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Inference on Overlapping Coefficients in Two Exponential Populations 
 

Mohammad F. Al-Saleh   Hani M. Samawi 
       Yarmouk University           Georgia Southern University 

 
 
 
Three measures of overlap, namely Matusita’s measure ρ , Morisita’s measure λ  and Weitzman’s 
measure Δ  are investigated in this article for two exponential populations with different means. It is well 
that the estimators of those measures of overlap are biased. The bias is of these estimators depends on the 
unknown overlap parameters. There are no closed-form, exact formulas, for those estimators variances or 
their exact sampling distributions. Monte Carlo evaluations are used to study the bias and precision of the 
proposed overlap measures. Bootstrap method and Taylor series approximation are used to construct 
confidence intervals for the overlap measures.  
 
Key words: Bootstrap method; Matusita’s measure; Morisita’s measure; overlap coefficients; Taylor 
expansion; Weitzman’s measure. 
 
 

Introduction 
 
Overlap measure are commonly used in 
reliability analysis to estimate the proportion of 
machines or electronic devices that have similar 
range of failure time. The machines may come 
from two different sources or may be under 
different stress, which implies different 
probability densities of failure time. This 
proportion can be measured by the overlap 
coefficients of the two densities.  

There are three overlap coefficients 
(OVL), (Matusita’s measure ρ , Morisita’s 
measure λ  and Weitzman’s measure Δ ). 
However, the most commonly used overlap 
coefficient is the Weitzman’s measure Δ . OVL 
measure is defined to be the area intersected by 
the graphs of two probability density functions. 
It measures the similarity, the agreement or the 
closeness of the two    probability   distributions. 
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The OVL measure Δ  was originally introduced 
by Weitzman (1970). Recently, many authors 
considered this measure, see Bradley and 
Piantadosi (1982), Inman and Bradley(1989), 
Clemons (1996), Reiser and Faraggi (1999), 
Clemons and Bradley (2000) and Mulekar and 
Mishra (2000).   

For other applications of Δ , see 
Ichikawa (1993) (for the probability of failure in 
the stress-strength models of reliability 
analysis), Fedeer et al. (1963) (for estimating of 
the proportion of genetic deviates in segregating 
populations and Sneath (1977) (as a measure of 
distinctness of clusters). For additional 
references of such methodology applications in 
ecology and other fields, see Mulekar and 
Mishra (1994 and 2000). Inman and Bradley 
(1989) summarized the history of such 
procedures. 

Let 1 2( ) and ( )f x f x be two probability 
density functions. Assume samples of 
observations are drawn from continuous 
distributions (Slobdchikoff and Schulz, 1980; 
Harner and Whiytmorte, 1997; MacArthur, 
1972). The overlap measures are defined as 
follows: 

Matusita’s Measure (1955): 
 

1 2( ) ( )  ,f x f x dxρ = ∫  
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Morisita’s Measure (1959): 

 

1 2

2 2
1 2

2 ( ) ( ) 
,

[ ( )]  [ ( )]  

f x f x dx

f x dx f x dx
λ =

+
∫

∫ ∫
 

 
and 
 

Weitzman’s Measure (1970): 
 

1 2min{ ( ), ( )} .f x f x dxΔ = ∫  

 
These measures can be directly applied 

to discrete distributions by replacing the 
integrals with summations and also can be 
generalized to multivariate distributions. All 
three overlap measures of two densities are 
measured on the scale of 0 to 1. Note that the 
overlap value close to 0 indicates extreme 
inequality of the two density functions, and the 
overlap value of 1 indicates exact equality. 

Smith (1982) derived formulas for 
estimating the mean and the variance of the 
discrete version of Weizman’s measure using 
delta method. Mishra et al. (1986) gave some 
properties of the sampling distributions for a 
function of the Δ  estimator, under the 
assumption of homogeneity of variances for the 
case of two normal distributions. Mulekar and 
Mishra (1994) simulated the sampling 
distribution of estimators of the overlap 
measures for normal densities with equal means 
and obtained the approximate expressions for 
the bias and variance of their estimators. Lu et 
al. (1989) investigated the sampling variability 
of some estimators of these measures using 
simulation. 

Dixon (1993) described the use of the 
bootstrap and jackknife techniques for Gini 
coefficient of size hierarchy and Jaccard index 
of community similarity. Mulekar and Mishra 
(2000) addressed the problem of making 
inferences about the overlap coefficients for two 
normal densities with equal means using 
jackknife, bootstrap, transformation and Taylor 
series approximation.  Reiser and Faraggi (1999) 
considered the problem of making inference 
about the overlap coefficient Δ , as a measure of 
bioequivalence, under the name, proportion of 

similar responses, for normal densities with the 
equal variances, based on the non-central t- and 
F- distributions. The sampling behavior of a 
nonparametric estimator of Δ  was examined by 
Clemons and Bradley (2000), using Monte Carlo 
and bootstrap techniques. Finally, AL-Saidy et 
al. (2005) consider the problem of drawing 
inference about the three overlap measures 
under the Weibul distribution function with 
equal shape parameter.  

Although, the exponential distribution is a 
special case of the Weibul distribution, this 
article considers the three proposed measures of 
overlap ( ρ , λ  and Δ ) for two exponential 
distributions with different means. This special 
case provides some neat and closed form results. 
Exponential distributions are primarily used in 
reliability applications. They are used to model 
data with a constant failure rate (indicated by the 
hazard plot which is simply equal to a constant). 
Exponential distributions are the most 
commonly used life distribution models (see 
Mann et al. 1974.)  

A random variable X follows the 
exponential (denotes by EXP(θ )) if it has the 
cdf and pdf given by: 
 

          ( ) 1 exp   for 0,   xF x x
θ

⎧ ⎫= − − >⎨ ⎬
⎩ ⎭

(1.1) 

and      

             
1( ) exp   for 0 xf x x
θ θ

⎧ ⎫= − >⎨ ⎬
⎩ ⎭

  (1.2)     

 
respectively, where 0 θ > . 
 
Overlap measures (OVL) for Exponential 
Distribution 

Suppose 1 2( ) and ( )f x f x  represent the 
exponential densities with means 1 2and θ θ  

respectively. Letting 1

2

R θ
θ

= , then the 

continuous version of the three proposed overlap 
measures  can be expressed as a function of R as  
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F 
 
f

follows (the derivation of the three overlap 
measures is straightforward and it is omitted 
from the content of this article): 
 

                      
2 ,
1

R
R

ρ =
+

                             (2.1) 

 

                        2

4  
(1 )

R
R

λ =
+

                        (2.2) 

and 
 

         
1

1 11 1 ,     R 1.RR
R

−Δ = − − ≠            (2.3) 

 
Figure 1 shows curves of the three overlap 

measures. All three measures are not monotone 
for all R>0.  Similar to Mulekar and Mishra 
(2000), ρ , λ  and Δ  have nice properties, such 
as, symmetry in R, i.e. OVL(R)=OVL(1/R) and 
invariance under linear transformation, Y=aX+b, 

0a ≠ . They all attain the maximum value of 1 
at R=1. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                
 
 
 
 

Statistical Inference 
 
Estimation 
 The OVL measures ρ , λ , and Δ  are 
functions of 1 2and θ θ . In order to draw any 
inference about the OVL measures, one first 
needs to get estimates of 1 2 and θ θ . Suppose 
that    

111 12 1( ,  ,  ...,  )nX X X  and 

121 22 2( ,  ,  ...,  ) nX X X are two independent 

random samples drawn from  1 2( ) and ( )f x f x  
respectively, where  
 

1
1 1

1( ) exp   for 0 xf x x
θ θ

⎧ ⎫
= − >⎨ ⎬

⎩ ⎭
 

 
and 
 

2
2 2

1( ) exp   for 0 xf x x
θ θ

⎧ ⎫
= − >⎨ ⎬

⎩ ⎭
 

 
The maximum likelihood estimators (MLEs) 
based on the two samples are given by: 
 

R

2.001.501.201.10.80.50.20.10.01

O
V

L

1.2

1.0

.8

.6

.4

.2

0.0

Matusita's Measure

Morisita's Measure

Weitzman's Measure
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1) From the first sample: 

               

1

1
1

11
1

ˆ

n

i
i

X
X

n
θ == =

∑
.                 (3.1) 

 
2) From the second sample 
 

            

2

2
1

22
2

ˆ

n

i
i

X
X

n
θ == =

∑
.      (3.2) 

 
Note that, it is easy to show that 

1 2
1 1 2 2

1 2

ˆ ˆG( , ) and G( , )n n
n n
θ θθ θ∼ ∼ , where 

G(., .) stands for the gamma distribution 
function. Hence, the variances of those MLE’s 
are respectively   

2 2
1 2

1 2
1 2

ˆ ˆ( )  and Var( )Var
n n
θ θθ θ= = . Also, the 

MLE of R is 1

2

ˆ
ˆ

ˆR θ
θ

= . Therefore, using the 

relationship between Gamma distribution and 
Chi-square distribution and the fact that the two 
samples are independent, it is easy to show that 

2

1

R̂θ
θ

 has F-distribution{i.e., 1 2(2 , 2 )F n n }. 

Hence, the variance of R̂ is 
2

2 2 1 2
2

1 2 2

( 1)ˆ( )
( 1) ( 2)
n n nVar R R

n n n
+ −=

− −
. Also, an 

unbiased estimate of R is given 

by * 1 2 2

2 22

ˆ ( 1) ( 1)ˆ ˆ
ˆ

n nR R
n n

θ
θ

− −= =  with 

* 2 1 2

1 2

( 1)ˆ( )
( 2)

n nVar R R
n n

+ −=
−

. Clearly, *R̂ has 

less variance than R̂ .  
 The OVL measures considered here are 
functions of R, therefore, based on the MLE 
estimate of  R,  the OVL coefficients can be 
estimated by  
 

                               
*

*

ˆ2ˆ ,ˆ1
R
R

ρ =
+

                     (3.3) 

 

                               
*

* 2

ˆ4ˆ  ,ˆ(1 )
R
R

λ =
+

                 (3.4) 

and 
 

                      
*

1
ˆ* 1

*

1ˆ ˆ1 ( ) 1 .    ˆ
RR

R
−Δ = − −      (3.5) 

 
Asymptotic Properties 
 Let OVL= ( )g R , then *ˆ ˆ( ).OVL g R=  
Thus using the well-known delta method (Taylor 
series expansion) the approximate sampling 
variance of the OVL measures can be obtained 
as follows:       
 

                          

2
ˆ

2
1 2

4
1 2

ˆVar( )

(1 ) ( 1) ,
( 2)(1 )

R R n n
n n R

ρρ σ= ≈

− + −
− +

          (3.6) 

 

                         

2
ˆ

2 2
1 2

6
1 2

ˆVar( )

16 (1 ) ( 1) ,
( 2)(1 )

R R n n
n n R

λλ σ= ≈

− + −
− +

    (3.7) 

and 
 

                         

2
ˆ

2
21

1 2
2

1 2

ˆVar( )

( 1)( ) (ln ) .
( 2)(1 )

Rn n R R
n n R

σ
Δ

−

Δ = ≈

+ −
− −

    (3.8) 

  
 It is known that the estimators of those 
OVL coefficients are biased. Approximations 
for the biases of the OVL coefficients estimates, 
using Taylor series expansion, are as follow: 
 

1. *ˆ( )Bias ρ =  

1 2
3

1 2

( 1) 3 ( 2) 1 
( 2) 2( 1)

n n R R R
n n R
+ − − −

− +
 

 
2. *ˆ( )Bias λ =  
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2
1 2

4
1 2

( 1) 8 ( 2) 
( 2) ( 1)

n n R R
n n R

+ − −
− +

 

 
3. *ˆ( )Bias Δ =  

2
1 2

1 2
2 1

21

3

2
1 2

1 2
2 1

21

3

( 1) 
( 2)

[ (2 ( ) 2) ( ) ( 1) ] if 1
( 1)

.
( 1)

( 2)

[ (2 ( ) 2) ( ) ( 1) ] if 1
(1 )

R
R

R
R

n n R
n n

R R R Ln R Ln R R R
R

n n R
n n

R R R Ln R Ln R R R
R

−
−

−
−

⎧ ⎫+ −
⎪ ⎪−⎪ ⎪
⎪ ⎪

− − − −⎪ ⎪>⎪ ⎪−⎪ ⎪
⎨ ⎬

+ −⎪ ⎪
⎪ ⎪−
⎪ ⎪
⎪ ⎪− − − −⎪ ⎪<
⎪ ⎪−⎩ ⎭

 
Reasonable estimates for the above variances 
and the biases can be obtained by substituting R 
by *R̂ in the above formulas.  
 
Interval estimation 
 
Transformation Technique   

From Section 3.1,  2
1 2

1

ˆ (2 , 2 )R F n nθ
θ

∼ , then  

*2 2

1 2

( ) ˆ
( 1)

n R
n

θ
θ −

∼ 1 2(2 , 2 )F n n . Let L and U  be 

the lower and upper confidence limits 
respectively of R, corresponding to the inclusion 
probability1 α− . Thus L and U can be 
determined by solving for R the equation  

1 2 1 2

/ 2 1 / 22
(2 ,2 ) (2 ,2 )

1

ˆ( ) 1n n n nP F R Fα αθ α
θ

−< < = − , where 

1 2 1 2

/ 2 1 / 2
(2 ,2 ) (2 ,2 ) and n n n nF Fα α− are the lower and the 

upper / 2α quantile of the 

1 2(2 , 2 )F n n distribution respectively. Thus 

1 2 1 2

1 / 2 / 2
(2 ,2 ) (2 ,2 )

ˆ ˆ
 and 

n n n n

R RL U
F Fα α−= = . However, the 

OVL coefficients are not monotone functions of 
R therefore, the 100(1 α− )%confidence 
intervals for the OVL coefficients can be 
obtained using the transformation technique as 
follows: 
 

 
 

 
 

1. 
2 2{ ( , ) 

( 1) ( 1)
L UMin

L U+ +
 

ρ≤ ≤  

2 2( , )}
( 1) ( 1)

L UMax
L U+ +

 

 

2. 2 2

4 4{ ( , ) 
( 1) ( 1)

L UMin
L U+ +

 

λ≤ ≤  

2 2

4 4( , )}
( 1) ( 1)

L UMax
L U+ +

 

 

3. 
11

11 1 1{ (1 |1- |, 1 |1- |) 
L U

ULMin L U −−− −

 ≤ Δ ≤  
11

11 1 1(1 |1- |, 1 |1- |)}
L U

ULMax L U −−− −

 
Asymptotic technique 
 Normal approximation to the sampling 
distribution, using Delta-method, work fairly 
well for large sample because of the nice 
asymptotic properties of the MLE estimates of 
the exponential distribution.  Therefore, the 
100(1 α− )% confidence intervals for the OVL 
coefficients can be computed easily  as 

ˆ ˆ1 / 2 1 / 2
ˆ ˆˆ ˆ{ , }OVL OVLOVL Z OVL Zα ασ σ− −− + , 

where 1 / 2Z α− is the / 2α  upper quantile of the 
standard normal distribution.  
 These confidence intervals are not the 
best because of the bias involved in OVL 
coefficients estimates, however, for large 
samples they work fairly well. In Section 3.2, 
approximate the bias of those OVL coefficients. 
Using these approximations, the bias corrected 
interval can be computed as     
 

ˆ1 / 2
ˆ ˆ ˆ{( ( ) ,OVLOVL Bias OVL Z α σ−− −  

ˆ1 / 2
ˆ ˆ ˆ( ( )) }OVLOVL Bias OVL Z α σ−− + . 
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Bootstrap Interference 
 Bootstrap methods are computer 
intensive which involves simulated data sets.  
Uniform (ordinary) bootstrap resampling by 
Efron (1979) is based on resampling with 
replacement from the observed sample 
according to a rule which places equal 
probabilities on sample values. Uniform 
bootstrap resampling as described by 
Efron(1979) and others is an assumption-free 
method that can be used for some inferential 
problems. However, it is designed for complete 
and continuous set of observations. For two-
sample case the uniform resampling rules will 
apply to each sample separately and 
independently (see Ibrahim, 1991; Samawi et al., 
1996; Samawi et al., 1998).   
 Suppose 

11 11 12 1( ,  ,  ...,  ) nX X Xℵ =  

and 
2

* * * *
2 21 22 2n(X , X , ..., X )ℵ = are two 

independent random samples drawn from 
1 2( ) and ( )f x f x respectively. Assume that the 

parameter of interest is the OVL coefficient, say 
θ .  Let S be an estimate based on the random 
samples 1 2 and ℵ ℵ  i.e., 1 2( ,  )S S= ℵ ℵ .  
Furthermore, assume S is a smooth function of 
the samples.  Assume that U is a function of S 
i.e.,  )(SUU = . Write U*  for the same 
function of the data but in  resamples 

1

* * * *
1 11 12 1n(X , X , ..., X )ℵ =  and  

2

* * * *
2 21 22 2n(X , X , ..., X )ℵ = which are drawn from 

1 2 and ℵ ℵ according to the rules which places 

probability 
1

1
n

 on each sample value of 1ℵ  and 

probability
2

1
n

 on each sample value of 2ℵ .  Let 

( )u E U=  then the bootstrap estimate (say û ) 
of u is given by 
 
                    *

1 2ˆ ( | ,  )u E U= ℵ ℵ           (3.17) 
 
This expected value is often not computable.   
 
 

 
Uniform Resampling Approximation for 
Bootstrap Estimate 
 Assume that the probability of selecting 

1iX   in a resample is  
 

                   *
1 1 1

1

1( | )iP X X
n

= ℵ =        (3.18) 

 
and probability of selecting 2iX   in a resample 
is  
 

                   *
2 2 2

2

1( | )iP X X
n

= ℵ =      (3.19) 

 
Let * * *

11 12 1,  ,  ....,  Bℵ ℵ ℵ and * * *
21 22 2,  ,  ...., Bℵ ℵ ℵ  

denote two independent resamples sets of size B 
each drawn from 1 2and ℵ ℵ  respectively.  To 
obtain a Monte Carlo approximation to û  using 
uniform resampling, let *

bU   denote U computed 

from * *
1 2and b bℵ ℵ . Then, the uniform 

resampling approximation to the bootstrap 
estimate û is given by 
 

                          ( )* *

1

1ˆ
B

B b
b

u B U
=

−= ∑        (3.20) 

 
Do and Hall (1991) showed that *ˆBu is an 

unbiased approximation to û , in the sense that 
*

1 2ˆ ˆ( |  ,  )BE u uℵ ℵ = . Moreover, an 
approximation of the bootstrap bias of  u  can be 
obtained by * *ˆ ˆ ˆ| |Bbias u u−= , and an 
approximation of the bootstrap MSE can be 

obtained by  ( )
2

* *

1

1ˆ ˆ
B

b
b

MSE B U u
=

−= −∑ . 

 
Estimation of distributions function and 
quantiles 

Bootstrap method for calculating 
confidence limits, distribution function or a 
problem in testing hypothesis involves 
estimation    of      probabilities     of   the    form 
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            )( pdSPp ≤=              (3.21) 
Using the bootstrap estimation conditioned on 
the original samples one can estimate p by p̂    
where    
 
                       )(ˆ *

pdSPp ≤=              (3.21) 
 
and * * *

1 2( , )S S= ℵ ℵ .  Note that (3.22) can be 
approximated by using empirical frequencies 
such as the proportion of B simulated samples 
for which pdS ≤* .  In the literature, the 
problem is solved by defining a smooth 
transformation h of S viz., T=h(S) with the 
property that the distribution of T is 
approximately normal, see Hall (1992). 

Adopting the notation of Section 3.3.1, 
the definitions of U and U * for this problem 
become )( pdSIU ≤= and * *( )pU I S d= ≤  
respectively, where I is the indicator function.  
Let  * * *

1 2,  ,  ...., BS S S  be the resampling 
realization of S. Then, the uniform resampling 
approximation to the bootstrap estimate p̂ is 
 

  ( )* *

1

1ˆ ( )
B

B b b
b

p B I S d  
=

−= ≤∑      (3.22) 

 
To find the uniform resample approximation of 
the p-th quantile of the bootstrap distribution of 
S,  say bq̂ , let * * *

(1) (2) ( ),  ,  ...., BS S S  be the order 

statistics of * * *
1 2,  ,  ...., BS S S . Define 

K=Int(B*P).           
Then uniform resampling approximation of the 

lower limit is 
* *
( ) ( 1)*ˆ

2
K K

p

S S
q ++

= .   

 
Simulation Study 
 A Monte Carlo simulation study was 
conducted for R=0.2, 0.5 and 0.8, 

1 2( , )n n =(20,20), (20,30), (50, 50), (50, 100) 
and α =0.05. All the 1000 simulated sets of 
observations were generated under the 
assumption that both densities have exponential 
distribution with the different means. A 

bootstrap approximation, based on 1000 
resamples, was used. 
 Tables 1-3 indicate that the bias of the 
proposed OVL estimators are negligible and 
|bias| decreases as the sample sizes are 
increased.  With respect to the coverage 
probability (1-α ),  Taylor series approximation 
method seem to work well, except for R close to 
one and very small sample sizes. 
 The coverage probability for all three 
OVL coefficients are getting closer to the 
nominal value when the sample sizes are 
increased. Bootstrap methods coverage 
probability work fairly good and increases when 
R increases close to one. However, 
Transformation method, which is the easiest to 
be used, works very well when R <0.5 and for 
small sample sizes. Also, transformation method 
is the best for all three OVL coefficients, with 
respect to the length of the confidence interval, 
except when the sample sizes are (50, 50).   
 
Illustration: Survival Time from Dinse (1982) 
 In most of medical studies the progress 
of the patients is often monitored for a limited 
time after treatment. Dinse (1982) gives data for 
survival times in weeks for 10 patients with 
symptomatic lymphocytic non-Hodgkin’s 
lymphoma and 28 asymptomatic patients. The 
precise survival time is not known for one 
patient in the symptomatic group and 12 patients 
in the asymptomatic group. They were alive 
when the study was terminated. Therefore, those 
patients were excluded from our illustration. 
Table 4 contains the survival time of the 
symptomatic and the asymptomatic group. The 
aim of this illustration to estimate the percentage 
of similarity in the range of survival time in the 
two groups. 
 Figure 2 and 3 indicate that the data for 
both groups (symptomatic and asymptomatic) 
can be accepted as exponential data. The MLE 
estimates for the scale parameters are 
respectively 1 2

ˆ ˆ=138.22 and 207.13θ θ = .  
 From Table 5, all three methods gave 
reasonable point and confidence interval 
estimates for the proposed OVL coefficients.  
However, Δ  have the lowest asymptotic bias 
but the largest asymptotic variance.  The 
confidence interval based on Taylor series  
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Table 1: Bias, length of interval (L.), and the coverage probability (Cov.) for R=0.20. Exact OVL coefficients: 
ρ =0.745, λ =0.556 and Δ =0.465. 

 
  Taylor Series   Bootstrap  Transformation 

1 2( , )n n   Bias L. Cov.  Bias L. Cov  Bias* L. Cov. 

ρ  -0.028 0.314 0.933  -0.016 0.279 0.936  -0.015 0.296 0.959 

λ  -0.029 0.457 0.928  -0.014 0.404 0.936  -0.017 0.428 0.959 

(20,20) 

Δ  -0.018 0.337 0.949  -0.006 0.311 0.936  -0.004 0.330 0.959 

 

ρ  -0.023 0.283 0.949  -0.013 0.259 0.941  0.003 0.270 0.957 

λ  -0.024 0.415 0.947  -0.010 0.376 0.941  -0.011 0.396 0.957 

(20,30) 

Δ  -0.015 0.305 0.950  -0.005 0.286 0.941  -0.002 0.303 0.957 

 

ρ  -0.011 0.196 0.937  -0.005 0.185 0.934  -0.005 0.086 0.036 

λ  -0.014 0.290 0.937  -0.002 0.274 0.934  -0.004 0.109 0.036 

(50, 50) 

Δ  -0.007 0.212 0.944  -0.000 0.204 0.934  -0.002 0.078 0.036 

 

ρ  -0.008 0.169 0.945  -0.006 0.162 0.937  -0.004 0.125 0.868 

λ  -0.008 0.250 0.945  -0.005 0.240 0.937  -0.004 0.185 0.868 

(50, 100) 

Δ  -0.005 0.182 0.949  -0.002 0.177 0.937  -0.003 0.137 0.868 

      * Estimated bias using Monte Carlo simulation methods 
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Table 2.  Bias, length of interval (L.), and the coverage probability (Cov.) for R=0.50. Exact OVL 
coefficients: ρ =0.943, λ =0.0.889 and Δ =0.75. 

  Taylor Series   Bootstrap  Transformation 

1 2( , )n n   Bias L. Cov.  Bias L. Cov  Bias* L. Cov. 

ρ  -0.035 0.203 0.921  -0.024 0.179 0.944  -0.016 0.186 0.957 

λ  -0.059 0.369 0.919  -0.039 0.316 0.944  -0.027 0.327 0.957 

(20,20) 

Δ  -0.029 0.430 0.917  -0.016 0.369 0.944  -0.013 0.365 0.957 

 

ρ  -0.029 0.186 0.915  -0.025 0.171 0.930  -0.017 0.171 0.943 

λ  -0.048 0.339 0.915  -0.042 0.304 0.930  -0.030 0.303 0.943 

(20,30) 

Δ  -0.024 0.395 0.926  -0.021 0.318 0.930  0.003 0.347 0.943 

 

ρ  -0.014 0.125 0.930  -0.010 0.118 0.931  -0.007 0.453 0.034 

λ  -0.024 0.232 0.930  -0.017 0.215 0.931  -0.014 0.583 0.034 

(50, 50) 

Δ  -0.012 0.271 0.925  -0.005 0.260 0.931  -0.005 0.443 0.034 

 

ρ  -0.010 0.107 0.951  -0.008 0.104 0.946  -0.005 0.078 0.850 

λ  -0.018 0.200 0.948  -0.014 0.191 0.946  -0.008 0.144 0.850 

(50, 100) 

Δ  -0.009 0.234 0.942  -0.004 0.228 0.946  0.0009 0.175 0.850 

 
      * Estimated bias using Monte Carlo simulation methods 
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Table 3. Bias, length of interval (L.), and the coverage probability (Cov.) for R=0.80. Exact OVL coefficients: 
ρ =0.994, λ =0.988 and Δ =0.918. 

 
  Taylor Series   Bootstrap  Transformation 

1 2( , )n n   Bias L. Cov.  Bias L. Cov  Bias* L. Cov. 

ρ  -0.031 0.106 0.712  -0.026 0.108 0.955  -0.016 0.096 0.337 

λ  -0.059 0.204 0.714  -0.049 0.201 0.955  -0.030 0.178 0.337 

(20,20) 

Δ  -0.020 0.500 0.953  -0.071 0.320 0.955  -0.046 0.226 0.337 

 

ρ  -0.025 0.087 0.720  -0.022 0.094 0.952  -0.012 0.078 0.333 

λ  -0.048 0.168 0.721  -0.041 0.176 0.952  -0.023 0.145 0.333 

(20,30) 

Δ  -0.018 0.539 0.940  -0.059 0.297 0.952  -0.033 0.199 0.333 

 

ρ  -0.012 0.051 0.894  -0.011 0.053 0.958  -0.006 0.616 0.023 

λ  -0.024 0.10 0.892  -0.020 0.103 0.958  -0.011 0.794 0.023 

(50, 50) 

Δ  -0.011 0.320 0.881  -0.028 0.220 0.958  -0.015 0.652 0.023 

 

ρ  -0.009 0.043 0.943  -0.009 0.045 0.945  -0.005 0.030 0.844 

λ  -0.017 0.083 0.943  -0.017 0.088 0.945  -0.009 0.058 0.844 

(50, 100) 

Δ  -0.008 0.269 0.858  -0.023 0.020 0.945  -0.012 0.135 0.844 

   

 * Estimated bias using Monte Carlo simulation methods 

 
 



AL-SALEH & SAMAWI 513

 

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

Table 4. Survival time of symptomatic and asymptomatic lymphocytic  
patients by Dinse (1982) 

 
Symptomatic 49 58 75 110 112 132 151 276 281        

Asymptomatic 50 58 96 139 152 159 189 225 239 242 257 262 292 294 301 359

 

Table 5. Results based on the real data of Dinse (1982) 

 Asymptotic 

Inference 

Transformation 

Technique 

Bootstrap Inference 

based on 1000 

resamples 

 95% confidence 

Interval limits 

 95% confidence 

interval limits 

95% confidence 

interval limits 

Coeff MLEs (bias) 

 

Asymptotic 

variance Lower Upper  Lower upper Lower Upper 

ρ  0.973(-0.063) 0.0018 0.815 1.000  0.860 0.990 0.904 0.999 

λ  0.947(-0.117) 0.0070 0.643 1.000  0.740 0.981 0.817 0.999 

Δ  0.829(-0.060) 0.0247 0.654 0.883  0.606 0.898 0.675 0.976 
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Figure 2.  Exponential probability plot for symptomatic patients   

 
 

0 500 1000 1500

10
30

50
60
70

80

90

95

97

98

99

Data

P
er

ce
nt

AD* 2.978

Goodness of Fit

Exponential Probability Plot for Asymptomatic
ML Estimates - 95% CI

Mean 207.125

ML Estimates

 
Figure 3: Exponential probability plot for asymptomatic patients.   
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approximation gave the shortest confidence for 
Δ .  
 In conclusion, it seems that there is no 
best method in all situations. Therefore, when 
the sample size is small and R<0.5, 
transformation method is recommended. If 
computers are available, bootstrap method can 
be used. Taylor series approximation is 
recommended for larger sample sizes and R<0.8. 
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