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Abstract
Background: Anti-inflammatory activities of medicinal plants have largely been attributed to their
content of sesquiterpene lactones (SLs). SLs are predominantly found in the sunflower family
Asteraceae and have been isolated from many plants of this family, particularly Centaurea. The anti-
inflammatory activities of extract of Centaurea ainetensis, a Lebanese endemic plant, and the isolated
active molecule were assessed for their potential ant-inflammatory activities.

Methods: Plant extract from Centaurea ainetensis, and the isolated active ingredient Salograviolide
A (SA), a sesquiterpene lactones guaianolide, were used for the study. Western blotting and
electrophoretic mobility shift assays were used to test the effects of the plant extract and SA on
interleukin-1 (IL-1) induced increase in cyclooxygenase-2 (COX-2) levels and in nuclear factor-κB
(NF-κB) translocation in an intestinal epithelial cell (IEC) of inflammation. Their effects on
inflammation score and cytokine levels were also studied in an iodoacetoamide-induced rat model
of inflammation.

Results: Plant extract and SA were shown to reverse the effects observed by IL-1 on COX-2 levels
and NF-κB translocation in IEC. SA decreased the level of inflammatory cytokines and the level of
inflammation in the animal model.

Conclusion: These findings suggest that SA may be useful in the development of natural therapies
for inflammatory diseases.

1. Background
Inflammatory bowel disease (IBD) is represented by a
group of inflammatory conditions affecting the mucosa of
the small intestine or colon. Immune activation and the
inflammatory response in the intestine, as in other organs,

are regulated by cytokines and other mediators of inflam-
mation. These mediators include cytokines such as Inter-
leukin-1 (IL-1),-6, and TNF-α, and others substances such
as prostaglandins and leukotrienes [1].
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IL-1, a pro-inflammatory cytokine, is produced by many
inflammatory cell types in response to a variety of stimuli
[2]. It has been shown to be increased in the intestinal
mucosa of IBD patients and in animal models of intesti-
nal inflammation [3]. We have shown that, in intestinal
epithelial cells (IECs), IL-1 induced the synthesis of the
enzyme cyclooxygenase-2 (COX-2) through the activation
and translocation of the transcription factor, nuclear fac-
tor kappa B (NF-κB) [4]. NF-κB is most frequently com-
posed of a p50 and a p65 subunit and under basal
conditions it is retained in the cytoplasm bound to an
inhibitory subunit IκB. In response to inflammatory stim-
ulators, p65 subunit dissociates from IκB subunit and
translocates from the cytoplasm to the nucleus, where it
dimerizes with the p50 subunit and interacts with specific
target genes, such as COX-2 leading to increased inflam-
matory processes [5,6]. Because of its central role in regu-
lating inflammatory responses, a pharmacological
inhibition of NF-κB activation could be beneficial in the
treatment of inflammation [7].

Interest in alternatives to modern medicine has never
been higher than it is now, and a large part of this interest
revolves around the use of medicinal plants. Many of the
anti-inflammatory activities of some medicinal plants
were attributed to their contents of sesquiterpene lactones
(SLs) [8-13]. In folk medicine, a diversity of plants, con-
taining SLs, were used orally for the treatment of fever,
hepatitis, bronchitis, malaria, viral infections, and topi-
cally for wounds, hematomas, sprains and rheumatic dis-
eases [8-13]. Several studies investigated how these
natural compounds exert their anti-inflammatory effects.
SLs was shown to decrease inflammatory mediators such
as IL-1β and TNF-α [14], prostaglandin E2 (PGE2) [15],
nitric oxide (NO) [16,17], histamine and serotonin
[18,19]; down-regulate the expression of major inflam-
matory enzymes such as cyclooxygenase-2 (COX-2)
[15,20], 5-lipoxygenase (LOX) [21], and inducible nitric
oxide synthase (iNOS) [17]; and decrease the DNA bind-
ing activity of the transcription factor NF-κB [20,22]. The
anti-inflammatory action of SLs was also confirmed in vivo
in acute murine ear [23] and paw edema [24] assays as
well as chronic mouse ear edema models [25]. These activ-
ities were suggested to be mediated chemically through
the action of α,β-unsaturated carbonyl structures, such as
an α-methylene-γ-lactone or an α,β-unsubstituted
cyclopentenone. These structure elements can react with
nucleophiles, especially cysteine sulfhydryl groups, via a
Michael-type addition [26,27]. Exposed thiol groups,
such as cysteine residues in proteins, thus appear to be the
primary targets of sesquiterpene lactones. SLs can be
traced to a common biosynthetic pathway that starts with
the cyclization of farnesyl or nerolidyl pyrophosphates.
This is followed by oxidation and formation of the lactone

leading to the synthesis of germacranolides SL. Following
further ring closure, germacranolides can give rise to san-
tanolides, eudesmanolides or guaianolides which are con-
sequently considered to be the precursors of other classes
of SLs [28].

SLs are found predominantly in the sunflower family
Asteraceae (Compositae) and have been isolated in many
plants of this family and particularly Centaurea, one of the
largest genera [29-32]. Centaurea ainetensis, a Lebanese
endemic plant that grows in stony usually sterile places,
was reported previously by us to possess anti-fungal activ-
ities [33]. The plants was identified to the genus and spe-
cie level by Dr Stephen Jury "Royal Botanic Garden, Kew,
West Sussex, London UK.

A crude decoction plant extract from Centaurea ainetensis
was prepared and was used in studying potential anti-
inflammatory activities. Further bioguided fractionation
procedure [34] allowed the isolation and identification of
the guaianolide, Salograviolide A (SA). SA has been also
isolated from the aerial parts of another Centaurea species,
Centaurea Nicolai, and has been shown to possess anti-
fungal activity confirmed by in-vitro susceptibility assays
[35]. In the present study the anti-inflammatory activities
of the extract of Centaurea ainetensis and the isolated mol-
ecule Salograviolide A were investigated. The effects of the
extract and SA on COX-2 expression and NF-κB transloca-
tion in an intestinal epithelial cell model of inflammation
were studied. Furthermore, SA ability to reverse and/or
prevent inflammation in a rat model of IBD was also eval-
uated.

2. Methods
2.1 Materials
All deuterated and non deuterated solvents were pur-
chased from ACROS ORGANICS, Belgium and the prepar-
ative TLC plates, silica cartridges and silica powder were
obtained from Alltech Associates, PA, USA. Fetal Bovine
Serum (FBS), bovine serum albumin, Dulbecco's Modi-
fied Eagle's Medium (DMEM), Non-essential amino
acids, penicillin and streptomycin, trypsin-EDTA were
purchased from Invitrogen (Carlsbad, CA, USA). Human
recombinant Interleukin-1α was from U.S. Biological
(Cleveland, OH, USA). Rabbit polyclonal COX-2 anti-
body was from Cayman Chemicals (Michigan, USA). Pol-
yvinylidene difluoride (PVDF) Hi-bond membranes,
poly-dIdC, poly-dN6, Sodium Dodecyl Sulfate (SDS), gly-
cine, Tris, glycerol, 2β-mercaptoethanol and γ-32P ATP
were from Amersham Biosciences (San Diego, CA, USA).
Protein Determination kit, Acrylamide and N', N'-bis-
methylene acrylamide were from BioRad (Hercules, CA,
USA). N,N,N',N',tetramethylethylenediamine (TEMED),
ammonium persulfate (APS), ethylenediamine tetraacetic
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acid (EDTA), methanol, acetic acid, isopropanol, and
dithiothreitol were from Sigma (St. Louis, MO, USA). Pro-
tease Inhibitor cocktail was from Biomol (Plymouth
Meeting, PA, USA). Rabbit polyclonal antisera to IκB-α,
NF-κB consensus oligonucleotide, Western Blotting Lumi-
nol reagents, ECL marker and horse radish peroxidase
(HRP) conjugated secondary antibodies were purchased
from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

2.2 Methods
For testing the biological activity of Centaurea ainetensis, a
crude decoction plant extract was prepared and was used
in this study.

2.2.1 Isolation of Salograviolide A from Centaurea ainetensis
The method of isolation and purification of Salogravio-
lide A is detailed in Reference 34. Briefly, air-dried plant
material soaked in methanol was filtered and the filtrate
fractionated into different fractions which were bio-
assayed for their anti-inflammatory activities as shown in
the Results Section below. Only one of the fractions was
capable of mimicking the effects observed with the plant
extract and was able to reverse the levels of inflammatory
markers tested. This biologically active fraction was sub-
jected to further fractionation (Figure 1A) and the result-
ing subfractions also bioassayed for their anti-
inflammatory activities as was done above. The only sub-
fraction that retained the biological activity was purified
to give rise to the pure bioactive compound which was
identified as the guaianolide, Salograviolide A (SA) (Fig-
ure 1B).

2.2.2 Cell Culture
Murine intestinal epithelial cell type Mode-K cells were
maintained in Dulbecco's Modified Eagle's Medium
DMEM containing 1 g/l glucose and 10 mM sodium pyru-
vate supplemented with 10% Fetal Bovine Serum FBS, 1%
non-essential amino acids and 0.5% penicillin-streptomy-
cin. At 70-80% confluency, cells were detached by
trypsinization and replated for maintenance or were used
for further experiments.

2.2.3 Trypan Blue Exclusion Assays
Mode-K cells were treated with different concentrations of
the extract or SA for different time points. At the time of
harvesting, cells were washed with phosphate buffered
saline (PBS containing 137 mM NaCl, 10 mM phosphate,
2.7 mM KCl, pH 7.4) and then trypsinized and added to
the supernatants. Cell suspension (50 μl) was added to 50
μl of trypan blue dye, cells were counted as either trypan
positive cells (cells that were able to uptake the dye indi-
cating dead cells) or trypan negative cells (cells that
excluded the dye indicating living cells), and the percent-
age of dead cells was calculated.

2.2.4 Western Blotting Assays
Cells were washed twice with PBS and scraped in 2× elec-
trophoresis sample buffer (SB containing 0.25 M Tris-HCl
(pH 6.8), 4% w/v SDS, 20% w/w glycerol, 0.1%
bromophenol blue and protease inhibitor cocktail (40 μl/
ml). Samples were then collected in microfuge tubes,
boiled for 5 min, centrifuged and the supernatant repre-
senting total soluble protein extract collected and stored
at -80°.

Total protein extracts were run on a 12% SDS-polyacryla-
mide gel and the gels were transferred to PVDF mem-
branes overnight at 4°C. Following transfer, membranes
were washed once with TPBS wash buffer (PBS containing
0.1% Tween 20) and then blocked in 5% non-fat dry milk
for 2 h at room temperature. Primary antibodies were
then added to the membranes and incubated for 2 h at
room temperature. Unbound antibodies were washed
three times with TPBS. Horse-raddish peroxidase-conju-
gated anti-rabbit IgG were added at 1:5000 dilution for 1
h at room temperature. Membranes were washed and
incubated with Luminol reagents and directly exposed to
autoradiography.

2.2.5 Extraction of Nuclear Proteins
Cells were harvested and collected by centrifugation at
200 g for 10 min and washed once with PBS. Cells were
lysed by rapid freezing in ethanol/dry ice and thawed by
resuspension in a hypotonic ice-cold buffer containing 10
mM KCl, 1.5 mM MgCl2, 1 mM dithiothreitol (DTT), and
10 mM HEPES. The nuclei were centrifuged at 1250 g for
10 min at 4°C and the nuclear pellets were gently
extracted in a hypertonic solution containing 0.4 mM
NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 1 mM DTT, 0.5 mM
PMSF, 20 mM HEPES and 25% glycerol, for 30 min at
4°C, and then centrifuged for 20 min at 20,000 g to col-
lect the nuclear proteins in the supernatant. The superna-
tant was diluted with 30 μl of buffer containing 50 mM
KCl, 20% (v/v) glycerol, 0.2 mM EDTA, 1 mM DTT, 0.5
mM PMSF and 20 mM HEPES, and stored at -80°C. Pro-
tein concentrations were determined using the Bio-Rad
assay.

2.2.6 Electrophoretic Mobility Shift Assay (EMSA)
NF-κB consensus oligonucleotide was end-labeled with γ-
32P ATP using T4 polynucleotide kinase. The hybridiza-
tion reaction was performed using 10-20 μg of nuclear
extract, 1 μg of poly(dIdC), 1 μg of poly(dN6) as a non-
specific competitor, and 10 μg of bovine serum albumin
in 20 mM HEPES, 50 mM KCl, 1 mM EDTA and 5 mM
DTT. The reaction was diluted with water to a v:v ratio of
1:20 of the labeled probe. The mixture was incubated for
30 min, and then stopped by adding 6 μl of 15% Ficoll
solution containing the indicator dyes bromophenol blue
and xylene cyanol. The reaction mixture (20 μl of each
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sample) was subjected to electrophoresis on a 5% non-
denaturating polyacrylamide gel. The gel was transferred
to Whatman filter paper, dried at 80°C under vacuum for
2 h and processed for autoradiography at -80°C over-
night. The specific NF-κB band was determined by compe-
tition experiments using a mutant oligonucleotide that
has lost its ability to bind to the transcription factor. Sub-
unit specificity was determined using specific antibodies
to the NF-κB components (anti Rel-A and p50) in the
incubation step, which results in a supershift of the spe-
cific band due to the bound antibody [36].

2.2.7 In Vivo Studies
An established rat model of ulcerative colitis induced by
rectal injection of iodoacetoamide was used for in vivo
studies to test the effects of SA in reversing and/or prevent-
ing induced inflammation [37]. In this model, the peak
inflammation is reached at 24 h after iodoacetamide treat-
ment. The in vivo studies were pre-approved by the "The
Animal Care Program and the Institutional Animal Care
and Use Committee" at the American University of Beirut
(approval number 0707057).

Male rats (150-200 g) were randomly selected for treat-
ment and control groups. Each experimental group
included a group of 4-5 rats. Intestinal inflammation was
induced by rectally injecting 0.1 ml of 6% iodoacetamide.
SA was injected intra-peritoneal at 10 mg/kg body weight
6 h before iodoacetoamide treatment. Control rats either
received SA alone as per the treated rats or ethanol (SA sol-
vent) without any SA and/or iodoacetoamide vehicle (1%
methylcellulose); while iodoacetoamide-treated rats
received 10 mg/kg (i.p. injection) of SA twice; the first
given at 6 h prior to iodoacetamide treatment and the sec-
ond at the time of treatment. At the specific times sched-
uled rats were anesthetized with intraperitoneal
pentobarbital (50 mg/kg) and intestinal tissues removed.
Tissues were removed for analysis at 6, 24 and 48 h post-
iodoacetoamide treatment and were examined for the
degree of ulcer and for measurement of the IL-1 levels
(using ELISA). An inflammation score between 0 and 3
was used to grossly evaluate the inflammation level, with
0 indicating the absence of inflammation (normal look-
ing mucosa); 1 indicating the presence of mild inflamma-
tion (slight redness) and 3 indicating severe inflammation
(includes ulceration). The in vivo studies were repeated
three times (n = 3).

2.2.8 Statistical Analysis
Data is expressed as mean ± S.D. The effectiveness of plant
treatments was analyzed by one-way analysis of variance
(ANOVA). Statistical probability of P < 0.05 was consid-
ered significant.

3. Results
3.1. Studies using Plant Extract of Centaurea ainetensis
3.1.1 Cytotoxic effects of the plant extract on Mode-K cells
The plant extract was tested for its cytotoxicity on Mode-K
cells. Trypan blue exclusion assays were performed on
cells treated with different concentrations of the plant
extract (1, 3 and 10%) at different time periods up to 48
h. At 10%, the plant extract was cytotoxic at 8, 12, 24 and
48 h. At 3%, the extract was cytotoxic at 12, 24 and 48 h
while at 1% the extract didn't cause any considerable cell
death up to 12 h. All subsequent experiments were per-
formed using the extract at 1% for 8 and 12 h which rep-
resent the lowest concentration causing the minimal
cytotoxic effects (Figure 1).

3.1.2 Effect of the extract of Centaurea ainetensis on COX-2 protein 
levels and NF-kB activation
Treatment of Mode-K cells with IL-1 (10 ng/ml) caused a
peak increase in COX-2 protein levels at 6 h of treatment.
This increase was inhibited by pretreating cells for 2 and
12 h with the 1% plant extract. The extract alone had no
effect on COX-2 protein expression as compared to the
control basal levels (Figure 2A).

We have previously shown that IL-1 causes a concentra-
tion-dependent activation and translocation of NF-κB in

Trypan blue exclusion assay on Mode-K cells treated with different concentrations of plant extract of Centaurea aineten-sis at 1, 3 and 10% for different time points up to 48 hrFigure 1
Trypan blue exclusion assay on Mode-K cells treated 
with different concentrations of plant extract of Cen-
taurea ainetensis at 1, 3 and 10% for different time 
points up to 48 hr. 1% of the extract didn't cause any con-
siderable cell death up to 12 h where the toxicity reached 
only 10%, however, it caused more than 60% cell death when 
incubated for 24 and 48 h. At 3%, the extract was not cyto-
toxic up to 6 h, but caused between 15 to 20% cell death in 
cells treated for 8 and 12 h; and more than 80% cell death 
when cells were treated with plant extract for longer periods 
of time. At 10%, the extract was not cytotoxic up to 6 h.
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IECs with a peak increase at 6 h, and with the predomi-
nant subunit activated being p65. To establish whether
the extract has any effect on the activation and transloca-
tion of NF-κB transcription factor, electrophoretic mobil-
ity shift assay (EMSA) was performed on Mode-K cells
treated with 1% of the extract, at 8 and 18 h, in the pres-
ence and absence of IL-1 (10 ng/ml). When Mode-K cells
were treated with IL-1 for 6 h, a significant activation of
NF-κB was detected which was abrogated upon pretreat-
ing cells for 2 and 12 h with 1% of the extract. No signifi-
cant effect of the extract when used alone was observed
(Figure 2B).

These results show that pretreatment of Mode-K cells with
1% of the plant extract for 2 h caused significant inhibi-
tion obtained on COX-2 protein levels as well as on NF-
κB activation levels. Accordingly, further bio-guided frac-
tionation of the extract was performed where a pure mol-
ecule, SA, was obtained and tested for its anti-
inflammatory effects.

3.2 Studies using Salograviolide A (SA)
3.2.1 Purification of SA
The plant extract was fractionated into different fractions
and each was bioassayed for its effects on IL-1-induced

COX-2 and NF-κB translocation as described in the
Results Section 3.1 above. Only one of the fractions was
capable of mimicking the effects observed with the plant
extract and was able to reverse the levels of inflammatory
markers tested. This fraction was subjected to further frac-
tionation (Figure 3A) and the resulting subfractions were
also bioassayed for their anti-inflammatory activities. The
only subfraction that retained the biological activity was
purified to give rise to the pure bioactive compound
which was identified as the guaianolide, Salograviolide A
(SA) (Figure 3B).

3.2.1 Cytotoxic Effects of Salograviolide A on Mode-K cells
In order to assess the cytotoxicity of SA on Mode-K cells,
Trypan blue exclusion assays were performed on cells
treated with different concentrations of SA (2, 4 and 8 μg/
ml) at different time periods up to 24 h. At low concentra-
tions, SA didn't cause any significant cell death at all time
periods tested. However when used at high concentra-
tions (4 and 8 μg/ml), it caused significant cell death
(above 50%) at 12 and 24 h. SA at a concentration of 2, 4
and 8 μg/ml were used for further experiments for treat-
ment periods not exceeding 8 h (Figure 4).

3.3.2 Effect of SA on COX-2 protein expression in Mode-K cells
To study the effect of SA on IL-1-induced COX-2 levels,
western blotting assays were performed on total protein
extracts from Mode-K cells treated with 2, 4 and 8 μg/ml

(A) Western Blotting Analysis showing the effect of the 1% plant extract of Centaurea ainetensis on COX-2 protein expression in Mode-K cellsFigure 2
(A) Western Blotting Analysis showing the effect of 
the 1% plant extract of Centaurea ainetensis on COX-
2 protein expression in Mode-K cells. Treatment with 
IL-1 for 6 h increased COX-2 protein levels (lane 2). This IL-
1-induced increase was significantly inhibited by plant extract 
pretreatment for 2 and 12 h (lanes 5 & 6). No effect of the 
plant extract alone was observed (lanes 3 & 4). β-Actin was 
used to ensure equal protein loading. (B) Electrophoretic 
Mobility Shift Assay (EMSA) showing the effect of the 1% 
extract of Centaurea ainetensis on NF-κB activation in Mode-
K cells in the presence and absence of IL-1 for 6 h. NF-κB 
was significantly activated by IL-1 treatment for 6 h (lane 2). 
This IL-1-induced activation was abrogated by plant extract 
pretreatment for 2 and 12 h (lanes 5 & 6). Centaurea aineten-
sis alone had no effect on NF-κB activation (lanes 3 & 4).

(A) Modality used for bioguided chemical purification of Salo-graviolide A from Centaurea ainetensisFigure 3
(A) Modality used for bioguided chemical purification 
of Salograviolide A from Centaurea ainetensis. (B) 
Chemical structure of Salograviolide A.
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of SA in the absence or presence of 10 ng/ml of IL-1 for 8
h. Treating cells with 4 μg/ml of SA for 2 h and subsequent
stimulation with IL-1 for 6 h caused a significant decrease
in IL-1-induced COX-2 protein levels. SA alone didn't
have any effect on COX-2 protein expression as compared
to the control basal levels (Figure 5). Based on these
results, all further experiments were performed on cells
treated with 4 μg/ml of SA for 8 h.

3.3.3 Effect of SA on NF-κB activation
To establish whether SA caused any effect on the activa-
tion and translocation of NF-κB transcription factor, elec-
trophoretic mobility shift assay (EMSA) was performed
on nuclear extracts of Mode-K cells treated with 4 μg/ml of
SA in the presence and absence of IL-1 (10 ng/ml). IL-1
treatment for 6 h caused significant activation of NF-κB
transcription factor. This activation was significantly
inhibited by 4 μg/ml of SA pretreatment for 2 h. SA alone
didn't show any effect on NF-κB levels (Figure 6A).

In an attempt to find the part of the NF-κB activation cas-
cade that is influenced by SA, the effect of SA on IκB pro-
tein levels was assessed. The IL-1 induced degradation of
IκB-α was found to be inhibited by SA pretreatment for 2
h at a concentration of 4 μg/ml (Figure 6B).

3.3.4 Effect of SA on colonic inflammation in a rat model of IBD
SA treatment did not cause any inflammation or change in
inflammatory cytokines similar to what is usually
observed in control untreated, or vehicle-treated rats. Rats
treated twice with SA prior to iodoacetamide showed sig-
nificantly lower inflammation scores than rats treated
with iodoacetamide alone at 6 and 24 h post-treatment
(Table 1).

Levels of IL-1 in colonic tissue were shown to be signifi-
cantly lower in rats treated with SA prior to iodoacetamide
treatment (Table 2). These results suggest that SA may act
as preventive means to reduce inflammation in an in vivo
model.

4. Discussion
In the present study the effects of the Centaurea ainetensis
extract and SA on COX-2 expression and NF-κB transloca-

Effect of SA on COX-2 protein expression in Mode-K cellsFigure 5
Effect of SA on COX-2 protein expression in Mode-K cells. Cells were pretreated with SA for 2 h prior to IL-1 6 h 
treatment. Total inhibition of COX-2 protein expression was observed with 4 μg/ml of SA (lane 7) as compared to cells stim-
ulated with IL-1 alone for 6 h (lane 2). In the absence of IL-1, SA had no effect on COX-2 levels (lanes 3, 4 and 5). β-Actin was 
used to ensure equal protein loading.

Trypan blue exclusion assay on Mode-K cells treated with different concentrations of SA for different time periodsFigure 4
Trypan blue exclusion assay on Mode-K cells treated 
with different concentrations of SA for different time 
periods. SA at a concentration of 2 μg/ml only caused 
around 20% cell death when used at 24 h. SA at a concentra-
tion of 4 μg/ml was not cytotoxic when cells were incubated 
with SA for up to 8 h, but caused more than 50% cell toxicity 
at 16 and 24 h. At a concentration of 8 μg/ml, SA also didn't 
cause any significant cell death up to 8 h but caused high tox-
icity when cell were treated for 16 or 24 h.
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tion in an intestinal epithelial cell model (Mode-K cells)
of inflammation and SA's ability to reverse and/or prevent
inflammation in a rat model of IBD were studied. COX-2,
a 72 kDa protein, which is not usually present in IECs
under normal conditions, is significantly induced by IL-1
treatment [38] with peak expression reached 6 h post
treatment [39]. SA caused significant inhibition on IL-1-
induced COX-2 protein levels as well as on NF-κB activa-
tion levels. Under basal conditions, NF-κB, a transcription
factor, is maintained in an inactive form by IκB inhibitory
proteins. Many inflammatory stimuli lead to the proteo-
lytic degradation of IκB proteins [40] thus freeing NF- κB
to translocate to the nucleus. The effect caused by SA on
NF-κB was found to be at least partially due to inhibition
of IL-1 induced degradation of IκB-α. In addition to the
SA anti-inflammatory effects observed in the in vitro stud-
ies, SA was found to significantly reduce inflammation in
an in vivo model of IBD.

Many of the anti-inflammatory activities of some medici-
nal plants have been attributed to their contents of ses-

quiterpene lactones (SLs). The isolated active compound
from Centaurea ainetensis Salograviolide A was identified
as a guaianolide belonging to the sesquiterpene lactone
family. The mechanism of action of SLs against inflamma-
tion has been extensively investigated and, based on these
studies as well as the efficacy of SLs in modulating inflam-
mation in response to a variety of stimuli [20,41-45],
there are strong indications that all SLs act through a com-
mon step beyond the point of integration of different sig-
nals. This general mechanism of action can be seen as a
dual mechanism that eventually leads to the same end-
point: a decrease in NF-κB DNA binding activity. Previous
reports have suggested that the main mode of action of
SLs is through inhibiting the induced degradation of IκB
proteins α and β [43,46] by possibly inhibiting IκB Kinase
(IKK), a kinase that phosphorylates and tags IκB proteins
for destruction [47]. However, other studies have shown
that a direct interaction between SLs and p65 (Rel A) in
NF-κB resulting in a direct inhibition of DNA binding is
the main mechanism of action of SLs [44,48]. Our results
confirm this dual mechanism of action: we have shown
that SA inhibited IL-1-induced IκB-α degradation leading
to a decreased NF-κB activity. SA also caused a decrease in
NF-κB activity when cells were treated after IL-1 treatment;
that is after the induced degradation of IκB proteins, sug-
gesting that SA may be acting directly on the translocated
NF-κB preventing it from binding to DNA. In both cases,
given the importance of NF-κB in promoting the expres-
sion of numerous pro-inflammatory genes including
those encoding the enzymes COX-2 and iNOS [49], caus-
ing decreases in their products PGE2 [15] and NO [17],
and providing a possible mechanism for the observed
decrease caused by SA on IL-1-induced COX-2 protein
expression.

The biological activity of SA could be due to the presence
of α,β-unsaturated carbonyl structures mainly the α-
methylene-γ-lactone. These structures have the ability to
react with nucleophiles by a Michael-type addition [50]
which consequently can react irreversibly with sulfhydryl
groups in the cell including those found on cysteine [27].
Specifically, in NF-κB/p65, cysteine 38 that participates in
DNA binding by forming a hydrogen bond with the
sugar/phosphate backbone of the κB-DNA could be the
site of alkylation by SA and consequent direct inhibition
of NF-κB DNA binding [48,51]. Moreover, the activation
loop of the catalytic site of IκB Kinase (IKK) contains a
critical cysteine, cysteine-179 [52,53], that can react with
Michael donors explaining how SA can cause inhibition
of IκB protein degradation [48]. The number of α,β-
unsaturated carbonyl structures capable of undergoing a
Michael addition, has been recognized as a major factor in
determining the potency of SLs [51]. Despite having only
one alkylating center, SA has a very high potency when
compared to the ability of other bifunctional SLs in inhib-

(A) Electrophoretic Mobility Shift Assay showing the effect of SA on NF-κB activation in the presence and absence of IL-1 in Mode-K cellsFigure 6
(A) Electrophoretic Mobility Shift Assay showing the 
effect of SA on NF-κB activation in the presence and 
absence of IL-1 in Mode-K cells. IL-1 treatment for 6 h 
caused activation of NF-κB (lane 2). This IL-1-induced activa-
tion was significantly inhibited by pretreating Mode-K cells 
with 4 μg/ml SA for 2 h (lane 4). (B) Western blotting assay 
showing the effect of SA on IκB-α protein expression in the 
presence and absence of IL-1 in Mode-K cells. IL-1 treatment 
for 6 h caused degradation of IκB-α protein resulting in 
decreased protein levels (lane 2). This IL-1-induced decrease 
was blocked by SA pretreament for 2 h (lane 4). No effect of 
SA on IκB-α protein levels was observed (lane 3). β-Actin 
was used to ensure equal protein loading.
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iting the transcription factor NF-κB. The lower inhibitory
concentration of SA may be due to the presence of a
hydroxyl group capable of forming a hydrogen bond near
the alkylating structure and consequently stabilize the
covalent binding. However, SA has another hydroxyl
group and, quantitative structure-activity relationship
studies specific to guaianolides correlate an increasing
number of hydroxyl groups with a decrease in NF-κB inhi-
bition activity [54], an effect which could be offset by
enhancing the rate of cysteine addition in the presence of
an O-acyl group.

5. Conclusion
This is the first report of the anti-inflammatory activity of
Salograviolide A isolated from Centaurea ainetensis in both
in vitro and in vivo models of inflammation. In addition to
disclosing the mechanism of action of this SL in vitro, our
study highlights once again the important role played by

NF-κB in intestinal inflammation. Optimizing the
number of hydroxyl group in this molecule might make
SA a valuable molecule for the development of natural
therapies for inflammatory diseases through enhancing its
potency and at the same time reducing the risk of
unwanted side effects.

6. List of Abbreviations
APS: Ammonium Persulfate; BSA: Bovine Serum Albu-
min; COX-2: Cyclooxygenase-2; DMEM: Dulbecco's Mod-
ified Eagle's Medium; EMSA: Electrophoretic Mobility
Shift Assay; EDTA: Ethylenediamine Tetraacetic Acid; FBS:
Fetal Bovine Serum: HRP: Horse Radish Peroxidase; IBD:
Inflammatory Bowel Disease; IKK: Inhibiting IκB Kinase;
IκB: Inhibitory Subunit; IL-1: Interleukin; IEC: Intestinal
Epithelial Cell; LOX: 5-Lipoxygenase; NO: Nitric Oxide;
NF-κB: Nuclear Factor-κB; PVDF: Polyvinylidene Difluo-
ride; PGE2: Prostaglandin E2; SA: Salograviolide A; SLs:

Table 2: Effect of SA on IL-1 Levels in Intestinal Tissue in an in-vivo

Treatment Levels of IL-1 (ng/ml) in Colonic Tissues 
Removed 6 h After Treatment

Levels of IL-1 (ng/ml) in Colonic Tissues 
Removed 24 h After Treatment

Rats treated with SA alone
(control, n = 3)

8.9 ± 1.9 12.1 ± 0.3

Rats treated with iodoacetoamide 
(representing inflamed tissue, n = 3)

27.3a± 3.0 18.6 ± 0.6

Rats treated with SA prior to 
iodoacetoamide treatment
(represents recovered tissue, n = 3)

16.6b± 0.2 11.4 ± 1.4

a P < 0.005, a P value represents the comparison of IL-1 levels in iodoacetoamide treated tissue as compared to untreated control. Data are means 
± SE of 3 separate experiments.
b P < 0.05, b P value represents the comparison of SA pretreatment on IL-1 levels in iodoacetoamide treated rats as compared to iodoacetoamide 
treated rats. Data are means ± SE of 3 separate experiments.

Table 1: Effect of SA on reversing inflammation in the in-vivo IBD model

Treatment Tissues Removed at 6 h After Treatmenta Tissues Removed at 24 h After Treatmenta

Control (no treatment) 0 0

Treatment with SA 
(12 mg/kg, i.p. injection)

0 0

Rats treated with ethanol 0 0

Rats treated with methyl cellulose 0 0

Rats treated with iodoacetoamide 
(representing inflamed tissue)

2 3b

Rats treated twice with SA prior to 
iodoacetoamide

1.0 1.0c

a Inflammation score
b P < 0.005, b represents the comparison of iodoacetoamide treatment on inflammation score as compared to untreated control. Data are means of 3 separate 
experiments.
c P < 0.005, c represents the comparison of SA pretreatment on iodoacetoamide treated rats as compared to iodoacetoamide treated rats. Data are means of 3 
separate experiments.
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Sesquiterpene lactones; SDS: Sodium Dodecyl Sulfate;
TEMED: N,N,N',N',Tetramethylethylenediamine; TNF-α:
Tumor Necrosis factor-Alpha.
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