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Bimodality Revisited 
 

 
 

Thomas R. Knapp 
University of Rochester and The Ohio State University 

 
 
Degree of bimodality is an important feature of a frequency distribution, because it could suggest 
heterogeneity, such as polarization or two underlying distributions combined into one. The literature 
contains several measures of bimodality. This article attempts to summarize most of those measures, with 
their attendant advantages and disadvantages. 
 
Key words: Bimodality, kurtosis, moments, polarization 
 

 
Introduction 

 
The bimodality of a frequency distribution is of 
considerable interest in a number of disciplines. 
A Google search on ‘bimodality’ returns almost 
300,000 entries. Applications of bimodality 
considerations are found in substantive 
investigations in fields as diverse as agriculture 
(e.g., Doehlert, et al., 2004), economics (e.g., 
Esteban & Ray, 1994), linguistics (e.g., Spivey, 
Grosjean, & Knoblich, 2005), medicine  (e.g., 
Lim, Bakri, Morad, & Hamid, 2002; Grandi, et 
al., 2005), psychology (e.g., Lindner, 1997; 
Beach, Finchman, Amir, & Leonard, 2005), and 
sociology (e.g., DiMaggio, Evans, & Bryson, 
1996;     Greeley,    1997;    Evans,    Bryson,   &  
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DiMaggio, 2001; Evans, 2003; Mouw and 
Sobel, 2001). 

Esteban and Ray (1984) were concerned 
with the concept of societal polarization. They 
argued that one of the indicators of polarization 
is the bimodality of a frequency distribution for 
any variable that is an operationalization of an 
opinion construct such as attitude toward 
abortion. DiMaggio, Evans,  and Bryson (1996), 
Greeley (1997), Mouw and Sobel (2001) studied 
the bimodality of several attitude variables--
mostly Likert-type scales in the National 
Election Study (NES) and General Social 
Survey (GSS) data sets. 
 
Purpose 

The purpose of this article is to trace the 
methodological foundations of bimodality, some 
of the attempts that have been made to measure 
it, and some of the contributions to statistical 
inferences regarding it. 
 
Historical Review 
Karl Pearson 

In his first of a series of articles on the 
mathematical theory of evolution, Pearson 
(1894) devised a procedure for determining 
whether or not a frequency distribution could be 
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resolved into two normal distributions. The 
procedure involved six equations in six 
unknowns (the mean, standard deviation, and 
membership proportion for each of the two 
underlying normal distributions), which in turn 
led to a ninth-degree polynomial equation. If the 
given distribution had two peaks that were rather 
far apart it could be described as bimodal. He 
used as an example some data collected by 
Professor W.F.R. Weldon on 1000 crabs in 
Naples. 

In a later article (1929) he showed that 
b2 – b1 , where b2 is the standardized fourth 
moment around the mean and b1 is the square of 
the standardized third moment around the mean, 
must be greater than or equal to 1, with the 
equality holding for the two-point Bernoulli 
distribution, which is the most extreme case of 
bimodality. 
 
Darlington to DeCarlo 

Darlington (1970) claimed that b2 (he 
called it k) is more a measure of unimodality vs. 
bimodality than a measure of peakedness vs. 
flatness as often discussed in statistics textbooks, 
i.e., it is a measure of the extent to which a 
distribution's z-scores cluster around +1 and -1, 
with the two-point Bernoulli distribution being 
the most bimodal, having a k of 1.  

Chissom (1970) discussed various 
interpretations of the kurtosis statistic α4 = b2 - 3, 
which is equal to 0 for the normal distribution. 
He pointed out that α4 = -2 for perfectly bimodal 
distributions. 

In a brief note, Hildebrand (1971) 
expressed general agreement with Darlington, 
but gave examples of two bimodal distributions, 
for one of which k-3 was equal to -1.2 and for 
the other of which k-3 was equal to 3. 

Moors (1986) agreed that k should be 
interpreted as the extent to which scores cluster 
around one s.d. to the right of the mean and one 
s.d. to the left of the mean. 

Ruppert (1987) provided a long 
discussion of the various interpretations that 
have been made of b2, including peakedness and 
tail-thickness, and emphasized Hampel's (1974) 
influence function approach to the understanding 
of kurtosis. 

Balandra and MacGillivray (1988) 
wrote a critical review of the literature on 

kurtosis and favored the viewing of kurtosis as 
"a vague concept" (p. 116) regarding the 
location of a distribution's shoulders vis-a-vis its 
center and its tails. 

In a more recent review of the literature 
on kurtosis, DeCarlo (1997) clarified the role of 
measures of kurtosis in tests for normality, tests 
for bimodality, and other matters, in the context 
of several previously-cited examples. 
 
Reschenhofer and Schilling, Watkins, & 
Watkins  

It has often been claimed that a mixture 
of two normal distributions is necessarily 
bimodal. Reschendofer (2001) showed that to be 
true only if the two modes differ by two or more 
standard deviation units. Schilling, Watkins, and 
Watkins (2002) made the same claim for the 
special case of the distribution of adult heights 
when men and women are included in the same 
distribution. Those results are consistent with the 
arguments made by Darlington (1970) and 
Moors (1986) regarding the clustering of data at 
z-scores of +1 and -1 (a difference of two σ's). 
 
Choonpradub & McNeil 

Choonpradub and McNeil (2005) were 
concerned that traditional box plots don't 
provide any indication of bimodality for the 
distributions such plots are meant to summarize. 
They recommended an enhancement (thickening 
the ends of the box denoting the quartiles) that 
might reflect bimodality. 
 
Haldane to Frankland and Zumbo 

The previously-cited authors were 
concerned primarily with the description of 
bimodality. Haldane (1952), however, suggested 
a fairly simple test for statistically significant 
bimodality, based upon the successive 
discrepancies of frequencies for adjacent 
categories in a sample frequency distribution. He 
used as an example the distribution of 
differences in hair color for 162 pairs of siblings. 

Shenton & Bowman (1977) laid the 
groundwork for statistical inferences based upon 
the skewness coefficient √b1, the kurtosis 
coefficient b2, their respective univariate 
sampling distributions, and their joint bivariate 
sampling distribution.  

A truly bimodal distribution should have 
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a reasonably deep dip between the two modes. 
Hartigan and Hartigan (1985) developed a dip 
test that could be used to distinguish between 
unimodality and bimodality.  

Tokeshi's (1992) test of the bimodality 
of a sample frequency distribution is a type of 
randomization (permutation) test that compares 
an actual sample distribution with all of the 
possible ways the total frequency could have 
been allocated to the various categories that 
comprise the variable of interest.  

The estimation of the number and 
location of underlying modes for a sample 
frequency distribution was investigated by 
Minnotte (1997).  

Frankland and Zumbo (2002) provided 
an SPSS program for distinguishing between a 
single underlying normal distribution and a 
bimodal composite of two underlying normal 
distributions.    
 
Other Methodological Contributions 

There is a set of miscellaneous formulas 
for the CLUSTER procedure in the SAS User's 
Guide. One of those formulas, derived by 
Warren Sarle (Personal Communication, 
5/10/06), is a formula for the bimodality 
coefficient: 
 

b = [(m3
2 + 1)/(m4 + [(3(n-1)2)/((n-2)(n-3))])] 

 
where m3 is skewness and m4 is kurtosis. Values 
of b greater than 0.555 (the value for a uniform 
population) may indicate bimodal or multimodal 
marginal distributions. The maximum of 1.0 
(obtained for the Bernoulli distribution) is 
obtained for a population with only two distinct 
values. Very heavy-tailed distributions have 
small values of b regardless of the number of 
modes. 

The notation is unconventional, because 
the m's usually represent the unstandardized 
moments about the mean (so just substitute b1 
for m3

2 and b2 for m4). Slight variations of it (for 
large n the term inside the square brackets is 
often deleted if 3 has not been subtracted from 
b2, or replaced by 3 if it has).  

 
 
 
 

There is another statistic that is also 
called a bimodality coefficient; it is a function of 
the likelihood ratio for normal distributions vs. 
mixtures of normal distributions (see Ashman & 
Bird, 1994 for an application to astronomy). 

In his technical article about L-
moments, Hosking (1990) claimed that the ratio 
of two of them "could be interpreted as a 
measure of tendency to bimodality" (p. 111). 
   
A Personal View of Bimodality 

Bimodality should be thought of 
topologically. If you push down on the peak of a 
unimodal distribution the frequency curve gets 
flatter and flatter until it becomes a uniform 
distribution. If you keep pushing further the 
curve crawls upward to the left and to the right 
and ultimately ends up as a two-point 
distribution. How then to measure the degree of 
bimodality of an actual distribution?  As Pearson 
(1929), Shenton and Bowman (1977), and others 
had pointed out, b2 - b1 must be greater than or 
equal to 1, so that b2 - b1 should be a reasonable 
measure of bimodality, because it takes on its 
smallest value (1), for the two-point Bernoulli 
distribution, and it takes on its largest value 
(conceptually infinite) for a distribution with a 
single tall peak.  

That approach was taken in Knapp 
(1959) and in a subsequent unpublished paper 
Knapp (1970) in which an attempt was made to 
derive the sampling distribution of b2 – b1 for 
samples from a normal distribution. That attempt 
was only partially successful because only the 
first two moments could be derived 
mathematically (a Monte Carlo approach was 
used for the rest of the basis for statistical 
inference), and significant non-normality is not 
necessarily the same as significant bimodality. 
 
Some Examples of Descriptive Comparisons 

Consider the following hypothetical 
frequency distributions for a variable that ranges 
from 1 to 11 and for a sample size of 100 (see 
Figures 1 through 9).  
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X f         
1 6         
2 10         
3 11         
4 10         
5 9         
6 8  
7 9  
8 10  
9 11  

10 10  
11 6  

   
   
   
   
   
   
   
   
    
          

Figure 1 
 

X f       
1 1       
2 7       
3 9       
4 11       
5 10       
6 8  
7 9  
8 11  
9 12  
10 13  
11 9  

   
   
   
   
   
   
   
   
  

 

 
        

Figure 2 
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X f       
1 2       
2 8       
3 10       
4 11       
5 12       
6 14  
7 12  
8 11  
9 10  

10 8  
11 2  

   
   
   
   
   
   
   
   
  

 

 
        

Figure 3 
X f       
1 1       
2 3       
3 6       
4 12       
5 18       
6 20  
7 18  
8 12  
9 6  

10 3  
11 1  

   
   
   
   
   
   
   
   
  

 

 
        

Figure 4 
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X f       
1 1       
2 2       
3 4       
4 6       
5 12       
6 16  
7 21  
8 23  
9 14  
10 1  
11 0  

   
   
   
   
   
   
   
   
  

 

 
        

Figure 5 
X f       
1 3       
2 3       
3 4       
4 6       
5 12       
6 44  
7 12  
8 6  
9 4  

10 3  
11 3  

   
   
   
   
   
   
   
   
  

 

 
        

Figure 6 
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X f       
1 2       
2 3       
3 3       
4 3       
5 3       
6 4  
7 5  
8 11  
9 21  

10 41  
11 4  

   
   
   
   
   
   
   
   
  

 

 
        

Figure 7 
X f       
1 13       
2 11       
3 10       
4 9       
5 7       
6 1  
7 8  
8 9  
9 9  

10 11  
11 12  

   
   
   
   
   
   
   
   
  

 

 
        

Figure 8 
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For each distribution, b2, b2 - b1, and 

(b1+1)/b2 were calculated (see Table 1). The 
relative agreement among the three measures of 
bimodality is fairly good except for Figure 7. 
That figure is clearly not bimodal, which would 
intuitively rule out (b1+1)/b2 as an indicator of 
its   bimodality. b2   alone   would   suggest  that  

 
 

 
Figure 7 is the least bimodal of the nine figures, 
but b2 - b1 would suggest that four of the other 
distributions (Figures 3, 4, 5, and 6) are less 
bimodal, with Figure 6 being the least. 
Therefore, b2 - b1 is the better indicator of 
bimodality because a flattening out in Figure 7 
may be seen, followed by a second mode 

 
X f       
1 10       
2 10       
3 10       
4 10       
5 10       
6 10  
7 10  
8 10  
9 10  

10 10  
11 0  

   
   
   
   
   
   
   
   
  

 

 
        

Figure 9 
 
 

Table 1. Results from Figures 1 through 9 

Notes. * 1 = most bimodal; 9 = least bimodal 
 

Figure b1 b2 rank* b2 - b1 rank* (b1+1)/b2 rank* 
1 .000 1.757 2 1.757 2 .569 4 
2 .021 1.786 4 1.765 3 .572 3 
3 .000 2.046 5 2.046 6 .489 7 
4 .000 2.804 6 2.804 8 .357 8 
5 .549 3.113 7 2.564 7 .498 6 
6 .000 4.043 8 4.043 9 .247 9 
7 2.443 4.414 9 1.971 5 .780 1 
8 .001 1.515 1 1.514 1 .660 2 
9 .000 1.776 3 1.776 4 .563 5 
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popping up at the low end of the scale, if you 
push down hard enough on the mode at an 
abscissa value of 10. The appearance of two 
modes would take much longer with Figure 6 
(Three modes would pop up there first--one at 
each end to go along with the one in the middle). 
 
Statistical Inferences Using the Same Examples 

In addition to its simplicity, Haldane's 
test appears to be the most defensible, because it 
is appropriate for both interval and ordinal 
scales. It has been applied to the distributions in 
Figures 1-9, with the relatively surprising result 
that none of those distributions is significantly 
bimodal  at  the  .05  level  (see Figure 10).  It  is  

 
 
 
 
 
 

 
 
 

Surprising, because Figure 8, for example, really 
looks bimodal and the sample size is reasonably 
large (100).  But, Figure 10 is an example of one 
that is; note the deeper trough between the two 
peaks. 
 
Two real-data examples 

Sullivan (2005) found that the frequency 
distribution of Type 1 rates for age at first birth 
(with number of previously childless women of 
childbearing age in the denominator) exhibited a 
bimodal pattern in the 90s, with peaks at both 20 
and 30 years of age. Figure 11 is the Sullivan 
graph which illustrates that phenomenon for the 
years 1991, 1995, and 1999: 

 
 
 
 
 
 

 
 

 
X f         
1 5         
2 5         
3 30         
4 5         
5 5         
6 0  
7 5  
8 5  
9 30  

10 5  
11 5  

   
   
   
   
   
   
   
   
   

 

          
Figure 10 
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Another interesting recent example of 

bimodality is discussed in the paper by Roller 
(2005) regarding the results of a questionnaire 
sent to U.S. members of the International 
Reading Association that elicited responses to 
questions about President George W. Bush's "No 
Child   Left   Behind" (NCLB)   program. In that  

 
 
 
 
 
 

 
 

 
 
 

article, she said that several of the five-point 
frequency distributions were bimodal. Here is 
the example that she emphasized: 

Item: "The educational benefits resulting 
from NCLB implementation in your school 
district will, on balance, outweigh any adverse 
impacts for students in the aggregate." 
 
 

 
 
 
 

 

 
Figure 11. Sullivan Graph 
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Roller (2005) called the attention of the 

reader to the modes at Agree and Disagree (see 
Table 2). b2 for these data is 1.899; b1 is .000 (to 
three decimal places--the distribution is very 
close to symmetric); b2 - b1 = 1.899; and (b1+ 
1)/b2 = .527. Haldane's test supports the 
hypothesis of underlying bimodality. But the dip 
between those two modes at Neither Agree nor 
Disagree could be an artifact of a non-committal 
response rather than a valley between two peaks. 
(The large No Response percentage might be 
further evidence of such an artifact.)   

There has been a considerable amount 
of empirical research regarding the middle 
category of a five-point Likert-type scale; see, 
for example, Guy & Norvell (1977) and 
Armstrong (1987). Mouw and Sobel (2001) 
argued that DiMaggio et al. (1996) should not 
have applied their measure of bimodality (b2 - 3) 
to Likert-type scales, because it assumes 
interval-scale properties. The treating of ordinal 
scales as interval scales is one of the most 
controversial matters in statistical methodology. 
There appears to be no solution to the problem 
that would be acceptable to the warring factions. 
 
 
 
 
 
 
 

 

 
 
 
Miscellany 

Although all of the standard computer 
packages (SAS, SPSS, Minitab, Excel) include 
the calculation of one or more measures of 
skewness and kurtosis, the formulas used in 
those packages vary somewhat from one 
another. If you'd like to compute b1 in Excel, for 
instance, you need to square SKEW and 
multiply that by {(n-1)2/(n-2)2} in order to undo 
the sample adjustments. As well, in order to 
compute b2 you need to add, 

 
{3(n-1)2/(n-2)(n-3)} 

 
to KURT and multiply that by  
 

{(n-2)(n-3)/(n+1)(n-1)}. 
 

Baretto, Borges, & Guo (2003) pointed 
out that a typographical error in an article citing 
one of Tokeshi's (1992) formulas has led to 
several incorrect tests of the bimodality of 
distributions that are of interest to researchers 
concerned with the range-size of various animal 
species. (Even in their correct form his formulas 
are tricky, because they require very careful 
attention to summation operations and 
combinatorial notation.) 

 
 
 
 

 
Table 2 

 
 

Response Frequency 
Strongly Agree 115 
Agree 396 
Neither Agree Nor Disagree 285 
Disagree 357 
Strongly Disagree 219 
  
Total 1372 
No Response 178 
Grand Total 1550 
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In an interesting article many years ago, 
Baker (1930) hinted that one should not get too 
excited about bimodality because a bimodal 
distribution can often be changed into a 
unimodal distribution by means of an algebraic 
transformation. He gave as an example a 
continuous bimodal fourth-degree polynomial 
distribution of X that could be converted into a 
continuous unimodal distribution by replacing X 
with eX. 
 

Conclusion 
 
There are several measures of the bimodality of 
a frequency distribution. There are also several 
tests of the statistical significance of sample 
bimodality. Hopefully, this article has provided 
at least a partial summary of such procedures. 
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