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A New Generalization of Negative Polya-Eggenberger                              
Distribution and its Applications 

 
Anwar Hassan      Sheikh Bilal Ahmad 

         University of Kashmir Degree College, Baramulla  
 
 
A new generalization of negative Polya-Eggenberger distribution (GNPED) has been obtained by mixing 
the negative binomial distribution with generalized beta distribution-Π defined by Nadarajah and Kotz 
(2003). Some special cases and properties of GNPED have been studied. Further, the proposed model has 
been fitted to two data sets (used by Gupta & Ong, 2004) that provide a satisfactory fit and better 
alternative as compared to negative binomial and some of its mixture models and extensions. Also, the 
negative Polya-Eggenberger distribution (NPED), obtained by mixing negative binomial with beta 
distribution of I-kind, has been fitted to the same data sets for comparison.  
 
Key words: negative binomial distribution, generalized beta distribution-Π, generalized negative Polya-
Eggenberger distribution (GNPED). 
 
 

Introduction 
 

Feller (1943) pointed out there are essentially 
two kinds of contagious distributions. One type, 
true contagion, is due to the fact that each 
favorable event increases (or decreases) the 
probability of succeeding favorable events. The 
other type, apparent contagion, is due to an 
inhomogeneity of the population. Frequently, the 
data arising in studies of entomology and 
bacteriology cannot be described by the usual 
distribution functions but rather by some type of 
contagious distributions. Some distributions, 
such as the negative binomial, can apparently be 
interpreted on the basis of both types of 
contagion. 
               A class of contagious distributions is 
derived from a certain biological model which 
takes into account the fact that the distribution of 
larvae over the plots of a field depends upon the 
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fact that the larvae are hatched from egg-masses 
which appear at random over the field has been 
derived by Neyman (1939), Evans (1953) and 
Beal and Rescia (1953). This class of 
distribution has been successful in accounting 
for the distribution of some insect populations 
(ef. Beal-1940). Bliss and Fisher (1953) showed 
that the negative binomial distribution is useful 
as a possible underlying distribution for insect 
populations. Contagious distributions have also 
been used in the study of accident and medical 
statistics by Dubourdieu (1939), Greenwood and 
Yule (1920), Lundberg (1940) and Newbold 
(1927). Eggenberger and Polya (1923) 
introduced Polya-Eggenberger distribution 
(PED) and negative Polya-Eggenberger 
distribution (NPED) by an urn model and 
described these as truly contagious distributions.  
 
Negative Polya-Eggenberger Distribution 
(NPED) 
 Negative Polya-Eggenberger distribution is 
related to Polya-Eggenberger distribution in the 
same way as the negative binomial distribution 
is related to binomial distribution. It is well 
known fact that the negative binomial 
distribution (NBD) has become increasingly 
popular as a more flexible alternative to the 
Poisson distribution especially when it is 
doubtful whether the strict requirements 
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particularly independence for a Poisson 
distribution will be statisfied. Negative Polya-
Eggenberger distribution is obtained by mixing 
negative binomial distribution   
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If the parameter p in (1) is not a constant but is 
varying as beta distribution of I-kind then its 
probability mass function is (2) and   beta 
mixture of negative binomial distribution is 
obtained as 
 
                            ( )P X x= =                       

11
1

0

1
( , )

n x
x

x
p α

β α γ
+ −

+ −⎛ ⎞
⎜ ⎟
⎝ ⎠ ∫  

1(1 )np dpγ+ −−  
0,1,2,.....x =  

),(
),(1

γαβ
γαβ nxxn

x

++
⎟
⎠
⎞

⎜
⎝
⎛=

−+
 

1 ( 1)!
( 1)! ( 1)!

n x

x

α γ
α γ

+ − + −⎛ ⎞= ⎜ ⎟ − −⎝ ⎠
 

( 1)!( 1)!
( 1)!

x n
n x

α γ
α γ
+ − + −

+ + + −
 

( )P X x= =  
1n x

x

+ −⎛ ⎞
⎜ ⎟
⎝ ⎠

 

( 1).......( 1) ( 1).........( 1)
( )( 1)............( 1)

x n
n x

α α α γ γ γ
α γ α γ α γ

+ + − + + −
+ + + + + + −

 

Taking c
a=α  and c

b=γ  in the equation 

above, we get    
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Which is negative Polya-Eggenberger 
distribution with parameters (n, a, b, c). 
 
Generalized Beta Distribution-II 
      Many generalization of beta distribution of 
I-kind (2) involving algebraic and exponential 
function has been proposed in the literature; see 
chapter 25 in Johnson et al (1995) and Gupta 
Nadarajah (2004) for detailed accounts. 
Nadarajah and Kotz (2003) defined a 
generalization of (2) involving the Gauss 
hypergeometric function as  
 
                        ( )P X p= =                  (4) 

1
2 1
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( , )

a bb a b p F a a b p
a b
β γ

β γ
+ − − +

+
, 

 
This is known as generalized beta distribution-II. 
The properties of incomplete beta function and 
Gauss hypergeometric function can be found in 
Prudnikov et al (1990, vol.3 sec. 7.3) and 
Gradshteyn and Ryzhik (2000). 

There are various extensions/ 
modifications of NBD in the literature including 
Engen’s extended NBD (1974, 1978), 
generalized NBD of Jain and Consul (1971) and 
weighted NBD; see Johnson et al. (1992) for 
more details and explanations. A brief list of 
authors and their work can be seen in Johnson 
and Kotz (1969), Consul and Famoye (2000), 
Johnson and Balkrishnan (1995) and Gupta and 
Nadarajah (2004).   

In this article,  an attempt has been made 
to introduce a new  generalized contagious 
distribution, generalized negative Polya-
Eggenberger distribution (GNPED), by mixing 
NBD with generalized beta distribution-Π  
defined by Nadarajah and Kotz’s (2003) which 
is expected to explain data in a better way as 
compared to distributions obtained by mixing 
Poison or binomial with other distributions. 
Further, the proposed model has been fitted to 
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same data sets previously used by Gupta and 
Ong (2004) that exhibits a satisfactory fit and 
better alternative as compared to negative 
binomial, negative Polya-Eggenberger, Gupta 
and Ong’s (2004) GNBD and Jain and Consul’s 
(1971) GNBD. 
 
The Proposed Model 
 

Let X be a random variable representing 
the number of independent trails necessary to 
obtain ‘n’ occurrences of an event that has a 
constant probability of occurring at each trail. 
Then X has a negative binomial distribution with 
parameters (n, p) and pmf given by (1). But, 
there are situations in the practical life where 
probability ‘p’ of each occurrence of an event is 
not constant but is following some distribution. 
In the present case, suppose ‘p’ is varying as 
generalized beta distribution-Π by Nadarajah 
and Kotz (2003) with parameters ),,( γba  and 
pdf given by (4) then the pmf of proposed model 
is obtained by mixing (1) with (4) as 
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Using Gradibhtyn and Ryzhik’s (2000) 
book, we obtain after few steps 
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This is a probability mass function of the 
proposed model, generalized negative Polya-
Eggenberger distribution (GNPED), which can 
further be simplified to give 
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Some Special Cases of GNPED 
 Some old and new distributions can be 

obtained by assigning different values to the 
parameters of GNPED (6).  

For 1=++ γba , (6) reduces to 
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The Gauss summation theorem states that 
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Using (8) in (7), we obtain NPED with pmf  

( )P X x= =  

                                      
1

1

x n

n

+ −

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

                             (9) 

(1 )(1 1).....(1 1)( )( 1)....( 1)
(1 )(1 1)..........(1 1)

a a a x a b a b a b n
b b b n x

− − + − + − + + + + + −
+ + + + + + −

 

If one puts (1 ) &a
c
α− =  c)ba( β=+  

c
)()b1( βα +=+⇒ , then the above equation 
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Moment Generating Function of GNPED 
 Moment generating function of (5) can be 
obtained as 
 

( ) ( )tX
XM t E e=  

[ ]

[ 1]
0

( 1)! ( , ) ( )
( 1)! ( , ) ( )

n
tx

n x
x

x n b a b a be
n a b a b

β
β γ

∞

+ +
=

+ − +=
− + +∑  

3 2[1 , , ; , 1,1]F a a b n a b a b xγ− + + + + + +  

( , )
( , )
b a b

a b
β

β γ
=

+
 

[ ] [ ] [ ]

[ ]
0

(1 ) ( ) 1
( ) !

j j j

j
j

a a b n
a b j

γ∞

=

− + +
+∑  

[ ] [ ]

[ ] [ 1]
0

1
( 1) ( )

x x

j x
x

n
a b n x a b n

∞

+
=

×
+ + + + + +∑  

( )
!

t xe
x

 

 
On simplification, this gives moment generating 
function of GNPED as           
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Remarks: 
 If one replaces te with 1)t1( −−  in (15), 
ascending factorial moment generating function 
is obtained as 
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Raw Moments of GNPED 
 The rth raw moment of the proposed model 
(5) can be obtained as  
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3 2[1 , , ; , 1,1]F a a b x a b a bγ× − + − + + +  
 

Taking r=1, 2, 3, 4 in (17), one gets first four 
 raw moments as 
 

1
( , )

( )( 1) ( , )
nb a b

a b a b a b
βμ

β γ
′ =

+ + − +
 

3 2[1 , , 1; , 1,1]F a a b a b a bγ− + − + + +  
 

2
( , )

( )( 1) ( , )
nb a b

a b a b a b
βμ

β γ
′ =

+ + − +
 

3 2[1 , , 1; , 1,1]F a a b a b a bγ− + − + + +  

2 ( 1) ( , )
( )( 1)( 2) ( , )

n n b a b
a b a b a b a b

β
β γ

++
+ + − + − +

 

3 2[1 , , 2; , 1,1]F a a b a b a bγ− + − + + +  
 

3
( , )

( )( 1) ( , )
nb a b

a b a b a b
βμ

β γ
′ =

+ + − +
 

3 2[1 , , 1; , 1,1]F a a b a b a bγ− + − + + +  

6 ( 1) ( , )
( )( 1)( 2) ( , )

n n b a b
a b a b a b a b

β
β γ

++
+ + − + − +

 

3 2[1 , , 2; , 1,1]F a a b a b a bγ− + − + + +  

6 ( 1)( 2) ( , )
( )( 1)( 2)( 3) ( , )

n n n b a b
a b a b a b a b a b

β
β γ

+ ++
+ + − + − + − +

 

3 2[1 , , 3; , 1,1]F a a b a b a bγ× − + − + + +  
 

4
( , )

( )( 1) ( , )
nb a b

a b a b a b
βμ

β γ
′ =

+ + − +
 

3 2[1 , , 1; , 1,1]F a a b a b a bγ− + − + + +  

14 ( 1) ( , )
( )( 1)( 2) ( , )

n n b a b
a b a b a b a b

β
β γ

++
+ + − + − +

 

3 2[1 , , 2; , 1,1]F a a b a b a bγ− + − + + +  

36 ( 1)( 2) ( , )
( )( 1)( 2)( 3) ( , )

n n n b a b
a b a b a b a b a b

β
β γ

+ ++
+ + − + − + − +

 

3 2[1 , , 3; , 1,1]F a a b a b a bγ× − + − + + +  
24 ( 1)( 2)( 3) ( , )

( )( 1)( 2)( 3) ( 4) ( , )
n n n n b a b

a b a b a b a b a b a b
β

β γ
+ + ++

+ + − + − + − + − +
 

3 2[1 , , 4; , 1,1]F a a b a b a bγ× − + − + + +  
 

Descending Factorial Moments of GNPED 

  The rth descending factorial moment of 
(5) can be obtained as  

 
)]([)( )()( pXEEXE rr = , 

 
Where for given p, the random variable ‘X’ 
follows negative binomial distribution with 
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Proceeding in the same way as above, the rth 
descending factorial moment of GNPED is      
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Taking r=1, 2, 3, 4 in (18), one gets first four 
factorial moments as 
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Central Moments of GNPED 
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Goodness of Fit 
 Gupta and Ong (2004) obtained GNBD 
by mixing NBD with generalized gamma 
distribution defined by Amero and Bayrr (1933) 
and Agarwal and Kalla (1996). The pmf of 
GNBD is  
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Where )n,,,m( λα  are the parameters of the 
distribution and )n)1(;x1m,( +−+− αλλφ  is a 
confluent hypergeometric function. 
             Gupta and Ong demonstrated the 
goodness of fit test for their model (19) with the 
help of two data sets [Tables (1)-(2)] and 
observed marked fist than NBD and Jain and 
Consul’s (1971) GNBD.         

In this section, the proposed model 
GNPED has also been fitted to these data sets to 
show that the proposed model exhibits the best 
fit as compared to other distributions such as 
NBD, Jain and Consul’s (1971) GNBD and 
Gupta and Ong’s (2004) GNBD. The negative 
Polya-Eggenberger distribution has also been 
fitted to these data sets for its comparison with 
these distributions. 
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Table 1  Absenteeism among shift-workers in steel industry; data of Arbous and Sichel, 1954 

 
Count Observed 

Frequency 
                    EXPECTED   FREQUENCY 

  NBD Jain and 
Consul’s (1971) 
GNBD 

Ramesh 
and Ong’s 
(2004) 
GNBD 

NPED PROPOSED 
MODEL 
GNPED 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25-48 

7 
16 
23 
20 
23 
24 
12 
13 
09 
09 
08 
10 
08 
07 
02 
12 
03 
05 
04 
02 
02 
05 
05 
02 
01 
16 

12.02  
16.16  
17.77  
18.08  
17.65  
16.80  
15.72  
14.52  
13.28  
12.06  
10.89  
09.78  
08.75  
07.80  
06.93  
06.14  
05.43  
04.79  
04.22  
03.17  
03.23  
02.86  
02.50  
02.91  
01.91  
12.77 

10.51 
17.45 
20.38 
20.80 
19.88 
18.34 
16.56 
14.78 
13.08 
11.53 
10.13 
08.89 
07.79 
16.83 
05.99 
05.26 
04.61 
04.05 
03.56 
03.14 
02.76 
02.43 
02.15 
01.90 
01.68 
13.50 

09.23  
16.18  
19.86  
21.06 
 20.50  
18.78  
16.46  
14.02  
11.79  
09.95 
 08.55 
 07.54 
 06.84 
06.33 
 05.94 
 05.61 
 05.29 
 04.97 
 04.64 
 04.28 
 03.92 
 03.55 
 03.19 
 02.84  
02.50  
14.13 

 9.53 
15.93 
19.06 
19.92 
19.41 
18.17 
16.59 
14.90 
13.25 
11.71 
10.30 
 9.04 
 7.92 
 6.94 
 6.08 
 5.33 
 4.68 
 4.12 
 3.63 
 3.20 
 2.83 
 2.50 
 2.22 
 1.97 
 1.75 
17.02 

 9.06 
16.79 
23.62 
22.89 
21.95 
20.67 
17.11 
15.24 
11.04 
  8.78 
  8.04 
  7.21 
  6.38 
  5.82 
  5.24 
  4.73 
  4.27 
  3.96 
  3.69 
  3.46 
  3.27 
  2.98 
  2.88 
  2.67 
  2.16 
14.09 

TOTAL 248 248 248 248 248 248 
Estimates 
 
 
 
χ2                
d. f 

 p=0.854 
576.1n =  

 
 
 
14.92 
17 

α =0.00010775 
β =5978.5288 
n=29337.0839 
 
 
27.79 
17 

λ =0.6226  
α =0.001 
m=0.1601 
 n=0.01897 
 
8.27 
15 
 

n=14.962954   
α=2.492821    
γ=4.852530 
 
10.20108 
16 

n=100.09367    
γ=1.00021 
a=2.24578      
b=2.26398    
 
7.621862 
15 
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The maximum likelihood estimate of the 

parameters of the proposed model have been 
obtained and shown at their respective places in 
the tables. It is mentioned here that due to 
complicated likelihood function, the ML 
estimates are determined by the same method as 
used by Gupta and Ong (2004) i.e. by a direct 
numerical search for global maximum of the 
log-likelihood surface. A random start procedure 
is employed i.e. for a set of random starting 
points this numerical search is repeated for each 
starting point in order to verify that the global 
maximum has been found. 

It is evident from the tables 1 and 2 that 
the chi-square values of the proposed model 
(GNPED), in all the cases, gives the marked fit 
as compared to other distributions. 
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Note: The expected frequencies and the estimates for the parameters of the Jain and Consul’s (1971) generalized 
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third of the table (2). 
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