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Generalized Linear Mixed-Effects Models for the Analysis of Odor Detection Data 
 

Sandra Hall   Matthew S. Mayo   Xu-Feng Niu   James C. Walker 
University of Kansas Medical Center    Florida State University 

 
 
Olfactory detection has become a science of interest. Seven individuals’ odor detection abilities are 
explored and an attempt is made to characterize all subjects with one generalized linear mixed effects 
model. Two methods of fitting the models were used and simulations were conducted to discover which 
method yielded the best results. 
 
Key words: olfactory, conditional distribution, Metropolis Algorithm, Monte Carlo Newton Raphson 
Method, random effects, detectability, odor, human, sensitivity. 
 
 

Introduction 
 
The quality of indoor air is one of the least 
understood health problems that industry faces 
today. A major problem that poor indoor air 
quality causes is Sick Building Syndrome (EPA, 
1989). This occurs when a substantial proportion 
of a building’s occupants experience discomfort 
and health effects that are relieved upon leaving 
the building. It has been reported that sick 
buildings cause an estimated loss of between ten 
and one hundred billion dollars a year for non-
medical aspects of diminished indoor air quality, 
excluding medical events such as asthmatic 
attacks (Fisk & Rosenfeld, 1997). Human 
symptoms of Sick Building Syndrome range 
from repetitive office headaches and common 
cold-like symptoms to serious ailments such as  
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respiratory infections, asthma and allergies. A 
1996 Cornell University study found that, in 
each of 35 buildings surveyed, at least 20% of 
the occupants had experienced symptoms 
associated with Sick Building Syndrome (Mann, 
1998). Odor threshold is the point at which the 
probability of odor detection becomes greater 
than chance. Threshold is the most basic 
measure of sensory function. To understand 
higher order capabilities (e.g. odor 
discrimination, odor identification, identification 
of target in mixtures, and perception of odor 
quality), it is necessary to take into account the 
sensitivity of each individual to each chemical. 
Thus, it is important to have a valid way to 
quantify sensitivity. One example of why odor 
threshold might be studied is to gain a better 
understanding of issues related to olfaction such 
as Sick Building Syndrome. Another is that it 
has been hypothesized that early stages of 
Alzheimer’s disease can be detected by a loss of 
odor detectability (Devanand et. al., 2000).  
 To help researchers understand this 
concept of accurately quantifying odor detection 
ability, a study was conducted at the Florida 
State University Sensory Research Institute’s 
(SRI). Subjects received stimuli via a facemask 
that covered the person’s mouth and nose, 
although the stimuli were taken in through only 
the nose. The subject then responded using a 
computer mouse and monitor screen as to 
whether or not an odor was detected. By using 
this olfactometer, the subject was given a precise 
concentration of the chemical (Walker et. al., 
2003).  
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For that study, seven subjects were 
recruited. They were selected so as to have a 
variety of different ages as well as subjects of 
each and both genders. As the subjects 
responded to the posters via phone calls they 
were asked routine questions to determine if 
they had a prior history of nasal defect. The 
researchers desired both a male and female 
subject in each of the following age categories: 
18-20, 21-30, 31-44 and > 45 years.  After three 
weeks of recruitment, no male subject was found 
in the 31-44 year- old group and the 
experimenters elected to continue the study 
without a male subject from this age group. Each 
subject completed 12 to 14 sessions over the 
course of 3 to 4 months. Each session consisted 
of 75 trials (15 trials of clean air in addition to 
15 trials at each of 4 different concentrations of 
amyl acetate) each lasting approximately 18 
seconds and separated by 90-second intervals. 
Hence, a typical session ran for 2 hours and 15 
minutes. 

A trial consists of the subject being 
asked to come to the mask, where they breathed 
the stimulus.  The subject then used a mouse to 
click whether they detected an odor or not. The 
method of stimulus presentation allowed for 
very precise control. Before and during stimulus 
presentation, breathing was measured. After 
several seconds of pre-stimulus sampling of 
respiratory behavior was stored, the next 
exhalation onset triggered operation of the flow 
valve that (unless a clean air trial is scheduled) 
sent odorant to the mask. This approach 
essentially eliminated the vexing problem of a 
stimulus rise time, because the concentration 
reached its asymptotic value during the interval 
from an exhalation onset to the next inhalation 
onset (Prah, Sears & Walker, 1995). The 
specific concentrations and corresponding yes’s 
(y’s) and no’s (n’s) from the subject for the 
session were recorded on the same computer that 
randomized the concentrations to be given.  

Traditionally, longitudinal data might 
have been analyzed using a generalized linear 
model (GLM) for each subject. However, this 
method does not accommodate a population 
based model, which is ultimately desired. Thus, 
generalized linear mixed models (GLMMs) were 
used to address the problem. 

The class of functions known as 
GLMMs extends GLMs by adding random 
effects to the linear predictor(s). The benefit of 
this model is that it allows for responses that are 
correlated and non-normally distributed, which 
can frequently occur in actual problems. By 
including the random effects, the GLMMs can 
model correlated errors, smooth regression 
relationships and model dependence among 
variables that occurs in repeated measure 
designs. Many problems involve multiple 
sources of variation such as analysis of data that 
has a hierarchical structure like clinical trial 
data. The GLMM can be used to model such 
data. In this particular study, the model needed 
to account for the randomness of the session. 
This random nature is not considered in the 
traditional generalized linear model which is 
initially used to describe the data analyzed in 
this study. 

A natural alternative to this approach is 
to utilize generalized estimating equations 
(GEE). The GEE approach is attractive because 
it allows for a weighted estimate of the 
regression parameters and correctly adjusts for 
correlated data. The problems with GEE are that 
a) it provides only a population model of the 
data and b) it requires a large amount of subjects 
for the large sample distribution properties to 
provide correct standard errors for inference 
(hypothesis testing and confidence intervals). 
Since only seven subjects were available, the 
GEE approach would not be an appropriate 
choice.  
  GLMMs are useful as an alternative to 
GEE and might be an approach that is useful in 
small sample sizes. For example, SAS has a 
procedure called “GLIMMIX” that is promising. 
The problem is that GLIMMIX has not been 
completely assessed for its usefulness in small 
sample sizes.  
  GLMMs provide insight into the 
behavior, but accurately estimating the model 
can be quite difficult.  Because GLMMs are an 
extension of GLMs, one might logically try to fit 
the model using maximum likelihood, the 
common method to fit GLMs. The maximum 
likelihood method will only work for very 
simple GLMMs due to the need to numerically 
evaluate high dimensional integrals that are 
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irreducible. Thus, statisticians have looked for 
other methods to fit these models that do not 
involve the difficulties of the numerically 
complicated integration. Many different methods 
have been proposed to fit generalized linear 
mixed models. The model and two specific 
previously proposed methods (one being the 
SAS- GLIMMIX approach) will be discussed. 
Shown next will be results of the simulation 
study comparing these two methods for the data, 
fit the model that was deemed best in the 
simulation study and summarize the work. 

 
Methodology 

Model 
Let Yij be the jth response for subject i, 

with j = 1 to n i and i = 1 to m where m is the 
number of subjects and ni is the number of 
observations per subject. Let X ijk be the jth value 
of the kth fixed effect for subject i, with k = 1 to 
p and i and j as described previously. Thus, the 
traditional generalized linear model is  
 

∑ =+= p
k ijkkij Xg 10)( ββμ  

 
with )( ijij YE=μ , where g is the link function 
and p is the number of different fixed effects. 

Upon including the random effects, the 
model becomes:  
 

         
0 1 1

( )ij ij

p c
k ijk il ijlk l

g

X α Z

η μ

β β
= =

= =

+ +∑ ∑
     (1) 

 
where X is still assumed to be the matrix for the 
fixed effects and Zijl is the jth value for the l th 
random effect for subject i where l  = 1 to c with 
c being the number of random effects. Also, it is 
assumed that ),|( βα iijij YE=μ  and 

)(),|var( iiiij vaY μφ=βα , where φ is a 

dispersion parameter, )(v ⋅ is a specified variance 
function and ia  is a known constant. The 

random effects ),,, 21 mααα …(  are assumed 
to be independent with mean 0 and cov( α i)=D. 
It is assumed that the elements of Y conditional 
on α  are both independent and drawn from an 
exponential family distribution. Finally, α  is 

assumed to be distributed )|( Dααf . Let iη  
T

ini i
),,( 1 ηη …= . Then, the function becomes:  
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and the likelihood function is:  
 

        
|

1

( , , | )

( | , , ) ( | )
i

n

Y i
i

L

f f dα α

β φ

φ
=

=

∏∫

D Y

Y Dα β α α
   (3) 

 
(Breslow &Clayton, 1993; Clayton, 1993; Jiang, 
1998; Lin & Breslow, 1996; Lindstrom & Bates, 
1990; McCulloch, 1997; Vonesh, 1996). 
 
Simulation methods 

Several methods have been proposed to 
estimate the solution to the generalized linear 
mixed model. McCulloch (1997) proposed 
algorithms for Monte Carlo EM (MCEM) and 
Monte Carlo Newton-Raphson (MCNR). Lin 
and Breslow (1996) proposed using a penalized 
quasi-likelihood approach with bias correction to 
estimate the model.  
 The Monte Carlo EM algorithm 
considers the random effects α  to be missing 
data. Therefore, the complete data would be 
W=(Y, α ) and the log likelihood for the 
complete data would be  
 

     
|ln ( | , , ) ln ( | )

i

W

Y i
i

f fα αφ
=

+∑ Y D
A

α β α  (4) 

 
Thus, the Yi’s become independent when the 
α ’s are known. Note that β  and φ enter into the 
above equation only in the first term, the 
maximization with respect to those two terms is 
similar to a standard GLM computational 
problem with the α ’s known. Then maximizing 
with respect to D involves replacing the 
sufficient statistics with their conditional 
expected value and then performing maximum 
likelihood using the distribution of α . 
McCulloch’s (1997) algorithm follows: 
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1. Choose starting values for β (0), φ(0), and D(0). 

Set m=0. 
2. Calculate (with expectations evaluated under 

β (m), φ(m), and D(m)): 
a. β (m+1) and φ(m+1) which maximize 

]|),,|([ln | YY φα βαYfE  
b. D(m+1) which maximizes 

]|)|([ln YDααfE  
c. Set m=m+1 

3. If convergence is achieved, declare β (m+1), 
φ(m+1), and D(m+1) to be maximum likelihood 
estimates. Otherwise repeat step two. 
 

Neither expectation in step two can actually be 
found in closed form. It is, however, possible to 
produce random draws from the conditional 
distribution of α |Y by using the Metropolis 
algorithm (Vonesh, 1996), which does not 
require a specification of fY. Monte Carlo 
approximations may then be formed in order to 
estimate the two required expectations. For 
sufficiently large sample sizes, it was discovered 
that this method gains likelihood and would 
converge to a local maximum under appropriate 
regularity conditions (McCulloch, 1997). 
Although this holds promise, in variance 
component problems, such as with GLMMs, the 
likelihood surfaces are not necessarily unimodal; 
thus, this method may only converge to a local 
maximum and never to the global one. A second 
problem is that it is limited to the binary 
response with the probit link. Incorporating this 
Metropolis algorithm into the EM algorithm 
gives the MCEM algorithm below (McCulloch, 
1997): 
 
1. Choose starting values for β (0), φ(0), and 

D(0). Set m=0. 
2. Generate N values, α (1), α (2), … , α (N) 

from ),,,|( )()()(
|

mmm
Yf DY φα βα using 

the Metropolis algorithm: 
a.  Choose β (m+1) and φ(m+1) to maximize a 
Monte Carlo estimate of 

]|),,|([ln | YY φα βαYfE  that is 

maximize ),,|(ln1 )(

1
| φα βα k

N

k
YfN ∑=

Y  

b. Choose D(m+1) to maximize 

∑
=

N

k

kf
N 1

)( )|(ln1 Dαα  

c. Set m=m+1 
3. If convergence is achieved declare β (m+1), 

φ(m+1), and D(m+1) to be maximum likelihood 
estimates. Otherwise repeat step two. 

 
The next method that McCulloch (1997) 

used is the Monte Carlo Newton-Raphson 
method. This method also seemed robust to 
starting values. Again, since the likelihood 
surfaces are not unimodal, they are definitely not 
concave and thus this method may not converge 
at all, let alone to the global maximum. In 
practice it was discovered that this method 
generally got close to the correct answer. The 
algorithm appears below: 
 
1. Choose starting values for β (0), φ(0), and 

D(0). Set m=0. 
2. Generate N values, α (1), α (2), … , α (N) 

from ),,,|( )()()(
|

mmm
Yf DY φα βα using 

the Metropolis algorithm and use them to 
form Monte Carlo estimates of the 
expectations (denoted as ][ˆ ⋅E ): 
a. Calculate 
  

( )

( 1)

( ) T ( ) 1 T ( )

( )

ˆ[ , ) | ] ([ ( , )

( ( , )) | ])

m

m

m m m

m

E
θ θ

+

−

=

=

∂+
∂

−
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μ
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β
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a. Calculate φ(m+1) to solve 

0
),|(ln | =⎥

⎦

⎤
⎢
⎣

⎡

∂
∂

Y
Y

φ
θα αYf

E  or a 

scoring equation. 
c.  Choose D(m+1) to maximize 

∑
=

N

k

kf
N 1

)( )|(ln1 Dαα  

d.  Set m=m+1 
3. If convergence is achieved declare β (m+1), 

φ(m+1), and D(m+1) to be maximum likelihood 
estimates. Otherwise repeat step two. 

 
The MCEM and MCNR algorithms are 

very similar. In fact, the maximization to 
calculate the fixed effects coefficients in the 
MCEM algorithm cannot explicitly be carried 
out for binomial data, and thus, an estimation 
method is necessary, such as the Newton 
Raphson Method. Thus, for our purposes, the 
MCNR is equivalent to the MCEM algorithm. 
 Breslow and Clayton (1993) proposed 
performing a method known as penalized quasi-
likelihood analysis (PQL) in order to 
approximate the maximum likelihood estimates. 
The key feature of this analysis is that it is easy 
to implement, especially since there exists a 
SAS macro for this method. The procedure is to 
repeatedly fit a linear mixed model to a modified 
dependent variable. They realized that a 
limitation of the PQL is that when assessing the 
uncertainty in both random and fixed effects it 
does not take into account the contribution of the 
estimated variance components. Lin and 
Breslow (1996) proposed a four-step procedure 
of bias correction for the PQL. 
 Lin and Breslow (1996) provided a four 
step algorithm to find the bias-corrected 
penalized quasi-likelihood estimates of the 
regression coefficients and variance 
components. They performed simulation studies 
and found that the bias correction procedure can 
improve asymptotic performance of the 
estimates for correlated binary data. They also 
discovered that this simple correction procedure 
would effectively reduce the bias of variance 
components of the PQL estimates and the 
associated mean square error as long as the 
sample size is reasonably large. 

Results 
 

The two methods, Monte Carlo Newton-
Raphson and penalized quasi-likelihood with 
bias correction, were used in a simulation study 
in order to determine which method better 
estimates the fixed affects as well as the random 
effects. The MCNR program was written in 
Matlab. The penalized quasi-likelihood program 
with bias correction (PQBC) was coded using 
SAS and the GLIMMIX macro available from 
SAS’s website: 
http://ftp.sas.com/techsup/download/stat/.  

The response vector for each program 
was generated using a binomial random 
generator. Binomial probabilities were 
calculated for each combination of subject, 
session and concentration.  

It was then determined how many 
simulations of the program should be carried out 
in order to have results that converge. Thus, 
each of the programs was run a total of 100 and 
1000 times, respectively. Each time, a new 
response vector was generated. The response 
vectors were based on the following model, 
using concentrations from four of the seven 
subjects,  
 

          
ij

ij

conc

conc

ij
e

ep *5.315

*5.315

1 −−

−−

+
=        (6) 

 
where pij is the probability for the jth 
concentration of subject i. The model gives the 
probability to be used for each concentration 
value. The binomial generator was then used 
along with the probabilities found in the model 
to generate fifteen binary responses for each 
concentration as it occurred. It can be seen, in 
Table 1, that both programs appear to have 
converging results with as few as 100 
simulations.  

Next, it is necessary to test the random 
effects portion of the programs. For this step, 
concentrations for four of the seven subjects 
were used. For each combination of subject, 
concentration, σ level (σ = 0.5, 1.5, 2.0, 2.5 and 
3.0) and (α, β) pair [values of (α, β) used were 
as follows: (-10, -2), (-12.5, -2.75), (-15, -3.5),  
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(-17.5, -4.25), and (-20, -5)] the following 
process was used to generate simulation data 
sets:  
 
Step 1: Generated a random number, γ, from the 
N(0, σ2) distribution.  
 
Step 2: Generated a binomial probability using 
the following model:  

γβα

γβα

++

++

+
= conc

conc

e
ep *

*

1
      (7) 

 
Step 3: Used this generated probability to 
randomly generate data from the binomial 
distribution with n equal to 15 and the value 
generated in step 2 for each time the 
subject/concentration combination occurred. 
This gave the ability to weight the different 
concentrations properly for each subject.  

 
This process was repeated 100 times, so that 100 
different data sets were generated for each 
individual combination of subject, 
concentration, σ level and (α, β) pair.  

In Table 2, models for ten subjects with 
a standard deviation of 0.5, 1.5, 2.0, 2.5, and 3.0 
are considered. The MCNR program tends to 
overestimate the slope and intercept, while the 
PQBC program tends to estimate the slope and 
intercept accurately. The PQBC program seems 
to underestimate the standard deviation, yet the 
MCNR program tends to estimate the standard 
deviation fairly close to the actual value.  
 
 
 

 
 

 
In Table 3, models for twenty simulated 

subjects with a standard deviation of 0.5, 1.5, 
2.0, 2.5, and 3.0 are considered. The MCNR 
program tends to come close to estimating the 
slope and the intercept or else slightly 
overestimate them, while the PQBC program 
tends to estimate the slope and intercept rather 
accurately. The PQBC program seems to 
underestimate the standard deviation only when 
it is equal to 0.5 and 1.0, otherwise it estimates 
the standard deviation fairly well. The MCNR 
program tends to estimate the standard deviation 
fairly close to the actual value.  

Upon considering both of these tables, it 
is observed that the MCNR program better 
estimates the standard deviation then the PQBC 
program does. Both methods do a good job of 
estimating the slope and intercept; however, the 
PQBC program cannot accurately estimate the 
random effect term effectively when the number 
of subjects is small. It should also be noted that 
there does exist a procedure in SAS that has 
recently been developed to fit a general linear 
mixed effects model. The problem with this 
procedure is that it currently allows for only one 
random effect. Therefore, it will not be used 
here as it has the potential for two random 
effects, one for subject and one for session. 

Based on these findings, it was decided 
that the MCNR program would be the best 
program to use to try to fit the actual data since 
the number of subjects that is present is seven.  

 
 
 
 
 

Table 1. Simulation Size Necessary 
 

 
 
 

Number of simulations 

 
 

 
 

MCNR 

 
 

PQBC 
Intercept -14.9606 -15.0603 100 

Slope -3.4918 -3.5031 
    

Intercept -15.0111 -15.0100 1000 
Slope -3.5028 -3.5066 
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Table 2. Simulation Results with Random Effects and 10 subjects 
 

sigma=0.5 MCNR PQBC 

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -9.9580 -1.9960 0.4441 -9.9587 -1.9895 0.1402 
-12.5 -2.75 -12.6137 -2.7720 0.5213 -12.4233 -2.7599 0.1585 
-15 -3.5 -14.9111 -3.4827 0.5129 -14.8682 -3.5199 0.1846 
-17.5 -4.25 -17.7383 -4.3082 0.5748 -17.5716 -4.2465 0.1306 
-20 -5 -20.0249 -4.9879 0.6037 -19.7835 -4.9974 0.1310 

sigma=1.5   

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -9.6906 -1.9466 1.2642 -10.1027 -2.0090 1.4606 
-12.5 -2.75 -11.4029 -2.5562 1.2313 -12.5513 -2.7654 1.3046 
-15 -3.5 -13.8923 -3.2693 1.2745 -14.6752 -3.5230 1.6457 
-17.5 -4.25 -15.9715 -3.9428 1.3471 -17.3032 -4.2515 0.9298 
-20 -5 -18.6952 -4.6878 1.3556 -19.0461 -4.9920 0.6949 

sigma=2.0   

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -8.5403 -1.7130 1.5299 -10.6636 -1.9815 1.1236 
-12.5 -2.75 -10.4584 -2.3086 1.4860 -11.6325 -2.7387 2.7422 
-15 -3.5 -12.9367 -3.0179 1.6964 -15.0677 -3.5473 1.9940 
-17.5 -4.25 -15.5526 -3.7921 1.7620 -19.0472 -4.3063 1.8099 
-20 -5 -17.7169 -4.4776 1.7517 -21.2486 -5.0573 1.8953 
sigma=2.5   

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -8.3160 -1.7365 1.8244 -8.8011 -1.9977 3.0365 
-12.5 -2.75 -10.1496 -2.2878 1.9534 -13.0257 -2.7455 4.0708 
-15 -3.5 -12.6502 -3.0247 1.9906 -15.9416 -3.4950 2.6698 
-17.5 -4.25 -15.6909 -3.7334 2.0197 -17.1718 -4.2794 2.2737 
-20 -5 -16.3706 -4.0743 1.9568 -22.0580 -5.0519 3.5395 
sigma=3.0   

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -8.4546 -10 -2 -8.4546 -10 -2 
-12.5 -2.75 -10.0818 -12.5 -2.75 -10.0818 -12.5 -2.75 
-15 -3.5 -12.3014 -15 -3.5 -12.3014 -15 -3.5 
-17.5 -4.25 -15.6226 -17.5 -4.25 -15.6226 -17.5 -4.25 
-20 -5 -16.2475 -20 -5 -16.2475 -20 -5 
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Table 3. Simulation Results with Random Effects and 20 subjects 
 

sigma=0.5 MCNR PQBC 

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -9.9054 -1.9816 0.4930 -9.4116 -1.9873 0.2649 
-12.5 -2.75 -12.4214 -2.7306 0.4904 -12.5022 -2.7393 0.2649 
-15 -3.5 -14.9141 -3.4801 0.4938 -15.0879 -3.4892 0.2626 
-17.5 -4.25 -17.6045 -4.2722 0.5487 -17.4891 -4.2707 0.2662 
-20 -5 -20.2569 -5.0673 0.6018 -19.9316 -4.9978 0.2381 

sigma=1.5   

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -9.3067 -10 -2 -9.3067 -10 -2 
-12.5 -2.75 -11.6219 -12.5 -2.75 -11.6219 -12.5 -2.75 
-15 -3.5 -13.9817 -15 -3.5 -13.9817 -15 -3.5 
-17.5 -4.25 -16.2716 -17.5 -4.25 -16.2716 -17.5 -4.25 
-20 -5 -19.3602 -20 -5 -19.3602 -20 -5 

sigma=2.0   

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -8.9972 -10 -2 -8.9972 -10 -2 
-12.5 -2.75 -11.2885 -12.5 -2.75 -11.2885 -12.5 -2.75 
-15 -3.5 -13.4287 -15 -3.5 -13.4287 -15 -3.5 
-17.5 -4.25 -16.0496 -17.5 -4.25 -16.0496 -17.5 -4.25 
-20 -5 -18.2798 -20 -5 -18.2798 -20 -5 
sigma=2.5   

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -8.6322 -1.7685 2.1067 -10.0411 -1.9679 3.0753 
-12.5 -2.75 -10.8068 -2.3196 2.2214 -13.0177 -2.7644 3.7780 
-15 -3.5 -13.0848 -3.1166 2.1031 -15.2309 -3.5379 3.1254 
-17.5 -4.25 -15.9064 -3.6013 2.2602 -17.6589 -4.2495 2.1665 
-20 -5 -16.8736 -4.1663 2.1241 -19.0147 -5.0061 1.8221 
sigma=3.0   

True int 
True 
slope Int Slope S.D. Int Slope S.D. 

-10 -2 -8.7646 -1.7309 2.6432 -9.2498 -1.9716 3.1413 
-12.5 -2.75 -10.1691 -2.2667 2.4309 -12.1977 -2.7603 2.8307 
-15 -3.5 -12.8800 -3.0994 2.5139 -14.7616 -3.5233 2.9032 
-17.5 -4.25 -15.8659 -3.5443 2.3783 -17.6541 -4.3037 3.6437 
-20 -5 -16.3182 -4.1412 2.4833 -20.0524 -5.0549 3.5551  
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Final model 
Now the generalized linear mixed-

effects models will be applied to the actual odor 
detection data. This begins by performing the 
MCNR analysis with both session and subject 
being random variables, while concentration 
remains the fixed variable. Subjects were chosen 
as a random effect because our previous analysis 
found that each subject did yield a different 
model. One of the main purposes of including 
random effects is to accommodate different 
subjects in one model with the random term. 
Session was chosen as a second possible random 
effect because it was somewhat significant in 
our early analysis of the data, and it is random in 
that the subjects may vary slightly from one 
session to another.   

Five of the subjects had similar 
coefficients for their individual fixed-effects 
models,  
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For example, slope estimates for the five 
subjects were -0.600, -0.695, -0.487, -0.872, and  
 
 
 

 
 
 
 
 
 

-0.471 while intercept estimates were  -2.881,  
-3.880, -1.468, -4.381, and -2.457.  For the 
remaining two subjects, slope estimates were  
-3.090 and -2.287, while intercept estimates 
were -11.577 and -9.225;. It could be speculated 
that these two groupings indicate that there are 
two categories of smellers and that it might 
prove useful to split the group of seven into 
these two separate groups to lessen the 
variability of the data for modeling purposes. 
This began, however, by keeping all seven 
subjects together and estimating a model. The 
general form of the model is  
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where γ sess could be zero.  

From Table 4, it is evident that the 
variability was quite large when all seven 
subjects were together and hence the resulting 
model had extraordinarily small coefficients. 
Thus, the data was split into two groups and 
estimated a separate model for each group; the 
results appear in Table 4. Therefore, several 
models based on the split groups of subjects will  

 
 
 

 
 
 
 

 

Table 4. Final Models 
 

No. of 
subjects in 
model 

Both subject and session as 
random effects 

Only subject as 
random effect 

No random effect 

7 α = -145.8455, β = -40.2636, 
γsubject=N(0,0.8069), 
γsess.=N(0,0.7281) 

α = -368.0081,  
β = -80.3047, 
γsubject=N(0,2.7066) 

α = -453.2103,  
β = -98.5135  

5 α = -3.4457, β = -0.7252, 
γsubject=N(0,1.0605), 
γsess.=N(0,0.1730) 

α = -3.5403,  
β = -1.0846, 
γsubject=N(0,4.6057) 

α = -2.9907,  
β = -0.6833 

2 α = -3.5596, β = -0.6995, 
γsubject=N(0,1.1177), 
γsess.=N(0,0.0013) 

α = -2.7960,  
β = -0.8711, 
γsubject=N(0,2.3808) 

α = -3.1377,  
β = -0.6414 
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be considered to see which will yield a better 
fitting model.  

Vonesh, Chinchilli and Pu (1996) 
observed that for a generalized linear mixed-
effects model, a valid measure of the goodness 
of fit of the model is given by cr . There are 
several advantages to using rc over other 
methods. First, it does not require the 
specification of a null model. Second, it 
measures the level of concordance between yi 
and iŷ . A higher value of cr  indicates a better 
fitting model. (Vonesh, Chinchilli & Pu, 1996)  

For the three models that involved the 5 
subjects, the rc follows: for the one with two 
random effects the rc was 0.418, for the model 
with only subject as a random effect the rc was 
slightly better (higher) with a value of 0.445 and 
for the model with no random effects the rc was 
only 0.342. Thus, for the 5-subject group, the 
best model is the one that includes only subject 
as the random effect. Upon looking at the three 
models that involved the 2 subjects the rc 
follows: for the one with two random effects it 
was 0.371, for the model with only subject as a 
random effect the rc was not quite as good with a 
value of 0.316 and the model with no random 
effects included yielded an rc of 0.318. Thus, for 
the 2 subject group, the best model is the one 
that includes both subject and session as the 
random effects. 

Therefore, the conclusion is drawn that 
the data for all seven subjects can be best 
represented using the following two models. For 
the group of five subjects the best model is  
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where γ =N(0, 4.6057) and for the group of two 
subjects the best model is  
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where subγ ~N(0, 1.1177) and sessγ ~N(0, 
0.0013). Thus, based on this small sample of 
individuals, it was found that two models will  

adequately represent the whole sample of seven 
individuals as opposed to the idea of finding a 
single model for each subject. It also would 
make it very difficult to adequately model the 
population as a whole if there had been 
individual models for each subject.   
 

Conclusion 
 

How accurate are people at detecting odors? In 
general terms, the question could also be stated 
as sensitivity – what is lowest concentration 
needed for reliable, if not perfect, detection?  
From there, there was an attempt to characterize 
all seven subjects with one generalized linear 
mixed effects model. 
 Two methods of fitting the generalized 
linear mixed effects models were used. 
Simulations were conducted to discover which 
method would yield the best results, in terms of 
stable estimates and a high rc value, for the data. 
It was discovered that for this data, the method 
that would yield the best results was the MCNR 
method. Once this method was implemented, it 
was discovered the data was best fit by two 
models as opposed to just one model. The 
subjects were split into one group of five and 
one group of two based on the results discovered 
in the initial portion of the simulation study. For 
the group of five, it was necessary to have a 
random effects term for the subjects and for the 
group of two, it was necessary to have a random 
effects term for the subjects and another for the 
sessions.  
 Thus, all seven subjects’ odor detection 
ability was able to be modeled for the one 
chemical tested through the use of two models. 
This is an improvement over the seven models 
that were initially investigated. The benefit of 
the smaller number of models is that it allows 
one to represent a population’s ability to detect 
odors with just a few models instead of a 
different model for each individual in the 
population. 

It would be instructive to perform a 
study with a larger sample in which the same 
task was asked of participants as in this study, 
namely: Do you detect an odor or not? An ideal 
situation would be to have many subjects of 
each gender and in each age group. This would 
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allow an expansion of these models to attempt to 
include a term for gender and also for age. Some 
researchers have hypothesized that as humans 
age, they begin to lose their sense of smell 
(Doty, 1994). Others (Hales, 1999) have 
wondered if sensitivity varies with gender. By 
expanding the model, it would begin to answer 
these questions. 
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