Cd
2+

 transport into Xenopus oocytes through ZIP8 was well 

inhibited by Zn
2+ 

 but not by Mn
2+

 (107). ZupT transport of Zn
2+

, on the other hand, was not 

inhibited but somewhat elevated by presence of Fe
2+

, even though Fe
2+

 is one of its substrates  

(119). Similarly, in IRT1 Fe
2+

 but not Fe
3+

 also led to an increase in Zn
2+ 

-uptake rate (90). 

Likewise, Zn
2+ 

transport by ZIP8 and ZIP14 was increased in the presence of the alternative 

substrate Fe
2+ 

(53). Therefore, transport by ZIP proteins ZIP8, ZIP14, IRT1 as well as ZupT 

follows typical Michaelis–Menten kinetics (53). If this was not the case and an allosteric 
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regulation by Fe
2+

 of ZupT-mediated Zn-transport was involved, in an inverse experiment, Fe
2+

 

transport would be controlled by Zn. On the contrary, a 50-fold surplus of Zn over Fe
2+

 did not 

diminish Fe
2+

-uptake by ZupT (119). 

 Without a purified ZupT protein its true biochemistry is difficult to characterize. 
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CHAPTER 2 

 

EXPERIMENTS, RESULTS & DISCUSSION 

 

2.1 Goal 

 As described in Chapter 1, ZIP family of metal transporters is expressed amongst 

different organisms in order to maintain their metal homeostasis and thus contribute greatly to 

their growth and development. ZIPs have also been found to play key roles in bacterial 

infections, as well as the onset and progression of chronic diseases in humans.  

The goal of this study was to purify and characterize one of the bacterial ZIP transporters: 

E.coli ZupT. Studies conducted in E.coli can provide a great number of characteristic data for 

such transmembrane proteins like ZupT. In comparison with mammalian cells, E.coli’s lack of 

complex organelles, and ease of genetic analysis, allows for direct analysis of the protein’s role 

in metal transport. Furthermore, in vivo and in vitro studies can be conducted in this system.  

As outlined in Chapter 1, various ZIP transporters have been reported to have different 

metal binding specificities. After ZupT purification, its binding specificities will be evaluated 

with fluorescence and UV-Visible spectroscopies. Also, to determine the binding 

stoichiometries, between ZupT and the tested metals, ICP-MS (inductively coupled mass 

spectrometry) analysis will be conducted.  

 

2.2 Materials 

 pBAD/mycHis-C plasmid and the E.coli strain LMG194 were purchased from Invitrogen. 

The pBAD/mycHis-P plasmid was constructed by our collaborator’s lab. 
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2.3 Methods 

2.3.1 Construction of ZupT/pBAD/mycHis-P with carboxyl-terminal Precision Protease site 

 ZupT was subcloned from pBAD/mycHis-C into pBAD/mycHis-P with an addition of a 

protease site (Figure 2.1). The amplified PCR products were cloned into pBAD/mycHis-P with 

the help of BamHI and EcoRI sites. The creation of the construct was verified with sequencing 

by GENEWIZ. The final construct was later transformed into TG1 cells and later into LMG194 

cells. 

 

 

 
 

 

 

Figure 2.1  

ZupT subcloned from pBAD/mycHis-C into pBAD/mycHis-P with an addition of a Precision 

Protease site 
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2.3.2 Creation of ZupT/pBAD/mycHis-C mutants 

 CLUSTALW2 Multiple Sequence Alignment (European Bioinformatics Institute) was 

used to analyze the ZupT sequence. The sequence analysis revealed two homologically-

conserved regions (Figure 2.2), which differed from the previously described conservation found 

in other ZIP family proteins. When compared to the topological model of SLC39 proteins 

(Figure 1.5), where there is a H-rich region between transmembrane (TM) III and IV, followed 

by conserved H, S, and E residues, ZupT sequence alignment revealed two repetitive, almost 

perfectly-conserved, regions (Figure 2.2). With a general sequence of HN-X-PEG, the first 

region had a 100% conservancy in H, E, and G residues. Second region only had G at the 100% 

conservancy. In order to evaluate a possible metal-binding role of these two conserved regions, 

several ZupT mutants were created. 

 After designing of primers, QuickChange Site-Directed mutagenesis Kit (Stratagene) was 

utilized in order to create four different mutants. Mutants had a restriction enzyme site inserted 

into the sequence, highlighted, in order to speed up and confirm the mutation creation (Table 

2.1). Successful mutants creation was confirmed with sequencing by GENEWIZ. 
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Table 2.1 ZupT Site-Directed Mutagenesis Primers 
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2.3.3 Optimization of ZupT expression 

 Protocol for optimization of ZupT was modified from the reported protocol in reference 

133. First, a log phase growth curve was created for ZupT/pBAD/mycHis-C, in LMG194. After 

a fresh transformation of ZupT/pBAD/mycHis-C into LMG-194 cells 5 colonies were selected 

and grown in 5-ml LB cultures with Amp, in a 50-ml tube with lids hole-punched 3 times. The 

OD600 of the negative control culture was checked every 30 min in order to construct a log phase 

growth curve. The remaining colonies # 1-6, plus a negative control colony, were grown to 

OD600 0.8 at which point 125 ul of the cultures were plated on a LB/ Amp (100 mg/ml) plates 

and the remainder of the cultures, besides the negative control, were induced with 0.02% 

Arabinose. The cultures were grown additional 1.5 h at 37°C, at which point 500-ul samples 

were taken, followed by 18 h growth at 25°C. After overnight growth, 500-ul samples were 

taken again from all of the cultures and pelleted. The supernatant was discarded and the pellets 

were treated with 20 ul of SDS loading buffer. The samples were digested at 95°C for 20 min. 

Samples from 1.5-h of induction and those with additional 18 h of induction at room temperature 

were compared on a 12% SDS gel. An overall increased protein expression was observed for all 

the colonies thus longer culturing/induction time was implemented.  

The original ZupT expressions of the 7 freshly-transformed colonies were compared on a 

western blot (Figure 2.5). As a result, colony # 5 was chosen and underwent a 2
nd

 selection as 

described earlier, again with a negative control and # 1-6 colonies compared. Finally, the results 

of both selections, colonies # 5 and # 3, were compared on a 12% SDS gel (Figure 2.6). As seen 

in Figure 2.6, a higher ZupT-expressing colony was isolated. 
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2.3.4 Purification of ZupT 

 

 After the newly made construct ZupT/pBAD/mycHis-P was retransformed into LMG194, 

as described in the Appendix of this manuscript, an overnight culture was grown with 1 of the 

colonies resulting from the transformation, to OD600 = 0.10, followed by growth of a 125-ml 

overnight culture with 1 ml of the previously grown culture, to OD600 = 1.71. This culture was 

used to grow 2-L cultures in a shaker at 37C for 3.5 h until OD600 = 0.80. These were induced 

with 0.4 g of Arabinose, after which the cultures were grown an additional 1.5 h at 37C. Lastly, 

the cultures were incubated for 18 h more at 25C. Final average OD600 = 1.03 (n = 3). The cells 

were harvested at 7,000 rpm and the average of the obtained pellet was 1.33 g/L (n = 3). The 

combined pellets were resuspended at ~ 7.90 ml/g of cells. The buffer A used for the 

resuspension included 25 mM Tris, pH 7.0, and 100 mM sucrose. After addition of DNase I the 

cells were stirred at 4C for 30 min, after which PMSF was added to a final concentration of 1 

mM.  

 The cells were then lysed twice with a French press at 20,000 p.s.i. and collected 

immediately into a tube that was kept on ice. 2 mM MgCl2 was added immediately after the 

French press. The cell suspension was stirred again at 4C for 30 min. Low speed centrifugation 

was performed at 8,500 rpm for 40 min. In order to separate the membranes from the soluble 

fraction of cells, the supernatant from the low speed centrifugation underwent a high speed 

centrifugation at 45,000 rpm for 1 h. The resulting pellets from high speed centrifugation were 

resuspended to OD280 = 20 with the following buffer B: 25 mM Tris, pH 7.0, 100 mM sucrose, 

500 mM NaCl, and 1 mM 2-BME. Then at 4C Triton X-100 was added very slowly, while 

stirred, to a final concentration of 2%. The suspension was stirred at 4C for 1 h. The above 
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underwent ultra-centrifugation at 45,000 rpm for 80 min in order to remove the insoluble 

fraction. A charged, 5-ml bed, Ni
2+

 - pro-bond column was prepared by successive washes of 50 

ml dH2O and 15 ml of buffer C (25 mM Tris, pH 7.0, 100 mM sucrose, 500 mM NaCl, 1 mM 

PMSF, 1 mM 2-BME, and 2 mM DDM). The supernatant, resulting from ultra-centrifugation, 

was loaded onto the column and washed with 50 ml of buffer C, 100 ml of buffer C and 50 mM 

Imidazole, 50 ml of buffer C and 100 mM Imidazole, and the protein was finally eluted with 20 

ml of buffer C and 300 mM Imidazole. 1 ml fractions were collected during the elution step and 

checked for the presence of protein with a bichinchonic acid assay (Sigma), while using bovine 

serum albumin as standard. The protein-containing fractions were concentrated with an Ultracel-

10 kDa centricon (Millipore), at 3,500 rpm until desired volume was achieved. The Imidazole 

was removed with a use of a 40-ml Sephadex G-25 column. The protein fractions were 

concentrated again with an Ultracel-10 kDa centricon. Finally, the aliquots of the protein were 

stored at -80°C with a final 10% glycerol concentration, which was used as a cryoprotectant. 

2.3.5 Characterization of ZupT using Fluorescence Spectroscopy 

 

 The samples for the fluorescence spectroscopy analysis were prepared in HPLC H2O with 

10 mM Tris, pH 7.0, and 2 mM DDM. 10 uM protein concentration of ZupT was used for all 

experiments. Metal solutions utilized for the experiments were made in mqH2O at 1 mM and 10 

mM final concentrations. After each addition of a metal solution, the samples were thoroughly 

mixed by inversion of the cuvet 20 times, with parafilm used as a stopper. The samples were 

excited at 290 nm and the emission scans were taken from 300-500 nm.  
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2.3.6 Characterization of ZupT with UV-Visible spectroscopy 

 Here, same protein, buffer and metal concentrations were used as for fluorescence studies 

described above. Scans were taken from 190 nm-900 nm in order to find any changes due to the 

binding of the metal tested. Later scans were narrowed down to a 190 nm-500 nm range for Fe. 

2.3.7 Obtaining metal binding stoichiometry with ICP-MS 

The metal concentrations were measured with the use of a PE Sciex Elan 9000 ICP-MS with 

a cross-flow nebulizer and Scott type spray chamber. The RF power used during the analysis was 

1000 W, and the argon flow was optimized at 0.92 L/min. All the metal standards used were 

obtained from VWR.  

10 uM protein samples were prepared in the buffer (HPLC H2O with 10 mM Tris, pH 7.0, 

and 2 mM DDM) along with 150 uM final metal concentration. All metals were added very 

slowly with a 10 ul syringe, after which samples were thoroughly mixed. Samples were then 

incubated for 20 min and then loaded onto a 1.5-ml Sephadex G-25 column. The column was 

washed with 15 ml mqH2O and 4.5 ml of the sample buffer (HPLC H2O with 10 mM Tris, pH 

7.0, and 2 mM DDM). The samples were passed through the column and eluted with the above 

described buffer. BCA assay was utilized to identify the protein-containing fractions and those 

were concentrated to a minimum volume at 3,500 rpm using an Ultracel-10 kDa centricon. The 

washing of the column and eluting the sample were repeated once more for a total of 2 times in 

order to wash out the excess/unbound metal. BSA assay was performed to measure the exact 

protein concentration of the samples: duplicate readings were taken at 562 nm. 

The samples were then prepared for ICP-MS analysis, using final concentrations of 2% Nitric 

acid in all samples. At last, the samples were diluted with HPLC water to 2 ml final volume. 
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Final binding stoichiometry was obtained by first calculating all the metal and protein 

concentrations to uM units and then dividing the metal concentrations by the protein 

concentrations. 

 

2.4 Results 

2.4.1 ZupT sequence analysis 

 As a result of CLUSTALW2 Multiple Sequence Alignment (European Bioinformatics 

Institute) the following 2 conserved regions, inside TM IV and V, were found within E.coli ZupT 

sequence and its homologues throughout the different kingdoms (Figure 2.2). 

 

 

Chlorobium   --------------------------------LNRMGLFTAAAIAIHNFPEGMAVFFSA 134                                                                                      

Methanosaeta ----------------------------HCSTLYRSSIMSAIGIAIHNLPEGMAVALVS 127 

Oryza        --------------------------KKHRRQVLFSGIITAVGISLHNFPEGMAVFLGS 145 

Aeropyrum    ------------------------PPSFRRKVKAAWLVATAIII--HNLPEGMSIGAAA 148 

Schizosac.   SMATCACECHHPDQQAPSILSGSSCGSDHEKSMFTVGLQTAIAISLHKLPEGFIIFMTS 228 

Zip1      ------------------VPQ-A-SG-APATPSALRACVLVFSLALHSVFEGLAVGLQR 191 

E.coli       ----------------------------LPKSIKRTAILLTLGISLHNFPEGIATFVTA 151 

 

                                                                                                             TM IV 
 

Chlorobium   LSNQNLGIVIATTIALHNIPEGMAIAVPIYFATKSRKKAFTY-SFLSGLAEPLGAIVG 193 

Methanosaeta LSDIHLGVPIALAIAIHNIPEGIACSVPFYCATN-KRGRSCLISFAAGMTEPLGAVLA 185 

Oryza        MKGLRVGLNLAIAIALHNIPEGVAVALPLYFATNSKWQAFKV-ATLSGFAEPLGVIIV 203 

Aeropyrum    SYAISEGLAVALAIGTQDFPEGLAVSLPVFAASGSLYLALLVAMLSGFS-EVVAATIV 206 

Schizosac.   SSDAGMLVFLAMSV--HNLFEGFTIAYPLYLAWHSRFRSFLVGSALTTTSMPLGALLA 285 

Zip1      DRARAMELCLALL--LHK---GILAVS-LSL-RLLQSHLRAQVVAGCGILFSCMTPLG 248 

E.coli       SSNLELGFGIALAVALHNIPEGLAVAGPVYAATGSKRTAILW-AGISGLAEILGGVLA 172 

  
                                                                        TM V                                                               TM VI 

 

 

Figure 2.2 

Two homologically-conserved regions in ZupT  

*Only the conserved regions are presented. 
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2.4.2 Optimization of ZupT expression 

After obtaining a log phase growth curve for ZupT in pBAD/mycHis-C, in LMG194, a 

double-selection protocol was utilized in order to obtain a high-expressing ZupT colony in 

LMG194. The original ZupT expressions of 7 freshly-transformed colonies of ZupT in 

pBAD/mycHis-C, in LMG194, with 1 used as a negative control (uninduced), were compared on 

a western blot, after which colony # 5* was chosen as the 1
st
 selection (Figure 2.3).   

 

 

 

 

 
 

Figure 2.3 

Western blot comparison of ZupT expression before 1
st
 selection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: 

1. Negative Control (uninduced) 

2. Colony 1 

3. Colony 2 

4. Colony 3 

5. Colony 4 

6. Colony 5* 

7. Colony 6 

 

      1             2              3             4            5               6 *           7      



54 

 

 

 

 

 

 

Colony #5 resulting from the 1
st
 selection was compared to colony #3 resulting from the 

2
nd

 selection (Figure 2.4). 

 

 

 

 

 

 

 

    

 

 
 

Figure 2.4 

 

Resulting colonies from 1
st
 selection and 2

nd
 selections were compared on a 12% SDS gel  

 

 

 

 

 

 

 

 

 

 

 

Legend: 

 

1. 1
st
 selection colony 5 uninduced 

2. 1
st
 selection colony 5 induced 

3. 2
nd

 selection colony 3 induced 

   1           2           3 
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2.4.3 ZupT purification 

The fractions collected during ZupT/pBAD/mycHis-P purification were analyzed along 

with the purified ZupT on a 12% SDS gel Figure 2.5 (A) and a 15% SDS gel Figure 2.5 (B).      

 

 

A       B 

Figure 2.5 

SDS gels with fractions obtained during ZupT/pBAD/mycHis-P purification: (A) a 12% SDS gel 

and (B) a 15% SDS gel. 

 

 

 

Legend: 

 

1. HSP1 - 1
st 

high speed pellet 

2. HSS2 - 2
nd

 high speed supernatant 

3. HSP2 - 2
nd

 high speed pellet 

4. 100mM-Imidazole buffer 

5. 300mM-Imidazole buffer 

6. Purified ZupT concentrated 

7. Marker 
 

  1    2          3          4         5          6          7 

 

  1    2          3          4         5          6          7 

 

31 kDa 

45 kDa 
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2.4.4 ZupT characterization 

Fluorescence characterization of ZupT/pBAD/mycHis-P was conducted in order to 

evaluate its metal binding specificities. 10 uM ZupT/pBAD/mycHis-P was used throughout the 

characterization experiments along with a neutral pH buffer, which was deemed optimum for 

ZupT’s transport activity (119). All the samples were excited at 290 nm. 

2.4.4.1 Titration of fluorescence emission of ZupT with Cd 

Figure 2.6 

300–500 nm emission spectrum of ZupT/pBAD/mycHis-P with Cd 
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Figure 2.7 

300-400 nm emission spectrum of ZupT/pBAD/mycHis-P with Cd 
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Figure 2.8 

Fluorescence study 330.9 nm peak analysis: Fluorescence vs. [Cd] (uM) 
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2.4.4.2 Titration of fluorescence emission of ZupT with Fe 

 

Figure 2.9 

300-500 nm emission spectrum of ZupT/pBAD/mycHis-P with Fe 
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Figure 2.10A 

300-400 nm emission spectrum of ZupT/pBAD/mycHis-P with ↓ [Fe] 
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Figure 2.10B 

300-400 nm emission spectrum of ZupT/pBAD/mycHis-P with ↑ [Fe] 

0.00E+00

1.00E+04

2.00E+04

3.00E+04

4.00E+04

5.00E+04

6.00E+04

7.00E+04

300 320 340 360 380 400

10.0uM ZupT

0.75uM Fe

1.0uM Fe

2.25uM Fe

2.50uM Fe

5.0uM Fe

7.5uM Fe

10.0uM Fe

20.0uM Fe

30.0uM Fe

40.0uM Fe

52.5uM Fe

60.0uM Fe

70.0uM Fe

80.0uM Fe

90.0uM Fe

100.0uM Fe

F
lu

o
re

sc
en

ce

Wavelength (nm)



62 

 

 

 

 

Figure 2.11 

Fluorescence study 330.9 nm peak analysis: Fluorescence vs. [Fe] (uM) 
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2.4.4.3 UV-Visible spectroscopy study with Fe 

 

 

 

 

 

 

Figure 2.12 

10 uM ZupT/pBAD/mycHis-P UV-Vis absorbance peak 

 

 

 

Wavelength (nm) 
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Figure 2.13 

Fe UV-Vis peak minus the ZupT/pBAD/mycHis-P absorbance peak 

 

 

Wavelength (nm) 

As the [Fe] increases, 

so does the peak. 
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Figure 2.14 

UV-Vis 329.6 nm peak analysis: Absorbance vs. [Fe] (uM) 
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2.4.4.4 Titration of fluorescence emission of ZupT with Pb 

 

 

Figure 2.15 

300-500 nm emission spectrum of ZupT/pBAD/mycHis-P with Pb 

 

-4.50E+04

5.00E+03

5.50E+04

1.05E+05

1.55E+05

2.05E+05

300 350 400 450 500

10.0uM ZupT 

0.5uM Pb

1.0uM Pb

2.0uM Pb

2.5uM Pb

5.0uM Pb

7.5uM Pb

10.0uM Pb

20.0uM Pb

30.0uM Pb

40.0uM Pb

50.0uM Pb

60.0uM Pb

70.0uM Pb

80.0uM Pb

90.0uM Pb

100.0uM Pb 

150.0uM Pb

200.0uM Pb

250.0uM Pb

F
lu

o
re

sc
en

ce

Wavelength (nm)



67 

 

 

 

Figure 2.16 

300-400 nm emission spectrum of ZupT/pBAD/mycHis-P with Pb 
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Figure 2.17 

Fluorescence study 330.9 nm peak analysis: Fluorescence vs. [Pb] (uM)  
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2.4.4.5 Titration of fluorescence emission of ZupT with Zn 

 
 

Figure 2.18 

300-500 nm emission spectrum of ZupT/pBAD/mycHis-P with Zn 
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Figure 2.19 

300-400 nm emission spectrum of ZupT/pBAD/mycHis-P with Zn 
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Figure 2.20 

Fluorescence study 330.9 nm peak analysis: Fluorescence vs. [Zn] (uM)  
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2.4.4.6 ICP-MS metal binding stoichiometries 

 

Table 2.2 ICP-MS ZupT/pBAD/mycHis-P metal binding stoichiometries 

 

 

 

Metal 

 

 

ZupT/pBAD/mycHis-P binding 

stoichiometry 

 

Cd
2+

 

 

32.03 ± 0.03 

 

 

Pb
2+

 

 

0.07 ± 0.0 

 

Zn
2+

 

 

6.09 ± 0.0 
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2.5 Discussion 

 As a result of this study a successful protocol has been established for purification of 

ZupT. The detailed purification procedure for ZupT is outlined in Appendix (p. 79) of this 

manuscript. It was found that the lysing of the cells with a French press was more efficient if the 

resuspended cells were treated with DNase I before the lysing. In addition, while the membrane 

was solublized with Triton X-100, it was crucial to use DDM and not Triton X-100 in all of the 

washing/eluting buffers during the ZupT purification. For protein characterization purposes 

DDM was also a better suited eluting detergent than Triton X-100 because Triton X-100 

produces absorbance at 280 nm and below. 

 Moreover, optimization of ZupT expression was successfully achieved through a double-

selection method (Figures 2.3 & 2.4). ZupT, which has been described by others and observed 

personally as a low-expressing protein, is now expressed enough to be seen from a cell fraction 

on an SDS gel (Figure 2.4) (55, 119). After utilizing this method, the optimum growth and 

induction conditions for ZupT were also obtained: with initial growth at 37°C, for 3.5 h, with 

induction at OD600 of 0.8, followed by additional 1.5 h of growth at 37°C, and finally 18 more 

hours of growth at 25°C. 

 All the characterization techniques of ZupT were conducted using neutral pH buffers, 

which were previously mentioned as to be optimum for its binding efficiency (119). The above 

results of the fluorescence studies showed that the technique itself is a reliable technique for 

studying metal binding for a transmembrane protein, such as ZupT. The original 

ZupT/pBAD/mycHis-P fluorescence peak resulted from the presence of 2 Tryptophan residues 

residing at 173 and 189 amino acid sequence. All four metals showed a notable blue-shifting of 
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the original peak. The peak shifted from ~330.9 nm to forming a second peak at ~313.9 nm, and 

then depending on the metal it was binding, increasing metal concentration resulted in the overall 

peak shifting back to the original one, as seen with Cd, or eventually showed a steady increase at 

the newly made peak, as apparent with Pb. Blue-shifting is characteristic of the metal-binding 

environment becoming more non-polar.  

 Overall ZupT/pBAD/mycHis-P’s fluorescence gradually decreased with the increased Cd 

concentration (Figure 2.8). There was an increase in the fluorescence observed at 0.05 uM Cd: 

1.0 uM ZupT/pBAD/mycHis-P at ~ 330.9 nm, followed by blue-shifting of the peak to forming a 

second peak at ~315.0 nm (Figure 2.7). At 1.0 uM Cd: 1.0 uM ZupT/pBAD/mycHis-P the peak 

at ~315.0 nm disappeared and only a peak at 330.9 nm was prominent. The 330.9 nm peak 

decreased drastically at 2.0 uM Cd: 1.0 uM ZupT/pBAD/mycHis-P and blue-shifted again to 

~315.0 nm. At 6.0 uM Cd: 1.0 uM ZupT/pBAD/mycHis-P both peaks seemed to have reached 

saturation. Last jump in fluorescence, at 330.9 nm, was observed at 7.0 uM Cd: 1.0 uM 

ZupT/pBAD/mycHis-P after which the fluorescence kept decreasing staying at the original peak 

range (Figures 2.7, 2.8). Analysis of the 330.9 nm peak suggested two possible binding sites: one 

with a high affinity and another one with a lower affinity (Figure 2.8). ICP-MS results for Cd 

binding to ZupT showed a 2-fold higher concentration of Pb in the sample along with Cd, which 

was deemed unacceptable. Overall, the Cd stoichiometry for the sample was 32.03 Cd to 1 

ZupT/pBAD/mycHis-P. 

 The data obtained from the fluorescence study with Fe revealed possible binding of Fe to 

ZupT. The original 330.9 nm peak blue-shifted at 0.1 uM Fe: 1.0 uM ZupT/pBAD/mycHis-P 

ratio to ~313.9 nm (Figure 2.10A). At 0.15 uM Fe: 1.0uM ZupT/pBAD/mycHis-P ratio the peak 
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shifts back to the original peak at ~330.9 nm and an increase in fluorescence is observed (Figure 

2.10A). With increased fluorescence intensity, the peak blue-shifted and increased once more at 

0.175 uM Fe: 1.0 uM ZupT/pBAD/mycHis-P ratio. There was a decrease of the fluorescence 

observed, at 313.9 nm peak, when 0.25 uM Fe: 1.0 uM ZupT/pBAD/mycHis-P ratio was 

reached. Furthermore, there was another shift back to 330.9 nm peak at 0.275 uM Fe: 1.0 uM 

ZupT/pBAD/mycHis-P ratio. An additional blue-shift was observed at 0.3 uM Fe: 1.0 uM 

ZupT/pBAD/mycHis-P ratio. This peak kept increasing until 0.7 uM Fe: 1.0 uM 

ZupT/pBAD/mycHis-P ratio is reached, at which point there was a drastic decrease at 0.75 uM 

Fe: 1.0 uM ZupT/pBAD/mycHis-P ratio, at which point the peak drastically dropped to the 

original saturation level (Figure 2.10A). After 0.75 uM Fe: 1.0 uM ZupT/pBAD/mycHis-P ratio, 

the fluorescence of the 313.9 nm kept increasing until 0.85 uM Fe: 1.0 uM ZupT/pBAD/mycHis-

P ratio after which it began decreasing with one last jump in fluorescence at 1.0 uM Fe: 1.0 uM 

ZupT/pBAD/mycHis-P ratio ratio (Figure 2.10A, 2.10B). UV-Visible spectroscopic studies have 

also shown possible binding of Fe by the presence of an increasing broad range peak from 

~230.0 nm – 390.0 nm (Figure 2.13). Further analysis of absorbance vs. [Fe] (uM) suggested two 

biding sites with first saturation at 0.25 uM Fe: 1.0 uM ZupT/pBAD/mycHis-P ratio, and a 

second saturation at 1.0 uM Fe: 1.0 uM ZupT/pBAD/mycHis-P ratio (Figure 2.14). ICP-MS 

sample with Fe was prepared and is awaiting analysis to shine more light on stoichiometry 

between Fe and ZupT. 

 There is a striking resemblance between Cd’s and Fe’s final fluorescence saturations: 7.0 

uM Cd: 1.0 uM ZupT/pBAD/mycHis-P ratio for Cd and 0.7 uM Fe: 1.0 uM 

ZupT/pBAD/mycHis-P ratio for Fe. According to this fluorescence data there is a possible 10-
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fold difference in affinity between these two metals. It is not surprising that there is a similarity 

in these fluorescence profiles, because according to Frank Thévenod, Cd is believed to be 

utilizing Fe’s uptake pathways for its transport in mammalian cells (48). The same can be 

expected in E.coli cells.  

 On the other hand, the data obtained from the fluorescence study with Pb showed what 

could be described as an unspecific binding with an overall increase in fluorescence (Figure 

2.17). The original peak at ~330.9 nm saturated at 1.0 uM Pb: 1.0 uM ZupT/pBAD/mycHis-P 

(Figure 2.16). Then at 2.0 uM Pb: 1.0 uM ZupT/pBAD/mycHis-P the peak blue-shifted from 

~330.9 nm to forming a second peak at ~313.9 nm after which it shifted back again to the 

original peak at 4.0 uM Pb: 1.0 uM ZupT/pBAD/mycHis-P. Finally, the peak blue-shifts one last 

time at 5.0 uM Pb: 1.0 uM ZupT/pBAD/mycHis-P after which there is a steady increase of 

fluorescence at ~313.9 nm peak (Figures 2.15, 2.16). ICP-MS data showed a binding 

stoichiometry of 0.07 Pb 207 to 1 ZupT/pBAD/mycHis-P. This shows that Pb is not bound to 

ZupT with high affinity; the changes in fluorescence reflect non-specific weak binding. 

 The data obtained from the fluorescence binding study with Zn showed a possible 

saturation of 2 metal-binding sites (Figure 2.20). The original peak at ~330.9 nm blue-shifted to 

~313.9 nm at 0.2 uM Zn: 1.0 uM ZupT/pBAD/mycHis-P (Figure 2.19). The newly formed peak, 

along with the original peak, continued to increase up to 5.0 uM Zn: 1.0 uM 

ZupT/pBAD/mycHis-P ratio. Afterwards, the peak jumped higher and remained there until 10.0 

uM Zn: 1.0 uM ZupT/pBAD/mycHis-P ratio is reached (Figure 2.19). Then another jump in 

fluorescence was observed at 11.0 uM Zn: 1.0 uM ZupT/pBAD/mycHis-P ratio, after which 

there is a significant decrease in fluorescence which places the peak below the previous level of 
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saturation. Another increase in fluorescence is observed at 13.0 uM Zn: 1.0 uM 

ZupT/pBAD/mycHis-P ratio, after which both peaks at 313.9 nm and 330.9 nm decrease steadily 

(Figure 2.19). ICP-MS data showed a binding stoichiometry of 6.09 Zn 65 to 1 

ZupT/pBAD/mycHis-P. Few of these could be coordinating at the two conserved Histidines 

within ZupT itself, but also there’s a possibility of the His tag, found at the end of the sequence, 

also binding the Zn atoms. However, metal binding to the His tag may or may not affect Trp 

fluorescence. 

2.6 Future Direction 

 The importance of the ZIP family of metal transporters throughout the kingdoms is 

indisputable. Future investigation is needed in order to elucidate more structural data on one of 

its more easy to characterize members: ZupT. Fluorescence studies are useful in investigating 

different metals that ZupT might, and might not bind, as well as their possible affinities. UV-

Visible spectroscopy can also be useful in confirming binding of colored metals by ZupT. 

Although, the number of binding sites, within ZupT, should only be investigated with 

fluorescence studies while using very tightly-regulated metal titrations. ICP-MS studies have 

shown to provide most reliable data and should be done for all investigated metals following the 

procedure utilized during this study. Similar analysis should be performed for all the mutants 

constructed during this study to further investigate the importance of the proposed metal binding 

sites within ZupT.  

 Although these studies were conducted with a His-tagged ZupT, and will be repeated in 

the future with non-tagged ZupT, they indicate that both fluorescence and UV-Visible 

absorbance methods can be used to study metal binding to ZupT. Overall, different metals 
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caused different changes in fluorescence, indicating that these changes were not solely due to the 

His tag. Additionally, repeating these studies with the non-His-tagged mutant proteins will help 

to determine whether these residues contribute to metal binding. 
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APPENDIX A: ZupT purification procedure 

1. The new construct ZupT/pBAD/mycHis-P was retransformed into LMG194 strain as follows: 

 

 50 ul aliquot of WT-LMG194 competent cells were thawed on ice for 30 min 

 The cells were then transferred to a pre-chilled 15-ml Corning tube 

 Added 1 nanogram, 2 ul, of the plasmid 

 Swirled the mixture and incubated on ice for 30 min 

 Heat-shocked the cells at 42C for 1 min 

 Incubated again on ice for 2 min 

 Added 500 ul of preheated to 42C LB media 

 Incubated the tube, in the shaker, at 37C for 1 h 

 Plated the cells on 2 Amp/LB plates  

 Incubated overnight at 37C 

 

2. A 5 ml LB/ 5 ul Amp culture was grown with 1 of the colonies, resulting from the 

transformation, up to OD600 = 0.10. 

 

3. An overnight culture of 125 ml LB/ 125 ul Amp was grown with 1 ml of the culture from 

number 2. 

 

4. For each 2-L of culture the following was added: 

 

 2 L of autoclaved LB media 

 0.2 g Amp 

 25 ml of the overnight culture from 3 above (OD600 = 1.71). 

 

5. Incubated in a shaker at 37C for 3.5 h until OD600 = 0.80. 

 

6. Induced each 2-L culture with 0.4 g of Arabinose. 

 

7. The cultures were grown for an additional 1.5 h at 37C. 

8. Lastly, the cultures incubated for 18 h at 25C. 

9. Final average OD600 = 1.03 (n = 3). 

10. Cells were harvested at 7,000 rpm. 

11. Average pellet obtained per 2 L of culture was 2.66 g (n = 3). 

12. The combined pellets were resuspended, approximately 7.90 ml of the buffer per 1 g of cells, 

with the following Buffer A (VT = 150 ml): 
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 7.5 ml  0.5 M Tris (pH = 7) 

 15 ml 0.1 M Sucrose 

 127.5 ml dH2O  

13. After addition of DNase I the cells were stirred at 4C for 30 min. 

14. PMSF was added to a final concentration of 1 mM. 

15. The cells were French pressed 2 times and collected immediately into a tube that was kept on 

ice. 

16. 2 mM MgCl2 was added immediately after the French press along with PMSF. 

17. The cell suspension was stirred again at 4C for 30 min. 

18. Low speed centrifugation at 8,500 rpm for 40 min. 

19. Supernatant from low speed centrifugation underwent a high speed centrifugation at 45,000 

rpm for 1 h. 

20. The resulting pellets from high speed centrifugation were resuspended to OD280 = 20 with the 

following Buffer B (VT = 300 ml): 

 

 204.79 ml dH2O 

 50 ml 3 M NaCl 

 30 ml 1 M Sucrose 

 15 ml 0.5 M Tris (pH = 7) 

 21 ul 2-BME 

 

21. Added 2% Triton X-100: very slowly, at 4C, while stirred. 

 

22. Stirred at 4C for 1 h. 

23. Ultra-centrifuged the above at 45,000 rpm for 80 min. 

24. Prepared Buffer C (VT = 400.0 ml): 

 

 272.6 ml dH2O 

 66.6 ml 3 M NaCl 

 40.0 ml 1 M Sucrose 

 20.0 ml 0.5 M Tris (pH = 7) 

 0.800 ml 1 M DDM 

 0.021 ml 2-BME 

 0.068 g PMSF 
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25. Preparation of Ni
2+

-pro-bond column: 

 

 Added 10 ml of the Ni
2+

-pro-bond solution to the column to make a 5-ml bed 

 Passed 50 ml of dH2O  

 Passed 15 ml of Buffer C 

 

26. Loaded the supernatant, resulting from ultra-centrifugation in 23. 

 

27. Washed the column: 

 

 50 ml of Buffer C 

 100 ml 50 mM Imidazole in Buffer C 

 50 ml 100 mM Imidazole in Buffer C 

 20 ml 300 mM Imidazole in Buffer C 

 

28. Collected 1 ml fractions after 300 mM Imidazole in Buffer C. 

 

29. Performed BCA assay (Sigma) to locate the protein-containing fractions. 

 

30. Concentrated the fractions using an Ultracel-10 kDa centricon (Millipore), at 3,500 rpm until 

desired volume was achieved. 

 

31. Prepared Buffer D (VT = 150 ml): 

 

 119.7 ml dH2O 

 15 ml 1 M Sucrose 

 7.5 ml 1 M KCl 

 7.5 ml 0.5 M Tris (pH=7) 

 0.3 ml 1 M DDM 

 0.026 g PMSF 

 

32. Preparation of G-25 column: 

 

 Passed 100 ml of dH2O 

 Passed 50 ml of Buffer D 

 

33. With barely any buffer remaining on top of the column, loaded my concentrated fraction 

from 30 above. 

 

34. Allowed the fraction to go into the column and then added 15 ml of Buffer D again to the top 

of the column in order to elute the protein. 

 

35. Collected 1 ml fractions and located the protein utilizing the BCA assay. 

 



82 

 

 

36. Pulled the protein-containing fractions and concentrated maximally at 3,500 rpm using an 

Ultracel-10 kDa centricon (Millipore) again. 

 

37. Made 75 ul aliquots of the protein with a final 10% glycerol concentration. 

 

38. Stored the protein at -80C. 
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APPENDIX B: ZupT characterization with Fluorescence Spectroscopy 

 

1. Used the following Buffer E (VT = 10.0 ml): 

 8.995 ml HPLC H2O 

 1.0 ml 0.1 M Bis-Tris (pH = 7) 

 0.005 ml 1.0 M DDM 

 

2. Final volume of the samples was 400.0 ul:  

 

 383.83 ul of the Buffer E 

 16.17 ul of ZupT, or 10.0 uM ([ZupT]= 247.36 uM) 

 

3. All of the metal solutions were prepared in the following concentrations with mqH2O: 

 

 10.0 mM 

 1.0 mM 

 

4. After each addition of a metal solution, the samples were thoroughly mixed by inversion of the 

cuvet 20 times, with parafilm used as a stopper. 

 

5. The samples were excited at 290 nm and the emission scans were taken from 300-500 nm. 
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APPENDIX C: ZupT characterization with UV-Visible spectroscopy 

 ZupT binding to iron was measured with the use of a spectrophotometer. Same ZupT, 

Buffer E, and metal concentrations were used as for fluorescence studies described above. 

 Scans were taken from 190 nm-900 nm in order to find a forming peak due to the binding 

of the metal tested. Later scans were narrowed down to a 190 nm-500 nm range. 
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APPENDIX D: Obtaining metal binding stoichiometry with ICP-MS 

1. Sample preparation: 

 283.37 ul Buffer F (0.1 M Bis-Tris, pH = 7, with 2 mM DDM) 

 12.13 ul ZupT/pBAD/mycHis-P [247.36 uM]: 10 uM final concentration 

 4.5 ul metal [10 mM]: 150 uM final concentration 

VT = 300.0 ul 

 

2. All metals were added very slowly with a 10.0 ul syringe, after which samples were 

thoroughly mixed. Samples were then incubated for 20 min and then loaded onto a G-25 column. 

3. Preparation of G-25 column, with a bed of 1.5 ml: 

 15.0 ml of mqH2O  

 4.5 ml of Buffer F  

 

4. The samples were passed through the column and eluted with the above described Buffer F. 

5. BCA assay was utilized to identify the protein-containing fractions and those to a minimum 

volume centrifuging at 3,500 rpm using an Ultracel-10 kDa centricon (Millipore). 

6. # 3 above was repeated to wash out the excess metal and the samples were passed through the 

column again. 

7. BSA assay was performed to measure the exact protein concentration of the samples: took 

duplicate readings at 562 nm. 

8. Prepared the samples for ICP-MS analysis: 

 used maximum V of all the samples 

 added Nitric acid to a final concentration of 2% 

 diluted the samples with HPLC water to 2 ml final V 

 

9. Calculated final binding stoichiometry for all metals: first calculated metal and protein 

concentrations to uM units, and then divided metal concentrations by protein concentrations.  
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In mammals zinc is the second most abundant essential trace metal. Since Zn
2
 is a small, 

hydrophilic, and a highly charged ion, it cannot be transported across the plasma or intracellular 

organelle membrane by passive diffusion. Different types of cells require a different constant 

concentration of zinc at all times. Presence of excess free Zn ions can be toxic to the cell. All 

cells must have tightly regulated homeostatic mechanisms in order to preserve healthy levels and 

proper compartmentalization of zinc. This is accomplished through the actions of specialized 

proteins that facilitate zinc uptake, efflux and compartmentalization. If the integrity of genes 

responsible for maintenance of zinc homeostasis is compromised by mutations or 

polymorphisms, this will likely result in complex genetic variations and even sensitivity to 

dietary zinc in health and disease.  

 In E.coli, the uptake of zinc is mediated by two major types of transporters: ZnuACB, 

which belongs to the cluster C9 family of (TroA-like) ATP-binding cassette (ABC) transporters, 
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and ZupT, which is a member of the ZRT/IRT-related proteins (ZIP) family of transporters. ZIPs 

are expressed amongst different organisms in order to maintain their metal homeostasis and thus 

contribute greatly to their growth and development. ZIPs have also been found to play key roles 

in bacterial infections, as well as the onset and progression of chronic diseases in humans.  

In comparison with mammalian cells, E.coli’s lack of complex organelles, and ease of 

genetic analysis, allows for direct analysis of the protein’s role in metal transport. In this study 

E.coli’s ZupT was purified and characterized, and its expression was optimized with double-

selection method. The binding specificity for ZupT with Cd
2+

, Fe
2+

, Pb
2+

, and Zn
2+

 were 

evaluated with fluorescence spectroscopy. Furthermore, UV-Visible spectroscopy was used to 

further explore the binding of ZupT with Fe
2+

. The binding stoichiometry between ZupT and 

Cd
2+

, Pb
2+

, and Zn
2+

 were determined utilizing ICP-MS (inductively coupled mass spectrometry) 

analysis. Finally, based on the results of sequence analysis of ZupT, four mutants were 

successfully created within transmembrane (TM) regions IV and V, which have been shown in 

other ZIP family members to be crucial for metal binding. 
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