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Abstract:  

 

Anthropological genetics has revolutionized the way we study variation in human populations, 

their relationships with each other and with past populations. Since the very early days of the 

discipline, Western Asia has been a major focus (Menozzi et al. 1978). After all, it is the 

geographical focal point where Africa, Asia, and Europe meet and it is the hotbed of cultural 

innovation, most notably the emergence of settled Neolithic communities (Gordon Childe 1936; 

Mellaart 1967; Barker 2009). As such, it has been central to most major Eurasian civilizations 

(Kuhrt 1995; Gregory 2010), and, more recently, a dynamic mix of tribal and ethnic units, religious 

sects, and national identities. Some questions emerge as central within the broader framework of 

Western Asian genetic variation: Who are the ancestors of Western Asian populations? How did 

contemporary and ancient Western Asians contribute to the peopling of the rest of Eurasia? Which 

routes in Western Asia did the first migrants out of Africa take? Who were the first farmers? 

Where, when, and to what extent did Neanderthals contribute to the gene pools of Eurasian 

ancestors?  In this paper, we review the latest genetics research tackling these questions, with 

special emphasis on the recently available ancient genomics datasets, as well as the emerging 

notion that ancient interactions among human populations are more important than previously 

thought. 

 

Western Asia: 

Western Asia has been the geographical center of history of Eurasian peoples, first as an 

ancestral homeland, and later as a center and crossroads of civilizations (Figure 1). The area is 

informally defined, but is often understood as comprising the contemporary national boundaries 
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of Turkey, the Arabian peninsula, Iran, Armenia, Azerbaijan and south Caucasus (Knapp 1988). 

The region was first populated by early human species as early as 1.5 Million years ago, starting 

with the migrations of hominins into the region and later populated by Neanderthals and 

anatomically modern humans (McCown and Keith 1939; Bar-Yosef and Belfer-Cohen 2001; 

Kappelman et al. 2008; Hershkovitz et al. 2015). Fossil records are notoriously patchy and, due 

to occasional inconsistencies in dating and interpretation, specific conclusions derived from them 

are often hotly debated among anthropologists. Regardless, it is clear that modern human 

ancestors, whether they are direct ancestors or not, have lived in Western Asia since at least 

500,000 years before present, if not earlier. In fact, it is plausible that multiple hominin species 

inhabited the region simultaneously and exchanged genetic material. Introgression from such 

related species to the modern human gene pool is now actively being discussed to explain some 

of the unusually divergent haplotypes among human genomes (Pääbo 2015). For example, the 

current genetic data suggests that all Eurasians carry 1-4% of Neanderthal alleles in their 

genomes, due to an introgression event that happened in western Asia approximately 60,000 

years ago (Green et al. 2010; Prüfer et al. 2014).  

 

Since the first inhabitation of Western Asia, the region has played multiple pivotal roles in human 

history. Arguably the most important of those is the emergence of settled human societies. Thanks 

to amazing discoveries in archaeological sites, such as Catalhoyuk, Gobeklitepe, Atlit Yam, Ali 

Kosh, Jericho, among others, there is now a fascinating debate about how humans transition into 

sedentary life (Bellwood et al. 2007). While previous work focused on economic and demographic 

trends when explaining this transition (Bocquet-Appel and Bar-Yosef 2008), the work in 

Gobeklitepe potentially adds a symbolic perspective where religious identities may have led a 

group of people to settle, predating agriculture (Gosden 2004). Regardless of the reasons, after 

being hunter-gatherers for more than 100,000 years, humans who settled in Western Asia started 

engaging in agriculture, dramatically increasing their population and rapidly increasing the 

complexity of the societies that they lived in (Bocquet-Appel and Bar-Yosef 2008). This cultural 

transition has since shaped human history, where both peoples and their cultures spread across 

the world, significantly shaping the contemporary genetic variation of Eurasia (Skoglund et al. 

2012; Lazaridis et al. 2013; Allentoft et al. 2015).  

 

The first agricultural village emerged in Western Asia roughly 12,000 years before present (Barker 

2009). Since then, the region’s history has been defined by wars, migrations, trade, religious and 

ethnic connections and segregations, and, perhaps most importantly, kinship connections among 

extended families (Lewis 1995; Mansfield 2013). Very few genetic studies have explored the 

complex population interactions, which somehow transformed the inhabitants of the few farming 

villages of Western Asia into the large and diverse populations of the bronze and iron age 

cosmopolites (Cinnioğlu et al. 2004; Gokcumen et al. 2011; Rodriguez-Flores et al. 2016; Scott 

et al. 2016). The genetic impact of the invading peoples also remains unknown, from the Indo-

European speaking Hittites to Alexander’s armies. The genetic impact of over two thousand years 

of social and political complexities of The Roman and Byzantine periods, and later the Islamic 

Ottoman empire remains unknown. Overall, multiple histories of Western Asia pose a fascinating 

set of questions, which the recently available genetic tools are beginning to address.  
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Contemporary human genomics, what changed? 

Genetic information has been used to inform us about human movements for decades, especially 

by looking at genetic variation in mitochondrial genomes and certain non-recombining regions of 

the Y-chromosome (Comas et al. 1996; Di Benedetto et al. 2001; Cinnioğlu et al. 2004). However, 

today human genomics is applied to investigate the human past with unprecedented empirical 

power. Data from whole genomes now enables an in-depth look at multiple ancestors of each 

genome, allowing researchers to ask precise questions. In parallel, with the availability of 

thousands of samples from hundreds of modern and ancient populations, we have a broader look 

at the human genetic variation across geography and time (Veeramah and Hammer 2014). It is 

worthwhile to emphasize two recent breakthroughs that allow us to conduct our analyses with 

unprecedented power and accuracy.  

 

The first of these breakthroughs is our recent ability to afford the sequencing of thousands of 

entire genomes with previously impossible speed (Schuster 2008). This allowed us to parse the 

genome into haplotype blocks, each telling different stories of our ancestors (Veeramah and 

Hammer 2014). The random inheritance of maternal and paternal chromosomes combined with 

the effect of recombination makes our genome a mosaic of pieces, each coming from a different 

ancestor. With next generation sequencing and sophisticated computational approaches, we are 

able to study the history of each of these genomic mosaic pieces affording us a glimpse into 

thousands of ancestral lineages, rather than tracing a single ancestral line (Harris and Nielsen 

2013). Such a comprehensive view of the genome has allowed us to look at the contribution from 

our ancestors at different time scales (Schiffels and Durbin 2014). For example, we can determine 

which of the pieces in Western Asian genomes were inherited from Neanderthal ancestors some 

50,000 years ago (Vernot and Akey 2014), while measuring the East Asian component of Western 

Asian genomes, likely a relic from migrations of Turkic speaking groups into the region only one 

to two thousand years ago (Alkan et al. 2014). 

 

The second breakthrough comes in the form of sequencing entire ancient genomes, which allows 

us to study the genetic variation of ancestral populations directly (Green et al. 2010). A decade 

ago building entire variation maps of whole genomes from extremely fragmented DNA of ancient 

human remains was thought to be impossible. The surprising compatibility of next generation 

platforms to short fragments of ancient remains, combined with ingenious bioinformatics 

techniques (that leverage the consistent and predictable chemical damage that ancient DNA 

undergoes), allows for the accurate resequencing of entire genomes that are as old as 700,000 

years (Orlando et al. 2013). With these trailblazing achievements in methodologies in the last 

decade, we now have genome-wide sequencing data from hundreds of ancient human genomes 

from different periods and geographies (Reich et al. 2010; Prüfer et al. 2014; Allentoft et al. 2015; 

Gallego Llorente et al. 2015; Kılınç et al. 2016; Siska et al. 2017).  

 

The far-reaching impact of these two breakthroughs has especially challenged two previously-

held beliefs about human history. First, the discovery that modern humans interbred with 

Neanderthals, as well as Denisovans (a distinct hominin species), contradicts the previously held 

single-origin model (Green et al. 2010; Reich et al. 2010). Second, it is clear that contemporary 

human genetic variation is a product of complex interactions in past populations, most of which 
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are now gone (Prüfer et al. 2014; Sankararaman et al. 2014; Lin et al. 2015; Racimo et al. 2015; 

Hsieh et al. 2016; Kuhlwilm et al. 2016; Vernot et al. 2016). For example, contemporary 

Europeans are not necessarily descendant of the Europeans from 10,000 years ago, but rather a 

product of complex admixtures among multiple ancient populations (Lazaridis et al. 2013). In sum, 

ancient population genomics heralds a new era, where we can directly test hypotheses with 

regard to genetic variation of past populations and their relationships to contemporary humans.  

The global context of genetic variation in Western Asian populations 

There are only a few studies that document genetic variation among Western Asian populations 

at a whole-genome level (Behar et al. 2010; Alkan et al. 2014; Reich et al. 2015), particularly 

when compared to wide-reaching datasets detailing European genomic variation. Nevertheless, 

even in the data from these few studies, certain patterns emerge. As a whole, the contemporary 

Western Asian genomic variation looks most similar to genomic variation of South European 

populations, e.g., Southern Italians (Alkan et al. 2014). This seems to be true for Arabian, Turkish 

and Jewish variation, and, to a lesser extent, Iranian genetic variation (Scott et al. 2016). From a 

bird’s-eye view, the contemporary genetic variation in Western Asia appears to be shaped by 

geography.  

 

However, it is important to note some caveats when interpreting this data. First, there is evidence 

for different ethnic, religious, and kinship groups (e.g., extended tribes) contributing to the genetic 

structure in this region, likely in a higher degree than in European populations (Gokcumen et al. 

2011; Scott et al. 2016). As such, it would not be surprising to see enclaves of genetic variation 

that have very distinct genetic characteristics in the region. In fact, such genetic structuring was 

recently reported for the Bedouin population in Qatar (Rodriguez-Flores et al. 2016).  Second, the 

genetic variation in Central Asian populations that neighbor Western Asia has been poorly 

characterized. We have little or no genome-wide data from Azerbaijan, Turkmenistan, and 

Afghanistan. As such, it is likely that Western Asian populations are also closely related to 

populations in the east, but Central Asian populations are yet to be comprehensively sampled for 

genome-wide analyses. 

 

Third, the origins of contemporary genetic variation are not clear and this creates some level of 

confusion. For example, the most likely explanation for the genetic similarity between 

contemporary Western Asia and Eastern European populations is from the very recent effect of 

isolation-by-distance, i.e., populations that are geographically close share genetic variation with 

each other (Wright 1943). As demonstrated beautifully in the landmark paper by Novembre et al. 

for European populations, this effect creates clines of genetic variation where the allele 

frequencies gradually increase or decrease across geographies (Novembre et al. 2008). 

However, recent studies have shown that genetic continuity in a given geography over time is not 

a universal trend. For example, there are reports that while Neolithic Chinese population seem to 

genetically resemble contemporary Han Chinese (Siska et al. 2017), the Neolithic populations of 

Western Asia were observably different genetically from contemporary populations living in the 

same geography (Kılınç et al. 2016). As such, contemporary genetic variation data do not 

necessarily reveal the genetic variation of the past populations living in these geographies or vice 

versa, 
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New insights into the contemporary genetic structure within Western Asian 

populations 

The first genome-wide glimpses into genetic variation of Western Asian populations revealed a 

surprising genetic structuring both within and among national boundaries. This contrasts what is 

found in Western Europe and, to some degree, Eastern Asia, where the genetic variation is mostly 

continuous, superseding national boundaries (Novembre et al. 2008). As mentioned before, 

Western Asian populations seem to have the highest genetic similarities to their geographic 

neighbors. Nevertheless, when looking at the genetic variation with a finer lens, a more 

complicated picture emerges. One of the major quantitative tools for visualizing the variation 

among genomes is principal component analysis, which, very simply put, identifies correlated 

genetic variants among genomes and converts them to singular principal components. This 

statistical procedure essentially summarizes the multidimensional data (i.e. hundreds of 

thousands of single nucleotide variants in this case) into a smaller number of dimensions, with 

the first principal component carrying the highest amount of variance stemming from correlated 

variants the data. In genetic anthropological analyses, generally the first two (sometimes also the 

third and fourth) principal components are shown (Reich et al. 2008). These principal components 

show the separation of individual genomes from each other based on a small portion of the genetic 

variation analysed, which maximizes the separation. 

 

Principal component analyses of Western Asian populations, for which comparable genetic data 

are available, showed that no clear genetic boundaries can be drawn between populations 

(Hodoğlugil and Mahley 2012; Scott et al. 2016). Even though this has not specifically been tested, 

two apparent trends have emerged from multiple recent studies (Alkan et al. 2014; Rodriguez-

Flores et al. 2016; Scott et al. 2016). One, contemporary populations in Iran and Turkey are more 

related to each other than they are to populations living in the Arabian peninsula. Second, these 

two populations also seem to have higher levels of genetic affinities to southern European 

populations as compared to populations speaking semitic languages. 

 

These are interesting observations and several cultural and historical factors can be considered 

to explain them. One possible such explanation is that the contemporary population of Iran is 

Indo-European speaking and, as such, has a linguistic affinity to European populations that date 

back 8-9 thousand years before present (Gray and Atkinson 2003). However, the more likely 

explanation is that relatively recent interactions of different groups in the region, including Kurdish 

and Turkic speakers, transgressed national, and possibly linguistic borders. For answering such 

questions from a more targeted approach, anthropologically and historically contextualized 

sampling is essential. For example, the genetic variation within Kurdish and Turkic speakers that 

populate the border areas between modern-day Turkey and Iran remains unexplored. It should 

be noted here that all of these historical and linguistic inferences have not been tested by data 

and it is possible that other explanations for the genetic structure among Western Asian 

populations will be put forward as our understanding of the cultural and genetic diversity of the 

region increases. 
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Even with that caveat, one of the major trends that emerges within Western Asia is the level of 

local genetic structure independent of national boundaries. We have previously discussed how 

Western Asian villages have created extended patrilineal kinship groups that lead to a clear 

separation of Y-chromosome variation between neighboring villages, while maintaining a high 

level of homogeneity within the villages (Gokcumen et al. 2011). This leads to an overall trend 

where the genetic variation is high in the region as a whole and within ethnic groups, while 

inbreeding is higher than what is observed in western European and Eastern Asian populations 

(Scott et al. 2016). The genetic variation of the Jewish population, which has been extensively 

studied, exemplify this trend. Briefly, most Jewish genomes cluster with other Western Asian 

genomes, especially with those of the Druze. However, within the Jewish population, significant 

structure exists that corresponds to the geographic origin of the sampling (e.g., Ashkenazi, 

Sephardic or Ethiopian origins) (Behar et al. 2010). For example, a recent study has connected 

some genetic elements found in contemporary Ashkenazi genomes to genetic variation observed 

in Eastern Turkey (Das et al. 2016). The interpretation of this finding is up for debate, relative 

confinement of religious, ethnic, linguistic and political groups remains a major factor shaping the 

overall structuring of genetic variation in the region.  

 

Ancestors of contemporary Western Asians 

Recent data from ancient Western Asian genomes has revitalized the field and provided a first 

direct empirical glimpse of the complex genetic past in the region that had previously only been 

predicted from historical and archaeological evidence. Early attempts to get ancient DNA from 

the region were limited to fragments of mtDNA sequences with interesting, yet inconclusive, 

information gained (Matney et al. 2012). In the last two years, several studies provided genome-

wide data from hundreds of human remains, coming from multiple regions. These include: 

contemporary Europe, but also Turkey, Iran, Jordan, Israel, as well as Caucasus and Central 

Asia, and span the Paleolithic, early and late Neolithic, and into the Bronze Age (Keller et al. 2012; 

Skoglund et al. 2012; Skoglund et al. 2014; Allentoft et al. 2015; Jones et al. 2015; Mathieson et 

al. 2015; Hofmanová et al. 2016; Kılınç et al. 2016; Lazaridis et al. 2016; Omrak et al. 2016).  

 

One unexpected finding from this data is that the early farmers in Iran, Anatolia (the area that is 

covered by modern Turkey) and the Levant (Israel/Jordan area) are genetically different from 

each other, as well as from the contemporary populations living in those areas (Kılınç et al. 2016). 

This contrasts with previous thinking where researchers often considered the expansion of a 

single ancestral Neolithic population in Western Asia. Instead, we are faced with an unexpected 

diversity in Neolithic Western Asia, which was populated by distinct agricultural populations that 

later admixed into each other to contribute to the genetic pool of contemporary Western Asians. 

 

These early agricultural populations affected the genetic variation in the rest of Eurasia. Based 

on this data, it is now widely accepted that farming arrived to Europe via the migration of Western 

Asian farmers and their genomic contribution constitutes the majority of genetic variation of 

contemporary Europeans (Skoglund et al. 2012; Lazaridis et al. 2013). In fact, contemporary 

South Europeans cluster better with this ancient population than do contemporary Turkish 

populations (Kılınç et al. 2016). In addition, there is evidence, albeit less conclusive, that early 
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Iranian farmers contributed to the genetic variation of contemporary Central Asians and South 

Asians, while early farmers in the Levant contributed to the genetic variation of contemporary East 

Africans (Lazaridis et al. 2016). We now know that contemporary Western Asian genomes have 

been greatly influenced by these early inhabitants, as well as by the contribution of later population 

movements, including migrations of Turkic speakers into the region. It is now an exciting time to 

investigate the origins of contemporary genetic variation in the region.  

 

FUTURE  

Western Asia has been the focus of anthropologists, archaeologists, historians, and geneticists 

for a long time (Renfrew 1990; Gordon Childe 2014). Several major hypotheses ranging from the 

origins of all Eurasians to underlying reasons behind the transition to agriculture have been put 

forward within the geographic context of western Asia. As such, the incredible increase in the 

number of modern and ancient genomes has not necessarily changed the questions that we have 

been asking. Instead, they have allowed us to tackle these old questions with an unprecedented 

empirical rigor. For example, multiple studies in the last two years, have generally solidified the 

Neolithic Anatolian population as the ancestral population that give rise to the European Neolithic 

population, which in turn contributed greatly to contemporary genetic variation. Similar to this 

resolution of the issue of European Neolithic origins, we argue that the next phase in Western 

Asian genomics will tackle three exciting new avenues of research. 

 

First is the question of the nature, extent and origins of Neanderthal admixture into Eurasian 

ancestors. Recent studies now convincingly argue that all Western and Eastern Eurasians share 

genetic variation with Neanderthals, likely because of a common introgression event that 

happened in Western Asia after modern human ancestors crossed the Sahara desert but before 

they migrated out of Western Asia (Green et al. 2010; Prüfer et al. 2014; Vernot and Akey 2014). 

The current model, based on the currently available data mostly from modern human genomes, 

posits that a single introgression introduced Neanderthal haplotypes to a singular ancestral 

western Asian population. However, there is accumulating evidence that the interactions between 

Neanderthals and modern humans in Western Asia was more complicated. A ~40,000 year old 

human genome from Romania (Peştera cu Oase, Figure 1), which borders Western Asia, shows 

substantial Neanderthal ancestry, suggesting a direct Neanderthal ancestor for this human only 

4-6 generations back (Fu et al. 2015). However, it seems that this genome does not contribute to 

contemporary genetic variation of Eurasia, raising the possibility that multiple Western Asian 

populations have differential levels of Neanderthal admixture, and only a few contributed to the 

genetic variation of contemporary populations. Indeed, a recent study showed that Bedouin 

populations from Qatar are not only distinct from other Western Asian populations, but they aslo 

carry lower amounts of Neanderthal DNA than their neighbors (Rodriguez-Flores et al. 2016) 

(Figure 1). This is consistent with the notion that at least some of the ancestry of indigenous Arabs 

can be traced back to distinct Western Asian populations that have diverged from other Eurasian 

lineages shortly after the out-of-Africa migration. The time is ripe for a systematic study 

reconstructing the genetic variation of paleolithic populations in Western Asia and specifically to 

determine the timing and extent of Neanderthal introgression into these populations. 
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A second question concerns the routes the first migrants took when they travelled out of Africa. 

There is some level of consensus that Western Asia was the stepping stone for Paleolithic African 

migrants on their way to populate Eurasia. When exactly did the first modern humans arrive in 

Western Asia? Were there multiple migrations out-of-Africa or did a single ancestral population 

cross the Sahara (Drake et al. 2011)? Which route did they take? Did they establish multiple 

isolated populations during their time there? Which of these peoples populated Europe, Asia, 

South Asia, Australia? Two recent studies have argued that a single ancestral population from 

Africa populated all of Eurasia and Australia (Malaspinas et al. 2016; Mallick et al. 2016), whereas 

another study showed evidence for a distinct out-of-Africa ancestry in a modern day Australian 

that is not present in any other Eurasian genome (Pagani et al. 2016). If the latter study is 

accurate, it is plausible that isolated Western Asian populations may carry signatures of such 

distinct ancestry. In fact, the genetic variation of the Qatari population (Rodriguez-Flores et al. 

2016), as well as that of ancient Western Eurasian populations (Lazaridis et al. 2016), show the 

presence of a basal Eurasian lineage that is distinct from the ancestral lineages that later 

populated the rest of Eurasia. Another unknown with regards to early migrants out of Africa is the 

exact route through which they took to reach Western Asia and later the rest of Eurasia. While 

paleo-archaeological evidence suggests a “Southern” route through the Arabian Peninsula 

(Armitage et al. 2011), at least one genetic inference argues for a “Northern” route through Egypt 

(Pagani et al. 2015). There is a lively discussion in the field with regards to the exact route(s) 

(Boivin et al. 2013; Nasab et al. 2013; Bosch et al. 2015; Douka et al. 2015; Winder et al. 2015), 

as well as the genetic variation within the population(s) that left Africa (Hershkovitz et al. 2015; 

Malaspinas et al. 2016; Mallick et al. 2016; Pagani et al. 2016). Ancient genomes from the region 

may allow for the direct testing of these different models. Overall, we argue that with the increasing 

number of genomes available, the currently blurry picture of population dynamics in Paleolithic 

Western Asia will become clearer in the near future.  

  

The Neolithic transition, which has changed multiple aspects of human life from diet to social 

dynamics, first happened in Western Asia less than 12,000 years before the present - a flicker in 

the evolutionary timeline. Nevertheless, this transition may be the single most important event 

that adaptively shaped human genetic variation. Some of the best-known examples of selection 

in the human genome are of variants that are linked to the agricultural lifestyle. For example, 

lactase persistence has evolved recurrently and been selected for in multiple agricultural 

populations (Tishkoff et al. 2007; Romero et al. 2011). Similarly, the copy number of salivary 

amylase is strongly associated with increased starch consumption, which is a hallmark of 

agricultural societies (Perry et al. 2007). Now with more genomes across geographies and time 

(Mathieson et al. 2015), as well as a better understanding of the signatures of adaptive evolution 

in human genomes (Key et al. 2016), the next decade will surely witness a major increase in our 

understanding of how our bodies adapt to amazing diversity of ecologies that modern humans 

settled in the last hundred thousand years. 

 

One major challenge to all these exciting prospects is sampling. We believe that three major 

biases exist in current samples. First, the majority of samples have been collected in a medical 

setting to search for rare diseases (Scott et al. 2016). As such, it is plausible that there is a bias 

in selecting families with a history of inbreeding, which also translates into sampling from certain 

https://paperpile.com/c/OtiAu8/jG7s
https://paperpile.com/c/OtiAu8/P8WY+qyny
https://paperpile.com/c/OtiAu8/5fOI
https://paperpile.com/c/OtiAu8/wbkG
https://paperpile.com/c/OtiAu8/wbkG
https://paperpile.com/c/OtiAu8/KucE
https://paperpile.com/c/OtiAu8/5K80
https://paperpile.com/c/OtiAu8/HXp4
https://paperpile.com/c/OtiAu8/XBNS+wW2p+5THT+Xvgu+2CLh
https://paperpile.com/c/OtiAu8/iNbe+qyny+P8WY+5fOI
https://paperpile.com/c/OtiAu8/iNbe+qyny+P8WY+5fOI
https://paperpile.com/c/OtiAu8/yaSA+iCRZ
https://paperpile.com/c/OtiAu8/wPnu
https://paperpile.com/c/OtiAu8/ATjc
https://paperpile.com/c/OtiAu8/g2bd
https://paperpile.com/c/OtiAu8/etqr


Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final 
version. 

geographies where such in-family marriages are more common than others. Second, because of 

national politics, there are major differences in the number of samples collected and the amount 

of genetic data available from different geographical regions. For example, there are 18 full 

Turkish genomes and hundreds of genomes from Israel available for analyses, whereas to our 

knowledge there are no genomes from Iraq, Syria, or Azerbaijan. It is possible that more ancient 

than contemporary genomes were sequenced from some Western Asian geographies. The third 

bias is the lack of proper background information with regard to samples. This is partly also due 

to complicated politics. For example, ethnic, religious and ancestral backgrounds could be lost 

because donors may be stigmatized precisely because of their background. Further, collecting 

such information may be illegal, as is the case for Turkey. These factors may also bias the degree 

of inbreeding observed in Western Asia. We believe, however, that the ongoing studies from 

multiple groups will bridge the gaps in geography, time, and historical connections to establish a 

clearer and finer-scale picture of the genetic history of the region. 

 

Conclusion 

In this paper, we highlight some of the current research on the population genomics of Western 

Asia. This region stands at the crossroads of Africa, Asia, and Europe. As such, it has been a 

hotspot of human interaction and activity. Moreover, it is the place where arguably the most 

important cultural shift in human evolution, conversion to a sedentary lifestyle, emerged. Despite 

its importance, sampling from the region has always been problematic due to contemporary social 

and political realities. Nevertheless, the emerging picture from multiple genome-wide inferences 

into the region’s history has revealed a fascinating complexity. We believe that the next years will 

witness an explosion of new insights into the history of the region, and a better understanding of 

human genomic variation as a whole.  
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Figure 1.  

A general view of Western Asia. The green area represents the area we considered Western 

Asia. We also highlighted the locations of samples and archaeological sites we mention in the 

manuscript. Please note that these are by no means exhaustive. At the bottom of the graph, is a 

basic time-scale with regards to major demographic events affecting the populations of the 

region.  

 

 
 

  



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final 
version. 

References 

Alkan, C., P. Kavak, M. Somel et al. 2014. Whole genome sequencing of Turkish genomes 
reveals functional private alleles and impact of genetic interactions with Europe, Asia and 
Africa. BMC Genom. 15:963. 

Allentoft, M. E., M. Sikora, K-G Sjögren et al. 2015. Population genomics of Bronze Age 
Eurasia. Nature 522:167–172. 

Armitage, S. J., S. A. Jasim, A. E. Marks et al. 2011. The Southern Route “Out of Africa”: 
Evidence for an Early Expansion of Modern Humans into Arabia. Science 331:453–456. 

Barker, G. 2009. The agricultural revolution in prehistory: why did foragers become farmers? 
Oxford University Press on Demand 

Bar-Yosef, O. and A. Belfer-Cohen. 2001. From Africa to Eurasia — early dispersals. Quat. Int. 
75:19–28. 

Behar, D. M., B. Yunusbayev, M. Metspalu et al. 2010. The genome-wide structure of the 
Jewish people. Nature 466:238–242. 

Bellwood, P., C. Gamble, S. A. Le Blanc et al. 2007. First Farmers: the Origins of Agricultural 
Societies, by Peter Bellwood. Malden (MA): Blackwell, 2005; ISBN 0-631-20565-9 
hardback£ 60; ISBN 0-631-20566-7 paperback£ 17.99, xix+ 360 pp., 59 figs., 3 tables. 
Camb. Archaeol. J. 17:87–109. 

Bocquet-Appel, J-P and O. Bar-Yosef. 2008. The Neolithic Demographic Transition and its 
Consequences. Springer Science & Business Media 

Boivin, N, D. Q. Fuller, R. Dennell et al. 2013. Human dispersal across diverse environments of 
Asia during the Upper Pleistocene. Quat. Int. 300:32–47. 

Bosch, M. D., M. A. Mannino, A. L. Prendergast et al. 2015. New chronology for Ksâr ‘Akil 
(Lebanon) supports Levantine route of modern human dispersal into Europe. PNAS 
112:7683–7688. 

Cinnioğlu, C., R. King, T. Kivisild et al. 2004. Excavating Y-chromosome haplotype strata in 
Anatolia. Hum. Genet. 114:127–148. 

Comas, D., F. Calafell, E. Mateu et al. 1996. Geographic variation in human mitochondrial DNA 
control region sequence: the population history of Turkey and its relationship to the 
European populations. Mol. Biol. Evol. 13:1067–1077. 

Das, R., P. Wexler, M. Pirooznia et al. 2016. Localizing Ashkenazic Jews to Primeval Villages in 
the Ancient Iranian Lands of Ashkenaz. Genome Biol. Evol. 8:1132–1149. 

Di Benedetto, G., A. Ergüven, M. Stenico et al. 2001. DNA diversity and population admixture in 
Anatolia. Am. J. Phys. Anthropol. 115:144–156. 

Douka, K., T. F. G. Higham, and C. A. Bergman. 2015. Statistical and archaeological errors 
invalidate the proposed chronology for the site of Ksar Akil. P. Natl. Acad. Sci. USA 
112:E7034. 

http://paperpile.com/b/OtiAu8/3Cb0
http://paperpile.com/b/OtiAu8/3Cb0
http://paperpile.com/b/OtiAu8/3Cb0
http://paperpile.com/b/OtiAu8/osQs
http://paperpile.com/b/OtiAu8/osQs
http://paperpile.com/b/OtiAu8/5K80
http://paperpile.com/b/OtiAu8/5K80
http://paperpile.com/b/OtiAu8/SwOW
http://paperpile.com/b/OtiAu8/SwOW
http://paperpile.com/b/OtiAu8/EzJp
http://paperpile.com/b/OtiAu8/EzJp
http://paperpile.com/b/OtiAu8/r7gJ
http://paperpile.com/b/OtiAu8/r7gJ
http://paperpile.com/b/OtiAu8/N23a
http://paperpile.com/b/OtiAu8/N23a
http://paperpile.com/b/OtiAu8/N23a
http://paperpile.com/b/OtiAu8/N23a
http://paperpile.com/b/OtiAu8/fmNL
http://paperpile.com/b/OtiAu8/fmNL
http://paperpile.com/b/OtiAu8/2CLh
http://paperpile.com/b/OtiAu8/2CLh
http://paperpile.com/b/OtiAu8/XBNS
http://paperpile.com/b/OtiAu8/XBNS
http://paperpile.com/b/OtiAu8/XBNS
http://paperpile.com/b/OtiAu8/LwXe
http://paperpile.com/b/OtiAu8/LwXe
http://paperpile.com/b/OtiAu8/CZAl
http://paperpile.com/b/OtiAu8/CZAl
http://paperpile.com/b/OtiAu8/CZAl
http://paperpile.com/b/OtiAu8/326A
http://paperpile.com/b/OtiAu8/326A
http://paperpile.com/b/OtiAu8/umej
http://paperpile.com/b/OtiAu8/umej
http://paperpile.com/b/OtiAu8/wW2p
http://paperpile.com/b/OtiAu8/wW2p
http://paperpile.com/b/OtiAu8/wW2p


Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final 
version. 

Drake, N. A., R. M. Blench, S. J. Armitage et al. 2011. Ancient watercourses and biogeography 
of the Sahara explain the peopling of the desert. P. Natl. Acad. Sci. USA 108:458–462. 

Fu, Q., M. Hajdinjak, O. T. Moldovan et al. 2015. An early modern human from Romania with a 
recent Neanderthal ancestor. Nature 524:216–219. 

M. Gallego Llorente, E. R. Jones, A. Eriksson et al. 2015. Ancient Ethiopian genome reveals 
extensive Eurasian admixture in Eastern Africa. Science 350:820–822. 

Gokcumen, Ö, T. Gultekin, Y. D. Alakoc et al. 2011. Biological ancestries, kinship connections, 
and projected identities in four central Anatolian settlements: insights from culturally 
contextualized genetic anthropology. Am. Anthropol. 113:116–131. 

Gordon Childe, V. 1936. Man makes himself. Watts, London. 

Gordon Childe, V. 2014. New Light on the Most Ancient East. Routledge 

Gosden, C. 2004. Rethinking materiality: The engagement of mind with the material world. 
McDonald institute for archaeological research 

Gray, R. D., Q. D. Atkinson. 2003. Language-tree divergence times support the Anatolian theory 
of Indo-European origin. Nature 426:435–439. 

Green, R. E., J. Krause, A. W. Briggs et al. 2010. A draft sequence of the Neandertal genome. 
Science 328:710–722. 

Gregory, T. E. 2010. A History of Byzantium. John Wiley & Sons 

Harris, K. and R. Nielsen. 2013. Inferring demographic history from a spectrum of shared 
haplotype lengths. PLoS Genet. 9:e1003521. 

Hershkovitz, I., O. Marder, A. Ayalon et al. 2015. Levantine cranium from Manot Cave (Israel) 
foreshadows the first European modern humans. Nature 520:216–219. 

Hodoğlugil, U., and R. W. Mahley. 2012. Turkish population structure and genetic ancestry 
reveal relatedness among Eurasian populations. Ann. Hum. Genet. 76:128–141. 

Hofmanová, Z., S. Kreutzer, G. Hellenthal et al. 2016. Early farmers from across Europe directly 
descended from Neolithic Aegeans. Proc. Natl. Acad. Sci. U. S. A. 113:6886–6891. 

Hsieh, P., A. E. Woerner, J. D. Wall et al. 2016. Model-based analyses of whole-genome data 
reveal a complex evolutionary history involving archaic introgression in Central African 
Pygmies. Genome Res. 26:291–300. 

Jones, E. R., G. Gonzalez-Fortes, S. Connell et al. 2015. Upper Palaeolithic genomes reveal 
deep roots of modern Eurasians. Nat. Commun. 6:8912. 

Kappelman, J., M. C. Alçiçek, N. Kazanci et al. 2008. First Homo erectus from Turkey and 
implications for migrations into temperate Eurasia. Am. J. Phys. Anthropol. 135:110–116. 

Keller, A., A. Graefen, M. Ball et al. 2012. New insights into the Tyrolean Iceman’s origin and 
phenotype as inferred by whole-genome sequencing. Nat. Commun. 3:698. 

http://paperpile.com/b/OtiAu8/jG7s
http://paperpile.com/b/OtiAu8/jG7s
http://paperpile.com/b/OtiAu8/U9IJ
http://paperpile.com/b/OtiAu8/U9IJ
http://paperpile.com/b/OtiAu8/o5sj
http://paperpile.com/b/OtiAu8/o5sj
http://paperpile.com/b/OtiAu8/wZuV
http://paperpile.com/b/OtiAu8/wZuV
http://paperpile.com/b/OtiAu8/wZuV
http://paperpile.com/b/OtiAu8/Qb0o
http://paperpile.com/b/OtiAu8/ZqHU
http://paperpile.com/b/OtiAu8/lpPd
http://paperpile.com/b/OtiAu8/lpPd
http://paperpile.com/b/OtiAu8/vNvs
http://paperpile.com/b/OtiAu8/vNvs
http://paperpile.com/b/OtiAu8/BVCC
http://paperpile.com/b/OtiAu8/BVCC
http://paperpile.com/b/OtiAu8/xcOh
http://paperpile.com/b/OtiAu8/iPHe
http://paperpile.com/b/OtiAu8/iPHe
http://paperpile.com/b/OtiAu8/iNbe
http://paperpile.com/b/OtiAu8/iNbe
http://paperpile.com/b/OtiAu8/htBv
http://paperpile.com/b/OtiAu8/htBv
http://paperpile.com/b/OtiAu8/7GXg
http://paperpile.com/b/OtiAu8/7GXg
http://paperpile.com/b/OtiAu8/me0G
http://paperpile.com/b/OtiAu8/me0G
http://paperpile.com/b/OtiAu8/me0G
http://paperpile.com/b/OtiAu8/bXsR
http://paperpile.com/b/OtiAu8/bXsR
http://paperpile.com/b/OtiAu8/Xtrg
http://paperpile.com/b/OtiAu8/Xtrg
http://paperpile.com/b/OtiAu8/lRbg
http://paperpile.com/b/OtiAu8/lRbg


Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final 
version. 

Key, F. M., Q. Fu, F. Romagné et al. 2016. Human adaptation and population differentiation in 
the light of ancient genomes. Nat. Commun. 7:10775. 

Kılınç, G. M., A. Omrak, F. Özer et al. 2016. The Demographic Development of the First 
Farmers in Anatolia. Curr. Biol. 26:2659–2666. 

Knapp, A. B. 1988. The history and culture of ancient Western Asia and Egypt. JSTOR 

Kuhlwilm, M., I. Gronau, M. J. Hubisz et al. 2016. Ancient gene flow from early modern humans 
into Eastern Neanderthals. Nature 530: 429-433.  

Kuhrt, A. 1995. The Ancient Near East, C. 3000-330 BC. Taylor & Francis US 

Lazaridis, I., D. Nadel, G. Rollefson et al. 2016. Genomic insights into the origin of farming in the 
ancient Near East. Nature 536: 419-424.   

Lazaridis, I., N. Patterson, A. Mittnik et al. 2014. Ancient human genomes suggest three 
ancestral populations for present-day Europeans. Nature 513: 409-413. 

Mallick, S., H. Li, M. Lipson et al. 2016. The Simons Genome Diversity Project: 300 genomes 
from 142 diverse populations. Nature 538:201–206. 

Mansfield, P. 2013. A History of the Middle East: Fourth Edition. Penguin 

Mathieson, I., I. Lazaridis, N. Rohland et al. 2015. Genome-wide patterns of selection in 230 
ancient Eurasians. Nature 528:499–503. 

Matney, T., G. Algaze, M. C. Dulik et al. 2012. Understanding Early Bronze Age social structure 
through mortuary remains: A pilot aDNA study from Titriş Höyük, southeastern Turkey. Int. 
J. Osteoarchaeol. 22:338–351. 

McCown, T. D. and S. A. Keith. 1939. The Stone Age of Mount Carmel: The Fossil Human 
Remains from the Levallosiso-Mousterian. Clarendon Press 

Mellaart, J. 1967. Çatal Hüyük: a neolithic town in Anatolia. McGraw-Hill 

Menozzi, P, A. Piazza, L. Cavalli-Sforza. 1978. Synthetic maps of human gene frequencies in 
Europeans. Science 201:786–792. 

Nasab, H. V., G. A. Clark, and S. Torkamandi. 2013. Late Pleistocene dispersal corridors across 
the Iranian Plateau: A case study from Mirak, a Middle Paleolithic site on the northern edge 
of the Iranian Central desert (Dasht-e Kavir). Quat. Int. 300:267–281. 

Novembre, J., T. Johnson, K. Bryc et al. 2008. Genes mirror geography within Europe. Nature 
456:98–101. 

Omrak, A., T. Günther, C. Valdiosera et al. 2016. Genomic Evidence Establishes Anatolia as 
the Source of the European Neolithic Gene Pool. Curr. Biol. 26:270–275. 

Orlando, L., A. Ginolhac, G. Zhang et al. 2013. Recalibrating Equus evolution using the genome 
sequence of an early Middle Pleistocene horse. Nature 499:74–78. 

Pääbo, S. 2015. The diverse origins of the human gene pool. Nat. Rev. Genet. 16:313–314. 

http://paperpile.com/b/OtiAu8/g2bd
http://paperpile.com/b/OtiAu8/g2bd
http://paperpile.com/b/OtiAu8/ytIv
http://paperpile.com/b/OtiAu8/ytIv
http://paperpile.com/b/OtiAu8/0v30
http://paperpile.com/b/OtiAu8/VyIt
http://paperpile.com/b/OtiAu8/VyIt
http://paperpile.com/b/OtiAu8/le6F
http://paperpile.com/b/OtiAu8/KucE
http://paperpile.com/b/OtiAu8/KucE
http://paperpile.com/b/OtiAu8/l6cC
http://paperpile.com/b/OtiAu8/l6cC
http://paperpile.com/b/OtiAu8/P8WY
http://paperpile.com/b/OtiAu8/P8WY
http://paperpile.com/b/OtiAu8/T6v7
http://paperpile.com/b/OtiAu8/ATjc
http://paperpile.com/b/OtiAu8/ATjc
http://paperpile.com/b/OtiAu8/EDaE
http://paperpile.com/b/OtiAu8/EDaE
http://paperpile.com/b/OtiAu8/EDaE
http://paperpile.com/b/OtiAu8/pNtg
http://paperpile.com/b/OtiAu8/pNtg
http://paperpile.com/b/OtiAu8/GfGd
http://paperpile.com/b/OtiAu8/Wko6
http://paperpile.com/b/OtiAu8/Wko6
http://paperpile.com/b/OtiAu8/5THT
http://paperpile.com/b/OtiAu8/5THT
http://paperpile.com/b/OtiAu8/5THT
http://paperpile.com/b/OtiAu8/KZmF
http://paperpile.com/b/OtiAu8/KZmF
http://paperpile.com/b/OtiAu8/G2rE
http://paperpile.com/b/OtiAu8/G2rE
http://paperpile.com/b/OtiAu8/2vLO
http://paperpile.com/b/OtiAu8/2vLO
http://paperpile.com/b/OtiAu8/NDav


Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final 
version. 

Pagani, L., D. J. Lawson, E. Jagoda et al. 2016. Genomic analyses inform on migration events 
during the peopling of Eurasia. Nature 538:238–242. 

Pagani, L., S. Schiffels, D. Gurdasani et al. 2015. Tracing the route of modern humans out of 
Africa by using 225 human genome sequences from Ethiopians and Egyptians. Am. J. 
Hum. Genet. 96:986–991. 

Perry, G. H., N. J. Dominy, K. G. Claw et al. 2007. Diet and the evolution of human amylase 
gene copy number variation. Nat. Genet. 39:1256–1260. 

Prüfer, K., F. Racimo, N. Patterson et al. 2014. The complete genome sequence of a 
Neanderthal from the Altai Mountains. Nature 505:43–49. 

Racimo, F., S. Sankararaman, R. Nielsen et al. 2015. Evidence for archaic adaptive 
introgression in humans. Nat. Rev. Genet. 16:359–371. 

Reich, C. M., N. Blackwell, C. A. Simmons et al. 2015. Social problem solving strategies and 
posttraumatic stress disorder in the aftermath of intimate partner violence. J. Anxiety 
Disord. 32:31–37. 

Reich, D., R. E. Green, M. Kircher et al. 2010. Genetic history of an archaic hominin group from 
Denisova Cave in Siberia. Nature 468:1053–1060. 

Reich, D., A. L. Price, and N. Patterson. 2008. Principal component analysis of genetic data. 
Nat. Genet. 40:491–492. 

Renfrew, C. 1990. Archaeology and Language: The Puzzle of Indo-European Origins. CUP 
Archive 

Rodriguez-Flores, J. L., K. Fakhro, F. Agosto-Perez et al. 2016. Indigenous Arabs are 
descendants of the earliest split from ancient Eurasian populations. Genome Res. 26:151–
162. 

Romero, I. G., C. B. Mallick, A. Liebert et al. 2012. Herders of Indian and European cattle share 
their predominant allele for lactase persistence. Mol. Biol. Evol. 29: 249-260. 

Sankararaman, S., S. Mallick, M. Dannemann et al. 2014. The genomic landscape of 
Neanderthal ancestry in present-day humans. Nature 507: 354-357.   

Schiffels, S. and R. Durbin. 2014. Inferring human population size and separation history from 
multiple genome sequences. Nat. Genet. 46:919–925. 

Schuster, S. C. 2008. Next-generation sequencing transforms today’s biology. Nat. Methods 
5:16–18. 

Scott, E. M., A. Halees, Y. Itan et al. 2016. Characterization of Greater Middle Eastern genetic 
variation for enhanced disease gene discovery. Nat. Genet. 48:1071–1076. 

Siska, V., E. R. Jones, S. Jeon et al. 2017. Genome-wide data from two early Neolithic East 
Asian individuals dating to 7700 years ago. Sci. Adv. 3:e1601877. 

Skoglund, P., H. Malmström, A. Omrak et al. 2014. Genomic diversity and admixture differs for 
Stone-Age Scandinavian foragers and farmers. Science 344:747–750. 

http://paperpile.com/b/OtiAu8/5fOI
http://paperpile.com/b/OtiAu8/5fOI
http://paperpile.com/b/OtiAu8/HXp4
http://paperpile.com/b/OtiAu8/HXp4
http://paperpile.com/b/OtiAu8/HXp4
http://paperpile.com/b/OtiAu8/wPnu
http://paperpile.com/b/OtiAu8/wPnu
http://paperpile.com/b/OtiAu8/fI38
http://paperpile.com/b/OtiAu8/fI38
http://paperpile.com/b/OtiAu8/ocdr
http://paperpile.com/b/OtiAu8/ocdr
http://paperpile.com/b/OtiAu8/uO9n
http://paperpile.com/b/OtiAu8/uO9n
http://paperpile.com/b/OtiAu8/uO9n
http://paperpile.com/b/OtiAu8/yNj3
http://paperpile.com/b/OtiAu8/yNj3
http://paperpile.com/b/OtiAu8/Pn2b
http://paperpile.com/b/OtiAu8/Pn2b
http://paperpile.com/b/OtiAu8/lvLP
http://paperpile.com/b/OtiAu8/lvLP
http://paperpile.com/b/OtiAu8/wbkG
http://paperpile.com/b/OtiAu8/wbkG
http://paperpile.com/b/OtiAu8/wbkG
http://paperpile.com/b/OtiAu8/iCRZ
http://paperpile.com/b/OtiAu8/iCRZ
http://paperpile.com/b/OtiAu8/TVEZ
http://paperpile.com/b/OtiAu8/TVEZ
http://paperpile.com/b/OtiAu8/XiIe
http://paperpile.com/b/OtiAu8/XiIe
http://paperpile.com/b/OtiAu8/0SBz
http://paperpile.com/b/OtiAu8/0SBz
http://paperpile.com/b/OtiAu8/etqr
http://paperpile.com/b/OtiAu8/etqr
http://paperpile.com/b/OtiAu8/J5YB
http://paperpile.com/b/OtiAu8/J5YB
http://paperpile.com/b/OtiAu8/ioZQ
http://paperpile.com/b/OtiAu8/ioZQ


Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final 
version. 

Skoglund, P., H. Malmström, M. Raghavan et al. 2012. Origins and genetic legacy of Neolithic 
farmers and hunter-gatherers in Europe. Science 336:466–469. 

Tishkoff, S. A., F. A. Reed, A. Ranciaro et al. 2007. Convergent adaptation of human lactase 
persistence in Africa and Europe. Nat. Genet. 39:31–40. 

Veeramah, K. R., M. F. Hammer. 2014. The impact of whole-genome sequencing on the 
reconstruction of human population history. Nat. Rev. Genet. 15:149–162. 

Vernot, B., J. M. Akey. 2014. Resurrecting surviving Neandertal lineages from modern human 
genomes. Science 343:1017–1021. 

Vernot, B., S. Tucci, J. Kelso et al. 2016. Excavating Neandertal and Denisovan DNA from the 
genomes of Melanesian individuals. Science 352:235–239. 

Winder, I. C., M. H. Devès, G. C. P. King et al. 2015. Evolution and dispersal of the genus 
Homo: A landscape approach. J. Hum. Evol. 87:48–65. 

Wright S. 1943. Isolation by Distance. Genetics 28:114–138. 

 

http://paperpile.com/b/OtiAu8/6ePk
http://paperpile.com/b/OtiAu8/6ePk
http://paperpile.com/b/OtiAu8/yaSA
http://paperpile.com/b/OtiAu8/yaSA
http://paperpile.com/b/OtiAu8/VcEF
http://paperpile.com/b/OtiAu8/VcEF
http://paperpile.com/b/OtiAu8/PRzm
http://paperpile.com/b/OtiAu8/PRzm
http://paperpile.com/b/OtiAu8/o3SJ
http://paperpile.com/b/OtiAu8/o3SJ
http://paperpile.com/b/OtiAu8/Xvgu
http://paperpile.com/b/OtiAu8/Xvgu
http://paperpile.com/b/OtiAu8/9hb1

	Wayne State University
	7-1-2016
	The multiple histories of Western Asia: Perspectives from ancient, and modern genomes
	Recep Taskent
	Omer Gokcumen
	Recommended Citation


	The multiple histories of Western Asia: Perspectives from ancient and modern genomes
	Western Asia:
	Contemporary human genomics, what changed?
	The global context of genetic variation in Western Asian populations
	New insights into the contemporary genetic structure within Western Asian populations
	Ancestors of contemporary Western Asians
	FUTURE
	Conclusion
	Acknowledgments
	Figure 1.
	References


