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Global Measure of the Deviation of a Wavelet Density Estimator 
Kussiy K. Alyass 

Lawrence Technological University 
 
 
A wavelet estimator f*(x) of an unknown probability density function f(x)∈L2(R) is considered. A 

conditional central limit theorem for martingales is used to show that [ ] dxxfxf∫ − 2)()(*  is 

asymptotically normally distributed. Results obtained can be used in a test of goodness-of-fit. 
 
Key words: Wavelet estimator, martingale difference array, multiresolution analysis, asymptotic 
distribution. 
 
 

Introduction 
 
The problem of finding the asymptotic 
distribution of the quadratic norm of the 
deviation of the probability density function f(x) 
from its estimator f*(x) have been studied by 
many authors. Bickel and Rosenblatt (1973) 
obtained the asymptotic distribution of 
 

( ) ( ) ( )[ ] ( )∫ −= dxxaxfxf*nhnTn
2  

 
where f*(x) is the kernel estimator of f(x) , h(n) 
→ 0, n h(n) → ∞, and a(x) is a weight function. 
The basic technique in obtaining the result 
consists in finding the asymptotic distribution of 
Tn with f*(x) replaced by conveniently chosen 
Gaussian process and showing that two 
functionals converge to the same law. Viollaz 
(1980) considered orthogonal series estimators 
and Lii (1978) considered spline estimators, in 
both cases the above method is used to establish 
limit theorems for the quadratic norm of the 
deviation of the probability density function 
from its estimator. A method using a conditional 
central limit theorem for martingales due to 
Adnan (1981) was used by Ghorai (1980) to find 
the asymptotic distribution of the quadratic norm  
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of the deviation of the orthogonal series 
estimator. 

Rosenblatt (1975) used a method 
involving the Poissonization of the sample size 
to obtain the asymptotic distribution of the 
quadratic norm of the deviation of the two-
dimensional kernel estimator. Alyass and Sun 
(1994) considered two-dimensional orthogonal 
series estimators; they used the method of 
Poissonization to establish a limit theorem for 
the properly normalized quadratic norm of the 
deviation of the estimator. 

 A wavelet estimator f*(x) is used here 
to estimate the probability density function f(x). 
Then, a martingale central limit theorem is used 
to show that ∫ [f*(x) – f(x)]2 dx is 

asymptotically normally distributed. 
A brief review and a statement of a 

conditional central limit theorem for martingales 
will now be given. For further details, refer to 
Adnan (1981). Let {Vn, n ≥ 1} be a sequence of 
integrable random variables on a probability 
space (Ω, F, P) and let B0 ⊂ B1 ⊂ B2 ⊂ …… be 
an increasing sequence of sub-σ-fields of F. 
Suppose the sequence {(Vn, Bn), n ≥ 1} is a 
martingale, then the sequence {(Vn – Vn – 1 , Bn ), 
n ≥ 1} is called a martingale difference. A 
double sequence {(Wn j, Bn j), n ≥ 1, j ≥ 0} is said 
to be a martingale difference array if it is a 
martingale difference for each n. 
   Suppose that {Yn, n ≥ 1} is a sequence 
of random variables defined on the probability 
space (Ω, F, P). Let {Fn, n ≥ 1} be a sequence 
of sub-σ-fields of F. Yn | Fn converges weakly to 
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a random variable Y defined on (Ω, F, P) if and 
only if 
 

( )[ ] ( )YEfYfE nn →F| , 
 
for every bounded continuous function f.  This 
convergence will be denoted by 
 

YY d
nn ⎯→⎯F| . 

 
Methodology 

   The following theorem due to Adnan 
(1981) will be used in the proof of the main 
result in this article. 
 
Theorem 1:  

Suppose {(Wn j, Bn j), n ≥ 1, j ≥ 0 } is a 
martingale difference array. Assume that:  
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Remark:  

Let γ denote the trivial σ-field. If γ ⊂ Bn0 
then the conditional convergence in the above 
theorem is equivalent to the usual unconditional 
convergence in distribution (see Adnan, 1981). 

A multiresolution analysis 
2 1 0 1 2.... .... A A A A A− −⊆ ⊆ ⊆ ⊆ ⊆ ⊆ of 

L2(R) is an increasing sequence of subspaces 
  ,, Z∈jAj of L2(R) satisfying the following 

conditions: 
 

{ }

( )
( ){ }

2

0

0 k

0

(M1)    is  dense  in   ( ),

(M2) 0 ,

(M3) ( )    if and only if  2 ,

(M4) there exists a function ( )  in  such that  

                is an orthonormal basis for .

j
j

j
j

j
j
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g x A g x A

x A x k
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∈
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∈
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Remarks:  
 
(i) It follows that 
 

( )  2
k

22
Z∈⎭

⎬
⎫

⎩
⎨
⎧ − kxj

j
ϕ  

 
forms an orthonormal basis for Aj.  
 

(ii) Assume that ϕ  is integrable and 

( )∫ ≠ 0dxxϕ  because if 

( )∫ = 0dxxϕ  then the same is true for 

all functions in all Aj, and one would 
not expect to have condition (M1). In 
fact one can show that if ϕ  has 

compact support and ( ) 1x dxϕ =∫  

then condition (M1) holds (see 
Strichartz (1993)). 

 
In order to construct the wavelets, let Bj 

be the orthogonal complement of Aj in Aj+1 , 
thus .1 jjj BAA ⊕=+  There exists a 

function )(xψ  called the wavelet such that 
the family ( ) ( ){ } Z∈−− kkxkx ψϕ , is an 
orthonormal basis for A1. This implies 
that ( ){ } Z∈− kkxψ is an orthonormal 
basis for B0. The space L2(R) is represented 
as a direct sum 
 

( ) .2
jZj

B
∈
⊕=RL  

 
Also 
 

( )  2
k

22
Z∈⎭

⎬
⎫

⎩
⎨
⎧ − kxj

j
ψ  

 
is an orthonormal basis for Bj and that the 
spaces Bj are all mutually orthogonal. 
Therefore, it is possible to combine all the 
orthonormal bases for Bj into one orthonormal 
basis: 
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( )  2
k,j

22
ZZ ∈∈⎭

⎬
⎫

⎩
⎨
⎧ − kxj

j
ϕ  

 
for L2(R). Because the following 
decomposition of L2(R) is also true 
 

( ) ,,2 ZR ∈
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⊕=

∞

=
⊕ qBA j

qj
qL  

 
then one can combine the basis 
 

( )  222
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⎬
⎫
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⎧ −

k

q
q

kxϕ  

 
for Aq with the bases  
 

( )  2
k

22
Z∈⎭

⎬
⎫

⎩
⎨
⎧ − kxj

j
ψ  

 
for Bj with j ≥ q to obtain an orthonormal basis 
for L2(R). Then, if 
 

( )2
, ( ) 22

j
j

j k x x kϕ ϕ= −  

and 

( )2
, ( ) 2 ,2

j
j

j k x x kψ ψ= −  

 
the family  
 

{ }
Z∈≥ kqjkjkq xx

,,, )(,)( ψϕ  

 
forms an orthonormal basis for L2(R). Thus, for 
any f(x)∈  L2(R). there is 
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where 
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=

∫
∫

ψβ

ϕα
 

For more detailed account of the subject of 
multi-resolution analysis and wavelets see 
Meyer (1990) and Daubechies (1992). 

Suppose X1, X2, ... , Xn are independent, 
identically distributed, real-valued random 
variables with common, but unknown, 
continuous probability density function f(x)∈  
L2(R). Estimate f(x)   by  
 

( ), ( ),

( ), ( ),
1

ˆ*( ) ( ),

where
1ˆ ( ).

q n k q n k
k

n

q n k q n k i
i

f x x

x
n

α ϕ

α ϕ

∞

=−∞

=

=

=

∑

∑

   (2) 

 
Some of the properties of this estimator may be 
found in Doukhan and Leon (1990) and 
Kerkyacharian and Picard (1992). Throughout 
the remainder of this article, assume the function 
ϕ is compactly supported in the interval [s, t]. 
This will ensure that, in (2), only finite random 
number of coefficients knq ),(α̂  are non-zero. To 
simplify the calculations, assume that s, t∈Z. 
Under these assumptions, 
 
               *( )f x =                  (3) 

( ), ( ),
1 1

1 ( [ ]) ( [ ]),
n s

q n k i q n k i i
i k t

x x x x
n

ϕ ϕ
−

= = −

− −∑ ∑  

 
where [x] denotes the largest integer that is less 
than or equal to x. 
 
Let 

[ ],i i iY X x= −  1, 2,......, ,i n=  

( ), ( ), ( )q n k q n kE Yη ϕ=  

and  
( ), ( ),( ) ( ) .q(n),k q n k q n ky yθ ϕ η= −  

 
Using (1) and (3) the result is 
 

[ ]2
*( ) ( )f x f x dx− =∫          (4) 

1
2
( ),2 2

2 1 1 1

2 1( ) ( )
jn n s

ij q n k i
j i i k t

U n y
n n

θ
− −

= = = = −

+∑ ∑ ∑ ∑  
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+ 2
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1 ( ) ,ij j k
i j j q n k
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∞ ∞

≠ = =−∞
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where 
 

( )ijZ n =              (5) 
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Now put 
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and let Bnj be the σ-field generated by Y1 ,Y2 

,....,Yj , and Bn0 be the trivial σ-field. The 

sequence {(Vnj, Bnj), j ≥ 0} is a martingale 

for each n ≥ 1. Because Wnj = Vnj – Vn,j-1, 

{(Wnj, Bnj), n > 0, j ≥ 0} is a martingale 

difference array. 
 

Results 
 

Now, to state and prove the main theorem: 
 
Theorem 2: Assume that 
 

2

( ),
1

( ) 0  
s

q n k
k tn

n E Yϕ
σ

−

= −

⎡ ⎤ →⎣ ⎦∑    (7) 
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2         as    n   n ,σ → ∞ → ∞      (9) 

4
( ),sup ( ) . q n k

k
E Y Mϕ ≤       (10) 

  for some constant M  
 

It follows that if t – s < 1+2q(n), then 
 

[ ]( )2*( ) ( )
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n
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Proof: Using (4) and (6) gives 
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By assumption (8), H4 → 0 as n → ∞. Let 
 

( )( , ) : 2 ([ ]

[ ]) , , 1 , ......,

q n
j

i

k l k l X
A

x k l t s

⎧ ⎫− = −⎪ ⎪= ⎨ ⎬
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( )

( ) 1(i,j) :[ ] [ ] ,
B 2

, , 1, 2, .......,

j i q n
t sX X
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From (5) it follows that 
 

3
1

2 n

H
nσ
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1

( ) ( ) ( ) ( )
s

q n k i q n j q n k i q n k j
B A k t

Y Y Y Yϕ ϕ ϕ ϕ
−

= −

⎧ ⎫⎡ ⎤−⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑ ∑ ∑  

( ), ( ),1 ( ), ( ),
1

( ) ( ) ( ) ( )
C

s

q n k i q n j q n k i q n k j
A k tB

Y Y Y Yϕ ϕ ϕ ϕ
−

= −

⎡ ⎤+ −⎢ ⎥⎣ ⎦
∑ ∑ ∑  

 
The second term in the above formula is equal to 

zero because 
( ) 1

2
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)( <−−
nq
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forces ][][ ij XX = . Also for (i,j)∈B A = ∅ . 
Therefore 
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Hence, if (7), (9) and (10) hold, then var (H3) → 
0 as n → ∞. Next, observe under 
assumption (10) 
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Consequently, var (H2) → 0 as n → ∞. if 
assumption (9) holds. 

 Therefore, to complete the proof of the 
theorem, it is sufficient to show 
that ( ).1,01 NH d⎯→⎯  To prove this, observe:  
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Using Holder’s inequality, 
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By summing over j, 
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Thus, 
 

G1 → 1 as n → ∞.       (16) 
 
If assumptions (9) and (10) hold,  
 

G3 = 0 and G2 → 0 as n → ∞. (17) 
 
Also, computations (see Ghorai, 1980) show 
 

G4 → 0 as n → ∞.        (18) 
 
Therefore (15) together with (16),(17) and (18) 
gives 
 

2 2
'

'
2 1  as  nnj nj

j j
EW W

<

→ → ∞∑ . (19) 

 
Relation (12) now follows by combining (13), 
(14) and (19). Finally, 
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By using (14) 
 
             .0sup ⎯→⎯p

nj
j

W         (20) 

 
may be deduced. The theorem now follows by 
combining Theorem 1 with (11), (12) and (20). 
 

Conclusion 
 

Tests of goodness-of-fit can be obtained as a 
direct application to Theorem 2. In fact, a test 
may be constructed for the hypothesis H: f(x) = 
f0(x) at a given level α , where f0(x) is a 
given function. To do this, the statistic 
 

[ ] dxxfxfRn

2
)()(*∫ −=  

 
is to be computed for f(x) = f0(x) and the 
hypothesis is to be rejected if Rn ≥ dn( α ) 
where by Theorem 2 
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