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PREFACE 

INTRODUCTION 

Assisted Reproduction Technologies (ART) have been developed to treat infertility since 

1790, when the first case of artificial insemination was performed.  Since then, multiple and 

dramatic advances have been made in the field of infertility research through the employment of 

a variety of species; enabling people, whom without the use of these techniques, would not be 

capable of reproducing.  While the development of techniques to overcome infertility has been at 

the forefront of reproductive research, investigation into the causes of infertility have also been, 

and continue to be, equally as important as the remedies.  It is well established that one major 

contributor to female infertility is maternal age.  According to the Society for Assisted 

Reproductive Technology (SART) statistics for 2007, oocyte retrievals in women <35yrs had a 

43.1% live birth rate, while women 41-42yrs of age had a 14.3% live birth rate.  Furthermore, the 

average number of embryos per transfer was 2.2 in the <35yr age group and increased to 3.1 in 

the 41-42yr age group, indicating that there is a decline in either oocyte or embryo quality with 

age as well.  While maternal age is known and can be a fairly reliable indicator of fertility; 

oocyte and embryo quality contribute significantly to fertility as well, but are much more 

difficult to determine.  Oocyte quality is generally assessed by appearance and meiotic stage of 

the oocyte at the time of collection and insemination.  There are few guidelines that aid in 

discriminating a competent from a non-competent oocyte and the process is subjective and 

heavily dependent upon the embryologists�’ skill and expertise.  Embryo quality is more defined 

in that there is an expected, timely progression of cell division and development through 

preimplantation.  It is reasonably simple to identify poor or bad embryos based upon morphology 

and embryonic arrest during the cleavage stages; however, it remains difficult to identify a high 

quality embryo based upon anything besides development rate and morphological quality score.  
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Because of poor predictive value of embryo morphology, virtually all human ART clinics 

practice multiple embryo transfers, which while increasing pregnancy and live birth rates, also 

result in multiple births which can lead to pre and perinatal complications.  Techniques such as 

preimplantation genetic diagnosis (PGD) have been developed in attempts to remedy this 

problem, however the results have been unreliable and the procedure is detrimental to the 

embryo.  Due to the fact that there are currently no reliable, objective ways to determine oocyte, 

and even embryo, quality, it is imperative to ascertain methods to measure oocyte quality that 

will improve selection of oocytes and embryos in ART clinics and increase pregnancy success 

rates.  These methods are only possible with a more complete understanding of the cellular and 

molecular properties of oocytes and preimplantation embryos.  A key component of all cells, 

including oocytes and embryos, is the mitochondrion, which produces energy and maintains its 

own DNA for encoding proteins necessary for energy production.  Defects in either the proteins 

responsible for energy production, the mitochondrial DNA (mtDNA) genome, or other 

contributing factors can lead to loss of oocyte competence (failed fertilization) and embryo 

quality (embryonic arrest, incompetent placentas, pregnancy loss).  Unquestioningly, human 

oocytes and the embryos derived from them would be the optimal material to use for performing 

studies on oocyte quality and embryo development.  However, practical and ethical constraints 

prevent the use of human material for intensive, potentially terminal studies; thus, compelling 

researchers to find and use suitable animal models instead.  It is important that studies are 

conducted with animals closely related to humans due to the wide diversity in cellular, molecular 

and endocrine mechanisms used by different mammals in their reproductive strategies.  The non-

human primate (NHP) is the most befitting animal model for human reproduction due to 

evolutionary closeness and the dramatic similarities in reproductive function and preimplantation 

development.  Furthermore, because studies in human preimplantation development are 
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restricted to the use of discarded oocytes from infertility clinics, the use of the NHP has 

established the rhesus macaque as an excellent research model for human reproduction due to the 

availability of normal, viable oocytes and embryos from fertile animals.  Therefore, the overall 

goals of this study were to evaluate mitochondria in NHP oocytes and embryos and to determine 

how mtDNA mutations and mitochondrial function affect oocyte and embryo quality.  

Specific Aim 1.1: To determine if the rhesus macaque can be utilized as a clinically 

translational model for mitochondrial mutations identified in human IVF.  

Specific Aim 1.2: To determine if the rate of mitochondrial mutations in rhesus macaque 

oocytes and IVF produced embryos is increased due to gonadotrophin stimulation.  A high 

proportion of presumably normal oocytes give rise to developmentally incompetent embryos in 

human IVF programs.  Pre-implantation embryos generated by IVF show high frequencies of 

abnormal development and early demise.  A direct relationship between mitochondrial mutations 

in oocytes and embryos and reproductive success has not been demonstrated; however, it is 

generally assumed that there must be a sufficient number of functional mitochondrial genomes in 

the embryo in order for it to develop and implant successfully.  A mitochondrial mutation that 

has been described in human oocytes and embryos is termed the �“common deletion" or 

mtDNA4977.  The reason for this mutation is currently unknown, however, an important 

question is whether or not this deletion is caused by gonadotrophin stimulation.  In order to 

determine this, employment of the rhesus macaque as a clinically translational model is vital. 

Specific Aim 2: Due to the frequency of the rhesus mtDNA common mutation in 

gonadotrophin stimulated, rhesus macaque MII oocytes and IVP embryos, we hypothesize 

that the common mutation will also be present in embryonic stem (ES) cells derived from 

IVP produced embryos.  We propose that the presence of numerous mtDNA deletions and 

point mutations may actually reflect the quality of affected oocytes or primate ES cells lines.  
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Primate ES cell lines may harbor mutant mtDNA that may further accumulate during cell 

culture, and thus have consequences for long-term viability. 

Specific Aim 3.1: To determine if the presence of mutations in the mtDNA control region, 

as well as the mitochondrial polymerase, PolG, are associated with aging in the rhesus 

macaque. 

Specific Aim 3.2: To determine if in the presence of mutations in the mtDNA control region 

are associated with meiotic failure in oocytes.  In order to understand the significance of 

mutations within the mtDNA genome, it is imperative to examine the region of the genome that 

controls OXPHOS, replication and transcription.  In addition to investigating the occurrence of 

mutations in the mtDNA control region, we can determine if aging is a cause of mtDNA damage 

as well identifying mutations that may be associated with failure of oocytes to mature to 

metaphase II, enabling them to be fertilized. 

Specific Aim 4: To determine if gonadotrophin stimulation efficiency and oocyte and 

embryo quality can be improved through optimization of gonadotrophin stimulation 

protocols. 

Our laboratory has been working with the Caribbean Primate Research Center (CPRC) 

for approximately 4 years in an effort to establish a reputable rhesus macaque IVF program using 

the CPRC as a resource to provide high quality rhesus macaque oocytes, embryos and sperm.  In 

order to obtain rhesus macaque reproductive material of the highest quality, we tested three 

modifications to the previously established gonadotrophin stimulation protocols. 

Specific Aim 5.1: To determine if expression levels of genes controlling mitochondrial 

dynamics are correlated to the failure of oocytes to resume meiosis.  

Specific Aim 5.2: To determine if expression levels of genes controlling mitochondrial 

dynamics are correlated to important preimplantation development time points. 
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Interest in the mitochondrion and its role in the preimplantation mammalian embryo has 

had a recent resurgence and it is understood that mitochondria undergo a variety of species-

specific reorganizations during early preimplantation development. It is possible that the 

localization of mitochondria in rhesus zygotes is a result of mitochondria undergoing fusion and 

fission processes during preimplantation resulting in the microtubule network guiding the 

mitochondria to their pronuclear location.  Our lab has recently found that monkey oocytes have 

an abundance of gene involved in the control of mitochondrial fusion, fission, movement and 

replication.  Therefore we speculate that mitochondrial trafficking is important for fusion and 

fission mechanisms and may impact oocyte and embryo quality. 
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CHAPTER 1 

BACKGROUND AND SIGNIFICANCE 

Oogenesis and Preimplantation Development 

Oogenesis begins early in fetal development with the formation of primordial germ cells 

(PGCs) which populate the fetal ovary.  PGCs migrate along the hind gut during gestation to the 

region adjacent to the mesonephros that becomes the genital ridge.  PGCs are the sole source of 

adult germ cells and once established in the developing ovary are referred to as oogonia.  

Oogonia undergo several rounds of mitotic division over a period of several months until shortly 

before birth, when meiosis is initiated.  The primary oocytes progress through prophase I of the 

first meiotic division before arresting at the diplotene stage.  Diplotene oocytes are characterized 

by diffused chromosomes surrounded by an intact nuclear membrane known as the germinal 

vesicle (GV).  With the resumption of meiosis, which occurs shortly after puberty, the interphase 

chromatin condenses, the germinal vesicle membrane breaks down (GVBD), the spindles form 

and chromosomes segregate.  Extrusion of the first polar body marks the completion of the first 

meiotic division.  Oocytes then arrest again at metaphase II (MII).  Completion of the second 

meiotic division only occurs after fertilization and the extrusion of the second polar body.  The 

interaction of maternal and paternal pronuclei at syngamy is characterized by tight association of 

both male and female pronuclear envelopes with close alignment of the nucleoli.   In humans and 

non-human primates, pronuclear membrane breakdown and commencement of the first mitotic 

division ensues without actual fusion of the pronuclear envelopes, as is seen in a multitude of 

other species (reviewed by (Levron et al., 1995). 

Mitochondria and Reproduction 

Mitochondria are considered entirely maternally inherited.  Although sperm carries 

paternal mitochondria into the oocyte at fertilization, they are normally eliminated in early 
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embryonic development by ubiquitin-tagging of the sperm surface.  During the first half of fetal 

development, mitochondria number around 10 in each premigratory PGC and increase to 

approximately 200 in each original oogonium.  Mitochondria then increase exponentially until 

the diplotene stage of meiosis where they arrest.  At birth, there are approximately two million 

oocytes and each immature primordial oocyte contains about 6000 mitochondria (Jansen and 

Burton, 2004; Shoubridge and Wai, 2007).  Once puberty is reached, primordial follicles contain 

oocytes arrested at the GV stage of development.  Upon fertilization, during mitosis, mtDNA 

synthesis and mitochondrial replication are inhibited as cleavage divides the mitochondria from 

the fertilized oocyte among the daughter cells of the developing embryo.  This process 

progressively reduces the mtDNA copy number per cell, or blastomere in the embryo, from the 

0.5�–5 million found in the oocyte at ovulation to approximately 10 per cell by the time 

gastrulation begins.  This process establishes a genetic bottleneck of mtDNA.  The mitochondrial 

bottleneck theory states that a limited number of mtDNAs (1-200) are the only mtDNAs selected 

to undergo replication.  These genetic founder mtDNAs replicate to give rise to almost all the 

100,000 mtDNAs in mature MII oocytes (Jenuth et al., 1996).  Typically, prior to mtDNA 

replication, if oocytes contain a small percentage of mtDNAs with rearrangements, then random 

selection of a limited number of founder mtDNAs would likely select normal mtDNAs for 

replication.  At this point, the literature varies significantly about both the number of 

mitochondria in each GV oocyte and the number of mtDNA copies per mitochondria.  Upon 

resumption of meiosis and during maturation, cytoplasmic growth of oocytes recruited for 

ovulation indicates that mitochondrial numbers have increased, and in some species, i.e. NHP 

and porcine (Gibson et al., 2005; Spikings et al., 2007) mtDNA replication occurs, increasing the 

mtDNA copy number from GV to MII.  This replication event does not appear to occur in the 

mouse. 
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Mitochondrial Function 

Mitochondria are traditionally known as the powerhouses of the cell; the primary source 

of ATP production.  While this is true, the mitochondrion is an infinitely more complicated and 

interesting organelle.  The mitochondrion, which evolved from an oxidative -proteo-bacterium, 

approximately 2 billion years, ago joined forces with a glycolytic motile cell evolving into what 

we know currently as a eukaryotic cell.  Over approximately 1.2 billion years a symbiotic 

relationship evolved in which the mitochondrion became specialized in energy production and 

the nucleus-cytosol became the driving force behind structure.  As this relationship evolved 

further, essentially all genetic function from the mitochondrion (~1500 genes) became part of the 

chromosomal nuclear DNA.  However, the mitochondrial genome did not disappear completely 

and continues to retain the core subunits of the enzyme complexes of mitochondrial oxidative 

phosphorylation (OXPHOS) (Wallace, 2008).  Thirteen polypeptide-encoding genes, 2 rRNA 

genes and 22 tRNA genes, all essential to OXPHOS, remain encoded by the mitochondrial 

genome, rendering the mitochondrial DNA (mtDNA) genome essential to energy production and 

cell function.  Mitochondria generate energy through the electron transport complexes (ETC) by 

oxidizing hydrogen with oxygen to generate heat and ATP.  Two electrons are passed 

sequentially, either from NADH+H+ to complex I (NADH dehydrogenase) or from succinate to 

complex II (succinate dehydrogenase), to ubiquinone (coenzyme Q) to give ubisemiquinone 

(CoQH) and then ubiquinol (CoQH2).  Ubiquinol transfers its electrons to complex III 

(cytochrome c oxidoreductase), which transfers them to cytochrome c.  From cytochrome c, the 

electrons ow to complex IV (cytochrome c oxidase, COX) and then to 1/2 O2 to give H2O.  The 

energy released from the ETC is used to pump protons out of the mitochondrial inner membrane 

through complexes I, III, and IV, creating an electrochemical gradient.  The potential energy 

stored in the inner membrane is coupled to ATP synthesis by complex V (ATP synthase).  As 
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protons ow back into the matrix through a proton channel in complex V, ADP and Pi are 

bound, condensed, and released as ATP.  Matrix ATP is then exchanged for cytosolic ADP by 

the adenine nucleotide translocator (ANT).  As a by-product of OXPHOS, mitochondria generate 

reactive oxygen species (ROS), in the forms of O2
- (superoxide anion radical), H2O2 (hydrogen 

peroxide) and OH (hydroxyl radical).  Superoxide anion can be converted to hydrogen peroxide 

which can then be converted to highly reactive hydroxyl radicals, rendering mitochondria key 

targets for oxidative damage (reviewed by (Wallace, 2005).  H2O2, in conjunction with 

superoxide anion, can damage cells by allowing the most reactive metabolite, OH, to form via 

superoxide dismutase (SOD) and the Haber-Weiss reaction (Halliwell, 1989). 

Because gametes and embryos require energy, which is produced by the conversion of 

ADP to ATP via glycolysis and OXPHOS; a process by which O2 is intrinsic through its role as 

an electron acceptor, O2
-, H2O2 and OH have been well established as factors of oxidative stress 

in in vitro culture systems.  The production of excessive amounts of intracellular ROS during in 

vitro embryo culture is thought to disrupt metabolic activity and is therefore detrimental to 

embryo development (Guerin et al., 2001).  The concentration of oxygen at which embryos are 

cultured has shown to be a key factor in regulating OXPHOS and ROS production in several 

species including bovine (Nagao et al., 1994), mouse (Goto et al., 1993) and human (Catt and 

Henman, 2000; Dumoulin et al., 1999).  Furthermore, reduced O2 concentration that more 

closely resembles physiological O2 results in higher blastocyst rates in mice (Dumoulin et al., 

1999), sheep (Bernardi et al., 1996) and bovine (Lonergan et al., 1999).  In mammals, ovulation, 

fertilization, and early embryo development occur in the oviduct.  Embryos then migrate to the 

uterus, where implantation occurs.  Oviductal O2 concentration is dramatically lower than 

atmospheric concentration (Mastroianni and Jones, 1965) with the uterus maintaining an even 

lower O2 concentration than that of the oviduct (Fischer and Bavister, 1993).  Thus there is a 
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decreasing O2 concentration gradient that embryos encounter as they progress through the 

reproductive tract.  Traditionally, in vitro culture systems employed 5% CO2 in atmospheric air 

(approximately 20% O2).  Studies in the last two decades have shown that culture of embryos 

under an O2 concentration more closely resembling that of the oviduct (5% O2) result in 

increased embryonic viability (Dumoulin et al., 1999), decreased H2O2 production and DNA 

fragmentation (Kitagawa et al., 2004) and significantly increased pregnancy and birth rates as 

well as blastocyst rate and quality (Waldenstrom et al., 2009). 

In addition to energy production, mitochondria are key regulators of apoptosis.  

Apoptosis can be initiated through the activation of the mitochondrial permeability transition 

pore (mtPTP) in response to energy deficiency, increased oxidative stress, excessive calcium, 

and other factors.  A complete understanding of the mtPTP remains to be elucidated, however it 

is thought to be composed of the inner membrane ANT, the outer membrane voltage-dependent 

anion channel (VDAC), Bax, Bcl2, and cyclophilin D.  When the mtPTP opens, membrane 

potential decreases and ions equilibrate between the matrix and cytosol, causing a phenomenon 

called mitochondrial outer membrane permeabilization (MOMP) and subsequent swelling of the 

mitochondria.  This results in the release of the contents of the mitochondrial inner membrane 

space (cell death promoting factors such as cytochrome c) into the cytosol.  Upon release, 

cytochrome c activates factors which downstream activate caspases that propagate and execute 

apoptosis. 

The mitochondrial theory of aging (or the oxidative stress theory) holds that oxidative 

damage to the mtDNA genome can lead to DNA strand breaks, deletions and mutations and 

subsequent dysfunction of the respiratory chain.  The most current version of this theory by 

(Sohal and Weindruch, 1996) states that  

�“a chronic state of oxidative stress exists in cells of aerobic organisms even under 
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normal physiological conditions because of an imbalance of pro-oxidants and 
antioxidants.  This imbalance results in a steady-state accumulation of oxidative 
damage in a variety of macromolecules. Oxidative damage increases during 
aging, which results in a progressive loss in the functional efficiency of various 
cellular processes.�”  

Mitochondrial DNA is much more susceptible to ROS damage than nuclear DNA due to 

its proximity to the site of ROS production, as well as the lack of histones and the limited repair 

function of mtDNA.  It is well established that as the proportion of mutated mtDNA increases, 

the energetic output of the mitochondria subsequently declines, ROS production increases, and 

the propensity for apoptosis increases, leading to loss of tissue function (Wallace, 2005).    

Despite decades of research in support of the mitochondrial theory of aging, the exact 

connection between aging and mitochondria continues to be a hot topic of debate and study.  One 

question of interest is whether mtDNA mutations are a cause or consequence of aging.  The 

mitochondrial theory of aging supports the idea that mtDNA mutations are a result of the aging 

process (Sohal and Weindruch, 1996).  The alternative theory is the concept of clonal expansion 

of mtDNA mutations that accumulate over the lifetime of an individual, leading to dysfunction 

of the respiratory complex, followed by the observed aging phenotypes and age-related diseases 

(Elson et al., 2001).  This is of particular interest in post-mitotic cells and tissues, such as skeletal 

muscle, myocardium, brain and oocytes.  As previously stated, the mitochondrial bottleneck 

theory states that limited number of mtDNAs are selected for replication.  If the oocyte selected 

for ovulation contains a small percentage of founder mtDNA with rearrangements that escaped 

the bottleneck, then the resulting oocyte would contain an abnormally high percentage of 

rearranged mtDNAs and thus a high percentage on non-functional mitochondria.  It is well 

established that mtDNA mutations must meet a critical threshold in order to result in age-related 

phenotypes.  However, it is currently unknown exactly how long this process takes, i.e., do 

mtDNA mutations occur early in life and through years of replication clonally expand as the 
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individual ages?  Thus, it would follow that the mtDNA mutations are a cause of aging, instead 

of a result.  Most likely, some combination of both of these processes is the culprit of aging and 

age related diseases.  

Genome and Replication 

Mammalian mtDNA is a double-stranded, closed-circular molecule of approximately 

16.6 kb in the human and non-human primate (Figure P1).    

 
Figure P1. Human mtDNA Genome 

The two strands of mtDNA are classified as either the heavy (H) or light (L) strand.  The 

H strand is thusly named because it is guanine rich and it encodes most of the regulatory 

information: 2 rRNAs, 14 tRNAs and mRNAs for 12 of 13 polypeptides encoded by mtDNA.  

The L strand only encodes 8 tRNAs and 1 mRNA.  There are only two non-coding regions of 

mtDNA.  The primary region is a triple stranded structure called the displacement loop (D-

Loop), approximately 1kb long, within which is the site of heavy strand replication (OH).  The D-

Loop is triple stranded due to the frequent termination of the nascent H strand approximately 

700bp downstream of OH, which remains annealed to the parental L strand, thus leaving three 

strands present in the D-Loop.  Also located within the D-Loop are the sites of the promoters for 

both H and L strand transcription, as well as multiple binding sites for mitochondrial 
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transcription factor A (Tfam).  The second non-coding region is approximately two thirds of the 

mtDNA length from the OH, is only ~30bp in length, and is the origin of replication for the light 

strand (OL).    

Mitochondria are unique organelles in that they require the contribution of both the 

nuclear and mitochondrial genome.  The bulk of mitochondrial proteins are encoded in the 

nucleus, synthesized in the cytoplasm, then imported and processed inside the mitochondrion.  

The mitochondrial genome contributes a small subset of proteins necessary for the OXPHOS 

pathway and is quite different from the nuclear genome for several reasons: 1) Cells contain 

hundreds of mitochondria and each mitochondrion contains 2-10 identical copies of mtDNA, 

while each cell only contains one copy of the nuclear genome, 2) The mitochondrial genome is 

considered maternally inherited, with the paternal contribution being eliminated by an ubiquitin-

dependent mechanism during fertilization (Sutovsky et al., 1999, 2000).  However, this process 

of ubiquination has been questioned in the human as a paternal mitochondrial contribution has 

been detected in children in specific cases, thus leading to mitochondrial heteroplasmy (St John 

and Schatten, 2004).  However, for the scope of this report, we will consider mtDNA to be only 

maternally inherited. 3) The mtDNA genome has considerably less efficient repair mechanisms 

than that of nuclear DNA.  There is only one known mtDNA polymerase, gamma or PolG; and 

the only repair function is the 3�’-5�’ exonuclease linked to the catalytic subunit of PolG.  In all 

vertebrates, PolG is encoded in the nucleus and contains two subunits: a large catalytic subunit 

that harbors the 3�’-5�’ exonuclease and 5�’deoxyribose phosphate (dRP) lyase activities, and a 

smaller accessory subunit which increases both the catalytic activity and processivity of the 

catalytic subunit.  PolG has conserved polymerase and exonuclease domains and the 

combination of the two domains is responsible for the high-fidelity of mtDNA replication with 

an average error rate in humans of approximately 1 error/500,000 bp in vitro (Lee and Johnson, 
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2006; Longley et al., 2005).  Diseases such as progressive external ophthalmoplegia (PEO), 

Kearns Sayer syndrome (KSS), Alpers syndrome and ataxia, as well as symptoms of premature 

menopause, progressive muscle weakness, parkinsonism, and male infertility are coupled with 

mutations in human PolG (Luoma et al., 2004; Mancuso et al., 2004; Naviaux and Nguyen, 

2004; Van Goethem et al., 2001; Zeviani et al., 1988; Zeviani et al., 1989).  Reported mutations 

are primarily recessive and generally associated with other PolG mutations or with mutations in 

other genes that encode proteins involved in mtDNA replication, i.e. Twinkle.   

Twinkle (PEO1) is an mtDNA helicase important for mtDNA replication and to date 

appears to be the rate limiting step in mtDNA replication initiation (Korhonen et al., 2003; 

Spelbrink et al., 2001; Tyynismaa et al., 2005).  Mutations in Twinkle are associated with 

multiple mtDNA deletions and inhibition of Twinkle expression in cultured cells results in rapid 

mtDNA depletion, suggesting that it is required for mtDNA maintenance.  In contrast, 

overexpression of Twinkle in transgenic mice results in increased mtDNA copy number 

(Tyynismaa et al., 2004).  Furthermore, Twinkle helicase activity is stimulated by the 

mitochondrial single stranded DNA-binding protein (SSBP1), which acts as a stabilizer of 

mitochondrial chromosome and nucleoid structure (Korhonen et al., 2003).  Together with PolG, 

these proteins form a minimal replisome (Figure P1) capable of synthesizing 16kb lengths of 

DNA in cell�–free systems (Kaguni, 2004; Korhonen et al., 2003), since PolG alone is unable to 

support DNA synthesis.  Twinkle also co-localizes with Tfam and SSBP1.   

Mitochondrial Transcription 

Transcription of mtDNA takes place following interaction between the nuclear-encoded 

regulatory proteins and regions within the mitochondrial D-Loop.  Transcription requires 

mitochondrial RNA polymerase (Polmt) (Tiranti et al., 1997), Tfam (Fisher and Clayton, 1985, 

1988), and at least one of the transcription factors Tfb1m or Tfb2m (Falkenberg et al., 2002).  
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Several studies suggest that transcription is initiated bi-directionally at two promoters, HSP and 

LSP for heavy and light strands, respectively, within the D-Loop regulatory region (Clayton, 

2000; Shadel and Clayton, 1997).  Light strand transcription commences from the LSP to the 

second conserved sequence block within the D-Loop region, generating a complementary RNA 

sequence (Xu and Clayton, 1995).  Binding of PolG to the resulting sequence enables replication 

of the heavy strand to initiate within the D-Loop.  Both promoters share a critical upstream 

enhancer that serves as the recognition site for Tfam, an HMG-box protein that stimulates 

transcription through specific binding to upstream enhancers. Tfam can bend and unwind DNA 

and is linked to its ability to stimulate transcription upon binding DNA (Fisher et al., 1992).  

Both Tfb1m and Tfb2m proteins work together with Tfam and Polmt to direct initiation from 

HSP and LSP.  Knockdown of the Tfb2m isoform results in reduced mtDNA transcription and 

copy number, while knockdown of Tfb1m appears to have no effect on mtDNA transcription or 

replication (Matsushima et al., 2005).  Termination of mitochondrial transcription is associated 

with the specific initiation site for H-strand transcription, via the mitochondrial transcription 

termination factor (mTERF) (Martinez-Azorin, 2005). 

Mitochondrial Dynamics 

 In mammalian cells, the size and shape of mitochondria varies widely, ranging from long, 

interconnected tubules to individual, small spheres. In some cell types, the mitochondrial 

population consists mostly of tubules, which constantly migrate back and forth along 

microtubule tracks (Chen and Chan, 2004).  In other cell types, the actin cytoskeleton is used for 

transport (Hollenbeck and Saxton, 2005).  During migration along these tracks, individual 

mitochondria can encounter each other and undergo fusion, resulting in mixing of both lipid 

membranes and intra-mitochondrial content (Detmer and Chan, 2007).  Conversely, individual 

mitochondria can divide by fission to yield two or more smaller mitochondria.  In addition to 
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changes occurring during migration, the internal structure of mitochondria can change in 

response to their physiological state.  The length, shape, size and number of mitochondria are 

maintained by fusion and fission.  At steady state, dynamic events are balanced to maintain the 

overall morphology of the mitochondria. When this balance is disturbed, remarkable transitions 

in mitochondrial shape can occur.  

 Genetic studies have shown that cells with a high fusion:fission ratio have few, long and 

highly interconnected mitochondria (Bleazard et al., 1999; Chen et al., 2003; Sesaki and Jensen, 

1999; Smirnova et al., 2001).  Conversely, cells with a high fission:fusion ratio have higher 

numbers of smaller, spherical mitochondria referred to as fragmented mitochondria (Detmer and 

Chan, 2007).  These fragmented mitochondria lead to apoptosis by regulating the release of 

cytochrome C and caspase into the inner membrane space (Detmer and Chan, 2007; Youle and 

Karbowski, 2005).  Mitochondria proliferate on their own during the cell cycle in a manner 

similar to bacterial division.  The dynamics of mitochondrial division are essential for 

mitochondrial function.  A fundamental role of mitochondrial division in multiple cell types is 

the maintenance of appropriate distribution of mitochondria.  Mitochondrial division can lead to 

a distorted mitochondrial network that allows areas of the cell to be devoid of mitochondria, 

resulting in altered cellular division.  It has been shown in mammals that disruption of 

mitochondrial division can result in loss of membrane potential, increased ROS and oxidized 

proteins, as well as mtDNA loss (Lackner and Nunnari, 2008).  The ability to identify areas of 

high and low mitochondrial density within cells may lead to the ability to identify normal 

mitochondrial distribution patterns.  

It has been shown in pronuclear oocytes and early cleavage stage embryos in multiple 

species, including hamster (Barnett et al., 1996) and mouse (Van Blerkom, 1991), that 

mitochondria have a distinct perinuclear translocation and that perturbations from these patterns 
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result in embryonic lethality.  In the human, mitochondrial localization patterns are significantly 

different between individual oocytes and between and among cohorts.  However, pronuclear 

oocytes that showed a pronounced asymmetrical mitochondrial distribution during syngamy 

continued to show an asymmetrical distribution after the first cell division, and between 

blastomeres throughout embryo development.  When analyzed individually, the blastomeres 

containing less mitochondria also had lower ATP content compared to blastomeres with higher 

mitochondrial content (Van Blerkom et al., 2000).  It is well established that during the early 

stages of development, embryo competence depends upon ATP produced by mitochondria 

inherited from the mother (Gardner and Lane, 1998).  During the early stages of embryo 

development, energy is produced by OXPHOS via amino acids, lactate and pyruvate, with the 

glucose pathway proving to be harmful at this stage; indicating that a threshold of mitochondrial 

activity is necessary to support energetic demands (Tarazona et al., 2006).  Once embryonic 

genome activation begins, the metabolic activity of the embryo increases as it becomes capable 

of using alternative pathways such as anaerobic glycolysis, allowing mitochondrial activity to 

decrease.  It has been shown that embryos that are developmentally incompetent have lower 

mitochondrial activity and inhibited cleavage.  While the lack of mitochondrial organization has 

been correlated to poor implantation in the human (Scott and Smith, 1998), the exact influence of 

mitochondrial distribution on embryo competence remains to be determined.   

The molecular analysis of mitochondrial dynamics began in 1997 with the identification 

of the Drosophila mitofusin gene Fzo (Hales and Fuller, 1997).  Fzo is a mitochondrial outer 

membrane GTPase required for mitochondrial fusion during spermatogenesis.  The core genes 

mediating mammalian mitochondrial fusion are Mfn1, Mfn2 and Opa1.  Mfn1 and Mfn2, the 

mammalian homologues to Fzo, are large GTPases with similar homology and topologies that 

reside on the outer mitochondrial membrane (Chen and Chan, 2004).  Opa1 is an inter membrane 
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space protein and is also essential for fusion (Detmer and Chan, 2007).  The exact relationship 

between these proteins remains unclear; however cells lacking any of the three proteins have 

been shown to have inhibited respiratory capacity.  Additionally, the contact between the inner 

and outer membranes, where these proteins reside, is essential to mitochondrial fusion (Detmer 

and Chan, 2007).  During apoptosis structural changes in mitochondria, such as fragmentation, 

occur, leading to increased fission activity.  Concurrently, mitochondrial outer membrane 

permeabilization (MOMP) causes the release of contents of the intermembrane space, including 

cytochrome c, which is sequestered in the cristae, into the cytoplasm.  Once in the cytosol, 

cytochrome c activates caspases that propagate and execute apoptosis.  Inhibition of fission 

blocks mitochondrial fragmentation, reduces cytochrome c release and can reduce or delay 

apoptosis (Detmer and Chan, 2007).  The core genes mediating mitochondrial fission are Drp1, 

Fis1 and MTP18.  Drp1 is a large dynamin-related GTPase located primarily in the cell cytosol.  

A portion of Drp1 moves to the mitochondrial tubule where it interacts with Fis1 (Parone et al., 

2006).  Fis1 is a transmembrane protein anchored to the mitochondrial outer membrane.  Both 

Drp1 and Fis1 have been implicated in mitochondrial outer membrane permeability and mediate 

downstream apoptosis (Chen and Chan, 2004).  Inhibition of Drp1 has been shown to delay 

mitochondrial division and partially inhibit apoptosis.  MTP18 is a mitochondrial protein that 

contributes to the balance of mitochondrial fission and fusion.  Changes in the expression levels 

of MTP18 interfere with the balance of mitochondrial fission and fusion; whereas loss results in 

increased mitochondrial fusion and an increase results in increased number of fragmented 

mitochondria (Tondera et al., 2005). 
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Figure P2: Proposed interaction of genes involved in the control of mitochondrial dynamics, 
movement and mtDNA replication. 

Mitochondria, which are among the most abundant and mobile membrane-bound 

organelles, move along both microtubules and actin, using microtubule-based molecular motors 

for long distance movements (Morris and Hollenbeck, 1995) (Figure P2).  Distribution of 

mitochondria varies in response to multiple regulatory cues such as energy requirements, growth 

factors and mitochondrial membrane potential (Chada and Hollenbeck, 2004; Miller and Sheetz, 

2004; Morris and Hollenbeck, 1993).  Conventional kinesin moves mitochondria to the plus ends 

of microtubules, while dynein moves them toward the minus ends (Pilling et al., 2006; Tanaka et 

al., 1998).  Two research groups identified two different components important for transport; 

Milton (Stowers et al., 2002), involved with kinesin heavy chains, and Miro (Guo et al., 2005), a 

GTPase which is an integral outer mitochondrial membrane protein.  Mutation in either of these 

genes appears to abolish anterograde mitochondrial transport.  Glater et al. (Glater et al., 2006) 
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showed that kinesin, Milton, and Miro work together in anterograde transport and that Milton 

attaches kinesin to mitochondria through Miro.  Pink1, a putative serine�–threonine kinase that 

localizes to the outer mitochondrial membrane, has been shown to have a role in cellular 

protection against oxidative stress and to affect mitochondrial dynamics.  Recent ndings have 

shown that Pink1 interacts with the Miro/Milton complex and that overexpression of either Miro 

or Milton can suppress mitochondrial fragmentation induced after Pink1 silencing (Weihofen et 

al., 2009).  Pink1 and Parkin, a gene associated with Parkinson�’s disease, are linked in a common 

pathway that is involved in the protection of mitochondrial integrity and function (Pridgeon et 

al., 2007).  Our lab has recently found that monkey oocytes have an abundance of Miro1 and 2, 

Milton, Pink1, Parkin, Mfn1, Mfn2 and Drp1 (unpublished data).  Therefore we speculate that 

mitochondrial trafficking is important for fusion and fission mechanisms and may impact oocyte 

and embryo quality. 

Oocyte and Embryo Quality 

In order to adequately assess oocyte and embryonic potential, both qualitative and 

quantitative biology of the structure must be considered.  The morphological appearance or 

qualitative assessment of oocytes and embryos coupled with growth rates are heavily relied upon 

in ART programs.  Basically, the oocyte or embryo that best fits the established standards of 

what it �“should�” look like is considered the most likely to develop normally.  While it is 

generally accepted what a �“bad�” embryo or oocyte looks like, it is entirely subjective as to what a 

�“good�” embryo looks like and is not a definitive indication of embryonic viability.  While there 

are likely many avenues to explore when developing better methods for evaluating oocyte and 

embryo quality, two approaches we are particularly interested in are the proper timing of the 

resumption of meiosis and mitochondrial distribution and dynamics.   

In order for proper fertilization to occur, the GV-stage oocyte, which is arrested at the 
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diplotene stage of metaphase I, must first resume meiosis and arrest again a MII, with the 

extrusion of the first polar body.  The use of standard ART protocols in human infertility 

treatment can result in the failure of meiotic resumption in 15 �– 27% of oocytes within the 

standard 36 h after the administration of human chorionic gonadotrophin (hCG) (de Vos et al., 

1999; Junca et al., 1995).  Immature oocytes (GV or MI) may be collected at oocyte retrieval 

along with mature MII oocytes.  Typically, oocytes are collected 32-34 hours post hCG and 

cultured for approximately 4 hours, after which some immature oocytes will extrude a polar 

body and may subsequently be used for IVF.  Multiple studies reveal that immature human MI 

and GV oocytes maturing overnight or even within a few hours have lower fertilization rates in 

comparison to oocytes that were mature at retrieval (Balakier et al., 2004; de Vos et al., 1999; 

DeScisciolo et al., 2000; Huang et al., 1999; Nogueira et al., 2000; Shu et al., 2007; Strassburger 

et al., 2004).  Embryos originating from immature GV and MI oocytes incubated overnight to 

attain maturity were qualitatively inferior when compared to those resulting from oocytes that 

were mature at the time of retrieval (DeScisciolo et al., 2000; Nogueira et al., 2000).  It is fairly 

common for immature MI oocytes from human IVF cycles to be fertilized and develop into 

�‘morphologically normal�’ embryos (de Vos et al., 1999; Huang et al., 1999; Junca et al., 1995; 

Strassburger et al., 2004), however these embryos generally lead to reduced pregnancy and live 

birth rates (de Vos et al., 1999; Vanhoutte et al., 2005). 

Mitochondria as Indicators of Oocyte and Embryo Quality 

When considering the quantitative aspects of mitochondria in oocyte and embryo 

development, it is well established that both oocytes and embryos require a certain threshold of 

OXPHOS capacity to function and develop normally.  During mitosis, mitochondria are 

distributed randomly among the blastomeres in the embryo.  If a particular blastomere does not 

acquire a sufficient number of ATP producing mitochondria, it may fragment, thus affecting the 
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qualitative assessment of the embryo (Cummins, 2004). 

Because mitochondria play such a significant role in oocyte and embryonic development, 

oocytes and embryos are also subject to the same oxidative damage as any slow or non-dividing 

cell or tissue.  The accumulation of mtDNA mutations due to ROS damage or the aging process 

affects oocytes and embryos in the same manner that they affect skeletal muscle or neuronal 

tissue.  The time at which these mutations accumulate and how they are passed from one 

generation to the next are areas of extensive research.  Slow and non-dividing cells such as 

neurons, skeletal muscle and oocytes appear to harbor a higher percentage of mitochondrial 

mutations than rapidly dividing cells, possibly due to the proximity of mtDNA to highly 

mutagenic ROS generated in the mitochondria (Brenner et al., 1998).  Understanding why a high 

proportion of seemingly normal oocytes give rise to developmentally incompetent embryos 

following IVF is increasingly important in infertility research.  Oocytes arrested at the GV stage 

are relatively anaerobic and subsist in a metabolically quiet environment, which may protect the 

genome from DNA damage and mutation.  Their OXPHOS needs are likely quite minimal, as 

long as there is sufficient available glucose, anaerobic ATP production may satisfy all energy 

needs.  The presence of mtDNA deletions and point mutations in oocytes may have no effect 

prior to a replication event.  However, once ATP requirements increase, metabolic deficiencies 

or replication disorders in some infertile women and in women of increased reproductive age 

may cause qualitatively normal oocytes to develop abnormally.  In other words, mitochondrial 

dysfunctions or genetic anomalies present in the oocyte may be critical determinants of 

developmental competence of the embryo (Barritt et al., 2000b; May-Panloup et al., 2005; Van 

Blerkom, 2004).  Human IVF pre-implantation embryos show high frequencies of abnormal 

development and early demise, with further losses seen after intra-uterine transfer, when 

measured by outcome per embryo.   
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While a direct relationship between mitochondrial mutations in oocytes and embryos and 

reproductive success has not been demonstrated, it is generally assumed that there must be a 

sufficient number of functional mitochondrial genomes in the embryo in order for it to develop 

and implant successfully (May-Panloup et al., 2005).  A high proportion of genetically abnormal 

mitochondria in the oocyte could potentially reduce the number of functional mitochondria, 

leading to embryonic arrest, failed implantation or mitochondrial disease.  More than 150 

mtDNA rearrangements, including deletions, insertions and duplications have been identified in 

various somatic cells (Wallace, 1993).  These mutations are responsible for a number of 

catastrophic neuromuscular diseases such as Kearns Sayer Syndrome (KSS), chronic PEO, and 

Pearson�’s syndrome.  MtDNA rearrangements also accumulate with age and can become more 

prevalent in post-mitotic tissues (Cortopassi and Arnheim, 1990).   

Among the mitochondrial mutations that have been described in humans, one that is 

termed the �“common deletion" or mtDNA4977 entails the deletion of 4977bp (Barritt et al., 

1999; Brenner et al., 1998; Chen et al., 1995; Keefe et al., 1995).  This mutation can be detected 

at frequencies as high as 30% to 50% in human oocytes, although its frequency appears to be 

considerably lower in embryos that are generated from the same cohorts of oocytes (Barritt et al., 

1999; Brenner et al., 1998).  Other studies show that oocyte-specific mutations predominate in 

the regulatory control region of the mitochondrial genome (Barritt et al., 2000a; Barritt et al., 

2000b).  Age-dependent accumulations of these mutations in the mitochondrial control region 

may be responsible for impaired transcription and regulated replication of mitochondria in 

oocytes from older women (Barritt et al., 2000b; Michikawa et al., 1999).  Support for age-

dependent increases in mitochondrial mutations comes from studies of skeletal muscle in rhesus 

macaques that not only showed the presence of the mtDNA4977 deletion, but also revealed that 

multiple deletions existed in all animals older than 13 years.  In some cases, the deletions were 
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so extensive that large portions of the mtDNA genome were missing (Lopez et al., 2000; 

Mehmet et al., 2001; Schwarze et al., 1995).  These data provide intriguing insights into 

mitochondrial mutations and aging in the human female gamete that warrant further investigation 

in appropriate primate models.   

NHP as a Model to Study Oocyte and Embryo Quality  

NHP models are particularly relevant to study due to their close resemblance to humans 

in anatomy and physiology compared to more commonly employed laboratory animals, such as 

rodents.  The NHP, particularly the rhesus macaque, is the most appropriate animal model to 

study due to evolutionary closeness and the dramatic similarities in reproductive function and 

peri-implantation development.  Rhesus macaque menstrual cycles are similar to those of women 

in length and in steroid and protein hormone profiles.  Similarities in physiology between 

humans and NHP are also evident for spermatogenesis, embryo preimplantation development 

and implantation.  The monkey oocyte is similar in size, shape and appearance to that of the 

human and does not show the pigmented appearance of some livestock species (Michaels et al., 

1982).  Moreover, the developing monkey embryo displays similar requirements to those of 

humans during in vitro embryo culture.  Studies involving ovarian, hormonal, and pituitary 

functions of rhesus macaques have consistently shown biological changes mirroring those known 

to occur in women.  Rhesus monkey ART has been quite successful and provides an excellent 

animal model for human IVF. Furthermore, because of NIH federal restrictions, studies utilizing 

human oocytes and embryos from infertility clinics remain prohibited.  Therefore, the NHP has 

been established as a clinical translational model for understanding mechanisms of oocyte 

maturation, reproductive aging, pre- and peri-implantation development, and derivation of ESCs 

for differentiation and therapeutic and regenerative medicine (Steuerwald et al., 2000).  We 

postulate that mitochondrial dysfunction in oocytes and embryos may occur due to the 
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breakdown of mtDNA repair machinery which alters processes related to mtDNA mutations, 

nucleoid stability and mitochondrial dynamics.  The oocyte is an ideal model to study since it is 

associated with dysfunctions such as a decrease in mitochondrial membrane potential, increase 

of mtDNA damages, chromosomal aneuploidies, the incidence of apoptosis, and changes in gene 

expression.  It has been suggested that these mitochondrial changes may arise from ROS that are 

closely associated with the oxidative energy production and calcium.  Thus understanding 

aspects of mitochondrial dynamics, such as fusion, fission and transport in the oocyte may lead 

to a better understanding of important biological mechanisms and thus leading to new 

therapeutics. 

The central goals of this study were to evaluate mitochondria in NHP oocytes and 

embryos, to determine how mtDNA mutations and mitochondrial function affect oocyte and 

embryo quality and to further establish the rhesus macaque as an excellent comparative model to 

study preimplantation development in the human.  The major topics addressed in this dissertation 

were: 

�• determine if there is a large mitochondrial mutation present in rhesus macaque oocytes 

and embryos similar to the common deletion (mtDNA4977) seen in humans 

�• determine if mature oocytes and IVF produced embryos from gonadotrophin stimulated 

rhesus macaques harbor a higher proportion of specific mtDNA mutations than immature 

oocytes from non-stimulated monkeys 

�• determine if the rhesus common mutation is present in in vitro and in in vivo derived 

embryonic stem cell lines, as well as adult stem cell lines 

�• determine if polymorphisms in the mtDNA control region as well as polymorphisms in 

the mtDNA repair mechanism, PolG, are associated with aging 

�• determine if failure of oocytes to reach meiotic maturity is due to specific polymorphisms 
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in the mtDNA control region 

�• determine if mtDNA control region sequence differences exist between embryos 

�• identify methods to improve gonadotrophin stimulation protocols and IVF efficiency at 

the Caribbean Primate Research Center 

�• determine if, during syngamy, expression of genes involved in mitochondrial dynamics, 

transport and replication are influenced by meiotic stage of gonadotrophin stimulated 

oocytes at the time of collection 

�• determine if expression of genes involved in mitochondrial dynamics, transport and 

replication are influenced by mitochondrial distribution during syngamy 

�• determine expression profiles of genes involved in mitochondrial dynamics, transport and 

replication during syngamy and early embryo development 
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CHAPTER 2 

SPECIFIC AIM 1 

Introduction 

Specific Aim 1.1: To determine if the rhesus macaque can be utilized as a clinically 

translational model for mitochondrial mutations identified in human IVF.  

Specific Aim 1.2: To determine if the rate of mitochondrial mutations in rhesus macaque 

oocytes and IVF produced embryos is increased due to gonadotrophin stimulation.  

Understanding why a high proportion of seemingly normal oocytes give rise to 

developmentally incompetent embryos following IVF is a high priority for human infertility 

clinics.  Human IVF preimplantation embryos show high frequencies of abnormal development 

and early demise, with further losses seen after intra-uterine transfer, when measured by outcome 

per embryo.  One hypothesis is that mitochondrial dysfunctions or genetic anomalies in the 

oocyte may be critical determinants of developmental competence of the embryo (Barritt et al., 

2000a; May-Panloup et al., 2005; Van Blerkom, 2004).  More than 150 mtDNA rearrangements, 

including deletions, insertions and duplications have been identified in various somatic cells 

(Wallace, 1993).  These mutations are responsible for a number of catastrophic neuromuscular 

diseases such as Kearns-Sayre syndrome (KSS), chronic progressive external ophthalmoplegia 

(CPEO) and Pearson�’s syndrome.  Mitochondrial DNA rearrangements also accumulate with 

age, and can become more prevalent in post-mitotic tissues (Cortopassi and Arnheim, 1990).  

Slow and non-dividing cells such as neurons, skeletal muscle and oocytes appear to harbor a 

higher percentage of mitochondrial mutations than rapidly dividing cells, possibly due to the 

proximity of mtDNA to highly mutagenic ROS generated in the mitochondria (Brenner et al., 

1998).  Perhaps these mutations are due to the lack of mitochondrial repair activity by the DNA 

polymerase gamma (PolG) during oogenesis. 
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While a direct relationship between mitochondrial mutations in oocytes and embryos and 

reproductive success has not been demonstrated, it is generally assumed that there must be a 

sufficient number of functional mitochondrial genomes in the embryo in order for it to develop 

and implant successfully (May-Panloup et al., 2005).  A high proportion of genetically abnormal 

mitochondria in the oocyte could potentially reduce the number of functional mitochondria, 

leading to embryonic arrest, failed implantation or mitochondrial disease.  

Among the mitochondrial mutations that have been described in humans, one that is 

termed the �“common deletion" or mtDNA4977 entails the deletion of 4977bp (Barritt et al., 

1999; Brenner et al., 1998; Chen et al., 1995; Keefe et al., 1995).  This mutation can be detected 

at frequencies as high as 30% to 50% in human oocytes, although its frequency appears to be 

considerably lower in embryos that are generated from the same cohorts of oocytes (Barritt et al., 

1999; Brenner et al., 1998).  This is intriguing, considering that surplus embryos available for 

analysis in clinical IVF programs are generally classified as developmentally defective.  In 

addition to the mtDNA4977 deletion, a further 23 novel mtDNA rearrangements have been 

described in human oocytes and embryos (Barritt et al., 1999).  Using a nested PCR strategy, 

mtDNA rearrangements can be detected in 51% and 32% of human oocytes and embryos, 

respectively.  Multiple rearrangements were detected in 31% of oocytes and 14% of embryos.  

Other studies show that oocyte-specific mutations predominate in the regulatory control region 

of the mitochondrial genome (Barritt et al., 2000a; Barritt et al., 2000b).  Age-dependent 

accumulations of these mutations in the mitochondrial control region may be responsible for 

impaired transcription and regulated replication of mitochondria in oocytes from older women 

(Barritt et al., 2000a; Michikawa et al., 1999).  These data provide intriguing insights into 

mitochondrial mutations and aging in the human female gamete that warrant further investigation 

in appropriate primate models.  Support for an age-dependent increase in mitochondrial 
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mutations comes from studies of skeletal muscle in rhesus macaques that not only showed the 

presence of the mtDNA4977 deletion, but also revealed that multiple deletions existed in all 

animals older than 13 years.  In some cases, the deletions were so extensive that large portions of 

the mitochondrial genome were missing (Lopez et al., 2000; Mehmet et al., 2001; Schwarze et 

al., 1995).  The specific aims of this study, therefore, were to determine if mature NHP oocytes 

and embryos generated by IVF have a higher frequency of the rhesus macaque mtDNA4977 

deletion (common deletion) than immature NHP oocytes.  

Material and Methods 

Ovarian Stimulation, Oocyte Recovery and In Vitro Fertilization 

All animals were used with approval of the Tulane University�’s Institutional Animal Care 

and Use Committee.  Ovarian stimulation and oocyte recovery were performed as previously 

described by Schramm (Schramm et al., 2002).  Briefly, females were observed for signs of 

menstrual activity and were subjected to follicular stimulation via intramuscular injections of 

recombinant human follicle stimulating hormone (FSH) over an eight day period.  On the 9th day 

of FSH injections, the animal was injected with recombinant human chorionic gonadotropin 

(hCG).  Cumulus-oocyte complexes were collected from anesthetized animals by laparoscopic 

follicular aspiration (27-30 hours post hCG) and placed in HEPES buffered TALP (modified 

Tyrodes�’ solution with albumin, lactate and pyruvate) medium (Bavister et al., 1983b) at 37°C.  

The cohort of oocytes was randomly split into two groups that were either immediately used for 

mtDNA analysis or subjected to IVF.  Oocytes to be fertilized were transferred to equilibrated 

CMRL medium (Gibco Cell Culture, Invitrogen, Carlsbad, CA, USA) in oil with 5% CO2 at 

37°C.  

Rhesus semen was collected by penile electroejaculation as described by Lanzendorf 

(Lanzendorf et al., 1990).  Following liquefaction for 15 min at room temperature, the sample 
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was washed twice in TALP-HEPES by centrifugation for 7min. at 350g.  Sperm count and 

motility analyses were performed and the spermatozoa were resuspended in TALP-HEPES; then 

the sperm suspension was stored at room temperature.  Approximately 1 hour before 

insemination, spermatozoa were exposed to 1 mM dibutyryl cyclic adenosine 3�’,5�’-

monophosphate (dbcAMP) and 1mM caffeine for sperm activation (Bavister et al., 1983b).   

For IVF, oocytes were inseminated with 5x104 activated spermatozoa and cultured in 50 

µl drops of CMRL at 37°C in 5% CO2.  Oocytes were examined 10-16 hours post insemination 

for the presence of pronuclei.  Oocytes with pronuclei were cultured for 48 hr (to approximately 

the 8-cell stage) in HECM-9 (Bavister et al., 1983b). 

DNA Purification 

Embryos and oocytes (denuded of cumulus cells using 10mg/ml hyaluronidase dissolved 

in TL-HEPES) were stripped of their zonae pellucidae with acid Tyrode�’s solution (Sigma-

Aldrich, St. Louis, MO, USA).  They were individually placed into 0.2 ml PCR tubes with 3 l 

of 0.1% polyvinyl alcohol (PVA) in phosphate buffered saline (PBS).  Samples were stored at -

20°C until use.  Prior to PCR, 3 l of a mixture of 4x10-4 M sodium dodecyl sulfate (SDS; 

Sigma-Aldrich) and 125 g/ml proteinase K (Roche Diagnostics Corp, Indianapolis, IN, USA) 

were added to each tube for cell lysis.  The tubes were incubated at 37°C for 1 hr, and then 

heated to 95°C for 15 min to inactivate proteinase K.   

The gene-specific oligonucleotide primers used in this study were synthesized by Sigma 

Genosys (The Woodlands, TX, USA).  To amplify the internal control mtDNA region and the 

rhesus common deletion simultaneously, the DNA was divided into two 3 l aliquots prior to 

PCR amplification.  Each aliquot was amplified using a MyCycler Thermal Cycler (Bio-Rad, 

Hercules, CA, USA) in a 25 l reaction volume containing 1.5 mM MgCl2, 1 IU Taq 

polymerase, 200 M each dNTP and 0.5 M gene-specific primers using the following 
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amplification profile: 1 cycle of 95°C for 1 min, 30 cycles at 95°C for 25 sec, 62°C for 25 sec 

and 72°C for 2 min, followed by 1 cycle at 72° C for 5 min and then a hold at 4°C.  For the 

nested PCR, 3 l of the first reaction served as a template.  The nested PCR was performed using 

the following profile: 1 cycle of 95°C for 1 min, 40 cycles at 95°C for 25 sec, 62°C for 25 sec 

then 72°C for 2 min followed by 1 cycle at 72° C for 5 min and then a hold at 4°C.  The 

evaluation of PCR results was performed by agarose gel electrophoresis.  Eight microliters of 

nested PCR product and 2 l of blue/orange loading dye were separated on 1.5% gel and stained 

with ethidium bromide.  The positive control for the rhesus common deletion was DNA isolated 

from skeletal muscle derived from a 31 yr old male rhesus macaque, amplified under the same 

conditions as the oocytes and embryos. 

 
Figure 1:  Nested PCR strategy used to detect the rhesus common deletion in the mitochondrial 
DNA genome. Primers RhM15.1 (inside arrow) and RhM15.6 (outside arrow) were used as an 
internal control for the presence of mtDNA. RhM15.6 (outside arrow) and RhM7.2 (inside 
arrow) were used in the first PCR amplification. Primers RhM14.8 (outside) and RhM8966 
(inside) were used for the nested PCR reaction to identify the 5703 bp deletion. The dashed 
inside line represents the 5703 rhesus common deletion which is removed in the nested PCR 
reaction if mtDNA mutations are present in the sample. Black bar indicates deleted base pairs. 

PCR Detection of the Rhesus Common Deletion 

To detect the rhesus common deletion, a nested PCR strategy was applied.  

Oligonucleotide sequences were taken from mtDNA sequence analysis by Schwarze (Schwarze 

et al., 1995).  PCR primers were designed based on the corresponding sites in the human mtDNA 

genome.  Primer sequences and corresponding human mtDNA positions are shown in Table 1.  
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Primers RhM15.1 and RhM15.6 were used for amplification of a 599bp internal control mtDNA 

amplicon.  Primers RhM15.1 and RhM7.2 were used in combination with RhM14.8 and 

RhM8966 using a nested PCR strategy to detect the rhesus monkey common deletion as shown 

in Figure 1. 

Table 1.  Polymerase chain reaction (PCR) primer sequences used to detect the rhesus common 
deletion in the mitochondrial genome  
Name mtDNA Location (nt) Sequence (5�’-3�’)   
RhM15.1   15069    TCCTCCTAGAAACCTGAAACATTGG 
RhM15.6   15643   AAGTATAGGGATGGCTGCTAGAATG 
RhM7.2     7206   GGAATACCCCGACGCTACTCTG  
RhM14.8   14849   AAAATTAGGCAGGCTGCAAGAAGTG 
RhM8966     8966   TCAGTCTACTATTCAACCAGTGGC  

Statistical Analysis 

A 2x2 G test was performed to determine significant differences between percentages of 

non-stimulated oocytes vs. stimulated oocytes; non-stimulated oocytes vs. stimulated, 

unfertilized oocytes; non-stimulated oocytes vs. IVF embryos; and all non-stimulated vs. 

stimulated oocytes and embryos.  The statistical formula used was  

ts = (arcsine P1) �– (arcsine P2) / [820.1 (1/n1) + (1/n2)] 

where P1 and P2 are the percent frequencies of the two groups being compared; n1 and n2 are 

respective sample sizes; and 820.1 is a constant representing the parametric variance of a 

distribution of arcsine transformations of percentages (Sokal and Rohlf, 1981).  The arcsine is 

the angle, in degrees, whose sine corresponds to the value given and was determined from 

published tables (Rohlf and Sokal, 1981).  The ts values were compared to critical values of 

Student�’s t distribution using a two-tailed distribution.   

Results  

Characterization of the Rhesus Mitochondrial Common Deletion  

 To validate the assay for the detection of the rhesus common deletion, the nested PCR 

strategy shown in Table 1 and Figure 1 was employed.  Primers RhM15.1 and RhM15.6 were 
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used to amplify DNA isolated from skeletal muscle tissue of a 31 year old rhesus monkey.  A 

599bp internal positive mtDNA control was observed in duplicate (Figure 2; lanes 1 and 2).  The 

rhesus mitochondrial common deletion was amplified from the same tissue and showed a 180bp 

fragment (Figure 2; lanes 3 and 4).  DNA sequencing of the 180bp amplicon demonstrated that a 

5703bp deletion occurred in the rhesus mitochondrial genome.  Using a nested PCR reaction as 

described in materials and methods, the remaining 180bp amplicon is the result of the deletion of 

the 5703bp, as shown in Figure 1.    

 
Figure 2:  The rhesus common deletion was generated using DNA isolated from 31yr old rhesus 
skeletal muscle.  Nested PCR products were separated on 1.2% agarose gel and stained with 
ethidium bromide.  Lane M: 100 bp DNA Ladder.  Lane 1 and 2 demonstrate the internal control 
region amplified with primers RhM15.6 and RhM15.1 showing a 599 bp band.  Lanes 3 and 4 
show the rhesus common deletion 180 bp amplicon generated using primers RhM15.1 and 
RhM7.2 followed by RhM14.8 and RhM8966.  

Mitochondrial Deletions in Immature Oocytes 

Using the same nested PCR strategy, a total of 127 immature oocytes excised from 

necropsied ovaries (n=13 animals) were examined for the presence of the rhesus common 

deletion.  Only 27 of the 127 oocytes contained this deletion (21.3%).  The amplification 

efficiency was over 90%.  The intensity of the amplified PCR product varied, indicating different 

copy numbers of mtDNA among the oocytes analyzed.  Skeletal muscle tissue from a 31 year old 
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monkey served as a positive control and showed the same 180bp amplicon illustrated in Figure 2  

Mitochondrial Deletions in NHP Oocytes and Embryos  

 Using the same PCR amplification strategy, a total of 22 metaphase II (MII) oocytes (n=4 

animals), 17 oocytes that failed to fertilize (n=3 animals) and 31 day three embryos (n=6 

animals) were tested for presence of the common deletion.  Surprisingly, 77.3% of the stimulated 

MII oocytes, 70.6% of failed fertilized oocytes and 67.7% of the embryos harbored this mutation 

(Table 2).  Figure 3A (Lanes; 1-13) shows the positive mitochondrial control 599bp amplicon 

from each oocyte and embryo.  Figure 3B (Lanes; 1, 2, 4, 5, 6, 8, 9) shows the 180bp common 

deletion.  This mitochondrial deletion was not present in every oocyte and embryo in Figure 3B 

(Lanes; 3, 7, 6, 11, 12, 13).  There was a substantial difference in the band intensity of the 

common deletion in oocytes and embryos.  In addition, faint PCR products were observed with 

both the positive internal mitochondrial control primers and the nested primers. 

 

Table 2.  Detection of the mtDNA rhesus common deletion in rhesus oocytes and embryos by 
nested PCR.  
 Source   No. amplified mtDNA mtDNA Detected (%) 
  Deleted  Non-Deleted 
Necropsy oocytes        127 27  100 21.3a 
Stimulated oocytes    22 17 5 77.3b 
Stimulated UFOsc    17 12 5 70.6b 
IVF embryos    31 21  10 67.7b 

ab Statistically significant difference (P<0.001) by 2x2 G test and Students�’ t-Test distribution.  A ratio of 
the number of rhesus common deletions amplified compared to the number of samples amplified indicates 
the amplification frequency.  cUFO = failed to fertilized oocyte. 
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Figure 3:  Rhesus control mtDNA and common deletion in rhesus gonadotrophin-stimulated 
oocytes and day 3 embryos. Lane M:  100 bp ladder. A) Lanes 1-6 demonstrates the internal 
control region amplified with primers RhM15.6 and RhM15.1 showing a 599 bp band in 
stimulated oocytes.  Lanes 7-13 show a 599 bp band control amplicon in IVF day 3 embryos. B) 
Lanes; 1, 2, 4, 5, 6,7, 8, 9 show the rhesus common deletion or 180 bp amplicon generated in 
stimulated oocytes or day 3 embryos using primers RhM15.1 and RhM7.2 followed by RhM14.8 
and RhM8966.  

Comparison of Non-Stimulated Oocytes and Stimulated Oocytes and Embryos that Harbor the 

Mitochondrial Deletions 

 In the non-stimulated oocytes, 21.3% (27/127) contained the mitochondrial common 

deletion compared with a frequency of 71.4% (50/70) in stimulated oocytes and embryos 

(P<0.001, Tables 2 and 3).  Additionally, there was a statistically significant difference 

(P<0.001) in the ratio of this mutation between non-stimulated oocytes and mature MII oocytes, 

embryos and oocytes that failed to fertilize, as a group. 

Discussion 

 Over 100 mitochondrial mutation associated diseases have been identified.  In addition, 

the accumulation of mtDNA deletions has been found in brain, cardiac muscle, skeletal muscle 
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and liver.  It was imperative that the initial mtDNA analysis be done using somatic tissue, such 

as skeletal muscle, as the comparative baseline for mtDNA candidates in monkey oocytes and 

embryos.  Skeletal muscle biopsies collected at 3-year intervals in rhesus macaques suggest that 

the increasing frequencies of mtDNA deletions are correlated with increasing age (Gokey et al., 

2004).  Specific Aim 1.1 of this study was to determine if the rhesus macaque can be utilized as a 

clinically translational model for mitochondrial mutations identified in human IVF.  In order to 

do this, a nested PCR strategy was applied using skeletal muscle from a 31 year old monkey.  

Analysis by PCR generated a 180bp PCR mtDNA fragment, rather than the 930bp amplicon 

observed in human mtDNA (Figure 2; lanes 3 and 4).  This indicates that the common deletion in 

rhesus monkeys entails the loss of 5703 base pairs, which is considerably larger than the 4977bp 

common deletion typically found in human KSS patients.  One reason for this discrepancy might 

be that the rhesus mitochondrial genome has only 80.4% nucleotide sequence homology with the 

human mitochondrial genome and may contain altered sites of preferential replication errors 

(Gokey et al., 2004).  Using the same nested PCR strategy shown in Figure 1, 127 immature 

oocytes and 70 stimulated oocytes and IVF embryos were evaluated for the rhesus mitochondria 

common deletion (Tables 2 and 3).  Through these data, we conclude that the rhesus macaque is, 

in fact, an excellent model to study mtDNA mutations found in human oocytes and IVF 

produced embryos.  

The second specific aim of this study was to determine if the rate of mitochondrial 

mutations in rhesus macaque oocytes and IVF produced embryos is increased due to 

gonadotrophin stimulation.  We found that the frequency of common mtDNA mutation in 

immature germinal vesicle (GV) oocytes excised from necropsied ovaries was low (21.3%) when 

compared with gonadotrophin-stimulated MII oocytes and embryos (71.4%).  The precise 

mechanisms responsible for this increase are unknown.  It has been suggested that there is a 
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massive amplification of the mitochondrial genome during the process of oogenesis, presumably 

to support the initial period of embryonic development.  The average mtDNA copy number of 

the human MII oocyte has been estimated to be 795,000 (+/- 243,000) (Barritt et al., 2002).  

However, it is not known whether the number of mtDNA molecules remains stable during 

primate preimplantation development.  It has recently been suggested that mitochondrial 

replication occurs during a very short period of time from the 1-to 2-cell stage in the mouse 

embryo prior to fertilization (McConnell and Petrie, 2004).  It is therefore unclear when 

mitochondrial transcription and replication actually begin in primate oocytes and embryos.  It has 

been shown that preimplantation mouse embryos are dependent upon the energy produced from 

mitochondria derived solely from the oocytes, and that mitochondrial replication does not occur 

until the blastocyst stage (Piko and Taylor, 1987; Smith and Alcivar, 1993).  In fact, the mtDNA 

copy numbers remain remarkably stable throughout preimplantation development.  Moreover, it 

has been reported that there is a high variability of mtDNA copy numbers among individual 

mouse blastocysts, suggesting that some embryos may be able to initiate mtDNA replication 

before implantation (Thundathil et al., 2005).  The increase in the mtDNA common deletion in 

stimulated rhesus MII oocytes and embryos shown here implies that mitochondrial replication 

may occur during either exogenous gonadotrophin stimulation, and/or during oocyte maturation 

in the rhesus macaque.  

The mechanisms that regulate mitochondrial replication and function during oogenesis 

and preimplantation development are largely unknown but are likely dependent on nuclear-

encoded factors, such as mitochondrial transcription factor (Tfam), nuclear respiratory factor 1 

(Nrf1), mitochondrial RNA polymerase (Polmt) and TFB1M and TFB2M.  It is unknown how 

mitochondrial replication processes might generate mitochondrial deletions and point mutations 

in aging tissues or non-dividing cells such as oocytes.  One theory is that ROS in the vicinity of 
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the mtDNA can cause both single-stranded and double-stranded breaks before Tfam binds to and 

stabilizes the mtDNA (Trifunovic et al., 2004). 

It has long been assumed that all of the mitochondria in the mature MII oocyte arise from 

the clonal expansion of an extremely small number of mitochondria during oogenesis, but it has 

never been determined precisely when these events take place (Van Blerkom, 2004).  Perhaps 

during the clonal expansion of these mitochondria, the rapidity of the replication process causes 

mtDNA defects.  Recent data show that oocyte ATP content increases significantly during 

porcine IVM similar to what has been reported in the cow (Brevini et al., 2005; Stojkovic et al., 

2001).  These data suggest that mitochondrial replication may also occur during porcine and 

bovine IVM.  

One explanation for the high frequency of mtDNA defects in oocytes from 

gonadotrophin-stimulated humans and monkeys (Barritt et al., 1999; Brenner et al., 1998; Chen 

et al., 1995; Keefe et al., 1995) and present study) is that administration of high doses of 

exogenous FSH recruits many more follicles than in a natural cycle, so that numerous defective 

oocytes that were destined for atresia are aspirated along with normal oocytes.  As a corollary, 

the proportion of oocytes with mtDNA defects increases in older primates because most of the 

�“good�” oocytes with normal mtDNA have already been recruited.  If this were true, then we 

would expect GV stage oocytes in unstimulated ovaries to contain a high incidence of mtDNA 

defects, which would not change much, if at all, following gonadotrophin stimulation.  However, 

our data contradict this explanation.  We found that the frequency of mtDNA defects (the 

common deletion) was relatively low (21%) in GV oocytes from unstimulated rhesus ovaries, but 

increased more than 3-fold (71%) in oocytes from follicles recruited using FSH stimulation.  

This result suggests that potentially the administration of exogenous FSH causes the mtDNA 

defects in oocytes.  It is very unlikely that the answers can be found from human clinical data 
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because of the inherent priority to obtain pregnancy rather than to examine different 

gonadotrophin stimulation approaches.  Instead, the etiology of mtDNA defects in primate 

oocytes must be examined using NHP, such as the rhesus monkey, in which experiments can be 

designed to specifically evaluate possible effects of gonadotrophin stimulation on oocyte quality 

and competence.  Such experiments are in progress in our laboratory to determine if extensive 

mitochondrial damage occurs during gonadotrophin stimulation and if this damage can be 

repaired via the nuclear mitochondrial transcription factor polymerase gamma (PolG) during 

early primate embryo development. 

 
Figure 4:  Rhesus mtDNA control and common deletion in non-stimulated germinal vesicle 
(GV) oocytes.  Lane M:  100 bp DNA Ladder.  A) Lanes 1-12: 590 bp mtDNA amplified with 
primers RhM15.1 and RhM15.6.  B) Lanes 1-12 show that no PCR amplicons were generated in 
the same oocytes using primers RhM15.1 and RhM7.2 followed by RhM14.8 and RhM8966.  
*NOTE:  Please see publication of this work for further detail (Gibson et al., 2005).  

 

Table 3.  Frequency of the mtDNA rhesus common deletion in stimulated oocytes and embryos 
vs. non-stimulated oocytes. 
 No. amplified mtDNA mtDNA   Detected (%) 
   Deleted Non-Deleted 
Non-Stimulated  127 27 100 21.3a 
Stimulated 70 50   20 71.4b 
ab Statistically significant difference (P<0.001) by 2x2 G test and  Students�’ t-Test distribution.  A ratio of 
the number of rhesus common deletions amplified compared to the number of samples amplified indicates 
the amplification frequency. 
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CHAPTER 3 

SPECIFIC AIM 2 

Introduction 

Specific Aim 2: Due to the frequency of the rhesus mtDNA common mutation in 

gonadotrophin stimulated, rhesus macaque MII oocytes and IVP embryos, we hypothesize 

that the common mutation will also be present in embryonic stem (ES) cells derived from 

IVP produced embryos. 

Numerous laboratories have detected a specific mtDNA mutation, known as the common 

deletion ( mtDNA4977), in human oocytes and IVP embryos at a frequency of 30% to 50% 

(Barritt et al., 1999; Brenner et al., 1998; Chen et al., 1995; Keefe et al., 1995).  These oocytes 

and embryos were obtained from infertile patients.  Our laboratory has recently reported that the 

rhesus mitochondrial common deletion is present in fertile rhesus macaque oocytes and embryos 

(Gibson et al., 2005).  Oocytes from necropsied ovaries of rhesus macaques show that the 

common deletion naturally occurs in 21% of GV oocytes (Gibson et al., 2005).  Gonadotrophin 

stimulation increases the frequency of this deletion to 77% in MII oocytes, and 68% in day three 

IVP embryos (Gibson et al., 2005).  These results imply that the administration of exogenous 

FSH may induce mtDNA defects in oocytes, embryos and their subsequent embryonic stem cell 

derivatives. 

It is widely known that production of embryonic stem cell lines from the inner cell mass 

(ICM) of blastocysts is difficult and incurs considerable expense.  At present, 18 rhesus macaque 

ES cell lines have been produced.  Ten of these lines are derived from IVP blastocysts (ORMES 

series) and eight from in vivo produced blastocysts (R series) flushed from the uteri of monkeys 

after artificial insemination (Pau and Wolf, 2004).   

Given that mtDNA mutations are present in gonadotrophin stimulated, rhesus macaque 
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MII oocytes and IVP embryos, it can reasonably be inferred that such defects also persist in the 

ES cells derived from them.  Thus, the presence of numerous mtDNA deletions and point 

mutations may actually reflect the quality of affected oocytes or primate ES cells lines.  Primate 

ES cell lines may harbor mutant mtDNA that may further accumulate during cell culture, and 

thus have consequences for long-term viability.  Therefore, one objective of this study was to 

determine the prevalence of the rhesus mitochondrial common deletion in ES cells.  Future 

medical applications of stem cell therapies include the use of cells originating not only from 

embryos but also from adult tissues (Bavister et al., 2005).  Therefore, we investigated whether 

the common mitochondrial mutation was present in multiple passages of an adult bone marrow 

stromal stem cell line (BMSC).  Finally, mtDNA from an adult adipose stromal stem cell line 

(ATSC) was compared with mtDNA from ATSC-TERT, the same line immortalized through 

transfection with a retroviral vector expressing telomerase. 

Material and Methods 

Animals 

All animal procedures conformed to the requirements of the Animal Welfare Act and 

protocols were approved before implementation by the Institutional Animal Care and Use 

Committee (IACUC) of Tulane University and the Oregon National Primate Research Center. 

DNA Extraction and PCR Analysis 

To detect the rhesus common deletion, a nested PCR strategy was applied.  Total cellular 

DNA, from TERT-ATSCs (passages (p) 10 and 20); ATSCs (p11 and 16); BMSCs (p1, 10, 20 

and 30); as well as the ES cell lines ORMES 1 (p21), 2 (p11), and 7 (p24); and R4 (p20), was 

isolated using the Puregene Genomic DNA kit (Gentra Systems, Minneapolis, MN, USA).  The 

gene-specific oligonucleotide primers used in this study were synthesized by Sigma Genosys 

(The Woodlands, TX, USA).  Using a MyCycler Thermal Cycler (Bio-Rad, Hercules, CA, 
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USA), each sample was amplified in a 25 µl reaction volume containing 100 ng of DNA, 1.5 

mM MgCl2, 1 IU Taq polymerase, 200 µM each dNTP, and 0.5 µM gene-specific primers.  For 

all cell lines, the following amplification profile was used: 1 cycle of 95°C for 1 min; 30 cycles 

at 95°C for 25 sec, 62°C for 25 sec and 72°C for 2 min; followed by 1 cycle at 72° C for 5 min; 

and a hold at 4°C.  For the nested PCR, 2µl of the first reaction served as a template.  The nested 

PCR was performed using the following profile: 1 cycle of 95°C for 1 min; 40 cycles at 95°C for 

25 sec, 62°C for 25 sec then 72°C for 2 min; followed by 1 cycle at 72° C for 5 min; and a hold 

at 4°C.  Duplicate PCR reactions were performed for each sample as well as a genomic GAPDH 

control for assessing PCR efficiency.  The detection of all PCR results was detected by agarose 

gel electrophoresis, and stained with ethidium bromide 

PCR Detection of the Rhesus Common Deletion 

Oligonucleotide primers used for amplification of the target sequences of mtDNA and 

corresponding human mtDNA positions have been previously published (Gibson et al., 2005).  

Primers for rhesus GAPDH were: GAPDH forward ACCACCATGGAGAAG GCTGG; and 

GAPDH reverse TCAGTGTAGCCCAGGATGC, resulting in a 528bp DNA product after PCR 

amplification. 

Results 

Mitochondrial Deletions in NPH Oocytes and Embryos  

 Using a nested PCR amplification strategy (Gibson et al., 2005), all samples amplified a 

599bp amplicon as a positive mtDNA control (Figure 5A).  A high proportion of rhesus macaque 

MII oocytes and day 3 IVP embryos were found to harbor the rhesus mitochondrial common 

deletion (Figure 5B).  Over 75% of MII oocytes (n=22) and greater than 65% of IVP embryos 

(n=31) harbored this mutation.  Furthermore, differences in intensity of the common deletion 

amplicon were detected among individual oocytes and embryos. 
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Figure 5:  Rhesus control mtDNA and the common deletion in rhesus gonadotrophin-stimulated 
oocytes and day 3 embryos.  Lane M:  100 bp ladder.  Figure 1A, Lanes 1-3 demonstrate the 
internal control region showing a 599 bp amplicon in stimulated oocytes.  Lanes 4-6 in 1A show 
a 599 bp band control amplicon in day 3 IVF embryos.  Figure 1B, Lanes 1-3 show the rhesus 
common deletion, a 180 bp amplicon generated in stimulated oocytes.  Lanes 4-6 in 1B show the 
common deletion generated in day 3 IVP embryos. 

Mitochondrial Deletions in NHP ES Cell Lines 

 Using nested PCR, the rhesus mitochondrial common deletion was detected in all three 

IVP ESC lines; ORMES 1 (p21), 2 (p11) and 7 (p24), as well as from the R4 (p20) cell line, a 

rhesus ES cell line derived from an in vivo produced embryo (Figures 6 and 7, respectively).  

DNA sequencing of the 180bp amplicon (Figure 6, Lanes 2, 5 and 8; Figure 7, Lanes 3 and 4) 

demonstrated that it corresponded to the 5703bp deletion in the rhesus mitochondrial genome, as 

previously shown (Gibson et al., 2005).  This mtDNA deletion corresponds to the same deletion 

found in rhesus macaque oocytes and day 3 embryos (Figure 5B).  To confirm the presence of 

both mitochondrial and genomic DNA, a 599bp internal control (Figure 6, Lanes 1, 4 and 7; 

Figure 7, Lanes 1 and 2) and a 528bp rhesus GAPDH (Figure 6, Lanes 3, 6 and 9) were 

amplified and detected. 
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Figure 6:  Rhesus control mtDNA, common deletion and genomic GAPDH in 3 in vitro derived 
ES cell lines ORMES 1, 2, and 7.   Lane M: 100 bp ladder.  Lanes 1, 4, and 7 demonstrate the 
internal control region showing a 599 bp amplicon in lines 1, 2 and 7, respectively.  Lanes 2, 5 
and 8 show the rhesus common deletion, a 180 bp amplicon generated in lines 1, 2, and 7, 
respectively.  Lanes 3, 6 and 9 show a genomic GAPDH control, a 528 bp amplicon generated in 
lines 1, 2 and 7, respectively. 

 

 

 

 

Figure 7:  Rhesus control mtDNA and common deletion in the in vivo derived ES cell line R4.  
Lanes M:  100 bp ladder.  Lanes 1 and 2 demonstrate the internal control region showing 
duplicate 599 bp amplicons.  Lanes 3 and 4 show the rhesus common deletion, duplicate 180 bp 
amplicons. 
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Figure 8:  Rhesus control mtDNA and common deletion in the TERT-ATSC and the ATSC cell 
lines.  Lane M: 100 bp ladder.  A) Lanes 1, 2, 5 and 6 demonstrate the internal control region 
showing duplicate 599 bp amplicons from the TERT-ATSC cell line in passages 10 and 20, 
respectively.  Lanes 3, 4, 7 and 8 show the rhesus common deletion, a very faint duplicate 180 bp 
amplicons from the TERT-ATSC cell line in passages 10 and 20, respectively.  B) Lanes 1, 2 and 
5 demonstrate the internal control region showing a 599 bp amplicon in duplicate (lanes 1 and 2) 
and a single replicate (lane 5) from the ATSC line, passages 11 and 16, respectively. Lanes 3, 4 
and 6 show the rhesus common deletion, a 180 bp amplicon in duplicate (lanes 3 and 4) and a 
single replicate (lane 6) from the ATSC line, passages 11 and 16, respectively. 

Detection of the Rhesus Common Deletion in Adult Stem Cells  

A non-human primate adipose stromal cell line (ATSC), a telomerase induced adipose 

stromal cell line (TERT-ATSC) and a bone marrow stromal cell line (BMSC) were examined for 

the mtDNA common mutation.  Interestingly, the TERT-transfected ATSCs grew continuously 

and the rhesus common mitochondrial mutation was only faintly detected, regardless of passage 

number (Figure 8A, Lanes 3, 4, 7, and 8).  Non-transfected ATSC cells harbored the mtDNA 

mutation at passages 11 and 16 (Figure 8B, Lanes 3, 4 and 6).  The BMSC cell line showed high 

levels of mitochondrial mutations in passages 3, 10 and 30 (Figure 9, Lanes 3, 4, 7, 8, 11 and 

12).  Both the internal control (see Figure Legends 8 and 9) and genomic GAPDH (data not 

shown) were detected in all adult stem cell lines. 
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Figure 9:  Rhesus control mtDNA and common deletion in the BMSC cell line.  Lane M: 100 bp 
ladder.  Lanes 1, 2, 5, 6, 9 and 10 demonstrate the internal control region showing duplicate 599 
bp amplicons in passages 3 and 10 and 30, respectively.  Lanes 3, 4, 7, 8, 11 and 12 show the 
rhesus common deletion, duplicate 180 bp amplicons in passages 3, 10 and 30, respectively. 
(*NOTE:  Please see Appendix B for this publication.  (Gibson et al., 2006)) 

Discussion 

This is the first study to examine mtDNA mutations in embryonic and adult NHP stem 

cell lines.  In conjunction with our previous report (Gibson et al., 2005), it is now clear that 

mtDNA mutations are detectable in oocytes, embryos, adult and ES cells from fertile rhesus 

macaques.  Over 60% of oocytes and embryos from gonadotrophin stimulated monkeys contain 

mitochondrial deletions, which carried into ES cell derivatives.  It is likely that repeated 

passaging of ES cell lines derived from these oocytes increases the occurrence of deletions that 

may eventually render the cells metabolically impaired and, as a result, lead to developmental 

incompetence (Bavister et al., 2005), although this remains to be determined. 

Increasing accumulation of mtDNA mutations may be linked to aging, which has been 

associated with functional competence of stem cells through changes in the activity of 

telomerase, the reverse transcriptase that elongates telomeres.  Transfection of the catalytic 

subunit of telomerase, TERT, extends the lifespan of the transfected cell line, thus preventing 

senescense (Flores et al., 2005; Kang et al., 2004).  In the present study, mtDNA from an adipose 

stromal cell line (ATSC) was compared with mtDNA from an immortalized (ATSC-TERT) cell 

line.  Interestingly, the presence of the common deletion in the ATSC-TERT cell line was 

diminished compared with levels exhibited in the control (non-transfected) ATSC cell line 
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(Figure 8).  Similarly, adult bone marrow stromal stem cells (BMSC) showed high levels of the 

rhesus mtDNA common deletion, regardless of passage (Figure 9).  Furthermore, ongoing 

studies are in progress to determine whether additional deletions and point mutations are present 

in representative primate stem cell lines. 

Disruption of ATP production in stem cell lines may not only alter cell division rates, but 

may also be related to premature apoptosis, mitochondrial disorders, the accumulation of 

chromosomal abnormalities such as aneuploidies, and early differentiation or possible failure to 

differentiate (Barnett et al., 1997; Chinnery et al., 2004; Eichenlaub-Ritter et al., 2004; 

McConnell and Petrie, 2004; Van Blerkom et al., 2000; Van Blerkom et al., 1995a).  Preliminary 

results from our laboratory also indicate that mitochondrial properties, such as ATP production, 

may change in adult stem cell lines, supporting the results reported in the present study that adult 

stem cell lines may harbor defects in mitochondrial integrity and function (Lonergan, 

unpublished results).  It has also been proposed that functional mitochondrial defects could also 

result from the asymmetric distribution of mitochondria during cell division, leading to 

disproportionate mitochondrial inheritance and a subsequent diminished ATP-generating 

capacity (Van Blerkom et al., 2000; Van Blerkom et al., 1995b). 

The successful use of stem cell lines for therapeutic cell replacement or for drug 

development and testing will require that cells exhibit physiological and molecular stability over 

extended periods of culture.  If stem cell lines accumulate mtDNA mutations with increased time 

in culture, the functional competence of these lines may be compromised.  Our results, as well as 

others (Maitra et al., 2005), indicate that the characterization of mtDNA mutations in both non-

human primate and human cell lines has important implications for establishing the normality of 

cell lines prior to use in future studies.  A strong argument has previously been presented for the 

detailed characterization of NHP stem cell lines (Bavister et al., 2005). 
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At this time, there are no established molecular and cellular markers to ascertain which 

cell lines are defective or functionally competent.  The key question is what functional 

characteristics, important for normal differentiation of these cell lines, should be used to select 

the most normal lines for further in-depth studies, particularly prior to organ and tissue 

derivation for use in human ES cell technologies?  It is of concern that mtDNA mutations are 

found in a wide spectrum of cancers and aging tissues (Wallace, 2005).  The possibility remains 

real that the use of aberrantly developing stem cells for therapeutic cell replacement could lead to 

the development of cancer.  NHP ES cells, created from presumptively normal blastocysts, are 

derived from oocytes of young, fertile monkeys.  However, results of the present study show that 

regardless of their origin, i.e., the in vivo derived cell line (R4) and the ES cell lines generated 

from IVP embryos, all lines exhibited the common deletion (Figures 6 and 7).  These results 

suggest that the culture conditions under which the cell lines are maintained, or the derivation 

process, may alter the occurrence of this and possibly other deletion(s).  However, whether the in 

vivo derived embryos exhibit the common deletion prior to generation of the stem cell line still 

needs to be determined. 

It is clear from the present study that the existing stem cell lines, whether generated from 

in vitro or in vivo derived embryos, are not suitable for therapeutic purposes and perhaps not for 

drug testing.  However, their characterization will enable identification of other useful stemness 

markers.  It remains to be determined which lines should be selected for: (i) the development of 

improved, controlled culture conditions, free from serum and mouse feeder cell layers so that ES 

cells can be more reliably maintained in the undifferentiated state with karyotypic and 

mitochondrial stability; (ii) elucidation of control factors, (i.e., specific alterations to the culture 

milieu), growth factors, hormones, etc., to direct differentiation into derivative cell types and 

tissues; and (iii) comparisons of early versus late passage cells to establish mitochondrial 
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stability in prolonged culture.  These studies will be considerably costly and time consuming.  It 

is therefore imperative to select the best ES cell lines to be used as the starting material before 

committing major resources. 

Mechanisms that regulate mitochondrial function during oogenesis and preimplantation 

development are largely unknown but are likely dependent upon nuclear-encoded mitochondrial 

transcription factor (Tfam), nuclear respiratory factor 1 (Nrf1), mitochondrial RNA polymerase 

(Polmt) and mitochondrial transcription factor B1 (Tfb1m) and B2 (Tfb2m).  It is currently 

unknown how mitochondrial replication processes might generate mitochondrial deletions and 

point mutations in aging tissues or non-dividing cells, such as oocytes.  Double stranded breaks 

may actually occur during the mitochondrial replication process.  Furthermore, the DNA helicase 

(Twinkle) or replication stalling caused by mutations in polymerase gamma (PolG) may be 

partially responsible for these replication malfunctions.  DNA PolG is required for both 

replication and repair of mtDNA.  It has been shown that homozygous knock-in mice lacking 

PolG's exonuclease function harbored deletions and mutagenesis of mtDNA with a premature 

aging phenotype (Trifunovic et al., 2004).  In further studies, we plan to investigate the 

molecular control of mitochondrial transcription and replication during IVP production of 

preimplantation embryos (Pei and Brenner, unpublished results).   

We have shown that the common deletion occurs naturally in the rhesus oocyte; that the 

prevalence of this mutation is dramatically increased by gonadotrophin stimulation; and that 

there is continued presence of the deletion in the day 3 IVP embryo.  Due to the existence of this 

same mutation in all 3 IVP derived ES cell lines examined, out of the 10 existing lines, it is 

logical to extrapolate that many, if not most, NHP ES cell lines may harbor this mutation.  The 

rhesus common deletion was also found in two adult stromal stem cell lines.  Additionally, in the 

presence of a subunit of telomerase known to extend the lifespan of cells, the occurrence and/or 
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replication of the mutation is limited.  In both non-human primate and human stem cell lines, it is 

currently unknown what mutations exist and to what extent.  It is imperative that ES cell lines be 

further characterized and that culture improvements be made.  NHP ES cells present a valuable 

alternative to human ES cells in order to address issues of safety and efficacy of transplanted 

organs and tissues in NHP before any such clinical studies should be allowed in humans.   
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CHAPTER 4 

SPECIFIC AIM 3 

Introduction 

Specific Aim 3.1: To determine if increases in the presence of mutations in the mtDNA 

control region, as well as the mitochondrial polymerase, PolG, are associated with aging in 

the rhesus macaque. 

Specific Aim 3.2: To determine if increases in the presence of mutations in the mtDNA 

control region are associated with meiotic failure in oocytes.  

It is thought that progressive damage to mtDNA during life contributes to the aging 

process. Mitochondrial DNA rearrangements accumulate with age and become predominant in 

post-mitotic, non-dividing tissues (Cortopassi and Arnheim, 1990).  Similarly, in aging rhesus 

macaques, high levels of mtDNA deletions can accumulate in skeletal muscle (Schwarze et al., 

1995).  It has been shown that up to 50% of individuals over 65 years of age exhibit a T to G 

transversion at a base pair position (414) within the mitochondrial control region that was absent 

in younger individuals (Michikawa et al., 1999); as well as two other muscle-specific mutations 

that accumulate with age in the critical human mitochondrial control region (Wang et al., 2001). 

The tissues most commonly affected by mtDNA mutations and subsequent disorders are those 

that are normally affected by aging, i.e. brain, heart, skeletal muscle, kidney and the endocrine 

system (Wallace, 2005).  It has been shown that there is a correlation between aging and the 

presence of the mitochondrial common deletion in skeletal muscle, however, to date mutations in 

the mtDNA control region have not been investigated. As previously stated, the mtDNA control 

region contains the origin of replication of the heavy strand, two initiation sites for transcription 

of the heavy strand mtDNA, the promoter for transcription of the light strand, and the primary 

and secondary initiation sites for heavy strand synthesis.  In order to examine potential age 
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associated effects in skeletal muscle, we have established distinct age groups in the rhesus 

macaque that correlate to human reproductive ages.  We compared the mtDNA control region 

sequences to a known rhesus macaque mtDNA sequence in order to determine if there were any 

significant changes associated with age.   

One primary difference between nuclear DNA and mtDNA are the replication repair 

mechanisms present in the two genomes.  It has been determined that the spontaneous mutation 

rate in mtDNA is more than two orders of magnitude higher than what is typically observed in 

nuclear DNA (Khrapko et al., 1997).  Mitochondrial DNA do not have histones and there is only 

one known repair mechanism, the 3�’-5�’ exonuclease function that is part of the only known 

mitochondrial polymerase, PolG.  It is widely thought that the limited repair function is 

responsible for the high mutation rate seen in mtDNA.  It has been shown that when the  

catalytic subunit of the mitochondrial polymerase, PolG, is knocked out it results in embryonic 

lethality in mouse embryos which causes early developmental arrest between embryonic days 7.5 

and 8.5, associated with severe mtDNA depletion (Hance et al., 2005).  Additionally, when 

homozygous knock-in mice that expressed a proof-reading-deficient version of PolGA, the 

catalytic subunit of PolG, were created, the mice developed an mtDNA mutator phenotype with a 

3-5 fold increase in the levels of point mutations, as well as increased amounts of deleted 

mtDNA (Trifunovic et al., 2004).  This increase in somatic mtDNA mutations is associated with 

reduced lifespan and premature onset of age-related phenotypes (Trifunovic et al., 2004).  

Considering how critical PolG is to mtDNA replication, we felt it was important to determine if 

mtDNA mutations in the catalytic subunit of PolG, as well as the region of such importance 

identified by Trifunovic et. al., are present in the same skeletal muscle samples used to determine 

if there are age related mutations in the mtDNA control region.   

 The final aim of this study was to determine if meiotic arrest of NHP oocytes is 
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correlated to mutations within the mtDNA control region.  It has been proposed that in oocytes 

and preimplantation embryos accumulation of mtDNA mutations in the mitochondrial genome 

contributes to impaired metabolic function and thus to developmental incompetence (Barritt et 

al., 1999; Barritt et al., 2000b; Brenner et al., 1998; Chen et al., 1995; Keefe et al., 1995).  

Oocytes have large numbers of mitochondria, as discussed Chapter 1, that can support essential 

developmental processes such as oocyte growth and meiotic maturation.  When tissues 

accumulate mtDNA rearrangements that reach a clinically significant threshold, the efficiency of 

oxidative phosphorylation is reduced (Cortopassi and Arnheim, 1990).  It is generally assumed 

that there needs to be a sufficient number of normal mitochondrial genomes in order for the 

oocyte to mature and the subsequent embryo to develop and implant; however, a relationship 

between mitochondrial mutations and reproductive success is unproven.  Therefore, we wanted 

to determine whether there is an increasing percentage of mtDNA mutational load within the 

control region corresponding to failure of oocytes to complete metaphase II of meiosis, enabling 

them to be fertilized and poor embryo development. 

We compared mtDNA control region sequences from arrested GV, arrested MI, normal 

MII oocytes and preimplantation embryos within and among cohorts for mutations that may be 

causing meiotic arrest and poor embryo quality.    

Materials and Methods  

Experiment 1 

Collection of material 

Initially, we established age groups in which all animals were assigned: 1) <5 (juvenile), 

2) 6-10 (early reproductive), 3) 11-20 (late reproductive) and 4) 21 (aged).  These age groups 

were selected as they correlate to human reproductive ages.  Establishment of these groups 

enabled us to examine any age effects that may be occurring during the aging process.  The 
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rhesus macaque mtDNA control region, including the D-Loop, is approximately 1100bp long.  

MtDNA control region specific primers were designed and synthesized by Sigma Genosys (The 

Woodlands, TX, USA).  Rhesus macaque skeletal muscle was collected by necropsy and flash 

frozen in liquid nitrogen (LN2).  Total DNA was extracted using a Puregene DNA purification 

system (Gentra, Minneapolis, MN, USA).  Mitochondrial specific primers were used to detect 

the mtDNA control region, PolG catalytic subunit and PolG Exon 3.  PCR reactions contained 

100ng of total DNA in a 50µl reaction containing 1X Taq PCR buffer, 2.0mM MgCl2, 200µM 

each dNTP, 0.5µM each forward and reverse primers and 1.25U Taq DNA polymerase.  PCR 

products were then submitted for direct sequencing.  All sequences were performed using the 

BigDye Terminator sequencing reactions, purification and the analysis system by Applied 

Biosystems. 

Experiment 2 

Controlled Hormonal Ovarian Stimulation 

The ovarian stimulation protocol has been previously described (Zelinski-Wooten et al., 

1995). Briefly, rhesus macaques were hormonally stimulated with a sequential regimen of 

recombinant human gonadotrophins at either the Oregon National Primate Research Center 

(ONPRC) and the Caribbean Primate Research Center (CPRC).  Female rhesus macaques at the 

ONPRC received rFSH (Organon, Oss, The Netherlands; 30 IU per injection, twice daily, IM) 

for 7 days, followed by 2 days of rFSH and rLH (EMD Serono, Rockland, MA; 30 IU rFSH and 

30 IU rLH per injection, twice daily, IM).  During the final 3 days of the rFSH treatment, 

animals also received the GnRH antagonist Acycline (0.075 mg/kg animal body weight) to 

prevent a spontaneous LH surge. Ovarian stimulation of rhesus macaques at the CPRC was 

performed by administration of rFSH (Organon, Roseland, NY; 37.5 IU per injection, twice 

daily, IM) for 10 days. At both primate centers, on the final day of rFSH treatment, 32�–33 hours 
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before follicular aspiration, oocyte maturation was induced with a single injection of 

recombinant hCG (750�–1,000 IU, IM). 

Oocyte and Sperm Collection, Insemination, and Embryo Culture 

Procedures for oocyte recovery, sperm collection, insemination, and embryo culture have 

been described previously (Bavister et al., 1983a; Boatman and Bavister, 1984; Wolf et al., 

1989).  Briefly, follicular fluid was collected in TALP-HEPES containing 0.3% bovine serum 

albumin (BSA).  The aspirates were sifted through a cell strainer and oocytes were collected after 

rinsing the filter.  After cumulus removal using hyaluronidase (0.03%), oocytes were rinsed, 

meiotic stage was determined (GV, MI or MII) and placed in these groups in TALP medium 

culture drops supplemented with BSA, (Bavister and Yanagimachi, 1977), and incubated in 5% 

CO2 in air at 37°C.  GV, MI and half of the cohort of MII oocytes were stripped of their zonae 

pellucidae with acid Tyrode�’s solution (Sigma-Aldrich, St. Louis, MO, USA).  They were 

individually placed into 0.2 ml PCR tubes with 3 l of 0.1% polyvinyl alcohol (PVA) in 

phosphate buffered saline (PBS).  Samples were stored at -20°C until use. Semen was obtained 

by electroejaculation (Mastroianni and Manson, 1963) and seminal plasma was removed 

according to standard protocols. Spermatozoa were activated with dbcAMP and caffeine (1 mM 

each) and used for insemination of the remaining MII oocytes at a final concentration of 1.5�–

2.0×105 sperm/mL.  The presence of pronuclei was assessed 18�–20 hours after insemination.  

Presumptive zygotes were transferred to amino acid-supplemented HECM-9 culture drops 

(McKiernan and Bavister, 2000) and incubated under a 5% CO2 in air atmosphere at 37°C until 

day 3. Approximately 72hrs post insemination embryos were frozen in the same manner as the 

rest of the cohort of oocytes.  

Embryos and oocytes (denuded of cumulus cells using 10mg/ml hyaluronidase dissolved 

in TL-HEPES) were stripped of their zonae pellucidae with acid Tyrode�’s solution (Sigma-
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Aldrich, St. Louis, MO, USA).  They were individually placed into 0.2 ml PCR tubes with 3 l 

of 0.1% polyvinyl alcohol (PVA) in phosphate buffered saline (PBS).  Samples were stored at -

20°C until use.  Prior to PCR, 3 l of a mixture of 4x10-4 M sodium dodecyl sulfate (SDS; 

Sigma-Aldrich) and 125 g/ml proteinase K (Roche Diagnostics Corp, Indianapolis, IN, USA) 

were added to each tube for cell lysis.  The tubes were incubated at 37°C for 1 hr, and then 

heated to 95°C for 15 min to inactivate proteinase K.   

The gene-specific oligonucleotide primers used in this study were synthesized by Sigma 

Genosys (The Woodlands, TX, USA).  To amplify the internal control mtDNA region and the 

rhesus common deletion simultaneously, the DNA was divided into two 3 l aliquots prior to 

PCR amplification.  Each aliquot was amplified using a MyCycler Thermal Cycler (Bio-Rad, 

Hercules, CA, USA) in a 25 l reaction volume containing 1.5 mM MgCl2, 1 IU Taq 

polymerase, 200 M each dNTP and 0.5 M gene-specific primers using the following 

amplification profile for all reactions (annealing temperature specific for each primer pair): an 

initial denaturation of 95ºC for 2 min, followed by 30 cycles of 95ºC for 30s, annealing for 30s 

and primer extension for 1min at 72º C, with a final extension of 72ºC for 5min.  PCR products 

were then submitted for direct sequencing.  All sequencing was performed using the BigDye 

Terminator sequencing reactions, purification and the analysis system by Applied Biosystems.   

Sequence Analysis 

Sequence analysis was performed on all rhesus macaque skeletal muscle, oocytes and 

embryos from IVP.  Only sequences with a quality of Q20 or greater were used for analysis.  For 

control region and PolG sequence analysis, consensus sequences were created for each skeletal 

muscle sample for both regions of interest.  For oocyte and embryo sequence analysis, consensus 

sequences were created for each animal and oocyte group, (i.e. Animal 18879 GV) and 

compared to each other and the mtDNA control region of the Macaca Mulatta mitochondrion 
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complete genome (NCBI Accession AY612638) using Sequencher Software by Gene Codes Inc.  

Results 

Rhesus Macaque Skeletal Muscle Sequencing 

A total of 18 rhesus macaque skeletal muscle samples were collected and assigned to 

each of the four age groups: 1(n=7), 2(n=4), 3(n=4) and 4(n=3).  Due to the limited number of 

aged animals in captivity, group 4 had the lowest number of samples available. MtDNA 

consensus sequences from both skeletal muscle and reproductive material were compared to the 

mtDNA control region of the Macaca Mulatta mitochondrion complete genome (NCBI 

Accession AY612638) and to each other.  One area within the mtDNA control region became an 

area of interest once all samples were compared.    

 
Figure 10: Region of interest within the mtDNA control region.  All sequences are identified by 
the age of the animal at the time of death and aligned to control sequence.  

From mtDNA nucleotides 251-252 insertion of an ACACC repeat ranging from 1-5 

repeats were found in 5 samples (Figure 10).  This region corresponds to the H-Strand promoter 

region and a TFAM binding site.  This insertion was seen in three samples in age group 1, one 

sample in age group 2 and one sample in age group 4 (Table 4).  There was no correlation 

between advanced aging and this insertion.  In fact, three out of seven samples in the youngest 

age group (group 1) were found to harbor this insertion (Table 4).  The muscle sample from the 
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29 y.o. animal had an extremely high rate of point mutations, insertions and deletions (Appendix 

1).   

Table 4: Number of skeletal muscle samples analyzed in each of the four age groups and number 
of samples that exhibited the insertion in the TFAM binding site in each of the four age groups. 

 Group 1 Group 2 Group 3 Group 4 
# samples 7 4 4 3 
# samples with insertions 4 1 0 1 

All 18 skeletal muscle samples analyzed for mtDNA control region inserts were also 

analyzed for mutations within the catalytic subunit of the mitochondrial polymerase, PolG.  We 

found no consistently exhibited mutations in the catalytic subunit and no correlation between 

advance age and accumulation of mutations (Appendix 2).   

Rhesus Macaque Oocyte and Embryo Sequencing 

Oocytes from 5 rhesus IVF cycles and embryos from 2 rhesus IVF cycles were analyzed 

(Table 5). 

We found no correlation between meiotic arrest during oocyte maturation and mtDNA 

control region mutations (Appendix 3).  We believe the lack of correlation between aging and 

oocyte maturation to mtDNA control region mutations indicates there are other factors 

influencing the aging phenotype as well as meiotic arrest during oocyte maturation. 

Table 5: Number of oocytes and embryos sequenced from each animal.  
 18879 19733 21129 21176 22031 Total 
GV - 7 3 - - 10 
MI - 8 5 4 3 20 
MII 5 7 5 4 5 26 
Day 3 Embryos - 8 4 - - 12 

Discussion  

 The purpose of this specific aim was threefold: 1) to determine if there are mutations in 

the mtDNA control region associated with the aging phenomenon, 2) to determine if there are 

mutations in the catalytic subunit of the mitochondrial polymerase, PolG, associated with aging, 
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and 3) to determine if there are mutations in the mtDNA control region associated with failure of 

oocytes to resume meiosis and develop to a fully mature state, (MII), enabling them to be 

fertilized.  We sequenced the mtDNA control region of 18 rhesus macaque skeletal muscle 

samples from animals ranging in age from 1-31 year.  We found no correlation between aging 

and the accumulation of mtDNA point mutations within the mtDNA control region.  One muscle 

sample from an aged animal (29 y.o.) that we analyzed did contain numerous deletions, 

insertions and point mutations within the mtDNA control region (Appendix 1).  This sample was 

from the same 29 year old male rhesus macaque that was analyzed by Gokey (Gokey et al., 

2004).  They too found that this animal contained numerous mtDNA breakpoints and deletions 

throughout the mtDNA genome.  However, we also analyzed 2 other skeletal muscle samples 

from aged animals (31 y.o. and 21 y.o.) and found no point mutations in common with the 29 

y.o.  This indicated that point mutations and mtDNA control region deletions can accumulate 

with age, however it may be due to susceptibility of the individual animal and not due to the 

aging phenomenon.  This hypothesis is supported by the fact that three out of seven samples 

analyzed that were from animals under 5 years of age showed multiple insertions and point 

mutations within the same region (bp 251-252), to those seen in the sample from a 29 y.o. animal 

(Appendix 1).  These animals may have been susceptible to mtDNA damage from a very young 

age and therefore likely would have accumulated more mutations as they aged due to clonal 

expansion of mutant mtDNA genomes, not necessarily due to the aging process causing mtDNA 

damage over time. 

We sequenced the catalytic subunit of the mitochondrial polymerase, PolG, of all 18 

samples sequenced for the mtDNA control region.  PolG is encoded in the nucleus and contains 

two subunits: a large catalytic subunit that harbors the 3�’-5�’ exonuclease and 5�’deoxyribose 

phosphate (dRP) lyase activities, and a smaller accessory subunit which increases both the 



60 
 

 

catalytic activity and processivity of the catalytic subunit.  Diseases such as PEO, KSS, Alpers 

syndrome and ataxia, as well as symptoms of premature menopause, progressive muscle 

weakness, parkinsonism, and male infertility are coupled with mutations in human PolG (Luoma 

et al., 2004; Mancuso et al., 2004; Naviaux and Nguyen, 2004; Van Goethem et al., 2001; 

Zeviani et al., 1988; Zeviani et al., 1989).  Two particular studies led us to examine the catalytic 

subunit of PolG in the rhesus.  First, Trifunovic found that homozygous knock-in mice that 

expressed a proof-reading-deficient version of the catalytic subunit of PolG developed an 

mtDNA mutator phenotype with a 3-5 fold increase in the levels of point mutations, increased 

amounts of deleted mtDNA as well as reduced lifespan, weight loss, reduced subcutaneous fat, 

hair loss, curvature of the spine, osteoporosis, anaemia, reduced fertility and heart enlargement; 

all factors seen due to aging (Trifunovic et al., 2004).  Secondly, Hance found that when the 

PolG catalytic subunit is knocked out it results in embryonic lethal and PolG deficiency in mouse 

embryos which causes early developmental arrest between embryonic days 7.5 and 8.5, 

associated with severe mtDNA depletion (Hance et al., 2005).  While both of these studies were 

in mice and knock-out primates have yet to be developed, we felt it relevant to determine if there 

were any mutations in the rhesus catalytic subunit of PolG, associated with aging, that were 

detectable in tissue from rhesus macaques at different ages.  We found no correlation between 

accumulation of mutations in the catalytic subunit of PolG and the aging phenomenon (Appendix 

2).   

We sequenced the mtDNA control region of 10 arrested GV oocytes, 20 arrested MI 

oocytes and 28 normally maturing MII oocytes from 5 rhesus macaques (Table 5).  We found no 

consistently exhibited point mutations or deletions in either GV, MI or MII oocytes, indicating 

that the failure of oocytes to complete MII of meiosis is not caused by alterations in the mtDNA 

control region (Appendix 3).  Furthermore, we found no consistently exhibited point mutation or 
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deletions in day 3 embryos that originated from normal MII oocytes, indicating that there are 

likely no changes or mutations to the mtDNA control region during fertilization and early 

embryo development. Due to the limited number of samples analyzed, we agree that these 

findings are not statistically significant and do not lead to conclusions about either the 

involvement, or lack there of, of either the mtDNA control or PolG to the aging process or 

meiotic failure.  The DNA sequencing methods available at the time of this study were limited, 

especially considering the complex, technologically advanced methods that have recently been 

developed. Furthermore, we did not sequence the entire mtDNA genome of any sample, however 

we feel the analysis of the control region, which is the location where numerous process involved 

in mtDNA replication and transcription (Table 6), may indicate that the specific sequence of the 

mtDNA control region may not be critical to the process of meiotic maturation of oocytes. 

Table 6: Sites within the mtDNA control region and base pair locations. 
Function Location 
Control Region with D-Loop 16024-576 
Hypervariable Region I 16024-16383 
Termination Sequence 16157-16172 
Control Element 16194-16208 
L-strand Control Element 16499-16506 
Hypervariable Region II 57-372 
H-strand Replication Origin 110-441 
Conserved Sequence Block I 213-235 
TFAM Binding Site 233-260 
TFAM Binding Site 276-303 
Conserved Sequence Block II 299-315 
Replication Primer 317-321 
Conserved Sequence Block III 346-363 
H-strand Control Element 371-379 
H-strand Control Element 384-391 
L-strand promoter 392-445 
TFAM Binding Site 418-445 
TFAM Binding Site 523-550 
Major H-strand Promoter 545-567 



62 
 

 

CHAPTER 5 

SPECIFIC AIM 4 

Introduction 

Specific Aim 4: To determine if gonadotrophin stimulation efficiency can be improved 

through optimization of gonadotrophin stimulation protocols. 

 Our laboratory has been working with the Caribbean Primate Research Center (CPRC) 

for approximately 4 years in an effort to establish a reputable rhesus macaque IVF program in 

order to pursue developmental biology grants and research projects using the CPRC as a resource 

to provide high quality rhesus oocytes, embryos and sperm.  In order to obtain rhesus macaque 

reproductive material of the highest quality, we worked onsite with the current staff at CPRC in 

order to improve the efficiency of the IVF program.  Through previous collaboration with other 

primate research centers and upon working with CPRC, it became apparent that a significant 

inefficiency of the IVF program was the gonadotrophin stimulation regimen to which the 

monkeys were subjected.  Individual NHP respond differently to gonadotrophin stimulation in 

the same manner that individual humans respond differently.  The previous gonadotrophin 

stimulation protocol that was employed at the CPRC was as follows: 37.5IU rFSH twice daily 

for 10 days with 1000IU recombinant (rhCG) given on day 10 and oocyte collection 34 hours 

later.  While this protocol worked intermittently, it generally resulted in a mediocre rate of 

mature oocytes (MII) upon collection and a high rate of GV oocytes. Therefore the objective of 

this specific aim was to identify and implement methods of gonadotrophin stimulation in order to 

improve upon the efficiency of rhesus macaque IVF at the CPRC. 

Material and Methods 

Controlled Hormonal Ovarian Stimulation 

Ovarian stimulation and oocyte recovery was adapted from previously described 
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protocols (Schramm and Bavister, 1999).  Briefly, rhesus macaque females were observed for 

signs of menstrual activity and subjected to follicular stimulation via intramuscular injections of 

(rFSH).  Prior to this study, monkeys at the CPRC received 37.5 IU of rFSH twice daily, for 10 

days.  On the final day of rFSH treatment, 34 hours before follicular aspiration, oocyte 

maturation was induced with a single injection of 1000 IU recombinant hCG. 

Oocyte Collection and Meiotic Stage Determination 

Procedures for oocyte recovery, sperm collection, insemination, and embryo culture have 

been described previously (Bavister et al., 1983a; Boatman and Bavister, 1984; Wolf et al., 

1989).  Briefly, follicular fluid was collected in TALP-HEPES containing 0.3% bovine serum 

albumin (BSA).  The aspirates were sifted through a cell strainer and oocytes were collected after 

rinsing the filter.  After cumulus removal using hyaluronidase (0.03%), oocytes were rinsed, 

meiotic stage was determined (GV, MI or MII) and placed in these groups in TALP medium 

culture drops supplemented with BSA, (Bavister and Yanagimachi, 1977), and incubated in 5% 

CO2 in air at 37°C.   

Experiment 1: Reduction of FSH dose  

Due to the high cost of rFSH used for gonadotrophin stimulation protocols, we wanted to 

determine if there was a significant reduction in the number of oocytes collected when the total 

daily dose of rFSH was reduced by half.  Animals continued to receive injections twice daily, 

however instead of 37.5IU rFSH in each injection (75IU daily), animals received 18IU rFSH in 

each injection (36IU daily). Follicular aspiration was performed as described above and numbers 

of oocytes collected was recorded.  Data from a total of 40 stimulation cycles was included in 

this comparison; 21 cycles using a high rFSH dose (75IU daily) and 19 cycles using a low rFSH 

dose (36IU daily).  Comparisons were made using a paired t-test and results were considered 

statistically significant at  0.05. 
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Experiment 2: Addition of rLH 

Recombinant luteinizing hormone (rLH) is commonly used in both human and NHP 

gonadotrophin stimulation protocols in an effort to mimic the acute rise and fall of LH seen in 

the natural cycle, which initiates ovulation.  In this study, monkeys were given 15IU rLH on the 

evening of day 9 of rFSH stimulation and 15IU rLH on both the morning and evening of day 10 

(30IU total on day 10).  Follicular aspiration was performed as described above and numbers of 

GV, MI and MII oocytes collected was recorded.  Data from a total of 40 stimulation cycles was 

included in this comparison: 24 cycles without LH and 16 cycles with LH.  Comparisons were 

made using a paired t-test and results were considered statistically significant at  0.05.  

Experiment 3: Replacement of recombinant hCG with biological hCG 

Human chorionic gonadotrophin (hCG) is widely used in both human and NHP IVF to 

induce ovulation during gonadotrophin stimulation.  Generally, a synthetically derived form of 

hCG (Ovidrel) is used instead of biologically derived forms.  Multiple NHP IVF programs have 

had great success with recombinant hCG (rhCG), however, at the CPRC, cycles using rhCG 

typically produced inconsistent numbers of mature oocytes, with a consistently large number of 

oocytes remaining at the GV phase of meiosis. As previously discussed, oocytes must reach the 

meiotic stage of MII in order for fertilization to occur, thus, GV oocytes are not capable of being 

used for IVF related studies.  Therefore, we replaced recombinant hCG with a biologically 

derived form (Pregnyl). The same dose (1000IU) and timing of injection were used in all cycles.  

Follicular aspiration was performed as described above and numbers of GV, MI and MII oocytes 

collected was recorded.  Data from a total of 40 stimulation cycles was included in this 

comparison: 24 cycles using recombinant hCG and 16 cycles using biological hCG.  

Comparisons were made using a paired t-test and results were considered statistically significant 

at  0.05. 
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Results 

Experiment 1: Reduction of rFSH dose: The average number of oocytes collected in the 

high rFSH group was 20.4 oocytes per collection, while the average number of oocytes collected 

in the low rFSH group was 20.8 oocytes per collection.  Figure 11 shows that the reduction of the 

previously used dosage of rFSH (75IU) to approximately half (36IU) resulted in no significant 

difference in the average number of oocytes collected per stimulation.   

 
 
 

Figure 11: Comparison of average number of oocytes collected per stimulation using either high 
FSH (75IU daily) (n=21) or low FSH (36IU daily) (n=19).  

 

Experiment 2: Addition of LH: When comparing the average percentage of MII, MI and GV 

oocytes collected per stimulation, we found no significant differences between stimulations with 

LH or without LH. While there was no significant difference found in the number of MII, MI or 

GV oocytes collected, there was an observable trend in the number of MII and GV oocytes 

collected (Figure 12) that we feel will become significant with the inclusion of data from more 

cycles.    
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Figure 12: Average percentage of MII, MI and GV oocytes collected, per stimulation, without 
LH (n=24) compared to the average percentage of MII, MI and GV oocytes collected, per 
stimulation, with LH (n=16). Standard error bars are shown. 

Experiment 3: Replacement of recombinant hCG with biological hCG:  We found that the use of 

a biological hCG resulted in a significantly higher average percentage of oocytes resuming 

meiosis and completing germinal vesicle breakdown (GVBD).  In Figure 13, we show a 

statistically significant increase in the average percentage of MII oocytes collected, as well as a 

statistically significant decrease in the average percentage of GV oocytes collected due to the 

replacement of R-hCG with B-hCG.   

 
Figure 13: Average percentage of MII, MI and GV oocytes collected, per stimulation, with 
recombinant hCG (n=24) compared to the average percentage of MII, MI and GV oocytes 
collected, per stimulation, with biological hCG (n=16). Standard error bars are shown. Statistical 
significance: a,b  0.05. 
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Finally, we found that the combination of the protocol changes in Experiment 2 and 3, 

i.e. the addition of rLH and the use of biological hCG, resulted in a statistically significant 

increase in the average percentage of MII oocytes collected, as well as a statistically significant 

decrease in GV oocytes collected (Figure 14).   

 
Figure 14: Average percentage of MII, MI and GV oocytes collected, per stimulation, without 
LH and using recombinant hCG (previous standard protocol) (n=22) compared to the average 
percentage of MII, MI and GV oocytes collected, per stimulation, with LH and using biological 
hCG (n=14). Standard error bars are shown. Statistical significance: a,b  0.05.  

Discussion 

The objective of this study was to identify and implement methods of gonadotrophin 

stimulation in order to improve upon the efficiency of rhesus macaque IVF at the CPRC.  This 

was accomplished by 1) reducing the dose of rFSH, yet maintaining the number of oocytes 

collected per stimulation, thus reducing the overall cost per stimulation cycle; 2) by significantly 

increasing the number of meiotically �“normal�” (MII) oocytes collected that can be used in IVF 

related studies; and 3) by significantly reducing the number of meiotically �“abnormal�” (GV) 

oocytes collected that are unable to be used for IVF studies. The high dose of rFSH (75IU) used 

in the previous protocol, while occasionally resulting in higher oocyte numbers (data not shown), 
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also resulted in a significantly larger number of immature oocytes, which generally cannot be 

used for IVF experiments.  While the trend in human IVF has been to collect as many oocytes as 

possible, embryologists and scientists are beginning to recognize the importance of quality 

oocytes over simply large cohorts. We have shown that reducing the rFSH dose by half has no 

significant difference on the average number of oocytes collected per stimulation (Figure 11).   

The inclusion of rLH in gonadotrophin stimulation protocols is a common practice in 

both human and NHP IVF programs.  However, until this study, it was not used at CPRC and it 

was unknown if there would be any benefit to adding it to the current protocol.  While we were 

not able to find that the addition of rLH alone significantly increased the number of MII oocytes 

collected, we did find that the combination of the inclusion of rLH, as well as replacing 

recombinant hCG with biological hCG, did result in significantly increased numbers of MII 

oocytes collected, as well significantly decreased numbers of GV oocytes collected (Figure 14).  

This is the first study to show that, not only does B-hCG increase the number of oocytes 

collected after gonadotrophin stimulation that reach meiotic maturity (MII), thus allowing more 

oocytes to be used for IVF experiments, but this is also the first study to show that monkeys can 

be subjected to more than one dose of B-hCG without becoming refractory to the drug itself.  It 

is well known that rhesus macaques can only be subjected to one stimulation cycle of biological 

FSH before becoming refractory to FSH stimulation, resulting in a complete lack of ovarian 

response and follicle development.  This is the reason why most protocols use a recombinant 

form of FSH, as we have used throughout this study, in order to stimulate each animal multiple 

times.  The practice of using an animal for multiple stimulation protocols is well established and 

reduces the number of animals needed for experimentation.  Concomitantly, it has been assumed 

that a typical refractoriness would be seen with biological hCG as has been historically seen with 

biological FSH.  However, we have found that animals can be given biological hCG up to three 
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times with no detrimental effect to the process of ovulation (data not shown).  Furthermore, we 

have shown here that biological hCG significantly increases the number of meiotically �“normal�” 

oocytes (MII) collected as well as reducing the number of unusable oocytes (GV).  The changes 

to standard IVF protocols we have used in this study will enable the collection of higher quality 

reproductive material to be used for future research projects as well as reducing unusable 

material and the overall cost of reproductive research in the rhesus macaque.  
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CHAPTER 6 

SPECIFIC AIM 5 

Introduction 

Specific Aim 5.1: To determine if expression levels of genes controlling mitochondrial 

dynamics are correlated to the failure of oocytes to resume meiosis.  

Specific Aim 5.2: To determine if expression levels of genes controlling mitochondrial 

dynamics are correlated to important preimplantation development time points. 

Interest in the mitochondrion and its role in the preimplantation mammalian embryo has 

had a recent resurgence (Bavister and Squirrell, 2000; Van Blerkom, 2000).  Prior studies have 

shown that mitochondria are initially morphologically immature; spherically shaped rather than 

elongated, with relatively few cristae; and undergo a maturation process prior to blastocoel 

formation.  The general process of mitochondrial maturation has been described for multiple 

species; mouse (Hillman and Tasca, 1969); pig (Hyttel and Niemann, 1990); bovine (Plante and 

King, 1994) and primates (Panigel et al., 1975).  It is also understood that mitochondria undergo 

a variety of species-specific reorganizations during early preimplantation development.  

Mitochondria in hamster embryos reorganize from a homogeneous distribution in the oocyte to a 

distinct perinuclear organization late in the pronucleate and two-cell stages (Barnett et al., 1996).  

Mitochondrial distribution has also been associated with developmental competence in multiple 

species including hamster (Barnett et al., 1997; Lane and Bavister, 1998; Squirrell et al., 2001); 

mouse (Muggleton-Harris and Brown, 1988); pig (Hyttel and Niemann, 1990) and cattle (Van 

Blerkom et al., 1990).  It has been shown that in oocytes and early cleavage stage embryos in 

multiple species, including hamster and mouse (Van Blerkom, 1991), that mitochondria have a 

distinct pronuclear translocation and that perturbations from these patterns result in embryonic 

lethality.  Human zygotes have shown a pronuclear accumulation of mitochondria (Noto et al., 
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1993; Van Blerkom et al., 2000), as well as significantly different mitochondrial localization 

patterns between individual oocytes between and among cohorts.  Furthermore, pronuclear 

oocytes that showed a pronounced asymmetrical mitochondrial distribution during syngamy 

continued to show an asymmetrical distribution after the first cell division, and between 

blastomeres throughout embryo development.  When analyzed individually, the blastomeres 

containing less mitochondria also had lower ATP content compared to blastomeres with higher 

mitochondrial content (Van Blerkom et al., 2000).  Additional studies in the rhesus have shown 

that zygotes exhibit a distinct organization of mitochondria that accumulate between the male 

and female pronuclei, similar to the human (Squirrell et al., 2003).  There is also marked 

difference is the heterogeneity of mitochondrial organization among oocytes, which may reflect 

the heterogeneity of oocyte quality and developmental competence in primates, unlike 

homogeneity in hamsters (Barnett et al., 1996).  It is possible that the localization of 

mitochondria in rhesus zygotes is a result of mitochondria undergoing fusion and fission 

processes during preimplantation resulting in what appears to be the microtubule network 

guiding the mitochondria to their pronuclear location.  It has also been shown that the pronuclear 

accumulation of mitochondria in rhesus oocytes is transient, on the order of a few hours, 

although the exact length of time remains uncertain (Squirrell et al., 2003).  

It is well established that during the early stages of development, embryo competence 

depends upon ATP produced by mitochondria inherited from the mother.  During the early 

stages of embryo development, energy is produced by OXPHOS via amino acids, lactate and 

pyruvate, with the glucose pathway proving to be harmful at this stage; indicating that a 

threshold of mitochondrial activity is necessary to support energetic demands (Tarazona et al., 

2006).  Once embryonic genome activation begins, the metabolic activity of the embryo 

increases as it becomes capable of using alternative pathways such as anaerobic glycolysis, 
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allowing mitochondrial activity to decrease.  While the lack of mitochondrial organization has 

been correlated to poor embryo development and poor implantation in the human (Scott and 

Smith, 1998), the exact influence of mitochondrial distribution on embryo competence remains 

to be determined.   

The molecular analysis of mitochondrial dynamics began in 1997 with the identification 

of the Drosophila mitofusin gene Fzo (Hales and Fuller, 1997).  Fzo is a mitochondrial outer 

membrane GTPase required for mitochondrial fusion during spermatogenesis.  The core genes 

mediating mammalian mitochondrial fusion are Mfn1, Mfn2 and Opa1.  Mfn1 and Mfn2, the 

mammalian homologues to Fzo, are large GTPases with similar homology and topologies that 

reside on the outer mitochondrial membrane (Chen and Chan, 2004).  Opa1 is an inter membrane 

space protein and is also essential for fusion (Detmer and Chan, 2007).  The exact relationship 

between these proteins remains unclear, however cells lacking any of the three proteins have 

been shown to have inhibited respiratory capacity.  Additionally, the contact between the inner 

and outer membranes, where these proteins reside, is essential to mitochondrial fusion (Detmer 

and Chan, 2007).  The core genes mediating mitochondrial fission are Drp1, Fis1 and MTP18.  

Drp1 is a large dynamin related GTPase located primarily in the cell cytosol.  A portion of Drp1 

moves to the mitochondrial tubule where it interacts with Fis1 (Parone and Martinou, 2006), 

which is a transmembrane protein anchored to the mitochondrial outer membrane.  Both Drp1 

and Fis1 have been implicated in mitochondrial outer membrane permeability and mediate 

downstream apoptosis (Chen and Chan, 2004).  Inhibition of Drp1 has been shown to delay 

mitochondrial division and partially inhibit apoptosis.  MTP18 is a mitochondrial protein that 

contributes to the balance of mitochondrial fission and fusion.  Changes in the expression levels 

of MTP18 interfere with the balance of mitochondrial fission and fusion; whereas loss results in 

increased mitochondrial fusion and an increase results in increased number of fragmented 
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mitochondria (Tondera et al., 2005).  As previously stated, mitochondria move along both 

microtubules and actin, using microtubule-based molecular motors for long distance movements 

(Morris and Hollenbeck, 1995).  Distribution of mitochondria varies in response to multiple 

regulatory cues such as energy requirements, growth factors and mitochondrial membrane 

potential (Chada and Hollenbeck, 2004; Miller and Sheetz, 2004; Morris and Hollenbeck, 1993).  

Mutations in either of two of the components identified to be important for transport; Milton 

(Stowers et al., 2002) and Miro (Guo et al., 2005) appears to abolish anterograde mitochondrial 

transport.  It has been shown (Glater et al., 2006) that kinesin, Milton, and Miro work together in 

anterograde transport and that Milton attaches kinesin to mitochondria through Miro.  Pink1, a 

putative serine�–threonine kinase that localizes to the outer mitochondrial membrane, has been 

shown to have a role in cellular protection against oxidative stress and to affect mitochondrial 

dynamics.  Recent ndings have shown that Pink1 interacts with the Miro/Milton complex and 

that overexpression of either Miro or Milton can suppress mitochondrial fragmentation induced 

after Pink1 silencing (Weihofen et al., 2009).  Pink1 and Parkin, a gene associated with 

Parkinson�’s disease, are linked in a common pathway that is involved in the protection of 

mitochondrial integrity and function (Pridgeon et al., 2007).  Our lab has recently found that 

monkey oocytes have an abundance of Miro1 and 2, Milton, Pink1, Parkin, Mfn1, Mfn2 and 

Drp1 (unpublished data).  Therefore we speculate that mitochondrial trafficking is important for 

fusion and fission mechanisms and may impact oocyte and embryo quality. 

Materials and Methods   

Ovarian Stimulation, Oocyte Recovery and In Vitro Fertilization 

All supplies were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise 

indicated.  Ovarian stimulation and oocyte recovery was adapted from previously described 

protocols by Schramm et al (Schramm and Bavister, 1999).  Briefly, rhesus macaque females 
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were observed for signs of menstrual activity and subjected to follicular stimulation via 

intramuscular injections of (rFSH) as follows; Days 1-10 rFSH twice daily; day 9 (P.M.), (rLH) 

once and day 10 rLH twice (A.M. and P.M.).  On the night of the 10th day, the animal was 

injected with bhCG.  The employment of rLH in this manner was to mimic the endogenous surge 

of LH followed by hCG. Procedures for oocyte recovery, sperm collection, insemination, and 

embryo culture have also been described previously (Bavister et al., 1983a; Boatman and 

Bavister, 1984; Wolf et al., 1989).  Briefly, follicular fluid was collected in TALP-HEPES 

containing 0.3% bovine serum albumin (BSA).  The aspirates were sifted through a cell strainer 

and oocytes were collected after rinsing the filter.  After cumulus removal using hyaluronidase 

(0.03%), oocytes were rinsed, meiotic stage was determined (GV, MI or MII) and oocytes were 

placed in these groups in modified CMRL medium and incubated in 6% CO2 in air at 37°C.  

Rhesus semen was collected by penile electroejaculation (Lanzendorf et al., 1990).  Sperm count 

and motility analyses were performed, spermatozoa cleaned with TL-HEPES medium, 

resuspended and stored in TALP and allowed to equilibrate in the incubator at 6% CO2 at 37°C 

for at least two hours.  Just before insemination, MI oocytes were examined for maturation and 

oocytes were inseminated in three groups; MII, MI and MI matured to MII (MI-MII) before 

insemination.  This second assessment of oocyte maturation established a group of oocytes that 

matured from MI to MII between the time of collection (33-34 hrs post hCG) and the time of 

insemination (37-38 hours post hCG).  Previous work in our laboratory (Dupont et al., 2009) has 

shown that this period of time is important in chromosomal aneuploidy and mosaicism.  All 

oocytes were placed into equilibrated, modified TL within the three groups. Spermatozoa were 

activated with dbcAMP and caffeine (1mM each) and used for insemination of all MII, MI and 

MI-MII oocytes at a final concentration of 1.5�–2.0×105 sperm/mL.  Approximately 12-14 hours 

later, presumptive zygotes were cleaned of sperm and placed into fresh TL for fluorescent 
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imaging.  To guarantee the removal of all granulosa cells and sperm, oocytes were aspirated with 

plastic stripper tips (Mid Atlantic Diagnostics, Marlton, NJ, USA).  

For oxygen concentration studies, all oocytes were inseminated under high O2 levels (6% 

CO2/20% O2).  Fourteen hours after insemination, presumptive zygotes were randomly placed in 

amino acid-supplemented HECM-6 culture drops (Schramm and Bavister, 1996) and incubated 

under either high O2 (6% CO2/20% O2) or low O2 (6% CO2 /5% O2 /89% N2) at 37°C until day 3.  

All embryos used for the oxygen concentration study originated from MII oocytes at the time of 

collection in order to eliminate the possibility of maturation stage differences.  

Imaging 

For zygotes: 13 hours post-insemination, zygotes exhibiting 2 pronuclei (2PN) were 

placed into MitoTracker Orange CMTMRos (Molecular Probes), which passively diffuses across 

the plasma membrane and accumulates in active mitochondria, as well as a nucleic acid stain, 

Hoechst 33342.  After incubation for 45 minutes, zygotes were rinsed through 3 drops of fresh 

modified TL to remove excess stain, and immunofluorescence detection of mitochondrial 

localization and nuclei was assessed using fluorescence microscopy. 

For embryos: approximately 72 hours post-insemination, digital images of each embryo 

was taken for assessment of quality grade.   

Fluorescent and brightfield imaging was performed as quickly as possible in order to 

prevent damage caused by exposure to light.  

RNA Analysis and cDNA Synthesis 

Immediately after either fluorescent or brightfield imaging, zygotes and embryos were 

individually placed into cell lysis buffer according to the published protocol from the Stratagene 

Absolutely RNA Nanoprep Kit (Stratagene, La Jolla, CA, USA), snap frozen in LN2 and stored 

at -80oC to preserve RNA for later analysis.  Following thawing on ice and according to the 
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manufacturer�’s instructions, RNA from the zygotes and embryos was extracted using the 

Absolutely RNA Nanoprep Kit (Stratagene, La Jolla, CA, USA). Recovered RNA was reverse 

transcribed into cDNA using random hexamers and Superscript III reverse transcriptase 

(Invitrogen, San Diego, CA, USA) following instructions from the manufacturer.   

Multiplex target specific preamplification of cDNA 

Custom TaqMan gene expression assays for genes encoding mitochondrial fusion 

(Mfn2), fission (Drp1), mitochondrial transport (Miro1 and Pink1) and mitochondrial replication 

(SSBP1) that were previously designed in our laboratory were employed in this study.  In 

addition to these custom-made gene expression assays, a commercially available primer pair and 

probe for eukaryotic 18S rRNA was purchased (Applied Biosystems, Foster City, CA, USA).  

A multiplex PCR preamplification of 5 cDNA targets was performed in a final volume of 

25 l using a commercial PreAmplification Mix (Applied Biosystems, Foster City, CA, USA) 

according to manufacturer�’s instructions. Because of its high abundance, the endogenous control 

18S rRNA was not preamplified.  Reaction mixtures were initially held at 95°C during 10 min 

before 14 preamplification cycles of 15 sec at 95°C and 4 min at 60°C were executed.  The 

linearity of the preamplification was tested following quantitative real-time PCR of both 

unamplified and diluted (1:20) preamplified 0.1 ng/ l rhesus macaque testis cDNA.  Within the 

unamplified and preamplified testes cDNA group, CT values from all the transcripts of interest 

were compared to a randomly chosen reference gene out of the 5 genes of interest.  The CT 

values for each gene were subtracted from each other and resulting values ( CT) were 

indicative of the linearity of the preamplification.  The CT values approximating zero were 

considered linear, whereas values exceeding two were regarded as undesirable.  To guarantee the 

linearity of the reference gene, the complete calculation was repeated using another reference 

gene out of the 5 preamplified targets. 
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Quantitative Real-Time PCR 

Triplicate amplifications were conducted in a 10 l final reaction volume using the 

7900HT Fast Real-Time PCR System.  The reaction mixture contained 1x TaqMan Universal 

Master Mix (Applied Biosystems, Foster City, CA, USA), 1x TaqMan Gene Expression Assay 

(Applied Biosystems, Foster City, CA, USA) and 2.5 l of preamplified cDNA.  After an initial 

hold at 95°C for 10 min, reaction mixtures underwent 40 cycles of 15 sec at 95°C and 1 min at 

60°C.  In order to create the standard curves, ten-fold dilutions of diluted (1:1) 0.1 ng/ l 

preamplified rhesus macaque testis cDNA were quantified on the same plate as diluted (1:20) 

preamplified zygote cDNA.  Following the amplification, the threshold and baseline values for 

each gene were empirically determined and remained constant over all plates.  The threshold 

values from each transcript of interest were used to approximate RNA equivalents from the 

standard curve.  Following this extrapolation, each RNA equivalent was normalized to the non-

preamplified 18S RNA equivalent.   

Results 

Zygote Data Analysis 

Zygotes originating from the three maturation groups (MI, MII, MI-MII) from eight 

rhesus macaque females were analyzed in this study.  Details of monkey oocytes from the three 

maturation groups are summarized in Table 7.   

Our initial goal was to correlate mitochondrial movement throughout the embryo during 

syngamy with expression of genes known to control mitochondrial dynamics and movement.  

While we were able to collect images of mitochondrial localization at the zygote stage that show 

the heterogeneity of mitochondrial distribution in a population of NHP zygotes (Figure 15) 

regardless of maturation status of the original oocyte (MI, MII or MI-MII), we were not able to 

correlate these images with gene expression profiles. 
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Table 7: Animal identification and numbers of zygotes used from each animal.  
Animal ID MI MII MI-MII 

98H 3 - - 
53O 2 - - 
15S - 3 5 
12S 4 - - 
80C 1 5 1 
76P - 5 - 

M598 2 - 5 
88J - 5 1 

Total 12 18 12 
 

 
Figure 15:  Mitotracker staining of 4 rhesus macaque zygotes, from 4 different animals, 14 hours 
post insemination.  Note the heterogeneity between the individual zygotes 

Previous studies by Squirrell (Squirrell et al., 2003) employed the use of confocal 

microscopy and multi-photon laser scanning microscopy (MPLSM).  Neither of these 

technologies were available at the CPRC and therefore all images were taken using 

epifluorescense, which does not allow pinpoint images of the cell to be taken.  Because of the 

limitations of epifluorescense and the available microscope, we cannot definitively say that 

mitochondrial localization, i.e. perinuclear localization during syngamy, is correlated to the 

expression of genes controlling mitochondrial dynamics and movement.  However, mitochondria 
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are most certainly going through fusion, fission and movement processes during fertilization and 

syngamy as can be seen by the differences in mitochondrial morphology and localization in the 

images.  Further studies need to be performed using confocal or MPLS microscopy.   

Due to the success of the gonadotrophin stimulation protocol (Chapter 5) and the high 

percentage of MII oocytes upon collection, it was not possible to use equivalent numbers of 

oocytes from each female for each maturation group.  Therefore no comparisons were made 

between animals and each zygote was treated individually within the three maturation groups; 

MI (n=12), MII (n=18) and MI-MII (n=12) (Table 7).  Using the Student-Neuman-Keuls Test, 

that compares the means of all three maturation groups to each other, for each individiual gene of 

interest, we found no significant differences in the relative expression levels of all 5 genes 

between the three maturation groups (Table 8). 

Table 8. Means and number of samples analyzed (N) for each maturation group for each gene of 
interest 

Maturation 
Group N Mfn2 Pink1 Drp1 Miro1 SSBP1 

MII 12 81.60 27.86 103.48 175.12 153.33 
MI  12 72.54 15.17 62.16 90.05 103.58 

MI-MII 18 34.53 11.34 35.26 43.63 52.67 

Significance  0.414 0.356 0.295 0.234 0.196 
Student-Neuman-Keuls Test was used to compare the means of the 3 maturation groups to each other, 
for all 5 genes of interest. No significant differences found. 

Expression analyses revealed all genes analyzed were highly correlated; indicating that 

mitochondrial fusion (Mfn2), fission (Drp1), movement (Pink1, Miro1) and replication (SSBP1) 

are all strongly (p<.001) associated with each other during syngamy and preimplantation 

development (Table 9). 

 

 



80 
 

 

Table 9: Pearson correlation analysis showing strong correlation between all 5 genes of interest 
for all zygotes analyzed, regardless of maturation group. 

 Pink1 SSBP1 Mfn2 Drp1 Miro1 
Pearson Correlation 1 .873** .827** .933** .980** 

Sig. (2-tailed)  .000 .000 .000 .000 
Pink1 

N 41 41 41 41 41 
Pearson Correlation .873** 1 .939** .893** .871** 

Sig. (2-tailed) .000  .000 .000 .000 
SSBP1 

N 41 42 42 42 42 
Pearson Correlation .827** .939** 1 .884** .789** 

Sig. (2-tailed) .000 .000  .000 .000 
Mfn2 

N 41 42 42 42 42 
Pearson Correlation .933** .893** .884** 1 .909** 

Sig. (2-tailed) .000 .000 .000  .000 
Drp1 

N 41 42 42 42 42 
Pearson Correlation .980** .871** .789** .909** 1 
Sig. (2-tailed) .000 .000 .000 .000  

Miro1 

N 41 42 42 42 42 
**. Correlation is significant at the 0.001 level (2-tailed). 
Pearson Correlations with Sig.(2-tailed) indicating all p 0.001 and N = total number of 
samples analyzed regardless of maturation group. 

Embryo Data Analysis 

Embryos from 3 rhesus macaque females were used for this study.  Fourteen hours after 

insemination, embryos were places in either low O2 (n=12) or high O2 (n=12).  Real-Time PCR 

gene expression analysis of the same 5 genes analyzed in zygotes revealed no significant 

difference between day 3 embryos cultured under low O2 versus high O2 (Figure 16 & Table 10). 

 
Figure 16: Comparison of relative expression levels of genes involved in mitochondrial 
dynamics and replication in day 3 embryos cultured under either low or high oxygen 
concentration.  Each gene is normalized to the internal control, ribosomal 18S.  No significant 
differences shown. 
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Table 10: Genes involved in mitochondrial dynamics and replication in day 3 embryos cultured 
under either low or high oxygen concentration. 

 Oxygen Concentration N Mean Std. Deviation Std. Error 

Low 11 1.09214 0.466822 0.140752 Pink1 
High 10 1.25179 0.393131 0.124319 

Low 11 10.05574 3.627983 1.093878 SSBP1 
High 11 9.06683 7.760284 2.339814 

Low 11 6.79198 4.248865 1.281081 Mfn2 
High 11 6.92026 2.357120 0.710698 

Low 11 5.37615 2.296540 0.692433 Drp1 
High 11 5.93824 2.239771 0.675316 

Low 10 3.77506 2.374944 0.751023 Miro1 
High 11 5.30295 2.076477 0.626081 

Showing mean, samples analyzed (N), standard deviation and standard error of relative expression 
levels of genes involved in mitochondrial dynamics and replication in day 3 embryos cultured 
under either low or high oxygen concentration. Each gene is normalized to the internal control, 
ribosomal 18S. 
 
Preimplantation Development Analysis 

Mature MII oocytes that were previously analyzed in our lab for the same 5 genes of 

interest were included in this analysis.  The inclusion of this data allowed comparison of three 

distinct time points during preimplantation development; oocyte, zygote and day 3 embryo.  All 

material used for this analysis originated from mature MII oocytes at the time of collection in 

order to eliminate the possibility of maturation stage differences.  The data for all three groups of 

interest were non-normally distributed and therefore a Krustal-Wallis one-way ANOVA by ranks 

was used.  Krustal-Wallis is a non-parametric method for testing the equality of population 

medians among groups.  It is identical to a one-way ANOVA with the data replaced by their 

ranks.  As shown, MII oocyte gene expression is at basal levels for all genes analyzed except for 

Pink1 (Table 11).  After fertilization and during syngamy (zygote stage) all genes increase 2-3 

fold from levels seen in the oocyte (Table 11).  By day 3 of embryo development, all genes have 

decreased to levels still significantly higher than those seen in the oocyte (except for Mfn2 and 
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Pink1), but also significantly lower than what is seen in the zygote.  Table 11 and Figure 17 

show the mean rank comparisons of each gene for the 3 developmental groups.  All comparisons 

are statistically significant (p<0.001) except for Mfn2 expression in oocytes vs. embryos. 

Table 11: Mean rank using the Krustal-Wallis Test for each of the three maturation groups for 
each gene. 
 Oocyte Zygote D3 Embryo Oocyte vs 

Zygote 
Oocyte vs D3 
Embryo 

Zygote vs D3 
Embryo 

Mfn2 14.93 46.72 22.33 < 0.001 0.172 < 0.001 
Drp1 10.87 46.67 25.92 < 0.001 0.002 < 0.001 
Pink1 28.07 44.67 14.58 < 0.001 0.004 < 0.001 
Miro1 12.8 45.67 21.18 < 0.001 0.186 < 0.001 
SSBP1 8.4 46.39 30.67 < 0.001 < 0.001 < 0.001 
N 15 18 12    
Each sample analyzed, regardless of developmental time point (N=45) is ranked, using the relative 
expression normalized to ribosomal 18S, from highest to lowest, and the mean of each time point is 
compared to the mean of every other time point, for each individual gene. Each comparison is statistically 
different for each comparison except for Mfn2 and Miro 1 in oocyte vs day 3 embryo. 

 

 
Figure 17: Data depicting the Krustal-Wallis test using mean rank.    

Finally, a small subpopulation of zygotes and embryos were found to have dramatically 

higher levels of gene expression of all 5 genes of interest.  As shown in Figure 18, scatterplots 

reveal this is especially true in zygotes.  Raw data from this subpopulation is shown in Table 12. 

Expression of all five genes is highly correlated as shown in Table 9.   
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Figure 18: Scatterplots of MII oocytes, zygotes and day 3 embryos that express dramatically 
higher expression levels. 

Table 12: Relative expression levels 
Animal ID Pink1 SSBP1 Mfn2 Drp1 Miro1 

80C 8.417 25.048 25.944 11.157 31.397 
80C 77.336 414.239 260.978 372.071 473.345 
76P 5.908 89.272 39.87 42.226 80.255 
76P 19.728 352.451 97.429 44.904 127.845 
88J 10.218 37.299 32.213 23.881 32.37 
88J 37.8 383.488 174.988 103.61 371.384 
15S 10.963 48.645 41.01 29.486 29.973 
15S 167.599 561.784 274.333 493.693 1,183.635 
15S 77.312 454.633 277.142 465.973 477.528 
73J 1.546 6.428 3.494 7.101 3.514 
73J 17.592 482.643 111.949 220.513 385.024 

Shown are samples with typical expression levels (white) and matched samples from the 
same animal that fall within the subpopulation of samples with dramatically higher 
expression levels (green). 

Discussion 

The suppositions of this aim were primarily based on previous work that showed the 

accumulation of mitochondria between the male and female pronucleus in rhesus macaque 

zygotes and the heterogeneity of mitochondrial localization in rhesus oocytes, zygotes and 

embryos (Squirrell et al., 2003).  While that study did confirm the transient nature of 

mitochondrial localization during NHP preimplantation development, it did not examine what 

factors may be contributing to these mitochondrial movements.  In the present study, we have 

been successful in correlating expression of genes involved in mitochondrial dynamics and 

movement, as well as mtDNA replication, with specific time points in preimplantation 

development that have been previously shown to be important in mitochondrial activity.   
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The hypothesis of this specific aim were twofold.  Our initial hypothesis was that meiotic 

stage and mitochondrial distribution after fertilization influence expression of genes involved in 

mitochondrial dynamics.  As previously discussed, in order for proper fertilization to occur, the 

GV-stage oocyte, which is arrested at the diplotene stage of MI, must resume meiosis and reach 

MII, with the extrusion of the first polar body.  The use of standard ART protocols in human 

infertility treatment can result in the failure of meiotic resumption in 15 �– 27% of oocytes within 

the standard 36 h after the administration of hCG (de Vos et al., 1999; Junca et al., 1995).  

Immature oocytes (GV or MI) are generally collected at oocyte retrieval along with mature MII 

oocytes.  Typically, oocytes are collected 32-34 hours post hCG injection and cultured for 

approximately 4 hours, after which, some MI oocytes will extrude a polar body, achieve MII and 

subsequently be used for IVF.  It is fairly common for immature MI oocytes from human IVF 

cycles to fertilize and develop into morphologically normal embryos (de Vos et al., 1999; Huang 

et al., 1999; Junca et al., 1995; Strassburger et al., 2004), however these embryos generally lead 

to reduced pregnancy and live birth rates (de Vos et al., 1999; Vanhoutte et al., 2005).  

Furthermore, previous studies have shown that embryos developed from oocytes with delayed 

polar body extrusion display high rates of chromosomal abnormalities regardless of morphology 

(Dupont et al., 2009).  In this study, we determined expression levels of genes involved in 

mitochondrial fusion (Mfn2), fission (Drp1), movement and transport (Pink1, Miro1) and 

replication (SSBP1) in zygotes originating from mature MII oocytes, immature MI oocytes and 

oocytes that matured during the window of time between collection and insemination (MI-MII) 

(Table 7).  We found no differences in gene expression levels in any of the five genes analyzed 

between the three maturation groups (Table 8).  It is assumed that oocytes that had not extruded 

the first PB by the time of insemination (MI group) must have extruded it sometime while in the 

presence of sperm, in order for fertilization and PN formation to have occurred.  With these data, 
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we propose that oocyte maturation to MII, from the span of time between collection (33-34 hrs 

post hCG) and insemination (37-38 hrs post hCG), while involved in chromosomal normality 

and stability (Dupont et al., 2009), does not influence the mitochondrial contribution to the 

processes of fertilization and syngamy.  Interestingly, we did find very strong correlations 

between all genes analyzed.  Indicating, for the first time, that mitochondrial fusion (Mfn2), 

fission (Drp1), movement (Pink1, Miro1) and transcription (SSBP1) are all strongly (p<0.001) 

associated with each other during syngamy and preimplantation development (Table 9). 

Our secondary hypothesis in this specific aim was that oxygen concentration during 

embryo culture influences expression of genes involved in mitochondrial dynamics.  Cohorts of 

zygotes from 3 different animals that all originated from MII oocytes upon collection were 

randomly assigned to embryo culture in either high O2 (6% CO2 / 20% O2) or low O2 (6% CO2 / 

5% O2 / 89% N2) until day 3.  The same five genes that were analyzed in zygotes above were 

analyzed in day 3 embryos in order to determine if differences in gene expression were 

influenced by oxygen concentration during in vitro embryo culture.  We found no significant 

differences in gene expression for any of the five genes of interest between low and high O2 

concentration (Figure 16 and Table 10).  Due to the low number of embryos analyzed (Table 10) 

in each group, we agree these data are not conclusive.  However, we propose that the paucity of 

differences between the low and high oxygen culture conditions may be due to the fact that all of 

these embryos were inseminated under high O2, and only split into different O2 treatments 14-16 

hours post insemination.  We propose future studies in which cohorts of oocytes are randomly 

split into low or high O2 groups, inseminated and cultured to blastocyst stage of development and 

then analyzed for the same genes analyzed here.  We predict that non-physiological O2 

concentrations (20% O2) will negatively impact mitochondrial dynamics gene expression in 

blastocysts. The blastocyst stage of development is the first formation of two distinct cell lines, 
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the ICM and the trophectoderm, as well as the time of mitochondrial replication and transcription 

in most species.  Clearly, this is an extremely important stage of development.  The impact of 

mitochondria at this stage has been well established; however, the exact role played by 

mitochondrial dynamics and movement has yet to be determined. 

Additionally, with the inclusion of similar gene expression data collected in our 

laboratory from MII oocytes, we have been able compile gene expression levels from three 

distinct time point in preimplantation development.  For the first time, we are able to show that 

expression of genes involved in the control of mitochondrial fusion, fission, movement and 

replication fluctuates during preimplantation development in NHP, depending upon the stage of 

development.  In the MII oocyte, gene expression is at basal levels for all genes analyzed except 

for Pink1 (Table 11), while in the zygote, all genes increase 2-3 fold from levels seen in the 

oocyte (Table 11).  By day 3 of embryo development, Drp1, Miro1 and SSBP1 levels have 

decreased, but remain significantly higher than those seen in the oocyte, but also significantly 

lower than what is seen in the zygote.  There were no significant differences observed for Mfn2 

between the oocyte and embryo time points.  Interestingly, Pink1, a serine�–threonine kinase that 

localizes to the outer mitochondrial membrane that has a role in cellular protection against 

oxidative stress, was actually statistically higher in the oocyte than in the day 3 embryo.  The 

reason for this expression level in the oocyte is unknown.  These data show that throughout 

preimplantation development, certain time points are metabolically quiet (oocyte and day 3 

embryo), while other time points require dramatic increases in metabolism (zygote).  It is likely 

that increased ATP is needed in order to meet the energetic demands of the embryo for the 

processes occurring during these developmental stages (i.e. PN formation, polar body extrusion, 

syngamy and perhaps even mitochondrial replication, as discussed in Specific Aim 1).  Future 

studies that will determine gene expression in the blastocyst will be of great importance in 
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establishing a true profile of mitochondrial metabolic activity during preimplantation 

development.  

Interestingly, in both zygotes and day 3 embryos, there emerged a subset of samples with 

dramatically higher expression of all genes (Figure 18).  As shown in Table 12, expression levels 

of these samples can exceed two and even three standard deviations beyond the mean of the total 

cohort.  The subpopulation is not revealed in the oocyte, however, these samples were not from 

the same group of animals used for the zygote and embryo studies and the quality of the oocytes 

analyzed is questionable.  Through the use of exogenous gonadotrophin stimulation, oocytes that 

would have normally become atretic in monovulatory species such as humans and NHPs actually 

become dominant follicles due to the excess FSH available.  While these oocytes may reach MII 

status and ovulate, the quality of these oocytes is suspect.  As discussed in Chapter 1, there is not 

a benchmark method of identifying poor or good quality oocytes based on anything besides 

morphology assessment by the embryologist and the achievement of MII. Furthermore, poor or 

bad embryos can be identified based upon morphology and embryonic arrest during the cleavage 

stages; however, it remains difficult to identify a high quality embryo based upon anything 

beyond development rate and morphological quality score.  We propose the subpopulation of 

zygotes and embryos seen in Figure 18 and Table 12 were derived from oocytes that were of the 

highest quality and naturally selected for ovulation.  The dramatically higher levels of gene 

expression is not seen in all samples because cohorts are largely comprised of lower quality 

oocytes, zygotes and embryos.  This hypothesis is supported by human IVF data from 2007 that 

revealed only 39.6% of cycles performed resulted in a live birth with an average of 2.2 embryos 

used per transfer (2007 SART National Summary).  While the number of embryos produced was 

not revealed in the SART data report, there were most certainly a significantly larger number of 

embryos produced that arrested at some point during development, indicating that a 
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subpopulation of embryos were likely of much higher quality than the majority of the cohort.  

Furthermore, as previously discussed, a high proportion of genetically abnormal mitochondria in 

the oocyte can potentially reduce the number of functional mitochondria, leading to embryonic 

arrest and failed implantation.  We believe this hypothesis to be true as seen by the low 

expression of genes involved in mitochondrial dynamics, movement and replication in the 

majority of the samples analyzed.  Further analysis of a larger sample size for all time points, as 

well as other critical time points in preimplantation development (blastocyst), will likely reveal 

even further the impact of mitochondria on preimplantation development. 
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CHAPTER 7 

CONCLUSION 

The central goals of this study were to evaluate mitochondria in NHP oocytes and 

embryos, to determine how mtDNA mutations and mitochondrial function affect oocyte and 

embryo quality and to establish the rhesus macaque as an excellent comparative model to study 

preimplantation development in the human.  The major topics addressed in this dissertation were: 

�• determine if there is a large mitochondrial mutation present in the rhesus macaque similar 

to the common deletion (mtDNA4977) seen in humans 

�• determine if mature oocytes and IVF produced embryos from gonadotrophin stimulated 

rhesus macaques harbor a higher proportion of specific mtDNA mutations than immature 

oocytes from non-stimulated monkeys 

�• determine if the rhesus common mutation is present in in vitro and in in vivo derived 

embryonic stem cell lines, as well as adult stem cell lines 

�• determine if polymorphisms in the mtDNA control region as well as polymorphisms in 

the mtDNA repair mechanism, PolG, are associated with aging 

�• determine if failure of oocytes to reach maturity is due to specific polymorphisms in the 

mtDNA control region 

�• determine if mtDNA control region sequence differences exist between embryos 

�• determine how to improve gonadotrophin stimulation methods and IVF efficiency at the 

Caribbean Primate Research Center 

�• determine if, during syngamy, expression of genes involved in mitochondrial dynamics, 

transport and replication are influenced by meiotic stage of gonadotrophin stimulated 

oocytes at the time of collection 

�• determine if expression of genes involved in mitochondrial dynamics, transport and 
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replication are influenced by mitochondrial distribution during syngamy 

�• determine expression profiles of genes involved in mitochondrial dynamics, transport and 

replication during syngamy and early embryo development 

 We determined that the rhesus common deletion entails the loss of 5703 base pairs, 

which is considerably larger than the 4977 bp common deletion typically found in humans.  

Using the same experimental strategy we found that the rate of detection of the rhesus common 

mutation in immature GV oocytes was dramatically lower when compared with gonadotrophin-

stimulated MII oocytes and embryos (Chapter 2).  It has been suggested that there is a massive 

amplification of the mitochondrial genome during the process of oogenesis, presumably to 

support the initial period of embryonic development, and that mitochondrial replication occurs 

during a very short period of time from the 1-to 2-cell stage in the mouse embryo prior to 

fertilization (McConnell and Petrie, 2004).  Our data, as well as others�’, indicates that a 

mitochondrial replication event may occur during either exogenous gonadotrophin stimulation, 

and/or during oocyte maturation (Chapter 2).  

Once we had established that there is, in fact, a rhesus common deletion and that this 

deletion is present in both mature oocytes and IVF embryos, we felt it important to determine if 

this mutation potentially persists into ESC lines derived from IVF produced embryos.  This was 

the first study to examine mtDNA mutations in embryonic and adult NHP stem cell lines and we 

determined that the rhesus common deletion is present in adult and ES cells from fertile rhesus 

macaques.  In conjunction with Chapter 2 we have shown that oocytes and embryos from 

gonadotrophin stimulated monkeys contain mitochondrial deletions, which carry into ES cell 

derivatives.  Furthermore, we have shown that adult stem cell lines harbor high levels of the 

rhesus mtDNA common deletion, regardless of passage, as well as ESC derived from both in 

vivo and in vitro produced rhesus embryo (Chapter 3).  
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We agree that further studies that both characterize other mutations that may have 

occurred in conjunction with the rhesus common mutation in oocytes and embryos, as well 

exploring the mechanisms behind the transfer of mutations from the embryo to ESC, should have 

been performed.  However, immediately following the data collection and analysis used in the 

two publications that became Specific Aim 1 and 2, Hurricane Katrina ravaged New Orleans, as 

well as the University of New Orleans, and all material collected for further analyses was 

destroyed.  It eventually became imperative for our laboratory to relocate to Wayne State 

University.  During that time, the field of determining mitochondrial impact on primate 

development changed dramatically and we were no longer in collaboration with Tulane Primate 

Research Center, the provider of all the material used in Specific Aim 1 and 2.  Upon becoming 

reestablished at WSU, we began to focus primarily on the original specific aims described in the 

RO1 research grant written by Carol Brenner and Barry Bavister, R01-HD045966-01: Defects in 

Mitochondria Impacting Primate Oocyte Quality.  The specific aims of this grant were: to 

determine the frequency and percentage of mtDNA deletions in primate oocytes and early 

embryos, and to determine the localization of active mitochondria in primate oocytes and early 

embryos, measure the activity of these mitochondria, and correlate these measurements with 

oocyte competence.  Previous studies involving aging effects of mitochondria on oocytes were 

also included in the direction taken with experiments at that time.  Therefore, it became 

important that we proceed in two directions in order to encompass previous work performed by 

our laboratory; aging and preimplantation development.  In Specific Aim 3, we set out to 

determine; 1) if there were mutations in the mtDNA control region associated with the aging 

phenomenon, 2) if there were mutations in particular regions of interest within the mitochondrial 

polymerase, PolG, associated with aging, and 3) if there were mutations in the mtDNA control 

region associated with failure of oocytes to resume meiosis prior to fertilization.  We found no 
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correlation between aging or failure of meiotic resumption prior to fertilization with mutations in 

either the mitochondrial control region or the only known mitochondrial polymerase, PolG 

(Chapter 4).  While it is clear that mtDNA damage and repair mechanisms most certainly have 

an impact on mitochondrial replication and transcription in skeletal muscle and other post-

mitotic tissues, other factors must be contributing to oocyte and embryo quality and 

preimplantation development.   

Therefore, in order to improve the quality of oocyte and embryonic material used for 

further analyses, we began onsite collaborations with the Caribbean Primate Research Center.  

Through improvements made to the existing gonadotrophin stimulation regimens used at the 

CPRC, involving the reduction of total rFSH used per stimulation cycle, the addition of rLH to 

all cycles and the use of biological hCG in lieu of recombinant hCG, we were able to 

dramatically improve the number of MII oocytes collected as well as significantly reduced the 

number of unusable GV oocytes collected, as well as reducing the hormone cost of every cycle 

by reducing the dose of FSH by half, without any reduction in the number or quality of oocytes 

collected (Chapter 5). 

With improvements made to the rhesus macaque IVF cycles, and the collection of 

reliable, quality material, we have been able to correlate, for the first time, expression of genes 

involved in mitochondrial dynamics and movement, as well as mtDNA replication, with specific 

time points in preimplantation development that have been previously shown to be important in 

mitochondrial activity.  Unfortunately, due to the limitations of equipment available at the 

CPRC, we were not able to correlate mitochondrial movement and localization with expression 

analysis of genes involved in mitochondrial dynamics and movement.  However, we do believe 

these processes to be linked and future studies employing confocal microscopy have been 

proposed for correlation.  We have shown that while critically involved in chromosomal 
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normality and stability (Dupont et al., 2009), oocyte maturation from the time of collection (33-

34 hrs post hCG) to the time of insemination (37-38 hrs post hCG) does not influence the 

mitochondrial contribution to the processes of fertilization and syngamy.  Furthermore, we have 

shown the processes of mitochondrial fusion, fission, movement and transcription are all strongly 

associated with each other throughout critical time points of preimplantation development 

(Chapter 6).   

We determined that embryos inseminated under high O2, and then split into either low or 

high in vitro O2 conditions after fertilization exhibited no differences in levels of gene expression 

(Chapter 6).  In conjunction with the high levels of gene expression seen in zygotes at the time of 

syngamy, these data indicate that oxygen concentration conditions may influence embryo culture 

at an earlier time point than day 3, namely during fertilization and syngamy when there is a 

higher metabolic demand for ATP.  We propose other time points of high metabolic demand 

(blastocyst stage) may also be influenced by oxygen concentration during in vitro culture.  

Similar studies where oocytes are fertilized under either low or high O2 concentration have been 

proposed in order to determine at what point oxygen tension becomes critical.   

Furthermore, not only have we been able to show, for the first time, that expression of 

genes involved in the control of mitochondrial fusion, fission, movement and replication 

fluctuates depending upon the stage of development; but that a subpopulation of high quality 

oocytes, zygotes and embryos may be identified based upon level of mitochondrial fusion, 

fission movement and replication gene expression (Chapter 6)   

Due to the ethical limitation of using human oocytes and embryos for invasive studies, 

we have shown here that the rhesus macaque is an excellent model used in lieu of human 

material.  Destructive analyses used in these studies will likely never be allowed to be employed 

on human material.  Without the use of clinically translational models, such as the rhesus 
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macaque, the methods used to determine why fertility and reproductive problems exist as well as 

methods to identify, prevent and treat issues and diseases related to fertility and mitochondria, 

would be profoundly inadequate.  

 



95 
 

 

APPENDIX 1  

     

 

     

1

2

3

4



96 
 

 

   

 

  

 

 

5

6

7

8



97 
 

 

 

        

 

    

 

9

10 

11

12



98 
 

 

 

 

 

 

13 

14 



99 
 

 

APPENDIX 2 

 
 

 
 

1 

2



100 
 

 

 
 
 

 
 
 
 
 

3 

4 



101 
 

 

 

 
 

5 



102 
 

 

APPENDIX 3 
 

 

  
 

 
 

1 

2 

3

4



103 
 

 

 

    
 
 

 
 

5 

6 

7

8



104 
 

 

 

 

9 



105 
 

 

REFERENCES 

1. Balakier, H., Sojecki, A., Motamedi, G., and Librach, C. (2004). Time-dependent 

capability of human oocytes for activation and pronuclear formation during metaphase II 

arrest. Hum Reprod 19, 982-987. 

2. Barnett, D.K., Clayton, M.K., Kimura, J., and Bavister, B.D. (1997). Glucose and 

phosphate toxicity in hamster preimplantation embryos involves disruption of cellular 

organization, including distribution of active mitochondria. Mol Reprod Dev 48, 227-

237. 

3. Barnett, D.K., Kimura, J., and Bavister, B.D. (1996). Translocation of active 

mitochondria during hamster preimplantation embryo development studied by confocal 

laser scanning microscopy. Dev Dyn 205, 64-72. 

4. Barritt, J.A., Brenner, C.A., Cohen, J., and Matt, D.W. (1999). Mitochondrial DNA 

rearrangements in human oocytes and embryos. Mol Hum Reprod 5, 927-933. 

5. Barritt, J.A., Brenner, C.A., Willadsen, S., and Cohen, J. (2000a). Spontaneous and 

artificial changes in human ooplasmic mitochondria. Hum Reprod 15 Suppl 2, 207-217. 

6. Barritt, J.A., Cohen, J., and Brenner, C.A. (2000b). Mitochondrial DNA point mutation in 

human oocytes is associated with maternal age. Reprod Biomed Online 1, 96-100. 

7. Bavister, B.D., Boatman, D.E., Leibfried, L., Loose, M., and Vernon, M.W. (1983a). 

Fertilization and cleavage of rhesus monkey oocytes in vitro. Biol Reprod 28, 983-999. 

8. Bavister, B.D., Leibfried, M.L., and Lieberman, G. (1983b). Development of 

preimplantation embryos of the golden hamster in a defined culture medium. Biol Reprod 

28, 235-247. 

9. Bavister, B.D., and Squirrell, J.M. (2000). Mitochondrial distribution and function in 

oocytes and early embryos. Hum Reprod 15 Suppl 2, 189-198. 



106 
 

 

10. Bavister, B.D., Wolf, D.P., and Brenner, C.A. (2005). Challenges of primate embryonic 

stem cell research. Cloning Stem Cells 7, 82-94. 

11. Bavister, B.D., and Yanagimachi (1977). The effects of sperm extracts and energy 

sources on the motility and acrosome reaction of hamster spermatozoa in vitro. Biol 

Reprod 16, 228-237. 

12. Bernardi, M.L., Flechon, J.E., and Delouis, C. (1996). Influence of culture system and 

oxygen tension on the development of ovine zygotes matured and fertilized in vitro. J 

Reprod Fertil 106, 161-167. 

13. Bleazard, W., McCaffery, J.M., King, E.J., Bale, S., Mozdy, A., Tieu, Q., Nunnari, J., 

and Shaw, J.M. (1999). The dynamin-related GTPase Dnm1 regulates mitochondrial 

fission in yeast. Nat Cell Biol 1, 298-304. 

14. Boatman, D.E., and Bavister, B.D. (1984). Stimulation of rhesus monkey sperm 

capacitation by cyclic nucleotide mediators. J Reprod Fertil 71, 357-366. 

15. Brenner, C.A., Wolny, Y.M., Barritt, J.A., Matt, D.W., Munne, S., and Cohen, J. (1998). 

Mitochondrial DNA deletion in human oocytes and embryos. Mol Hum Reprod 4, 887-

892. 

16. Brevini, T.A., Vassena, R., Francisci, C., and Gandolfi, F. (2005). Role of adenosine 

triphosphate, active mitochondria, and microtubules in the acquisition of developmental 

competence of parthenogenetically activated pig oocytes. Biol Reprod 72, 1218-1223. 

17. Catt, J.W., and Henman, M. (2000). Toxic effects of oxygen on human embryo 

development. Hum Reprod 15 Suppl 2, 199-206. 

18. Chada, S.R., and Hollenbeck, P.J. (2004). Nerve growth factor signaling regulates 

motility and docking of axonal mitochondria. Curr Biol 14, 1272-1276. 



107 
 

 

19. Chen, H., and Chan, D.C. (2004). Mitochondrial dynamics in mammals. Curr Top Dev 

Biol 59, 119-144. 

20. Chen, H., Detmer, S.A., Ewald, A.J., Griffin, E.E., Fraser, S.E., and Chan, D.C. (2003). 

Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential 

for embryonic development. J Cell Biol 160, 189-200. 

21. Chen, X., Prosser, R., Simonetti, S., Sadlock, J., Jagiello, G., and Schon, E.A. (1995). 

Rearranged mitochondrial genomes are present in human oocytes. Am J Hum Genet 57, 

239-247. 

22. Chinnery, P.F., DiMauro, S., Shanske, S., Schon, E.A., Zeviani, M., Mariotti, C., Carrara, 

F., Lombes, A., Laforet, P., Ogier, H., et al. (2004). Risk of developing a mitochondrial 

DNA deletion disorder. Lancet 364, 592-596. 

23. Clayton, D.A. (2000). Transcription and replication of mitochondrial DNA. Hum Reprod 

15 Suppl 2, 11-17. 

24. Cortopassi, G.A., and Arnheim, N. (1990). Detection of a specific mitochondrial DNA 

deletion in tissues of older humans. Nucleic Acids Res 18, 6927-6933. 

25. Cummins, J.M. (2004). Mitochondria in reproduction. Reprod Biomed Online 8, 14-15. 

26. de Vos, D., Clements, P., Pyke, S.M., Smyth, D.R., and Tiekink, E.R. (1999). 

Characterisation and in vitro cytotoxicity of triorganophosphinegold(i) 2-

mercaptobenzoate complexes. Met Based Drugs 6, 31-40. 

27. DeScisciolo, C., Wright, D.L., Mayer, J.F., Gibbons, W., Muasher, S.J., and Lanzendorf, 

S.E. (2000). Human embryos derived from in vitro and in vivo matured oocytes: analysis 

for chromosomal abnormalities and nuclear morphology. J Assist Reprod Genet 17, 284-

292. 



108 
 

 

28. Detmer, S.A., and Chan, D.C. (2007). Functions and dysfunctions of mitochondrial 

dynamics. Nat Rev Mol Cell Biol 8, 870-879. 

29. Dumoulin, J.C., Meijers, C.J., Bras, M., Coonen, E., Geraedts, J.P., and Evers, J.L. 

(1999). Effect of oxygen concentration on human in-vitro fertilization and embryo 

culture. Hum Reprod 14, 465-469. 

30. Dupont, C., Bavister, B.D., Armant, D.R., and Brenner, C.A. (2009). Rhesus macaque 

embryos derived from MI oocytes maturing after retrieval display high rates of 

chromosomal anomalies. Hum Reprod 24, 929-935. 

31. Eichenlaub-Ritter, U., Vogt, E., Yin, H., and Gosden, R. (2004). Spindles, mitochondria 

and redox potential in ageing oocytes. Reprod Biomed Online 8, 45-58. 

32. Elson, J.L., Samuels, D.C., Turnbull, D.M., and Chinnery, P.F. (2001). Random 

intracellular drift explains the clonal expansion of mitochondrial DNA mutations with 

age. Am J Hum Genet 68, 802-806. 

33. Falkenberg, M., Gaspari, M., Rantanen, A., Trifunovic, A., Larsson, N.G., and 

Gustafsson, C.M. (2002). Mitochondrial transcription factors B1 and B2 activate 

transcription of human mtDNA. Nat Genet 31, 289-294. 

34. Fischer, B., and Bavister, B.D. (1993). Oxygen tension in the oviduct and uterus of 

rhesus monkeys, hamsters and rabbits. J Reprod Fertil 99, 673-679. 

35. Fisher, R.P., and Clayton, D.A. (1985). A transcription factor required for promoter 

recognition by human mitochondrial RNA polymerase. Accurate initiation at the heavy- 

and light-strand promoters dissected and reconstituted in vitro. J Biol Chem 260, 11330-

11338. 

36. Fisher, R.P., and Clayton, D.A. (1988). Purification and characterization of human 



109 
 

 

mitochondrial transcription factor 1. Mol Cell Biol 8, 3496-3509. 

37. Fisher, R.P., Lisowsky, T., Parisi, M.A., and Clayton, D.A. (1992). DNA wrapping and 

bending by a mitochondrial high mobility group-like transcriptional activator protein. J 

Biol Chem 267, 3358-3367. 

38. Flores, I., Cayuela, M.L., and Blasco, M.A. (2005). Effects of telomerase and telomere 

length on epidermal stem cell behavior. Science 309, 1253-1256. 

39. Gardner, D.K., and Lane, M. (1998). Culture of viable human blastocysts in defined 

sequential serum-free media. Hum Reprod 13 Suppl 3, 148-159; discussion 160. 

40. Gibson, T.C., Kubisch, H.M., and Brenner, C.A. (2005). Mitochondrial DNA deletions in 

rhesus macaque oocytes and embryos. Mol Hum Reprod 11, 785-789. 

41. Gibson, T.C., Pei, Y., Quebedeaux, T.M., and Brenner, C.A. (2006). Mitochondrial DNA 

deletions in primate embryonic and adult stem cells. Reprod Biomed Online 12, 101-106. 

42. Glater, E.E., Megeath, L.J., Stowers, R.S., and Schwarz, T.L. (2006). Axonal transport of 

mitochondria requires milton to recruit kinesin heavy chain and is light chain 

independent. J Cell Biol 173, 545-557. 

43. Gokey, N.G., Cao, Z., Pak, J.W., Lee, D., McKiernan, S.H., McKenzie, D., Weindruch, 

R., and Aiken, J.M. (2004). Molecular analyses of mtDNA deletion mutations in 

microdissected skeletal muscle fibers from aged rhesus monkeys. Aging Cell 3, 319-326. 

44. Goto, Y., Noda, Y., Mori, T., and Nakano, M. (1993). Increased generation of reactive 

oxygen species in embryos cultured in vitro. Free Radic Biol Med 15, 69-75. 

45. Guerin, P., El Mouatassim, S., and Menezo, Y. (2001). Oxidative stress and protection 

against reactive oxygen species in the pre-implantation embryo and its surroundings. 

Hum Reprod Update 7, 175-189. 



110 
 

 

46. Guo, X., Macleod, G.T., Wellington, A., Hu, F., Panchumarthi, S., Schoenfield, M., 

Marin, L., Charlton, M.P., Atwood, H.L., and Zinsmaier, K.E. (2005). The GTPase 

dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 

47, 379-393. 

47. Hales, K.G., and Fuller, M.T. (1997). Developmentally regulated mitochondrial fusion 

mediated by a conserved, novel, predicted GTPase. Cell 90, 121-129. 

48. Halliwell, B.a.G., J.M.C (1989). The chemistry of oxygen radicals and other derived 

species. , 2nd edn edn (Clarendon Press, Oxford). 

49. Hance, N., Ekstrand, M.I., and Trifunovic, A. (2005). Mitochondrial DNA polymerase 

gamma is essential for mammalian embryogenesis. Hum Mol Genet 14, 1775-1783. 

50. Hillman, N., and Tasca, R.J. (1969). Ultrastructural and autoradiographic studies of 

mouse cleavage stages. Am J Anat 126, 151-173. 

51. Hollenbeck, P.J., and Saxton, W.M. (2005). The axonal transport of mitochondria. J Cell 

Sci 118, 5411-5419. 

52. Huang, F.J., Chang, S.Y., Tsai, M.Y., Lin, Y.C., Kung, F.T., Wu, J.F., and Lu, Y.J. 

(1999). Relationship of the human cumulus-free oocyte maturational profile with in vitro 

outcome parameters after intracytoplasmic sperm injection. J Assist Reprod Genet 16, 

483-487. 

53. Hyttel, P., and Niemann, H. (1990). Ultrastructure of porcine embryos following 

development in vitro versus in vivo. Mol Reprod Dev 27, 136-144. 

54. Jansen, R.P., and Burton, G.J. (2004). Mitochondrial dysfunction in reproduction. 

Mitochondrion 4, 577-600. 

55. Jenuth, J.P., Peterson, A.C., Fu, K., and Shoubridge, E.A. (1996). Random genetic drift in 



111 
 

 

the female germline explains the rapid segregation of mammalian mitochondrial DNA. 

Nat Genet 14, 146-151. 

56. Junca, A.M., Mandelbaum, J., Belaisch-Allart, J., Salat-Baroux, J., Plachot, M., Antoine, 

J.M., Mayenga, J.M., Delafontaine, D., and Cohen, J. (1995). [Oocyte maturity and 

quality: value of intracytoplasmic sperm injection. Fertility of microinjected oocytes after 

in vitro maturation]. Contracept Fertil Sex 23, 463-465. 

57. Kaguni, L.S. (2004). DNA polymerase gamma, the mitochondrial replicase. Annu Rev 

Biochem 73, 293-320. 

58. Kang, S.K., Putnam, L., Dufour, J., Ylostalo, J., Jung, J.S., and Bunnell, B.A. (2004). 

Expression of telomerase extends the lifespan and enhances osteogenic differentiation of 

adipose tissue-derived stromal cells. Stem Cells 22, 1356-1372. 

59. Keefe, D.L., Niven-Fairchild, T., Powell, S., and Buradagunta, S. (1995). Mitochondrial 

deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertil Steril 

64, 577-583. 

60. Khrapko, K., Coller, H.A., Andre, P.C., Li, X.C., Hanekamp, J.S., and Thilly, W.G. 

(1997). Mitochondrial mutational spectra in human cells and tissues. Proc Natl Acad Sci 

U S A 94, 13798-13803. 

61. Kitagawa, Y., Suzuki, K., Yoneda, A., and Watanabe, T. (2004). Effects of oxygen 

concentration and antioxidants on the in vitro developmental ability, production of 

reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. 

Theriogenology 62, 1186-1197. 

62. Korhonen, J.A., Gaspari, M., and Falkenberg, M. (2003). TWINKLE Has 5' -> 3' DNA 

helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-



112 
 

 

binding protein. J Biol Chem 278, 48627-48632. 

63. Lackner, L.L., and Nunnari, J.M. (2008). The molecular mechanism and cellular 

functions of mitochondrial division. Biochim Biophys Acta. 

64. Lane, M., and Bavister, B.D. (1998). Calcium homeostasis in early hamster 

preimplantation embryos. Biol Reprod 59, 1000-1007. 

65. Lanzendorf, S.E., Zelinski-Wooten, M.B., Stouffer, R.L., and Wolf, D.P. (1990). 

Maturity at collection and the developmental potential of rhesus monkey oocytes. Biol 

Reprod 42, 703-711. 

66. Lee, H.R., and Johnson, K.A. (2006). Fidelity of the human mitochondrial DNA 

polymerase. J Biol Chem 281, 36236-36240. 

67. Levron, J., Munne, S., Willadsen, S., Rosenwaks, Z., and Cohen, J. (1995). Male and 

female genomes associated in a single pronucleus in human zygotes. Biol Reprod 52, 

653-657. 

68. Lonergan, P., O'Kearney-Flynn, M., and Boland, M.P. (1999). Effect of protein 

supplementation and presence of an antioxidant on the development of bovine zygotes in 

synthetic oviduct fluid medium under high or low oxygen tension. Theriogenology 51, 

1565-1576. 

69. Longley, M.J., Graziewicz, M.A., Bienstock, R.J., and Copeland, W.C. (2005). 

Consequences of mutations in human DNA polymerase gamma. Gene 354, 125-131. 

70. Lopez, M.E., Van Zeeland, N.L., Dahl, D.B., Weindruch, R., and Aiken, J.M. (2000). 

Cellular phenotypes of age-associated skeletal muscle mitochondrial abnormalities in 

rhesus monkeys. Mutat Res 452, 123-138. 

71. Luoma, P., Melberg, A., Rinne, J.O., Kaukonen, J.A., Nupponen, N.N., Chalmers, R.M., 



113 
 

 

Oldfors, A., Rautakorpi, I., Peltonen, L., Majamaa, K., et al. (2004). Parkinsonism, 

premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical 

and molecular genetic study. Lancet 364, 875-882. 

72. Maitra, A., Arking, D.E., Shivapurkar, N., Ikeda, M., Stastny, V., Kassauei, K., Sui, G., 

Cutler, D.J., Liu, Y., Brimble, S.N., et al. (2005). Genomic alterations in cultured human 

embryonic stem cells. Nat Genet 37, 1099-1103. 

73. Mancuso, M., Filosto, M., Bellan, M., Liguori, R., Montagna, P., Baruzzi, A., DiMauro, 

S., and Carelli, V. (2004). POLG mutations causing ophthalmoplegia, sensorimotor 

polyneuropathy, ataxia, and deafness. Neurology 62, 316-318. 

74. Martinez-Azorin, F. (2005). The mitochondrial ribomotor hypothesis. IUBMB Life 57, 

27-30. 

75. Mastroianni, L., Jr., and Jones, R. (1965). Oxygen Tension within the Rabbit Fallopian 

Tube. J Reprod Fertil 9, 99-102. 

76. Mastroianni, L., Jr., and Manson, W.A., Jr. (1963). Collection of monkey semen by 

electroejaculation. Proc Soc Exp Biol Med 112, 1025-1027. 

77. Matsushima, Y., Adan, C., Garesse, R., and Kaguni, L.S. (2005). Drosophila 

mitochondrial transcription factor B1 modulates mitochondrial translation but not 

transcription or DNA copy number in Schneider cells. J Biol Chem 280, 16815-16820. 

78. May-Panloup, P., Chretien, M.F., Jacques, C., Vasseur, C., Malthiery, Y., and Reynier, P. 

(2005). Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum Reprod 

20, 593-597. 

79. McConnell, J.M., and Petrie, L. (2004). Mitochondrial DNA turnover occurs during 

preimplantation development and can be modulated by environmental factors. Reprod 



114 
 

 

Biomed Online 9, 418-424. 

80. McKiernan, S.H., and Bavister, B.D. (2000). Culture of one-cell hamster embryos with 

water soluble vitamins: pantothenate stimulates blastocyst production. Hum Reprod 15, 

157-164. 

81. Mehmet, D., Ahmed, F., Cummins, J.M., Martin, R., and Whelan, J. (2001). 

Quantification of the common deletion in human testicular mitochondrial DNA by 

competitive PCR assay using a chimaeric competitor. Mol Hum Reprod 7, 301-306. 

82. Michaels, G.S., Hauswirth, W.W., and Laipis, P.J. (1982). Mitochondrial DNA copy 

number in bovine oocytes and somatic cells. Dev Biol 94, 246-251. 

83. Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G., and Attardi, G. (1999). 

Aging-dependent large accumulation of point mutations in the human mtDNA control 

region for replication. Science 286, 774-779. 

84. Miller, K.E., and Sheetz, M.P. (2004). Axonal mitochondrial transport and potential are 

correlated. J Cell Sci 117, 2791-2804. 

85. Morris, R.L., and Hollenbeck, P.J. (1993). The regulation of bidirectional mitochondrial 

transport is coordinated with axonal outgrowth. J Cell Sci 104 ( Pt 3), 917-927. 

86. Morris, R.L., and Hollenbeck, P.J. (1995). Axonal transport of mitochondria along 

microtubules and F-actin in living vertebrate neurons. J Cell Biol 131, 1315-1326. 

87. Muggleton-Harris, A.L., and Brown, J.J. (1988). Cytoplasmic factors influence 

mitochondrial reorganization and resumption of cleavage during culture of early mouse 

embryos. Hum Reprod 3, 1020-1028. 

88. Nagao, Y., Saeki, K., Hoshi, M., and Kainuma, H. (1994). Effects of oxygen 

concentration and oviductal epithelial tissue on the development of in vitro matured and 



115 
 

 

fertilized bovine oocytes cultured in protein-free medium. Theriogenology 41, 681-687. 

89. Naviaux, R.K., and Nguyen, K.V. (2004). POLG mutations associated with Alpers' 

syndrome and mitochondrial DNA depletion. Ann Neurol 55, 706-712. 

90. Nogueira, D., Staessen, C., Van de Velde, H., and Van Steirteghem, A. (2000). Nuclear 

status and cytogenetics of embryos derived from in vitro-matured oocytes. Fertil Steril 

74, 295-298. 

91. Noto, V., Campo, R., Roziers, P., Swinnen, K., Vercruyssen, M., and Gordts, S. (1993). 

Mitochondrial distribution after fast embryo freezing. Hum Reprod 8, 2115-2118. 

92. Panigel, M., Kraemer, D.C., Kalter, S.S., Smith, G.C., and Heberling, R.L. (1975). 

Ultrastructure of cleavage stages and preimplantation embryos of the baboon. Anat 

Embryol (Berl) 147, 45-62. 

93. Parone, P.A., James, D.I., Da Cruz, S., Mattenberger, Y., Donze, O., Barja, F., and 

Martinou, J.C. (2006). Inhibiting the mitochondrial fission machinery does not prevent 

Bax/Bak-dependent apoptosis. Mol Cell Biol 26, 7397-7408. 

94. Parone, P.A., and Martinou, J.C. (2006). Mitochondrial fission and apoptosis: an ongoing 

trial. Biochim Biophys Acta 1763, 522-530. 

95. Pau, K.Y., and Wolf, D.P. (2004). Derivation and characterization of monkey embryonic 

stem cells. Reprod Biol Endocrinol 2, 41. 

96. Piko, L., and Taylor, K.D. (1987). Amounts of mitochondrial DNA and abundance of 

some mitochondrial gene transcripts in early mouse embryos. Dev Biol 123, 364-374. 

97. Pilling, A.D., Horiuchi, D., Lively, C.M., and Saxton, W.M. (2006). Kinesin-1 and 

Dynein are the primary motors for fast transport of mitochondria in Drosophila motor 

axons. Mol Biol Cell 17, 2057-2068. 



116 
 

 

98. Plante, L., and King, W.A. (1994). Light and electron microscopic analysis of bovine 

embryos derived by in vitro and in vivo fertilization. J Assist Reprod Genet 11, 515-529. 

99. Pridgeon, J.W., Olzmann, J.A., Chin, L.S., and Li, L. (2007). PINK1 protects against 

oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol 5, e172. 

100. Schramm, R.D., and Bavister, B.D. (1996). Development of in-vitro-fertilized primate 

embryos into blastocysts in a chemically defined, protein-free culture medium. Hum 

Reprod 11, 1690-1697. 

101. Schramm, R.D., and Bavister, B.D. (1999). A macaque model for studying mechanisms 

controlling oocyte development and maturation in human and non-human primates. Hum 

Reprod 14, 2544-2555. 

102. Schramm, R.D., Paprocki, A.M., and Bavister, B.D. (2002). Features associated with 

reproductive ageing in female rhesus monkeys. Hum Reprod 17, 1597-1603. 

103. Schwarze, S.R., Lee, C.M., Chung, S.S., Roecker, E.B., Weindruch, R., and Aiken, J.M. 

(1995). High levels of mitochondrial DNA deletions in skeletal muscle of old rhesus 

monkeys. Mech Ageing Dev 83, 91-101. 

104. Scott, L.A., and Smith, S. (1998). The successful use of pronuclear embryo transfers the 

day following oocyte retrieval. Hum Reprod 13, 1003-1013. 

105. Sesaki, H., and Jensen, R.E. (1999). Division versus fusion: Dnm1p and Fzo1p 

antagonistically regulate mitochondrial shape. J Cell Biol 147, 699-706. 

106. Shadel, G.S., and Clayton, D.A. (1997). Mitochondrial DNA maintenance in vertebrates. 

Annu Rev Biochem 66, 409-435. 

107. Shoubridge, E.A., and Wai, T. (2007). Mitochondrial DNA and the mammalian oocyte. 

Curr Top Dev Biol 77, 87-111. 



117 
 

 

108. Shu, Y., Gebhardt, J., Watt, J., Lyon, J., Dasig, D., and Behr, B. (2007). Fertilization, 

embryo development, and clinical outcome of immature oocytes from stimulated 

intracytoplasmic sperm injection cycles. Fertil Steril 87, 1022-1027. 

109. Smirnova, E., Griparic, L., Shurland, D.L., and van der Bliek, A.M. (2001). Dynamin-

related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol 

Cell 12, 2245-2256. 

110. Smith, L.C., and Alcivar, A.A. (1993). Cytoplasmic inheritance and its effects on 

development and performance. J Reprod Fertil Suppl 48, 31-43. 

111. Sohal, R.S., and Weindruch, R. (1996). Oxidative stress, caloric restriction, and aging. 

Science 273, 59-63. 

112. Spelbrink, J.N., Li, F.Y., Tiranti, V., Nikali, K., Yuan, Q.P., Tariq, M., Wanrooij, S., 

Garrido, N., Comi, G., Morandi, L., et al. (2001). Human mitochondrial DNA deletions 

associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein 

localized in mitochondria. Nat Genet 28, 223-231. 

113. Spikings, E.C., Alderson, J., and John, J.C. (2007). Regulated mitochondrial DNA 

replication during oocyte maturation is essential for successful porcine embryonic 

development. Biol Reprod 76, 327-335. 

114. Squirrell, J.M., Lane, M., and Bavister, B.D. (2001). Altering intracellular pH disrupts 

development and cellular organization in preimplantation hamster embryos. Biol Reprod 

64, 1845-1854. 

115. Squirrell, J.M., Schramm, R.D., Paprocki, A.M., Wokosin, D.L., and Bavister, B.D. 

(2003). Imaging mitochondrial organization in living primate oocytes and embryos using 

multiphoton microscopy. Microsc Microanal 9, 190-201. 



118 
 

 

116. St John, J.C., and Schatten, G. (2004). Paternal mitochondrial DNA transmission during 

nonhuman primate nuclear transfer. Genetics 167, 897-905. 

117. Steuerwald, N., Barritt, J.A., Adler, R., Malter, H., Schimmel, T., Cohen, J., and Brenner, 

C.A. (2000). Quantification of mtDNA in single oocytes, polar bodies and subcellular 

components by real-time rapid cycle fluorescence monitored PCR. Zygote 8, 209-215. 

118. Stojkovic, M., Machado, S.A., Stojkovic, P., Zakhartchenko, V., Hutzler, P., Goncalves, 

P.B., and Wolf, E. (2001). Mitochondrial distribution and adenosine triphosphate content 

of bovine oocytes before and after in vitro maturation: correlation with morphological 

criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod 

64, 904-909. 

119. Stowers, R.S., Megeath, L.J., Gorska-Andrzejak, J., Meinertzhagen, I.A., and Schwarz, 

T.L. (2002). Axonal transport of mitochondria to synapses depends on milton, a novel 

Drosophila protein. Neuron 36, 1063-1077. 

120. Strassburger, D., Friedler, S., Raziel, A., Kasterstein, E., Schachter, M., and Ron-El, R. 

(2004). The outcome of ICSI of immature MI oocytes and rescued in vitro matured MII 

oocytes. Hum Reprod 19, 1587-1590. 

121. Sutovsky, P., Moreno, R.D., Ramalho-Santos, J., Dominko, T., Simerly, C., and Schatten, 

G. (1999). Ubiquitin tag for sperm mitochondria. Nature 402, 371-372. 

122. Sutovsky, P., Moreno, R.D., Ramalho-Santos, J., Dominko, T., Simerly, C., and Schatten, 

G. (2000). Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of 

mitochondrial inheritance in mammalian embryos. Biol Reprod 63, 582-590. 

123. Tanaka, Y., Kanai, Y., Okada, Y., Nonaka, S., Takeda, S., Harada, A., and Hirokawa, N. 

(1998). Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in 



119 
 

 

abnormal perinuclear clustering of mitochondria. Cell 93, 1147-1158. 

124. Tarazona, A.M., Rodriguez, J.I., Restrepo, L.F., and Olivera-Angel, M. (2006). 

Mitochondrial activity, distribution and segregation in bovine oocytes and in embryos 

produced in vitro. Reprod Domest Anim 41, 5-11. 

125. Thundathil, J., Filion, F., and Smith, L.C. (2005). Molecular control of mitochondrial 

function in preimplantation mouse embryos. Mol Reprod Dev 71, 405-413. 

126. Tiranti, V., Savoia, A., Forti, F., D'Apolito, M.F., Centra, M., Rocchi, M., and Zeviani, 

M. (1997). Identification of the gene encoding the human mitochondrial RNA 

polymerase (h-mtRPOL) by cyberscreening of the Expressed Sequence Tags database. 

Hum Mol Genet 6, 615-625. 

127. Tondera, D., Czauderna, F., Paulick, K., Schwarzer, R., Kaufmann, J., and Santel, A. 

(2005). The mitochondrial protein MTP18 contributes to mitochondrial fission in 

mammalian cells. J Cell Sci 118, 3049-3059. 

128. Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J.N., Rovio, A.T., Bruder, 

C.E., Bohlooly, Y.M., Gidlof, S., Oldfors, A., Wibom, R., et al. (2004). Premature ageing 

in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417-423. 

129. Tyynismaa, H., Mjosund, K.P., Wanrooij, S., Lappalainen, I., Ylikallio, E., Jalanko, A., 

Spelbrink, J.N., Paetau, A., and Suomalainen, A. (2005). Mutant mitochondrial helicase 

Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in 

mice. Proc Natl Acad Sci U S A 102, 17687-17692. 

130. Tyynismaa, H., Sembongi, H., Bokori-Brown, M., Granycome, C., Ashley, N., Poulton, 

J., Jalanko, A., Spelbrink, J.N., Holt, I.J., and Suomalainen, A. (2004). Twinkle helicase 

is essential for mtDNA maintenance and regulates mtDNA copy number. Hum Mol 



120 
 

 

Genet 13, 3219-3227. 

131. Van Blerkom, J. (1991). Microtubule mediation of cytoplasmic and nuclear maturation 

during the early stages of resumed meiosis in cultured mouse oocytes. Proc Natl Acad Sci 

U S A 88, 5031-5035. 

132. Van Blerkom, J. (2000). Intrafollicular influences on human oocyte developmental 

competence: perifollicular vascularity, oocyte metabolism and mitochondrial function. 

Hum Reprod 15 Suppl 2, 173-188. 

133. Van Blerkom, J. (2004). Mitochondria in human oogenesis and preimplantation 

embryogenesis: engines of metabolism, ionic regulation and developmental competence. 

Reproduction 128, 269-280. 

134. Van Blerkom, J., Bell, H., and Weipz, D. (1990). Cellular and developmental biological 

aspects of bovine meiotic maturation, fertilization, and preimplantation embryogenesis in 

vitro. J Electron Microsc Tech 16, 298-323. 

135. Van Blerkom, J., Davis, P., and Alexander, S. (2000). Differential mitochondrial 

distribution in human pronuclear embryos leads to disproportionate inheritance between 

blastomeres: relationship to microtubular organization, ATP content and competence. 

Hum Reprod 15, 2621-2633. 

136. Van Blerkom, J., Davis, P., Merriam, J., and Sinclair, J. (1995a). Nuclear and 

cytoplasmic dynamics of sperm penetration, pronuclear formation and microtubule 

organization during fertilization and early preimplantation development in the human. 

Hum Reprod Update 1, 429-461. 

137. Van Blerkom, J., Davis, P.W., and Lee, J. (1995b). ATP content of human oocytes and 

developmental potential and outcome after in-vitro fertilization and embryo transfer. 



121 
 

 

Hum Reprod 10, 415-424. 

138. Van Goethem, G., Dermaut, B., Lofgren, A., Martin, J.J., and Van Broeckhoven, C. 

(2001). Mutation of POLG is associated with progressive external ophthalmoplegia 

characterized by mtDNA deletions. Nat Genet 28, 211-212. 

139. Vanhoutte, L., De Sutter, P., Van der Elst, J., and Dhont, M. (2005). Clinical benefit of 

metaphase I oocytes. Reprod Biol Endocrinol 3, 71. 

140. Waldenstrom, U., Engstrom, A.B., Hellberg, D., and Nilsson, S. (2009). Low-oxygen 

compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized 

study. Fertil Steril 91, 2461-2465. 

141. Wallace, D.C. (1993). Mitochondrial diseases: genotype versus phenotype. Trends Genet 

9, 128-133. 

142. Wallace, D.C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, 

aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39, 359-407. 

143. Wallace, D.C. (2008). Mitochondria as chi. Genetics 179, 727-735. 

144. Wang, Y., Michikawa, Y., Mallidis, C., Bai, Y., Woodhouse, L., Yarasheski, K.E., 

Miller, C.A., Askanas, V., Engel, W.K., Bhasin, S., et al. (2001). Muscle-specific 

mutations accumulate with aging in critical human mtDNA control sites for replication. 

Proc Natl Acad Sci U S A 98, 4022-4027. 

145. Weihofen, A., Thomas, K.J., Ostaszewski, B.L., Cookson, M.R., and Selkoe, D.J. (2009). 

Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to 

mitochondrial trafficking. Biochemistry 48, 2045-2052. 

146. Wolf, D.P., Vandevoort, C.A., Meyer-Haas, G.R., Zelinski-Wooten, M.B., Hess, D.L., 

Baughman, W.L., and Stouffer, R.L. (1989). In vitro fertilization and embryo transfer in 



122 
 

 

the rhesus monkey. Biol Reprod 41, 335-346. 

147. Xu, B., and Clayton, D.A. (1995). A persistent RNA-DNA hybrid is formed during 

transcription at a phylogenetically conserved mitochondrial DNA sequence. Mol Cell 

Biol 15, 580-589. 

148. Youle, R.J., and Karbowski, M. (2005). Mitochondrial fission in apoptosis. Nat Rev Mol 

Cell Biol 6, 657-663. 

149. Zelinski-Wooten, M.B., Hutchison, J.S., Hess, D.L., Wolf, D.P., and Stouffer, R.L. 

(1995). Follicle stimulating hormone alone supports follicle growth and oocyte 

development in gonadotrophin-releasing hormone antagonist-treated monkeys. Hum 

Reprod 10, 1658-1666. 

150. Zeviani, M., Moraes, C.T., DiMauro, S., Nakase, H., Bonilla, E., Schon, E.A., and 

Rowland, L.P. (1988). Deletions of mitochondrial DNA in Kearns-Sayre syndrome. 

Neurology 38, 1339-1346. 

151. Zeviani, M., Servidei, S., Gellera, C., Bertini, E., DiMauro, S., and DiDonato, S. (1989). 

An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting 

at the D-loop region. Nature 339, 309-311. 



123 
 

 

ABSTRACT 

THE IMPACT OF MITOCHONDRIA ON PREIMPLANTATION DEVELOPMENT IN 
THE RHESUS MACAQUE 

by 

TIFFINI C. GIBSON 

AUGUST 2010 

Advisor: Carol Brenner, Ph.D. 

Major:  Physiology 

Degree: Doctor of Philosophy 

Assisted Reproduction Technologies (ART) have been used to treat infertility since 1790.  

In the centuries following, dramatic advances have been made in the field of infertility research 

through the employment of a variety of species.  Despite these advances, determination of oocyte 

and embryo quality remains largely subjective.  Ascertainment of methods to measure oocyte 

and embryo quality to improve selection in ART clinics and increase pregnancy success rates is 

imperative.  These methods are only possible with a more comprehensive understanding of the 

cellular and molecular properties of oocytes and preimplantation embryos.  A key component of 

all cells, including oocytes and embryos, is the mitochondrion, which produces energy and 

maintains its own DNA for encoding proteins necessary for energy production.  Defects in either 

the proteins responsible for energy production, the mitochondrial DNA (mtDNA) genome, or 

other contributing factors can lead to loss of oocyte competence and embryo quality.  Human 

oocytes and embryos would be the optimal material to use for performing studies on 

preimplantation development.  However, practical and ethical constraints prevent the use of 

human material for intensive, potentially terminal studies; thus, compelling researchers to find 

and use suitable animal models instead. The non-human primate (NHP) is the most befitting 
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animal model for human reproduction due to evolutionary closeness and the dramatic similarities 

in reproductive function and preimplantation development.  Furthermore, because studies in 

human preimplantation development are restricted to the use of discarded oocytes from infertility 

clinics, the use of the NHP has established the rhesus macaque as an excellent research model for 

human reproduction due to the availability of normal, viable oocytes and embryos from fertile 

animals.  Therefore, the overall goals of this study were to evaluate mitochondria in NHP 

oocytes and embryos and to determine how mtDNA mutations and mitochondrial function affect 

oocyte and embryo quality.   
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