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Covariate Dependent Markov Models for Analysis of Repeated Binary Outcomes 
 

         M. A. Islam                   R. I. Chowdhury            K. P. Singh 
  Department of Statistics                           Health Science Center               University of North Texas 
    University of Dhaka                       Kuwait University       Health Science Center  

 
 
The covariate dependence in a higher order Markov models is examined. First order Markov models with 
covariate dependence are discussed and are generalized for higher order. A simple alternative is also 
proposed. The estimation procedure is discussed for higher order with a number of covariates. The 
proposed model takes into account the past transitions. Transitions are fitted and are tested in order to 
examine their influence on the most recent transitions. Applications are illustrated using maternal 
morbidity during pregnancy. The binary outcome at each visit during pregnancy is observed for each 
subject and then the covariate dependent Markov models are fitted. The results indicate that the proposed 
model can be employed for analyzing repeated observations conveniently.   
 
Key words: Markov models, higher order, covariate dependence, repeated observations, transitions 
 
 

Introduction 
 
Markov chain models can be used in analyzing 
longitudinal data. There are several discrete time 
Markov chain models proposed for analyzing 
repeated categorical data over decades. A model 
for estimating odds ratio from a two state 
transition matrix was proposed by Regier 
(1968). Prentice and Gloeckler (1978) proposed 
a grouped data version of the proportional 
hazards regression model for estimating 
computationally feasible estimators of the 
relative risk function. Korn and Whittemore 
(1979) proposed a model to incorporate role of 
previous state as a covariate to analyze the 
probability of occupying the current state.  
 To analyze the binary sequence of 
presence or absence of diseases, Muenz and 
Rubinstein (1985) introduced a discrete time 
Markov chain for expressing the transition 
probabilities in terms of covariates. The 
technique proposed by them is applicable for 
first order Markov model but they provided hints 
that the approach can be extended for second-
order Markov chains. For   analyzing  sequences 
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of ordinal data from relapsing and remitting of a 
disease, Albert (1994) developed a finite 
Markov chain model. In addition, Albert and 
Waclawiw (1998) developed a class of quasi-
likelihood models for a two state Markov chain 
with stationary transition probabilities for 
heterogeneous transitional data. Raftery (1985), 
Raftery and Tavare (1994) proposed a higher 
order Markov chain model with dependence on 
contribution of the past transitions. Islam and 
Chowdhury (2006) presented a higher order 
version of the covariate dependent Markov 
model. 

For analyzing repeated observations, 
there is a renewed interest in the development of 
multivariate models based on Markov chains. 
These models can be employed for analyzing 
data generated from meteorology, epidemiology 
and survival analysis, reliability, econometric 
analysis, biological concerns, etc. Muenz and 
Rubinstein (1985) employed logistic regression 
models to analyze the transition probabilities 
from one state to another. The estimation for 
first-order Markov models is quite straight 
forward, but still there is serious lack of 
generalization in estimation and testing for 
models applicability for higher order Markov 
chains. Islam and Chowdhury (2006) provided a 
further generalization for covariate dependent 
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higher order models. This paper makes an 
attempt to present a simplified version of the 
covariate dependent higher order Markov 
models.   

A parallel stream of development is 
observed in analyzing transition models with 
serial dependence of the first or higher orders on 
the basis of the marginal mean regression 
structure models. Azzalini (1994) introduced a 
stochastic model, more specifically, first order 
Markov model, to examine the influence of 
time-dependent covariates on the marginal 
distribution of the of the binary outcome 
variables in serially correlated binary data. 
Markov chains are expressed in transitional form 
rather than marginally and the solutions are 
obtained such that covariates relate only to the 
mean value of the process, independent of 
association parameters. Following Azzalini 
(1994), Heagerty and Zeger (2000) presented a 
class of marginalized transition models (MTM) 
and Heagerty (2002) proposed a class of 
generalized MTMs to allow serial dependence of 
first or higher order. These models are 
computationally tedious and the form of serial 
dependence is quite restricted. If the regression 
parameters are strongly influenced by inaccurate 
modeling for serial correlation then the MTMs 
can result in misleading conclusions. Heagerty 
(2002) provided derivatives for score and 
information computations.  

Transition models are used here for 
Markov chain regression for binary responses 
proposed by Diggle et al. (2002). This type of 
models takes into account the potential impact of 
explanatory variables depending on the order of 
the underlying Markov model. This class of 
models has the flexibility to address a wide 
range of possible situations, ranging from only 
main effects to main effects and all possible 
interactions that emerge from different past 
transitions of the underlying Markov model. 
Some hypothesized situations are considered 
with main effects and some potential 
interactions emerging from past transitions of 
the process. In addition, a simple alternative is 
suggested to test for the order of Markov model.    
Covariate Dependent Higher Order Model 

As the first serious attempt to analyze 
covariate dependence of transition probabilities 
in a Markov model was proposed by Muenz and 

Rubinstein (1985), a brief review of the model 
provides a useful background for the proposed 
model for higher order.  

Consider a two-state Markov chain for a 
discrete time binary sequence as follows: 
 

                     
⎥
⎦

⎤
⎢
⎣

⎡
=

1110

0100
               
              

ππ
ππ

π
           (2.1) 

 
where 0100 1 ππ −=  and 1110 1 ππ −= . Here, 
0 and 1 are two possible outcomes of a 
dependent variable, Y. Each row of the above 
transition probability matrix provides a model 
on the basis of conditional probabilities. For 
instance, the probability of a transition from 0 at 
time 1−jt  to 1 at time jt  is 

01 1( 1 0)j jP Y Yπ −= = =  and similarly the 

probability of a transition from 1 at time 1−jt  to 

1 at time jt  is 11 1( 1 1)j jP Y Yπ −= = = . It is 

evident that 10100 =+ππ , and similarly 

11110 =+ππ .
 The covariate dependent higher order 

models can be proposed by extending the model 
for first order Markov chain. To illustrate the 
extension, a second order Markov model is 
considered. The second order Markov model for 
time points 2−jt , 1−jt  and jt  with 

corresponding binary outcomes 2−jY = 2s , 

1−jY = 1s  and jY = 0s , respectively, is shown 

as follows: 
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Following the outline of Diggle et al. 
(2002), the transition probabilities are defined as 
follows: 
 

22 1( 1s s j jY Yπ −= =  

2 1 1, , )js Y s X− = =  

1 1 2 2 1 2 3

1 1 2 2 1 2 31

X s X s X s s X

X s X s X s s X
e

e

β α α α

β α α α

′ ′ ′ ′+ + +

′ ′ ′ ′+ + ++
  (2.3) 

 
 

The vector X includes 0 1X =  and p covariates 

such that X= 0 1[ , ,..., ]pX X X . 

The parameter vectors 1α , 2α  and 3α  
are defined as follows:  
 

0 1, ,..............., pβ β β β⎡ ⎤′ = ⎣ ⎦
[ ]p111101 ......,,........., αααα =′

 [ ]p221202 ......,,........., αααα =′
 [ ]p331303 ......,,........., αααα =′
 

and define 
 

00β β′ ′= 01 1β β α′ ′ ′= + 10 2β β α′ ′ ′= +  
11 1 2β β α α′ ′ ′ ′= + +  

 
Equation 2.3 can be expressed more precisely as 
follows: 
 

2 2 1 12 1( 1/ , , )s s j j jY Y s Y s Xπ − −= = = = 

                          
22

( )
1
22

( )
11

Xm m
m
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          (2.4) 

 
where  

22,...,2,1=m , 1 20,λ λ= = 1 3,s λ =  

2 4 1 2, . .s s sλ =  
 

The third order Markov model for time 
points 3−jt , 2−jt , 1−jt  and jt  with 

corresponding outcomes 3−jY =s 3 , 

2−jY =s 2 , 1−jY =s1 and 0jY s= , 

respectively, is shown as follows: 
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For a Markov model of order three we 
can rewrite the transition probability as follows: 
 

3 33 2 1( 1 ,s s s j jY Y sπ −= =   

              2 2 1 1, , )j jY s Y s X− −= =         (2.5) 

 
where 
 

1 2 1 3 2 40, , ,s sλ λ λ λ= = = =  

1 2 5 3 6 1 3. , , . ,s s s s sλ λ= =  

7 2 3 8 1 2 3. , . .s s s s sλ λ= =  
 

To generalize this to the k-th order, 

consider k2  sets of models. The transition 
probability matrix for the k-th order Markov 
model can be represented by binary outcomes at 
different time points j k kY s− = , 

( 1) 1 1 1 0,......, ,j k k j jY s Y s Y s− − − −= = =  

at time points jjkjkj tttt ,,.....,, 1)1( −−−− , 

respectively, where 1=jY  for occurrence of the 

event and 0jY =  for non-occurrence of the 

event at time jt .  The transition probability is 

given by  
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The likelihood function is given by 
 

L =  

{ } { }.. 1 1 11 ... ...1 1
... ...1 11 0 11

... 1
ns sk is s is sk k

is s is sk ki s sk

δ δ
π π

−

= = =
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where 1

11
=

− ssis kk "δ  if the outcome at time 

jt is 1=jY for individual i  and 

0
11

=
− ssis kk "δ  if the outcome at time jt is 

0=jY for individual i  for the transition type 

( 1) 1 1 1, ,......,j k k j k k jY s Y s Y s− − − − −= = =
 prior to time jt  and ... 1s skn denotes the 

number of subjects experiencing transition type 

( 1) 1 1 1, ,......,j k k j k k jY s Y s Y s− − − − −= = =
 prior to time jt . 

 
Then the parameters 

1 1s s sk kβ −A " and m,Aα can be obtained 

from the following equations 
 

1 1

 lnL  0
 s s sk kβ −

∂ =
∂ A "       

and 

0 
 

lnL 

m,
=

∂
∂

Aα
 

A Simple Model 
In the previous model, the number of 

parameters increases exponentially with an 
increase in the order of the dependence, 
although, the proposed model provides more 

detailed information for each transition type. 
Another major limitation of such model is that it 
requires a large sample size to ensure adequate 
transitions for each transition type. To address 
such problems, a simple model is proposed in 
this section. In the model, the transition 
probability takes into account selected covariates 
and previous transitions are also incorporated as 
covariates for a k - order Markov model. The 
model is as follows: 

 
( )

( )
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11 1 1

1 1
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X Y Y
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"        (2.7) 

 

0 
 
lnL =

∂
∂

Aβ , 
p,,2,1 "A =  

0 
 
lnL =

∂
∂

rθ , 
kr ,,2,1 "=  

 
Testing for the Significance of Parameters 

The following vector shows the k2  sets 
of parameters for the k-th order Markov model:  
 

1 2 2
, ,.........,G kβ β β β⎡ ⎤′ ′ ′ ′= ⎢ ⎥⎣ ⎦  

where 

1,.......,m m mpβ β β⎡ ⎤′ = ⎣ ⎦ , 
m=1,2,….., k2  

 
To test the null hypothesis 0:0 =βH , the 
usual likelihood ratio test is employed and is 
given by  

2
0

2
2[ln ( ) ln ( )]G k p

L Lβ β χ− − ∼
 

where 

⎥⎦
⎤

⎢⎣
⎡ ′′′=′

0220100 ,...,, kG ββββ
 

and 

[ ]mpmm βββ ,...,10 =′
, 

m=1,2,….., k2  

To test the significance of the qth 
parameter of the m-th set of parameters, the null 
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hypothesis is 0:0 =mqH β  and the 

corresponding Wald-test is given by  
 

ˆ
.ˆ( )

mq

mq

W
se

β
β

=
 

 
Test the order of the Markov model on 

the basis of the simple model (2.7) such that 

0 : 0iH θ =  versus 1 : 0iH θ ≠  (i=1,2,…,k) that 
can identify the order is at least i if the null 
hypothesis is rejected. Use the test procedure 
discussed above for testing for the order of the 
Markov model as well. 

The computer program employed in this 
paper is the modified version of the algorithm 
appeared in Chowdhury et al. (2005) for higher 
order covariate dependent Markov model. 
 
An Application to Maternal Morbidity Data 

Data are used from the survey on 
Maternal Morbidity in Bangladesh conducted by 
the Bangladesh Institute for Research for 
Promotion of Essential and Reproductive Health 
Technologies (BIRPERHT) during November 
1992 to December 1993. The data were 
collected using both cross-sectional and 
prospective study designs. The study is based on 
the data from the prospective component of the 
survey. A multistage sampling design was used 
for collecting the data for this study. Districts 
were selected randomly in the first stage, one 
district from each Division. Then, Thanas were 
selected randomly in the second stage, one 
Thana from each of the selected Districts. A 
Thana is comprised of several Unions, while 
Union is the smallest administrative 
geographical unit in Bangladesh. At the third 
stage, two Unions were selected randomly from 
each selected Thana. The subjects comprised of 
pregnant women with less than 6 months in the 
selected Unions.  The pregnant women from the 
selected Unions were followed on regular basis 
(roughly at an interval of one month) throughout 
the pregnancy. During the follow-up visits, 
pregnancy complications were recorded.  

A total of 1020 pregnant women were 
interviewed in the follow-up component of the 
study. The survey collected information on 

socio-economic and demographic 
characteristics, pregnancy related care and 
practice, morbidity during the period of follow-
up as well as in the past, information concerning 
complications at the time of delivery and during 
the post partum period. For the purpose of this 
study, 993 pregnant women were selected, with 
at least one antenatal follow-up. Table 1 shows 
the number of respondents at different follow-up 
visits during antenatal period. At the first 
follow-up 992 respondents were recorded (out of 
993 respondents one was missing at the first 
follow-up but reported subsequently). The 
number dropped to 917 at the second follow-up 
and the rate of dropout increased sharply at 
subsequent follow-ups. The number of 
respondents observed at the third and the fourth 
follow-ups were 771 and 594, respectively. The 
following pregnancy complications are 
considered under the complications in this study: 
hemorrhage, edema, excessive vomiting, 
fits/convulsion. If one or more of these 
complications occurred to the respondents, they 
were considered as having complications.   

The explanatory variables are: 
pregnancies prior to the index pregnancy (yes, 
no), education of respondent (no schooling, 
some schooling), economic status (low, high), 
age at marriage (less than 15 years, 15 years or 
more), involved with gainful employment (no, 
yes), index pregnancy was wanted or not (no, 
yes). The number of transitions for the first, 
second, and third order Markov chains are 
displayed in Table 2. The estimates of 
parameters of covariate dependent Markov 
models are presented in Table 3.  

Two variables, economic status and 
whether the pregnancy was wanted, show 
significant association with transition from no 
complication in previous visit to complication in 
current visit during pregnancy (transition type 
0 1→ ). If the respondent has economically 
better status, she is expected to experience 
higher transition to pregnancy complications. On 
the other hand, if the index pregnancy is wanted, 
as compared to that of unwanted pregnancy, 
there is a decreased risk of transition to 
pregnancy complications during the current 
visit. 

If the previous outcome was 
complication, three variables influence to the 
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transition to the same status at the time of 
current visit during pregnancy (transition type 
1 1→ ) which are whether the index pregnancy 
was wanted or not, gainful employment, and 
education. The desired pregnancies appear to 
have higher risk of pregnancy complications in 
consecutive follow-up visits. In other words, 
undesired pregnancies seem to result in higher 
risk of transition to complications but risk of 
complications at consecutive follow-up visits 
appears to be higher for desired pregnancies. 
The respondents who are involved with gainful 
employment have higher risk of transition to 
complication in consecutive visits during 
pregnancy but respondents with some education 
have reduced risk of continued complications in 
consecutive visits.  

The second order model shows that 
there is a lower risk for desired pregnancies to 
make transition to the state of complications at 
current visit after two consecutive no 
complications status prior to the current visit 
(transition type0 0 1→ → ). There is no 
significant association between reverse 
transition of the type 1 0 1→ →  and the 
selected covariates. Like the transition type 
1 1→ , transition type 0 1 1→ →  is observed 
to be positively associated with desired 
pregnancy and negatively associated with 
education. Similarly, similar to1 1→ , desired 
pregnancy and gainful employment are 
positively associated with the complications at 
three consecutive visits (transition type 
1 1 1→ → ). 

There are eight models for the third 
order Markov chain. Among those, some of the 
transition types do not show any clear 
association with the selected covariates 
(considered at p-value = 0.05) such as transition 
types 1 0 0 1→ → → , 0 0 1 1→ → → , 
1 1 0 1→ → → , 0 1 1 1→ → →  and 
1 1 1 1→ → → .  For the transition type, 
0 0 0 1→ → → , gainful employment 
appears to have positive association. There is a 
marginal positive association (p-value is 
observed to be little higher than 0.05) between 
age at marriage and transition type 
0 1 0 1→ → → , where the complication is 
repeated during four follow-ups. Economic 

status is associated marginally and positively 
and previous pregnancies are associated 
negatively with transition type 
1 0 1 1→ → → . 

The global chi-square and likelihood 
ratio tests show good fit for all the first, second 
and third order models. Hence, in order to find 
the best selection, we have employed the AIC 
and the BIC procedures. The AIC and the BIC 
results indicate that the third order models 
provide the best fit as compared to the first and 
second order models.        

The number of parameters increases 
geometrically with an increase in the order of 
Markov model. Hence, a simple alternative is 
employed to the same data. Table 4 presents the 
results for the simple model as an alternative to 
the hierarchical model for the higher order 
Markov chain. For the second order model, first 
order outcome is considered as a covariate. 
Similarly, for the third order model, first and 
second order outcomes are included as 
covariates in order to examine the impact of 
previous outcomes on the subsequent outcomes. 
In the first model, economic status, wanted 
pregnancy, age at marriage and education appear 
to be significantly associated with pregnancy 
complications. The first order outcome, 1s , is 
included as a covariate for the second order 
model and confirms that first order outcome 
exerts a positive influence on the second order 
outcome. Similarly, first and second order 
outcomes are also associated positively with the 
outcome for the third order. Hence, in these 
models, third order Markov model is expected to 
fit better. Economic status, gainful employment 
and occurrence of the complications at previous 
two follow-ups all are positively associated with 
current complications. This finding confirms the 
conclusion based on the results presented in 
Table 3. In other words, the simple model can be 
employed confidently if the detailed impact of 
covariates on the response variable is not needed 
for each transition type separately for policy 
purposes.         

 
Conclusion 

 
In this article, the fitting of higher order 
covariate dependent Markov model is illustrated. 
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The method shown here is based on a suggestion 
provided by Diggle et al. (2002). The inference 
procedure is described for any higher order 
Markov model and the proposed method can be 
employed conveniently to identify the risk 
factors having significant impact on the repeated 
binary outcomes of interest at different time 
points. The proposed technique has been applied 
to a set of maternal morbidity data and the 
pregnancy complications at follow-up 
observations during pregnancy are analyzed. 
Some selected covariates are used to examine 
whether the transition probabilities for 
pregnancy complications at consecutive visits 
during pregnancy depend on the covariates. A 
simple alternative is also examined. 

If the factors affecting different types of 
transitions depending on past transitions are not 
of much interest then we can use the simple 
alternative. However, the proposed model 
provides a detailed analysis of the factors 
affecting transitions of first or higher order 
Markov models. The detailed analysis may be 
considered to have useful interpretations for 
policymakers. On the other hand, the number of 
parameters in the simple model does not 
increase geometrically unlike the proposed 
model. 
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Appendix 
 

Table 1: Number of Respondents at Different Follow-ups 
During Antenatal Period 

 
Follow-up 
Number 

Frequency  

1 992  
2 917  
3 771  
4 594  
5 370  
6 148  

 
Table 2: Number of Transitions for Pregnancy Complications 

 
Transitions →0 →1 
First Order   

0→ 1577 277 
1→ 366 614 

   
Second Order   

0→ 0→ 923 138 
1→ 0→ 176 79 
0→ 1→ 95 79 
1→ 1→ 110 295 

   
Third Order   
0→ 0→0→ 459 72 
1→ 0→0→ 91 30 
0→ 1→0→ 31 16 
0→ 0→1→ 49 27 
1→ 1→0→ 40 28 
1→ 0→1→ 26 20 
0→ 1→1→ 8 23 
1→ 1→1→ 44 132 



ISLAM, CHOWDHURY, & SINGH 
 

569

  

 
Table 3: Estimates of Parameters of Covariate Dependent Markov Models for Analyzing  

Pregnancy Complications 
 

Variables Estimates Std. error t-value p-value 
First Order 

0→ 1      
Constant -1.5233 0.1559 -9.7718 0.0000 
Economic Status (Good=1) 0.4209 0.1699 2.4770 0.0132 
Wanted pregnancy (Yes=1) -0.4217 0.1371 -3.0762 0.0021 
Gainful employment (Yes=1) 0.0827 0.1453 0.5693 0.5692 
Age at marriage (< 15 = 1) -0.0353 0.1394 -0.2535 0.7998 
Education (Yes=1) -0.1161 0.1354 -0.8576 0.3911 
Previous pregnancies (Yes=1) 0.0482 0.1354 0.3561 0.7218 
1→ 1      
Constant 1.9102 0.1589 12.0175 0.0000 
Economic Status (Good=1) 0.1378 0.1778 0.7749 0.4384 
Wanted pregnancy (Yes=1) 0.6904 0.1406 4.9084 0.0000 
Gainful employment (Yes=1) 0.3187 0.1506 2.1167 0.0343 
Age at marriage (< 15 = 1) -0.1535 0.1483 -1.0352 0.3006 
Education (Yes=1) -0.5238 0.1430 -3.6635 0.0002 
Previous pregnancies (Yes=1) 0.0493 0.1411 0.3492 0.7269 
Global Chi-square 1020.03596;   d.f. = 14;  p-value=0.00000 
LRT 1126.20664;   d.f. = 14;  p-value=0.00000 
AIC 2830.55158 
BIC 2898.37897 

 
Second Order 

0→ 0→ 1      
Constant -1.8003 0.2210 -8.1447 0.0000 
Economic Status (Good=1) 0.1830 0.2534 0.7222 0.4702 
Wanted pregnancy (Yes=1) -0.4847 0.1919 -2.5256 0.0115 
Gainful employment (Yes=1) 0.2149 0.2005 1.0715 0.2840 
Age at marriage (< 15 = 1) -0.1075 0.1983 -0.5422 0.5877 
Education (Yes=1) 0.1420 0.1884 0.7536 0.4511 
Previous pregnancies (Yes=1) 0.1877 0.1899 0.9886 0.3228 
1→ 0→ 1      
Constant 0.9524 0.3091 3.0815 0.0021 
Economic Status (Good=1) 0.3405 0.3523 0.9663 0.3339 
Wanted pregnancy (Yes=1) 0.4857 0.2811 1.7283 0.0839 
Gainful employment (Yes=1) -0.0526 0.3123 -0.1686 0.8661 
Age at marriage (< 15 = 1) 0.2394 0.2933 0.8163 0.4144 
Education (Yes=1) -0.3707 0.2845 -1.3030 0.1926 
Previous pregnancies (Yes=1) -0.2887 0.2837 -1.0177 0.3088 
0→ 1→ 1      
Constant 1.7303 0.3845 4.5000 0.0000 
Economic Status (Good=1) 0.4831 0.4203 1.1494 0.2504 
Wanted pregnancy (Yes=1) 0.7516 0.3348 2.2450 0.0248 
Gainful employment (Yes=1) 0.1031 0.3511 0.2935 0.7691 
Age at marriage (< 15 = 1) -0.2899 0.3596 -0.8062 0.4201 
Education (Yes=1) -1.0315 0.3404 -3.0301 0.0024 
Previous pregnancies (Yes=1) -0.1730 0.3359 -0.5150 0.6066 
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Table 3 Continued…     
Variables Estimates Std. error t-value p-value 
1→ 1→ 1      
Constant 2.1680 0.2742 7.9081 0.0000 
Economic Status (Good=1) 0.2688 0.2989 0.8993 0.3685 
Wanted pregnancy (Yes=1) 0.7322 0.2414 3.0332 0.0024 
Gainful employment (Yes=1) 0.6301 0.2637 2.3891 0.0169 
Age at marriage (< 15 = 1) 0.0853 0.2512 0.3395 0.7342 
Education (Yes=1) -0.4259 0.2498 -1.7049 0.0882 
Previous pregnancies (Yes=1) 0.3097 0.2461 1.2581 0.2083 
Global Chi-square 736.2494;   d.f. = 28;  p-value=0.00000 
LRT 819.7761;   d.f. = 28;  p-value=0.00000 
AIC 1863.2516 
BIC 1998.9065 

 
Third Order 

0→ 0→ 0→ 1      
Constant -2.0755 0.3272 -6.3440 0.0000 
Economic Status (Good=1) 0.3901 0.3502 1.1140 0.2653 
Wanted pregnancy (Yes=1) -0.1337 0.2803 -0.4771 0.6333 
Gainful employment (Yes=1) 0.5960 0.2780 2.1435 0.0321 
Age at marriage (< 15 = 1) -0.1715 0.2777 -0.6174 0.5370 
Education (Yes=1) -0.1050 0.2628 -0.3997 0.6894 
Previous pregnancies (Yes=1) 0.2914 0.2716 1.0730 0.2833 
1→ 0→ 0→ 1      
Constant 1.1866 0.4645 2.5547 0.0106 
Economic Status (Good=1) -0.4560 0.6635 -0.6874 0.4919 
Wanted pregnancy (Yes=1) -0.7254 0.4440 -1.6340 0.1023 
Gainful employment (Yes=1) -0.1067 0.4893 -0.2181 0.8273 
Age at marriage (< 15 = 1) 0.8524 0.4898 1.7404 0.0818 
Education (Yes=1) -0.4170 0.4657 -0.8954 0.3706 
Previous pregnancies (Yes=1) -0.0466 0.4411 -0.1056 0.9159 
0→1→ 0→ 1      
Constant 0.2618 0.9645 0.2714 0.7861 
Economic Status (Good=1) -1.5657 0.9903 -1.5810 0.1139 
Wanted pregnancy (Yes=1) 0.6496 0.7006 0.9271 0.3539 
Gainful employment (Yes=1) 0.2875 0.7673 0.3747 0.7079 
Age at marriage (< 15 = 1) 1.4826 0.7838 1.8916 0.0585 
Education (Yes=1) -0.1186 0.7317 -0.1621 0.8713 
Previous pregnancies (Yes=1) 0.5271 0.7445 0.7080 0.4790 
0→ 0→ 1→ 1      
Constant 2.1936 0.5945 3.6901 0.0002 
Economic Status (Good=1) -0.3760 0.7314 -0.5140 0.6073 
Wanted pregnancy (Yes=1) -0.4947 0.5163 -0.9581 0.3380 
Gainful employment (Yes=1) -0.6332 0.5392 -1.1744 0.2402 
Age at marriage (< 15 = 1) -0.3622 0.5999 -0.6037 0.5460 
Education (Yes=1) -0.4388 0.5363 -0.8182 0.4132 
Previous pregnancies (Yes=1) -0.1100 0.5295 -0.2078 0.8354 
Gainful employment (Yes=1) -0.3197 0.6776 -0.4718 0.6371 
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Table 3 Continued… 

    

Variables Estimates Std. error t-value p-value 
1→ 1→ 0→ 1      
Constant 2.1797 0.5997 3.6347 0.0003 
Economic Status (Good=1) 0.8516 0.6716 1.2680 0.2048 
Wanted pregnancy (Yes=1) -0.4881 0.5618 -0.8689 0.3849 
Age at marriage (< 15 = 1) -0.0976 0.5685 -0.1718 0.8636 
Education (Yes=1) -0.0570 0.5623 -0.1014 0.9192 
Previous pregnancies (Yes=1) -1.0848 0.5944 -1.8251 0.0680 
1→ 0→ 1→ 1      
Constant 2.4045 0.7779 3.0909 0.0020 
Economic Status (Good=1) 2.2623 1.1836 1.9114 0.0560 
Wanted pregnancy (Yes=1) -0.2161 0.7619 -0.2837 0.7767 
Gainful employment (Yes=1) 0.8775 0.8714 1.0070 0.3139 
Age at marriage (< 15 = 1) -0.5819 0.7777 -0.7482 0.4543 
Education (Yes=1) -1.1563 0.8015 -1.4428 0.1491 
Previous pregnancies (Yes=1) -1.8188 0.9178 -1.9818 0.0475 
0→ 1→ 1→ 1     
Constant 3.1416 1.4192 2.2137 0.0268 
Economic Status (Good=1) -0.4749 1.0472 -0.4535 0.6502 
Wanted pregnancy (Yes=1) -0.6499 1.2058 -0.5390 0.5899 
Gainful employment (Yes=1) -0.2974 1.0250 -0.2902 0.7717 
Age at marriage (< 15 = 1) 1.0829 1.2160 0.8905 0.3732 
Education (Yes=1) 0.6433 1.2520 0.5138 0.6074 
Previous pregnancies (Yes=1) 0.2593 1.0143 0.2556 0.7983 
 1→ 1→ 1→ 1     
Constant 2.7444 0.4633 5.9233 0.0000 
Economic Status (Good=1) 0.0139 0.4792 0.0291 0.9768 
Wanted pregnancy (Yes=1) -0.1399 0.3928 -0.3562 0.7217 
Gainful employment (Yes=1) 0.0439 0.4056 0.1082 0.9138 
Age at marriage (< 15 = 1) -0.2489 0.3807 -0.6538 0.5132 
Education (Yes=1) 0.3410 0.4179 0.8160 0.4145 
Previous pregnancies (Yes=1) 0.6496 0.4144 1.5673 0.1170 
Global Chi-square 418.79388;   d.f. = 56;  p-value=0.00000 
LRT 467.3335;   d.f. = 56;  p-value=0.00000 
AIC 1164.0451 
BIC 1435.3548 
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Table 4: Estimates of Parameters of Simple Model for Higher Order 
Markov Chain 

 
Variables  Estimates Std. error t-value p-value 
 Logistic regression for first order Markov model 
 Economic status (good=1) .502 .091 30.467 .000 
 Wanted pregnancy (Yes=1) -.331 .073 20.401 .000 
 Gainful employment (Yes=1) .069 .076 .811 .368 
 Age at marriage (< 15=1) -.222 .076 8.662 .003 
 Education (Yes=1) -.408 .073 31.372 .000 
 Previous pregnancies (Yes=1) -.041 .072 .317 .573 
 Constant -.293 .083 12.461 .000 
 Model Chi-square 86.92 (p=0.000) 
 Logistic regression for second order Markov model 
 Economic status (good=1) .496 .122 16.378 .000 
 Wanted pregnancy (Yes=1) -.080 .099 .646 .422 
 Gainful employment (Yes=1) .216 .102 4.447 .035 
 Age at marriage (< 15=1) -.117 .102 1.323 .250 
 Education (Yes=1) -.385 .098 15.269 .000 
 Previous pregnancies (Yes=1) .065 .097 .448 .503 
 S1 2.223 .094 562.140 .000 
 Constant -1.669 .125 177.689 .000 
 Model Chi-square 704.48 (p=0.000) 
 Logistic regression for third order Markov model 
 Economic status (good=1) .402 .155 6.768 .009 
 Wanted pregnancy (Yes=1) -.084 .123 .469 .494 
 Gainful employment (Yes=1) .361 .127 8.037 .005 
 Age at marriage (< 15=1) -.100 .126 .625 .429 
 Education (Yes=1) -.209 .123 2.898 .089 
 Previous pregnancies (Yes=1) .152 .122 1.556 .212 
 S1 1.720 .126 186.921 .000 
 S2 1.127 .125 81.547 .000 
 Constant -1.984 .160 152.904 .000 
 Model Chi-square 521.18 (p=0.000) 
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