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CONSTRAINT QUALIFICATIONS AND OPTIMALITY CONDITIONS 
FOR NONCONVEX SEMl-;;-IN-FINITE AND INFINITE PROGRAMS1 

BORIS S. MORDUKHOVICH 2 and T. T. A. NGHIA 3 

Dedicated to Jon Borwein in honor of his 60th birthday 

Abstract. The paper concerns the study of new classes of nonlinear and nonconvex optimization 
problems of the so-called infinite programming that are generally defined on infinite-dimensional 
spaces of decision variables and contain infinitely many of equality and inequality constraints with 
arbitrary (may not be compact) index sets. These problems reduce to semi-infinite programs in 
the case of finite-dimensional spaces of decision variables. We extend the classical Mangasarian­
Fromovitz and Farkas-Minkowski constraint qualifications to such infinite and semi-infinite programs. 
The new qualification conditions are used for efficient computing the appropriate normal cones to 
sets of feasible solutions for these programs by employing advanced tools of variational analysis and 
generalized differentiation. In the further development we derive first-order necessary optimality 
conditions for infinite and semi-infinite programs, which are new in both finite-dimensional and 
infinite-dimensional settings. 

1 Introduction 

The paper mainly deals with constrained optimization problems formulated as follows: 

{ 
minimize f(x) subject to 
9t(x) ~ 0 with t E T and h(x) = 0, 

(1.1) 

where f :X-+ IR := ( -oo, oo] and 9t :X-+ IR as t E Tare extended-real-valued functions 
defined on Banach space X, and where h : X -+ Y is a mapping between Banach spaces. 
An important feature of problem (1.1) is that the index set Tis arbitrary, i.e., may be infi­
nite and also noncompact. Vvhen the spaces X and Y are finite-dimensional, the constraint 
system in (1.1) can be formed by finitely many equalities and infinite inequalities. These op­
timization problems belong to the well-recognized area of semi-infinite programming (SIP); 
see, e.g., the books [13, 14] and the references therein. When the dimension of the decision 
space X as well as the cardinality ofT are infinite, problem (1.1) belongs to the so-called 
infinite programming; cf. the terminology in [1, 9] for linear and convex problems of this 
type. We also refer the reader to more recent developments [5, 6, 10, 11, 12, 20] concerning 
linear and convex problems of infinite programming with inequality constraints. 

To the best of our knowledge, this paper is the first one in the literature to address non­
linear and nonconvex problems of infinite programming. Our primary goal in what follows 
is to find verifiable constraint qualifications that allow us to establish efficient necessary 
optimality conditions for local optimal solutions to nonconvex infinite programs of type 
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and DMS-1007132 and by the Australian Research Council under grant DP-12092508. 

2Department of Mathematics, Wayne State University, Detroit, Michigan 48202; email: 
boris@math.wayne.edu. 

3Department of Mathematics, Wayne State University, Detroit, Michigan 48202; email: ttan­
nghia@gmail.com. 
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(1.1) under certain differentiability assumptions on the constraint (while not on the cost) 
functions. In this way we obtain a number of results, which are new not only for infinite 
programs, but also for SIP problems with noncompact (e.g., countable) index sets. 

It has been well recognized in semi-infinite programming that the Extended Mangasarian­
Jilromovitz Constraint Qualification (EMFCQ), first introduced in [18], is particularly use­
ful when the index set T is a compact subset of a finite-dimensional space and when 
g(x, t) := 9t(x) E C(T) for each x E X; see, e.g., [2, 7, 17, 15, 19, 21, 26, 28, 29] for 
various applications of the EMFCQ in semi-infinite programming. Without the compact­
ness of the index set T and the continuity of the inequality constraint function g(x, t) with 
respect to the index variable t, problem (1.1) changes dramatically and-as shown below­
does not allow us to employ the EMFCQ condition anymore. That motivates us to seek 
for new qualification conditions, which are more appropriate in applications to infinite pro­
grams as well as to SIP problems with noncompact index sets and infinite collections of 
inequality constraints defined by discontinuous functions. 

In this paper we introduce two new qualification conditions, which allow us to deal with 
infinite and semi-infinite programs of type (1.1) without the convexity/linearity and com­
pactness assumptions discussed above. The first condition, called the Perturbed Mangasarian­
Jilromovitz Constraint Qualification (PMFCQ), turns out to be an appropriate counterpart 
of the EMFCQ condition for infinite and semi-infinite programs (1.1) with noncompact in­
dex sets T and discontinuous functions g(x, ·). The second condition, called the Nonlinear 
Farkas-Minkowski Constraint Qualification (NFMCQ), is a new qualification condition of 
the closedness type, which is generally independent of both EMFCQ and PMFCQ conditions 
even for countable inequality constraints in finite dimensions. 

Our approach is based on advanced tools of variational analysis and generalized differ­
entiation that can be found in [22, 23]. Considerably new ingredients of this approach relate 
to computing appropriate normal cones to the set of feasible solutions for the infinite/semi­
infinite program (1.1) given by 

0 := { x E Xi h(x) = 0, 9t(x) :S 0 as t E T}. (1.2) 

Since the feasible solution set n is generally nonconvex, we need to use some normal cone 
constructions for nonconvex sets. In this paper we focus on the so-called Jilrechetjregular 
normal cone and the basic/limiting normal cone introduced by Mordukhovich; see [22] 
with the references and commentaries therein. Developing general principles of variational 
analysis, we employ this approach to derive several necessary optimality conditions for the 
class of nonlinear infinite programs under consideration. 

The rest of the paper is organized as follows. In Section 2 we present basic definitions as 
well as some preliminaries from variational analysis and generalized differentiation widely 
used in this paper. Section 3 is mainly devoted to the study of the new PMFCQ and 
NFMCQ conditions for infinite programs in Banach spaces. Relationships between the 
new qualification conditions and other well-recognized constraint qualifications for SIP and 
infinite programs are discussed here. 

In Section 4, we provide exact computations for the Frechet and limiting normal cones 
to the feasible set of (1.1) under the PMFCQ and NFMCQ conditions. This part plays a 
crucial role for the subsequent results of the paper. Following this way, Section 5 concerns 
the derivation of necessary optimality conditions for local minimizers of the infinite and 
semi-infinite programs under consideration. 

Our notation and terminology are basically standard and conventional in the area of 
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variational analysis and generalized differentials.; see, e.g., [22, 24]. As usual, 11·11 stands for 
the norm of Banach space X and (-, ·) signifies for the canonical pairing between X and its 

topological dual X* with the symbol ~ indicating the convergence in the weak* topology 
of X* and the symbol cl* standing for the weak* topological closure of a set. For any x E X 
and r > 0, denote by IBr(x) the closed ball centered at x with radius r while IBx stands 
for the closed unit ball in X. 

Given a set n c X, the notation con signifies the convex hull of n while that of 
cone n stands for the convex conic hull of n, i.e., for the convex cone generated by n U {0}. 

Depending on the context, the symbols x ~ x and x ~ x mean that x ---7 x with x E n 
and x ---7 x with <p(x) ---7 <p(x) respectively. Given finally a set-valued mapping F: X ::::# X* 
between X and X*, recall that the symbol 

Li;n_;~pF(x):={x*EX*l3xn-7X, 3x~~x* with x~EF(xn), nE.lN} (1.3) 

stands for the sequential Painleve-Kuratowski outer/upper limit ofF as x ---7 x with respect 
to the norm topology of X and the weak* topology of X*, where 1N : = { 1, 2, ... } . 

2 Preliminaries from Generalized Differentiation 

In this preliminary section we briefly review some constructions of generalized differentiation 
used in what follows; see [3, 22, 24, 25] for more details and related material. Throughout 
this paper, unless otherwise stated, all the spaces under consideration are Banach. 

Given an extended-real-valued function <p: X -rlR := ( -oo, oo], we always assume that 
it is proper, i.e., <p ¢. oo. The notation 

dom<p := {x E XI <p(x) < oo} and epi<p := {(x,r) EX x IRI r ~ <p(x)} 
'~ 

are used for the domain and the epigraph of <p, respectively, 
Define the analytic c-subdifferential of <p at x E dom <p by 

Be<p(x) := {x* E X*llimigf <p(x)- <p(x)-_(x*,x- x) ~ -c}, c ~ 0 (2.1) 
x-+x llx- xll 

and let Be<p(x) := 0 for x ~ dom <p. If c = 0, the construction B<p(x) := Bo<p(x) in (2.1) is 
known as the Frechet or regular subdifferential of <p at x; it reduces in the convex case to the 
classical subdifferential of convex analysis. The sequential regularization of (2.1) defined 
via the outer limit (1.3) by 

8<p(x) :=Lim sup Be<p(x), 
x-'!tx 
e.j,.O 

(2.2) 

is known as the limiting, or basic, or Mordukhovich subdifferential of <pat x E dom<p. It can 
be equivalently described with c = 0 in (2.2) if <pis lower semicontinuous (l.s.c.) around x 
and if X is an Asplund space, i.e., each of its separable subspace has a separable dual (in 
particular, any reflexive space is Asplund; see, e.g., [3, 22] for more details and references). 
We have 8<p(x)-=/= 0 for every locally Lipschitzian function on an Asplund space. 

A complementary construction to (2.2), known as the singular or horizontal subdiffer­
ential of <p at x, is defined by 

800<p(x) := LimsupABe<p(x), 
x-'!tx 
..\,e.j_O 
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where we can equivalently put c: = 0 if <pis l.s.c. around x and X is Asplund. Note that 
800<p(x) = {0} if <p is locally Lipschitzian around x. The converse implication also holds 
provided that <p is l.s.c. around x, that X is Asplund, and that <p satisfies the so-called 
"sequential normal epi-compactness" property at x (see below), which is always the case 
when X is finite-dimensional. 

Given a set n c X with its indicator function 8(·; n) defined by c>(x; n) := 0 for X E n 
and by c>(x; 0) := oo otherwise, we construct the Prechetjregular normal cone and limit­
ing/basicjMordukhovich normal cone to 0 at x E 0 by, respectively, 

N(x; n) := ac>(x; n) and N(x; n) := ac>(x; n) (2.4) 

via the corresponding subdifferential of the indicator function. If follows from (2.4) that 
N(x; n) c N(x; n). A set n is normally regular at X if N(x; n) = N(x; n); the latter is the 
case of convex and some other "nice" sets. 

Recall further that n is sequentially normally compact (SNC) at x E n if for any se-

quences C:n ..!- 0, Xn ~ x, and x~ E Nc:n(xn;O) := Bc:nc>(x;O) we have 

[x~ ~ o] ===* [\\x~\1 -+ o] as n-+ oo, 

where C:n can be omitted if n is locally closed around x and the space X is Asplund. A 
function <p : X -+ IR is sequentially normally epi-compact (SNEC) at a point x E dom <p 
if its epigraph is SNC at (x, <p(x)). Besides the finite dimensionality, the latter properties 
hold under certain Lipschitzian behavior; see, e.g., [22, Subsections 1.1.4 and 1.2.5]. 

Having an arbitrary (possibly infinite and noncompact) index set T as in (1.1), we 
consider the product space of multipliers JRT := {A= (.Xt)\ t E T} with AtE IR fortE T 
and denote by JRT the collection of .X E IRT such that At i= 0 for finitely many t E T. The 
positive cone in JRT is defined by 

mr :={.X E JRT\ At 2:0 for all t E T}. (2.5) 

3 Qualification Conditions for Infinite Constraint Systems 

This section is devoted to studying the set of feasible solutions to the original optimization 
problem (1.1) defined by the infinite constraint systems of inequalities and equalities 

{ 
gt(x) ~ 0, t E T, 
h(x) = 0, 

(3.1) 

where T is an arbitrary index set, and where the functions gt : X -+ IR, t E T, and the 
mapping h : X -+ Y are differentiable but may not be linear and/or convex. As in (1.2), 
the set offeasible solutions to (1.1), i.e., those x EX satisfying (3.1), is denoted by n. 

Our standing assumptions throughout the paper (unless otherwise stated) are as follows: 

(SA) For any x E n the functions gt, t E T, are Prechet differentiable at x and the mapping 

h is strictly differentiable at x. The set {'V gt ( x) \ t E T} is bounded in X*. 

Recall that a mapping h: X -+ Y is strictly differentiable at x with the (strict) derivative 
'Vh(x): x-+ Y if 

lim h(x)- h(x')- Y'h(x)(x- x') = O. 
x,x'-tx \\x- x'\\ 
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The latter holds automatically when his continuously differentiable around x. 
In addition to the standing assumptions (SA), we often impose some stronger require­

ments on the inequality constraint functions 9t that postulate a certain uniformity of their 
behavior with respect to the index parameter t E T. We say that the functions {gt}tET are 
uniformly Fnf-chet differentiable at x if 

s(ry) :=sup sup l9t(x)- 9t(x)- ('\lgt(x), x- x)l --+ 0 as rJ .,(. O. 
tET xEIB71 (x) llx- xll 

(3.2) 

xf=x 

Similarly, the functions {gt}tET are uniformly strictly differentiable at x if condition (3.2) 
above is replaced by a stronger one: 

r(ry) :=sup sup lgt(x)- 9t(x') - (Y' 9t(x), x- x') I ---+ 0 as rJ .,(. 0, 
tET x,x'EIB71 (x) llx- x'll 

(3.3) 

xf=x' 

which clearly implies the strict differentiability of each function 9t, t E T, at x. 
Let us present some sufficient conditions ensuring the fulfillment of all the assumptions 

formulated above for infinite families of inequality constraint functions. 

Proposition 3.1 (compact index sets). LetT be a compact metric space, let the func­
tions 9t in (3.1) be Frechet differentiable around x for each t E T, and let the mapping 
(x, t) E X x T !---? Y'gt(x) E X* be continuous on IBTJ(x) x T for some rJ > 0. Then the 
standing assumptions (SA) as well as (3.2) and (3.3) are satisfied. 

Proof. It is easy to see that our standing assumptions (SA) hold, since ll\7 9t(x) II is assumed 
to be continuous on the compact space T being hence bounded. It suffices to prove that 
(3.3) holds, which surely implies (3.2). 

Arguing by contradiction, suppose that (3.3) fails. Then there are c > 0, sequences 
{tn} C T, {rJn} .,(. 0, and {xn}, {x~} C IB71n(x) such that 

l9tn (xn) - 9tn (x~) - (V' 9tn (x), Xn- x~) I > 1 £ lll E IN 

II 
_ 1 II _ c-- or a arge n . 

Xn Xn n 
(3.4) 

Since T is a compact metric space, there is a subsequence of {tn} converging (without 
relabeling) to some t E T. Applying the classical Mean Value Theorem to (3.4), we find 
Bn E [xn,x~] := co{xn,x~} such that 

- < 
2 

for all large n E IN. This contradicts the continuity of the mapping (x, t) EX xT !---? Y'gt(x) 
on IB71 (x) x T and thus completes the proof of the proposition. 6 

Next we recall a well-recognized constraint qualification condition, which is often used 
in problems of nonlinear and nonconvex semi-infinite programming. 

Definition 3.2 (Extended Mangasarian-Fromovitz Constraint Qualification). The 
infinite system (3.1) satisfies the EXTENDED MANGASARIAN-FROMOVITZ CONSTRAINT 
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QUALIFICATION (EMFCQ) at x E 0 if the derivative operator 'Vh(x): X -t Y is sur­
jective and if there is x EX such that 'Vh(x)x = 0 and that 

('V 9t(x), x) < 0 for all t E T(x) := { t E T\ gt(x) = 0}. (3.5) 

It is clear that in the case of a finite index set T and a finite-dimensional space Y 
in (3.1) the EMFCQ condition reduced to the classical Mangasarian-Fromovitz Constraint 
Qualification (MFCQ) in nonlinear programming. In the case of SIP problems the EMFCQ 
was first introduced in [18] and then extensively studied and applied in semi-infinite frame­
works with X = IRm and Y = IRn; see, e.g., [15, 19, 21, 27], where the reader can find its 
relationships with other constraint qualifications for SIP problems. 

To the best of our knowledge, the vast majority of nonconvex semi-infinite programs 
are usually considered with the general assumptions that the index set T is compact, the 
functions gt are continuously differentiable, and the mapping ( x, t) c--+ '\1 9t ( x) is continuous 
on X x T. Under these assumptions and the EMFCQ formulated above, several authors 
derive the Karush-Kuhn-Tucker (KKT) necessary optimality conditions of the following 
type: If x is an optimal solution to (1.1) with f E C1 and h = (h1, h2, ... , hn), then there 
are A E JR~ from (2.5) and J.l E IRn such that 

n 

o = 'Vf(x) + I: At'ilgt(x) + LJ.Lj'Vhj(x). (3.6) 
tET(x) j=l 

We are not familiar with any results in the literature on nonconvex infinite programming 
that apply to problems with noncompact index sets T. The following example shows that 
the KKT optimality conditions in form (3.6) may fail for nonconvex SIP with countable 
constraints even under the fulfillment of the EMFCQ. 

I 

Example 3.3 (violation of KKT for nonconvex SIP with countable sets under 
EMFCQ). Consider problem (1.1) with countable inequality constraints given by 

{ 

minimize (x1 + 1)2 + x2 subject to 
1 . 

Xl + 1:::; 0 and 
3
n xr- X2:::; 0 for all n E JN \ {1} Wlth (x1, X2) E JR2. 

(3.7) 

Let X := JR2, Y := {0}, f(xl, x2) := (x1 + 1)2 + x2, T := IN, g1(x1, x2) := x1 + 1, and 

gn(xl, x2) := ~xr- x2 for all n E .lN\ {1}. Observe that x := ( -1, 0) is a global minimizer 
3n 

for problem (3.7) and that T(x) = {1} for the active index set in (3.5) . It is easy to check 
that the EMFCQ holds at x while there is no Lagrange multiplier A E JR+ satisfying the 
KKT optimality condition (3.6) at x. Indeed, we have ('Vg1(x), (-1,0)) = -1 < 0, and 
the following equation does not admit any solution for A ;::: 0: 

(o,o) = 'Vf(x) + >.'Vg1(x) = (O, 1) + (>.,o). 

Now we introduce a new extension of the MFCQ condition to the infinite programs 
under consideration, which plays a crucial role throughout the paper. 

Definition 3.4 (Perturbed Mangasarian-Fromovitz Constraint Qualification). We 
say that the infinite system (3.1) satisfies the PERTURBED MANGASARIAN-FROMOVITZ 
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CONSTRAINT QUALIFICATION (PMFCQ) at x E 0 if the derivative operator "Vh(x): X -+ 
Y is surjective and if there is x EX such that "Vh(x)x = 0 and that 

inf sup ("Vgt(x),x) < 0 with Te(x) := {t E Tl 9t(x) ~ -c}. 
e> 0 tETe(x) 

(3.8) 

In contrast to the EMFCQ, the active index set in (3.8) is perturbed by a small E > 0. 
Since T(x) c T10 (x) for all E > 0, the PMFCQ is stronger than the EMFCQ. However, 
as shown in Section 4 and Section 5, the new condition is much more appropriate for 
applications to semi-infinite and infinite programs with general (including compact) index 
sets than the EMFCQ. 

The following proposition reveals some assumptions on the initial data of (3.1) ensuring 
the equivalence between the PMFCQ and EMFCQ. 

Proposition 3.5 (PMFCQ from EMFCQ). LetT be a compact metric space, and let 
x E 0 in (3.1). Assume that the function t E T H 9t(x) is upper semicontinuous (u.s.c.) 
on T, that the derivative mapping "Vh(x): X -+ Y is surjective, and that there is x E X 
with the following properties: "Vh(x)x = 0, the function t E T H ("Vgt(x), x) is u.s. c., 
and ("Vgt(x),x) < 0 for all t E T(x). Then the PMFCQ condition holds at x, being thus 
equivalent to the EMFCQ condition at this point. 

Proof. Arguing by contradiction, suppose that the PMFCQ fails at x. Then it follows 
from (3.8) that there exist sequences {en}..).. 0 and {tn} C T such that tn E T10n(x) and 

("Vgtn(x),x) ~ _ _!_ for all n E IN. 
n 

Since Tis a compact metric space, we find a subsequence of {tn} (no relabeling), which 
converges to some t E T. Observe from the continuity assumptions made imply that 

n--+oo n-+oo 

1 
("Vgt(x),x) ~ limsup("Vgtn(x),x) ~ limsup-- = 0. 

n-+oo n-+oo n 

Thus we have that t E T(x) and ("Vm;(x), x) ~ 0, which is a contradiction that completes 
the proof of the proposition. 6 

The following example shows that the EMFCQ does not imply the PMFCQ (while not 
ensuring in this case the validity of the required necessary optimality conditions as will be 
seen in Sections 4 and 5) even for simple frameworks of nonconvex semi-infinite programs 
with compact index sets. 

Example 3.6 (EMFCQ does not imply PMFCQ for semi-infinite programs with 
compact index sets). Let X= JR2 and T = [0, 1] in (3.1) with h = 0 and 

go(x) := x1 + 1::; 0, gt(x) := tx1- x~::; 0 for t E T \ {0}. 

It is easy to check that the functions gt, t E T, satisfy our standing assumptions and 
that they are strictly uniformly differentiable at the feasible point x = ( -1, 0). Observe 
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furthermore that T(x) = {0}, that Te(x) = [0, c] for all c E (0, 1), and that the EMFCQ 
holds at x .. However, for any d = (d1, d2) E JR2 we have 

inf sup ('Vgt(x),d) = infsup{(Vg0(x),d),sup{('Vgt(x),d)\ t E (O,.sl}} 
e>O tET,(a:) e>O 

infsup{d1,sup{td1\ t E (O,.s]}} ~ 0, 
e>O 

which shows that the PMFCQ does not satisfy at x. Note that the u.s.c. assumption with 
respect of t in Propositions 3.5 does not hold in this example. 

It is well known in the classical nonlinear programming (when the index set Tin (3.1) 
is finite), that the MFCQ condition is equivalent to the Slater condition provided that 
all the functions 9t are convex and differentiable and that h is a linear operator. The 
next proposition shows that a similar equivalence holds in the semi-infinite and infinite 
programming frameworks with replacing the MFCQ by our new PMFCQ condition and 
replacing the Slater by its strong counterpart well recognized in the SIP community; see, 
e.g., [13] and [5] for more references and discussions. 

Proposition 3. 7 (equivalence between PMFCQ and SSC for differentiable con­
vex systems). Assume that in (3.1) all the functions gt, t E T, are convex and uniformly 
Prechet differentiable at x and that h = A is a surjective continuous linear operator. Then 
the PMFCQ condition is equivalent to the following strong Slater condition (SSG): there is 
x E X such that Ax = 0 and 

sup 9t(x) < 0. 
tET 

(3.9) 

Proof. Suppose first that the SSC holds at x, i.e., there are x E X and 8 > 0 such that 
Ax= 0 and 9t(x) < -28 for all t E T. By the assumptions made this implies that for each 
c E (0, 8) and t E Te(x) we have 

(\/ 9t(x), x- x) ~ 9t(x)- 9t(x) ~ -28 + .s ~ -8. 

Define further x := x- x and get Ax= Ax- Ax= 0 with ('V 9t(x), x) ~ -8 for all t E Te(x) 
and c E (0, 8). This clearly implies the PMFCQ condition at x. 

Conversely, assume that the PMFCQ condition holds at x. Then there are .s, rJ > 0 and 
x EX such that (\lgt(x),x) ~ -rJ for all t E Te(x) and that Ax= 0. It follows from the 
assumed uniform Frechet differentiability (3.2) of 9t at x that for each>.> 0 we have 

9t(x + >.x) ~ 9t(x) + >.('V 9t(x), x) + >-llxlls(>.\lxll), (3.10) 

which readily implies that 9t(x+>.X) ~ >.( -rJ+ llx\ls(>.llxll)) for all t E Te(x). Fort tf. Te(x) 
we observe from (3.10) that 

9t(x + >.x) ~ -.s +>.sup II'Vgr(x)\l·llxll + >-llxlls(>-llxll), 
rET 

which gives, combining with the above, that 

sup 9t(x + >.x) ~max { >.(- rJ + llxlls(>-llxll)), -.s + >-llxll (sup IIVgr(x)ll + s(>-llx\1))}. 
tET rET 
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The latter implies the existence of Ao > 0 sufficiently small such that SUPtET gt(x) < 0 with 
x := x + Aox. Furthermore, it is easy to see that Ax = Ax + AoAx = 0. This concludes 
that the SSC holds at x and thus completes the proof of the proposition. L 

Next we introduce another qualification condition of the closedness/Farkas-Minkowski 
type for infinite inequality constraints in (1.1). 

Definition 3.8 (Nonlinear Farkas-Minkowski Constraint Qualification). We say 
that system (3.1) with h(x) = 0 satisfies the NONLINEAR FARKAS-MINKOWSKI CONSTRAINT 
QUALIFICATION (NFMCQ) at x if the set 

cone{(Y'gt(x), (Y'gt(x),x)- gt(x))! t E T} (3.11) 

is weak* closed in the product space X* x JR. 

In the linear case of gt(x) = (aL x) - bt for some (a;, bt) E X* x JR, t E T, the NFMCQ 
condition above reduces to the classical Farkas-Minkowski qualification condition meaning 
that the set cone{(a;,bt)\ t E T} is weak* closed in X* x JR. It is well recognized that 
the latter condition plays an important role in linear semi-infinite and infinite optimization; 
see, e.g., [4, 6, 8, 10, 11, 13] for more details and references. Observe that the NFMCQ 
condition can be represented in the following equivalent form: the set 

cone { (Y' gt(x), gt(x)) I t E T} is weak* closed in X* x JR. 

Let us compare the new NFMCQ condition with the other qualification conditions dis­
cussed in this section in the case of infinite inequality constraints. 

Proposition 3.9 (sufficient conditions for NFMCQ). Consider the constraint inequal­
ity system (3.1) with h = 0 therein. Then the NFMCQ condition is satisfied at x E n in 
each of the following settings: 

(i) The index T is finite and the MFCQ condition holds at x. 
(ii) dimX < oo, the set {(Y'gt(x), (Y'gt(x),x)- gt(x))\ t E T} is compact, and the 

PMFCQ condition holds at x. 
(iii) The index T is a compact metric space, dim X< oo, the mappings t E T 1--7 gt(x) 

and t E T 1--7 Y'gt(x) are continuous, and the EMFCQ condition holds at x. 

Proof. Define gt(x) := (Y'gt(x),x- x) + gt(x) for all x EX. To justify (i), suppose that 
Tis finite and that the MFCQ condition holds at x for the inequality system in (3.1). It is 
clear that gt also satisfy the MFCQ at x. Since the functions gt are linear, we observe from 
Proposition 3.7 that there is x EX such that gt(x) = (Y'gt(x), x- x) + gt(x) < 0 for all 
t E T. Thus it follows from [10, Proposition 6.1] that the NFMCQ condition holds. 

Next we consider case (ii) with X = JRd therein. Suppose that the PMFCQ condition 
holds at x and that the set {(Y'gt(x), (Y'gt(x),x)- gt(x))\ t E T} is compact in JRd x JR. 
Noting that the functions '§t also satisfy the PMFCQ at x, we apply Proposition 3.7 to these 
functions and find x EX such that Y'h(x)x = 0 and that 

sup '§t(x) = sup(Y'gt(x), x- x) + gt(x) < 0. (3.12) 
tET tET 

Let us check that (0,0) (j. co{(Y'gt(x),(Y'gt(x),x) -gt(x))\ t E T}. Indeed, otherwise 
ensures the existence of A E JR~ with l::tET At = 1 such that 

(0, O) = 2:::: At(Y' gt(x), (Y' gt(x), x) - gt(x)). 
tET 
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Combining the latter with (3.12) gives us that 

0 = 2:>-t(Vgt(x),x)- 2:>-t((Vgt(x),x)- 9t(x)) = L Atgt(x):::; supgt(x) < 0, 
tET tET tET tET 

which is a contradiction. Hence employing [16, Theorem 1.4.7] in this setting, we have 
that the conic hull cone { (V 9t ( x), (V 9t ( x), x) - 9t (x)) \ t E T} is closed in JRd+1. This fully 
justifies (ii). Observing finally that (iii) follows from (ii) and Proposition 3.5, we complete 
the proof of the proposition. t::, 

To conclude this section, let us show that the NFMCQ and PMFCQ conditions are 
independent for infinite inequality systems in finite dimensions. 

Example 3.10 (independence of NFMCQ and PMFCQ). It is easy to check that for 
the constraint inequality system from Example 3.6 the NFMCQ is satisfied at x = (-1, 0), 
since the corresponding conic hull 

cone { (Vgt(x), (V 9t(x), x)- 9t(x)) I t E T} = cone ( (1, 0, -1) u {(t, 0, O)lt E (0, 1]}) 

= {X E JR3
1 Xl + X3 ~ 0, Xl ~ 0 ~ X3, X2 = 0} 

is closed in JR3 . On the other hand, Example 3.6 demonstrates that the PMFCQ does not 
hold for this system at x. 

To show that the NFMCQ does not generally follow from the PMFCQ (and even from 
the EMFCQ), consider the countable system of inequality constraints (3.7) in JR2 discussed 
in Example 3.3. When x = (-1, 0), we get T,(x) = {n E IN\ {1}\ n:::; i-} U {1} for the the 
perturbed active index set in (3.8). It shows that the PMFCQ (and hence the EMFCQ) 
hold at x. On the other hand, the conic hull 

cone{ (V 9t(x), (V 9t(x), x)- 9t(x))i t E T} = cone[(l, 0, -1) U { (~, -1, ;~)In E IN\ {1}} J 

is not closed in JR3 , i.e., the NFMCQ condition is not satisfies at x. 

4 Normal Cones to Feasible Sets of Infinite Constraints 

This section is devoted to computing both normal cones (2.4) to the feasible solution sets 
(1.2) for the class of nonconvex semi-infinite/infinite programs (1.1) under consideration in 
the paper. These calculus results are certainly of independent interest while they play a 
crucial role in deriving necessary optimality conditions for (1.1) in Section 5. 

The first main theorem gives precise calculations of both Fnkhet and limiting normal 
cones to the set n of feasible solutions in (1.2) under the new Perturbed Mangasarian­
Fromovitz Constraint Qualification of Definition 3.4. Preliminary we present a known result 
from functional analysis whose simple proof is given for the reader's convenience. 

Lemma 4.1 (weak* closed images of adjoint operators). Let A : X --+ Y be a 
surjective continuous linear operator. Then the image of its adjoint operator A*(Y*) is a 
weak* closed subspace of X*. 
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Proof. Define C := A*(Y*) c X* and pick any n E IN. We claim that the set An := 

C n nlBx• is weak* closed in X*. Considering a net {x~}vEN c An weak* converging 
to x* E X* and taking into account that the balllBx• is weak* compact in X*, we get 
x* E nlBx•. By construction there is a net {y~}vEN C Y* satisfying x~ = A*y~ whenever 
v EN. It follows from the surjectivity of A that 

llx~ll = IIA*y~ll ~ ~~;IIY~II for all v EN, 

where ~~; := inf{IIA*y*ll over IIY*II = 1} E (0, oo); see, e.g., [22, Lemma 1.18]. Hence 
IIY~II ::; n~~;- 1 for all v EN. By passing to a subnet, suppose that y~ weak* converges to 
some y* E Y* for which x* = A*y* E An. Thus we have that the set An= C n nlBx• is 
weak* closed for all n E IN. The classical Banach-Dieudonne-Krein-Smulian theorem yields 
therefore that the set C is weak* closed in X*. 6. 

Now we are ready to establish the main result of this section. 

Theorem 4.2 (Frechet and limiting normals to infinite constraint systems). Let 
x En for the set of feasible solutions (1.2) to the infinite system (3.1) satisfying the PMFCQ 
at x. Assume in addition that the inequality constraint functions gt, t E T, are uniformly 
Frechet differentiable at x. Then the Frechet normal cone to n at x is computed by 

N(x;n) = n cl*cone{Y'gt(x)l t E Te:(x)} + Vh(x)*(Y*). (4.1) 
e:>O 

If furthermore the functions gt, t E T, are uniformly strictly differentiable at x, then the 
limiting normal cone to n at x is also computed by 

N(x;O) = n cl*cone{Y'gt(x)l t E Te:(x)} + Vh(x)*(Y*), (4.2) 
e:>O 

and thus the set n of feasible solutions is normally regular at x. 

Proof. First we justify ( 4.1) under the assumptions made. It follows from the PMFCQ 
and the uniform Frechet differentiability of gt at x that there are € > 0, 8 > 0, and x EX 
such that Vh(x)x = 0 and 

sup (\7 gt(x), x) < -8 for all c ::; €. 
tETe(x) 

(4.3) 

Let us prove the inclusion ":J" in (4.1). To proceed, fix any c E (O,e) and pick an arbitrary 
element x* belonging to the right-hand side of (4.1). Then there exist a net (>-.v)vEN c mr 
and a dual element y* E Y* satisfying 

x* = w* - li~ L Atv \7 gt(x) + \7 h(x)*y*. 
tETe(x) 

Combining the latter with ( 4.3) gives us 

(x*,x) = li~ L Atv(Y'gt(x),x) + (Vh(x)*y*,x) 
tETe(x) 

::; liminf L Atv(-8) + (y*, Vh(x)x) = -8limsup L Atv· 
v v 

tE1'e(x) tETe(x) 
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It follows further that for each r} > 0 and X En n IBry(x) we have 

(x*,x- x) = lim L Atv(Vgt(x),x- x) + (\lh(x)*y*,x- x) 
l/ 

tET,(x) 

< lim;up L_ Atv(gt(x)- gt(x) + llx- xlls(rJ)) + (y*, \lh(x)(x- x)) 
tET,(x) · 

< limsup L Atv(c:+llx-xlls(rJ))+IIY*II(IIh(x)-h(x)ll+o(llx-xll)) 
v tET,(x) 

< (c + llx- xlls(rJ)) lim;up L_ Atv + IIY*IIo(llx- xll). 
tET,(x) 

Taking now the estimate (4.5) into account implies that 

(x*, x- x) ::; - (x*§ X) ( c: + llx- xlls(rJ)) + o(llx- xll) IIY* II, 

which yields in turn by c -!- 0 that 

(x* x) 
(x*, x- x)::; --8-llx- xlls(rJ) + o(llx- xii)IIY*II· 

Since s(rJ) -!- 0 as rJ-!- 0, it follows from the latter inequality that 

. (x*,x- x) 
hm;~P llx- xll ::; 

0' 
x-'-tx 

which means that x* E N(x; n) and thus justifies the inclusion "::::>" in (4.1). 
Next we prove the inclusion "c" in (4.2) under the assumption that gt are uniformly 

strictly differentiable at x. This immediately implies the inclusion "c" in (4.1) under the 
latter assumption, while we note that similar arguments justify the inclusion "c" in (4.1) 
under merely the uniform Frtkhet differentiability of gt at x. 

To proceed with proving the inclusion "c" in (4.2), define the set 

Ae := cl*cone{Vgt(x)\ t E Te(x)} + \lh(x)*(Y*) for c > 0. (4.6) 

Arguing by contradiction, pick an arbitrary element x* E N(x; 0) \ {0} and suppose that 
x* ~ Ae for some c E (0,£). It follows by the structure of Ae in (4.6) that 

(x*- \lh(x)*(Y*)) ncl*cone{Vgt(x)\ t E Te(x)} = 0. 

Since the subspace \lh(x)*(Y*) is weak* closed in X* by Lemma 4.1, we conclude from the 
classical separation theorem that there are xo E X and c > 0 satisfying 

(x*,xo)- (y*, \lh(x)xo) = (x*,xo)- (\lh(x)*y*,xo) ~ 2c > 0 ~ (\lgt(x),xo) (4.7) 

for all t E Te(x) andy* E Y*; hence \lh(x)xo = 0. Define further 

~ c -
x := xo + llx*ll·llxllx 
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and observe that \i'h(x)x = 0. Moreover, it follows from (4.7) and the PMFCQ that 

(x*, x) = (x*' Xo + llx*t llxll x) ~ 2c + llx*IIC· llxll (x*, x) ~ 2c- C = C and (4.8) 

c 
(\i'gt(x), x) = (\i'gt(x), xo) + llx*ll·llxll (Vgt(x), x) ~ oc = -8 

..,.,...II x-* 1,.,--1 ·--,-:11 x::-:-:-;11 
(4.9) 

for all t E Tc:(x) with 8 := llx*lf~ llxll > 0. Observing that x :f·O by (4.9), suppose without 

loss of generality that IIXII = 1. Furthermore, we get from definition of the limiting normal 

cone that there are sequences en-!- 0, fJn-!- 0, Xn ~ x, and x~ ~ x* as n-+ oo with 

Since the mapping h is strictly differentiable at x with the surjective derivative \i'h(x), 
it follows from the Lyusternik-Graves theorem (see, e.g., [22, Theorem 1.57]) that h is 
metrically regular around x, i.e., there are neighborhoods U of x and V of 0 = h(x) and a 
constant fL > 0 such that 

dist(x; h-1(y)) ~ ~tiiY- h(x)ll for any x E U and y E V. (4.11) 

Since h(xn) = 0 and \i'h(x)x = 0, we have 

llh(xn + tx)ll = llh(xn + tx)- h(xn)- \lh(x)(tx)ll = o(t) for each small t > 0. 

Thus the metric regularity (4.11) implies that for any small t > 0 there is Xt E h-1(0) with 
llxn + tx- Xtll = o(t) when Xn E U. This allows us to find ifn < fJn and Xn := X7fn E h-1(0) 
satisfying ifn + o(ifn) ~ fJn and llxn + ifnx- xnll = o(ifn)· Note that 

i.e., Xn E IB'f/n(xn)· Observe further that 

By the classical uniform boundedness principle there is a constant M such that M > llx~ll 
w• 

for all n E IN due to x~ -+ x* as n-+ oo. It follows from (4.8) that (x~, x) > 0 for n E IN 
sufficiently large. Then we have 

(x~,Xn- Xn) 
llxn- xnll 

Since o(ifn)/ifn-+ 0 when n-+ oo, the latter inequalities yield that 

1. . f (x~, Xn- Xn) > ( * ~) 
1mm II- II _ x , x . n--too Xn - Xn 
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Combining this with (4.8) and (4.10) gives us that xn ~ 0 for all large n E IN. 
Now define Un := Xn + ifnx- Xn and get llunll = o(ifn) and llxn + Un- Xnll = ifn by 

the arguments above. It follows from our standing assumptions (SA), condition (3.3), and 
inequality (4.9) that for each t E TE:(x) we have 

-o. > (\lgt(x),ifnx) _ (\lgt(x),xn+un-xn) _ (\lgt(x),xn-xn) + (\lgt(x),un) 
ifn - llxn + Un- Xnll - llxn + Un- Xnll llxn + Un- Xnll 

> (\1 9t(x), Xn- Xn) llxn- Xnll (\1 9t(x), un) 
llxn- Xnll llxn + Un- Xnll + llxn + Un- Xnll 

> ( gt(Xn)- 9t(Xn) (~ )) llxn- Xnll II"' (-)II o(ifn) 
~ - r 'fJn - sup v 9r x ~ 

llxn- Xnll llxn + Un- Xnll rET,(x) 'fJn 

> ( 9t(iin) (~ )) llxn- Xnll II (-)II o(ifn) 
II ~ - 11-r 'fJn II~ + - 11-sup \lgr x ~, Xn Xn Xn Un Xn rET 'fJn 

where fin := max{llxn- xll and llxn- xll} --+ 0 as n --+ oo. Note that 

ifn- o(ifn) < llxn- Xnll < Tfn + o(Tfn) 
Tfn - llxn + Un- Xnll - Tfn ' 

llxn- Xnll 
which implies that --+ 1 as n --+ oo. Furthermore, since r(fin) --+ 0 and 

llxn + Un- Xnll 

o~n) --+ 0 as n--+ oo, we have 9t(xn) ~ -~2 11xn- xnll ~ 0 for each t E TE:(x) when n E IN 
'fJn 

is sufficiently large. Indeed, assuming otherwise that t ~ TE:(x) gives us 

9t(Xn) < 9t(x) + (\lgt(x), Xn- x) + llxn- xllr(fin) 

< -.s +sup ll\1 9r(x) II fin+ finr(fin) ~ 0 for all large n E IN. 
rET 

Thus 9t(xn) ~ 0 for all t E T and also h(xn) = 0 when n E IN is sufficiently large, i.e., 
xn E 0, a contradiction. Hence we conclude that N(x; 0) c A£ for all c E (0, 0, which 
implies the inclusion "c" in ( 4.2) and completes the proof of the theorem. L, 

Let us show now that the PMFCQ condition is essential for the validity of both normal 
cone representations in (4.1) and (4.2); moreover, this condition cannot be replaced by its 
weaker EMFCQ version. 

Example 4.3 (violation of the normal cone representations with no PMFCQ). 
Consider the infinite inequality system in JR2 given in Example 3.6. It is shown therein 
that the EMFCQ holds at x = ( -1, 0) while the PMFCQ does not. It is easy to check that 
in this case N(x; 0) = N(x; n) == IR+ x JR_ while 

clcone{\lgt(x)l t E Tc(x)} = cl cone{(1,0) U {(t,O)I t E (O,.s)} c IR+ x {0}. 

i.e., the inclusions "c" in (4.1) and (4.2) are violated. 

The next example shows that the perturbed active index set TE:(x) cannot be replaced 
by its unperturbed counterpart T(x) in the normal cone representations (4.1) and (4.2). 
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Example 4.4 (perturbation of the active index set is essential for the normal 
cone representations). Let us reconsider the nonlinear infinite system in problem (3.7): 

{ 

g1(x) = x1 + 1::; 0, 

gn(x) = 3~ xr- X2::; 0, n E IN\ {1}, 

where x = (x1, x2) E JR2 and T := IN. It is easy to check this inequality system satisfies 
our standing assumptions and that the functions gt are uniformly strictly differentiable at 
X = ( -1, 0). Observe further that n = {(xl, X2) E JR2l Xl ::; -1, X2 ~ 0} and hence 
N(x; n) = IR+ x JR_. As shown above, both PMFCQ and EMFCQ conditions hold at x. 
However, we have T(x) = {1} and 

N(x; n)-=!= cone {Vgt(x)l t E T(x)} =cone {\7g1(x)} =cone {(1, 0)} = IR+ x {0}, 

which shows the violation of the unperturbed counterparts of (4.1) and (4.2). Observe that 

cone { \7 gt ( x) I t E Te: ( x)} cone { ( 1, 0) U { ( ~, -1) I n E IN \ { 1}, n ~ ~} 
= {(x1,x2) E JR2

1 Xl ~ 0, X2 < 0}, 

which is not a closed subset. On the other hand, we have 

N(x; n) = n cl cone {\7 gt(x) I t E Te;(x)}' 
e:>O 

which illustrates the validity of the normal cone representations in Theorem 4.2. 

Now we derive several consequences of Theorem 4.2, which are of their independent 
interest. The first one concerns the case when the {'Vgt(x)J t E T} may not be bounded in 
X* as in our standing assumptions. It follows that the latter case can be reduced to the 
basic case of Theorem 4.2 with some modifications. 

Corollary 4.5 (normal cone representation for infinite systems with unbounded 
gradients). Considering the constraint system (3.1), assume the following: 

(a) The functions gt, t E T, are Frechet differentiable at the point x with JJVgt(x)JI > 0 
for all t E T and the mapping h is strictly differentiable at x. 

(b) We have that lim r( rJ) = 0, where r( rJ) is defined by 
77-I.O 

r(ry) :=sup sup 
tET x,x'EJB'l(x) 

xf=x' 

Jgt(x)- gt(x')- ('Vgt(x),x- x')J 
IJVgt(x)JJ·JJx- x'JI for all 'rJ > O. 

(4.12) 

(c) The operator \lh(x): X---+ Y is surjective and for some c > 0 there are x EX and 
a> 0 such that \lh(x)x = 0 and that 

(\7 gt(x), x + x) ::; 0 whenever JJxJJ ::; a (4.13) 

for each t E Te:(x) := {t E TJ gt(x) ~ -ciJVgt(x)JJ}. Then the limiting normal cone ton at 
x is computed by formula (4.2). 
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Proof. Define 9t(x) := 9t(x)!!V'gt(x)!!-1 for all x E X and t E T and observe that the 
feasible set n from (1.2) admits the representation 

0 = {x EX\ 9t(x) ~ 0, h(x) = 0}. 

Replacing 9t by 9t in Theorem 4.2, we have that the functions {9t} and h satisfy the 
standing assumptions (SA) as well as condition (3.3) with the function ( 4.12) instead of 
r(ry). Furthermore, it follows from (4.13) that for some c; > 0 there are x E X and a > 0 
satisfying V'h(x)x = 0 and such that 

(V'9t(x), X) :::; - sup (Y'9t(x), x) = -ai!V'9t(x)l! whenever t E Tc:(x), 
xElB,.(x) 

which turns into (V'gt(x),x) :::; -a for all t E Tc:(x) = {t E T! 9t(x) 2: -c:}. Hence the 
PMFCQ condition holds for the functions 9t and h at x. It follows from Theorem 4.2 that 

N(x; n) = n cl*cone {Y'9t(x) It E Tc;(x)} + V'h(x)*(Y*) 
c:>O 

= n cl*cone{V'gt(x) IIY'gt(x)ll-1
1 t E Tc;(x)} + V'h(x)*(Y*) 

c:>O 
= n cl*cone{Y'gt(x)! t E Tc:(x)} + V'h(x)*(Y*), 

c:>O 

which gives (4.2) and completes the proof of the corollary. 

Now we compare the result of Corollary 4.5 with the recent one obtained in [26, Theo­
rem 3.1 and Corollary 4.1] for inequality constraint systems, i.e., with h = 0 in (3.1). The 
latter result is given by the inclusion form 

N(x;O) c n cl*cone{Y'gt(x)\ t E Tc:(x)} 
c:>O 

in the case of I!V'gt(x)l! = 1 for all t E T under the Frechet differentiability of 9t around x 
(in (as) we need it merely at x) and the replacement of (b) of Corollary 4.5 by the following 
equicontinuity requirement on 9t at x: for each 1 > 0 there is rJ > 0 such that 

I!V'gt(x)- V'gt(x)l! ~ 1 for all x E JB71 (x), t E T. (4.14) 

Let us check that the latter assumption together with the Frechet differentiability of 9t 
around x imply (b) in Corollary 4.5. Indeed, suppose that (4.14) holds and then pick any 
x, x' E JB71 (x). Employing the classical Mean Value Theorem, find x E [x, x'] c JB71 (x) such 
that 9t(x)- 9t(x') = (V'gt(x),x- x'). This gives 

!9t(x)- 9t(x')- (V'gt(x),x- x')l !(V'gt(x),x- x')- (V'gt(x),x- x')l 
I!V'gt(x)l!·l!x- x'l! l!x- x'l! 

< I (\7 9t(x) - V' 9t(x), X- x')l 
l!x-x'l! 

< I!V'gt(x)- V'gt(x)l! ~ 1 

and yields limr(ry) ~ 1 for all 1 > 0, which ensures the validity of (b) in Corollary 4.5. 
77.!-0 . 

The next consequence of Theorem 4.2 concerns problems of semi-infinite programming 
and presents sufficient conditions for the fulfillment of simplified representations of the 
normal cones to feasible constraints with no closure operations in (4.1) and (4.2) and with 
the replacement of the perturbed index set Tc:(x) by that of active constraints T(x). 
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Corollary 4.6 (normal cones for semi-infinite constraints). Let X andY be finite­
dimensional spaces with dim Y < dim X. Assume that T is a compact metric space, that the 
function t E T 1---t 9t(x) is u.s. c., and the mapping t E T 1---t 'Vgt(x) is continuous. Suppose 
further that system (3.1) satisfies the PMFCQ at x. Then we have 

N(x;n) = cone{'Vgt(x)j t E T(x)} + \lh(x)*(Y*), (4.15) 

where N(x; n) = N(x; n) when the functions 9t are uniformly Frechet differentiable at X 
and N(x; n) = N(x; n) when 9t are uniformly strictly differentiable at x. 

In particular, if we assume in addition that both t E T 1-t 9t ( x) and ( x, t) E X x T 1-t \1 9t ( x) 
are continuous, then we also have (4.15) for N(x; n) = N(x; n) provided that merely the 
EMFCQ condition holds at x. 

Proof. Let X= JRd for some dE IN. It follows from Proposition 3.1 that gt, t E T, and h 
satisfy our standing assumptions (SA). Since system (3.1) satisfies the PMFCQ at x, there 
are 'E > 0, 8 > 0, and x E X such that (\7 9t(x), x) < -8 for all t E Te(x) and c: E (0, 6). 
Observe that the perturbed active index set Te(x) is compact in T for all c: > 0 due to the 
u.s.c. assumption on t E T 1-t 9t(x). It follows from the continuity oft E T 1-t \lgt(x) that 
{\7 9t(x) I t E Te(x)} is a compact subset of JRd. 

We now claim that 0¢:. co{'Vgt(x)l t E Te(x)}. Indeed, it follows for any A E Jk~e(x) 
with I:tET.(x) At = 1 that 

I: At('Vgt(x),x):::;- I: At8 = -8 < 0, 
tET.(x) tETe(x) 

which yields that 0 # EtETe(x) At'Vgt(x), i.e., 0¢:. co{'Vgt(x)l t E Te(x)}. 
Hence it follows from [16, Proposition 1.4.7] that the conic hull cone{'Vgt(x)l t E Te(x)} 

is closed in JRd. Combining this with Theorem 4.2, it suffices to show that 

n cone{'Vgt(x)j t E Te(x)} = cone{'Vgt(x)j t E T(x)}. (4.16) 
e>O 

Observe that the inclusion "::J" in (4.16) is obvious due to T(x) c Te(x) as c: > 0. To justify 
the converse inclusion, pick an arbitrary element x* from the set on the left-hand side of 
(4.16). By the classical Caratheodory theorem, for all large n E IN we find An E IRi+l and 

'Vgtn
1 

(x), ... , 'Vgtnd+l (x) E {Vgt(x)j t E T~(x)} c IRd 

satisfying the relationship 

which implies in turn that 

d+l 

x* = l:Ank'Vgtnk(x), 
k=l 

d+l d+l 

(x*,x) = l:>.nk('Vgtnk(x),x):::;- l:>.nk8. 
k=l k=l 

Hence the sequence {An} is bounded in JRd+l, and so is 

{An X (\7 9tn
1 
(x), ... , \1 9tnd+l)} C JRd+l X JRd(d+l). 
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By the classical Balzano-Weierstrass theorem and the compactness ofT, we assume without 
loss of generality that the sequence { tnk} converges to some fk E T for each 1 ~ k ~ d + 1 
and that {.An} converges to some X E JRd+l as n-+ oo. Note that 0 2:: gtnk (x) 2:: -*for all 
n E IN sufficiently large, which gives us 

1 
0 2:: grk(x) ~ limsupgtnk(x) 2:: limsup-- = 0 

n-too n-too n 

for all 1 ~ k ~ d + 1. Combining the latter with (4.17) ensures that 

d+l 

x* = LXk'Vgt:k(x) E cone{'Vgt(x)l t E T(x)}, 
k=l 

which yields the inclusion "c" in (4.16). Thus we arrive at formula (4,.15). 
The second part of the corollary follows from the first part, Proposition 3.1, and Propo-

sition 3.5. This completes the proof of the claimed result. 6 

The results obtained in Corollary 4.6 can be compared with [7, Theorem 3.4], where "c" 
in (4.15) was obtained for h = 0 under the following conditions: T is scattered compact 
(meaning that every subset S C T has an isolated point), gt are Frechet differentiable for 
all t E T, the mappings (x, t) EX x T f---1 gt(x) and (x, t) EX x T f---1 \7 gt(x) are continuous, 
and the EMFCQ condition holds at x. We can see that these assumptions are significantly 
stronger than those Corollary 4.6. Note, in particular, that the scattering compactness 
requirement on the index set T is not different in applications from T being finite. 

The next question we address in this section is about the possibility to obtain normal 
cone representations of the "unperturbed" type as in Corollary 4.6 while in infinite pro­
gramming settings with no finite dimensionality, compactness, and continuity assumptions 
made above. The following theorem shows that this can be done when the PMFCQ is 
accompanied by the NFMCQ condition of Definition 3.8. 

Theorem 4.7 (unperturbed representations of normal cones for infinite con­
straint systems). Let the functions gt, t E T, be uniformly Frechet differentiable at 
x, and let that system (3.1) satisfy the PMFCQ and NFMCQ conditions at x. Then 

N(x; n) =cone {\7 gt(x) I t E T(x)} + \lh(x)*(Y*). ( 4.18) 

If in addition the functions gt, t E T, are uniformly strictly differentiable at x, then 

N(x; n) =cone {\7 gt(x) I t E T(x)} + 'Vh(x)*(Y*). 

Proof. First we claim that the set n cl*cone{'Vgt(x)l t E Tc(x)} belongs to the set 
c>O 

(4.19) 

{ x* EX* I (x*, (x*, x)) E cl*cone { (\7 gt(x), (\7 gt(x), x) - gt(x)) I t E T}}. ( 4.20) 

Indeed, it follows from the PMFCQ for (3.1) at x that \lh(x) is surjective and there are 
6 > 0, c5 > 0, and x E X such that \lh(x)x = 0 and that ('Vgt(x), x) < -o for all 
c: ~ 2 and t E Tc(x). To justify the claimed inclusion to (4.20), pick an arbitrary element 

x* E n cl*cone{'Vgt(x)l t E Tc(x)} and for any c: E (0,0 find a net (.Av)vEN C lR~ with 
c>O 

x* = w*- li~ L Atv \7 gt(x). 
tET,(x) 

18 

(4.21) 



This implies the relationships 

(x*,x) = li~ L Atv("Vgt(x),x) ~ -8limsup L Atv and 
tETe(x) v tETe(x) 

(4.22) 

(x*,x)=li~ L Atv("Vgt(x),x)=li,7ll L Atv(("Vgt(x),x)-gt(x)+gt(x)). 
tETe(x) tETe(x) 

The later equality together with (4.22) give us that 

0 ~ (x*,x) -limsup L Atv(("Vgt(x),x)- 9t(x)) ~ liminf L Atv9t(x) ~ ~(x*,x). 
v v u 

tETe(x) tETe(x) 

By passing to a subnet and combining this with (4.21), we get 

(x*' (x*' x)) E cl*cone { (V 9t(x), (V 9t(x), x) - 9t(x)) I t E T} + {0} X [~(x*' x), 0] 

for all c E (O,e), which implies that x* belongs to the set in (4.20) by taking c .j_ 0. 
Involving further the NFMCQ condition, we claim the equality 

n cl*cone {v 9t(x) I t E Te(x)} =cone {v 9t(x) I t E T(x)}. ( 4.23) 
e>O 

The inclusion ":J" in (4.23) is obvious since T(x) c Te(x) for all c > 0. To justify the 
converse inclusion, pick any x* belonging to the left-hand side of (4.23). By the NFMCQ 
condition, it follows from ( 4.20) that there is ).. E JR~ such that 

(x*, (x*, x)) = L >..t('V 9t(x), (V 9t(x), x)- 9t(x)), ( 4.24) 
tET 

which readily yields the equalities 

tET tET tET 

Since 9t(x) ~ 0, we get At9t(x) = 0 for all t E T. Combining this with (4.24) gives us 

x* E cone {V 9t(x) I t E T(x)}, 

which implies the inclusion "c" in ( 4.23). To complete the proof of the theorem, we combine 
the obtained equality (4.23) with finally Theorem 4.2. 6. 

Observe from Proposition 3.11 that formula (4.18) holds under our standing assump­
tions (SA) and the MFCQ condition at x when T is a finite index set. Furthermore, the 
formula for the limiting normal cones (4.19) is also satisfied if all the functions 9t are strictly 
differentiable at x. It follows from Proposition 3.11 that Corollary 4.6 can be derived from 
a semi-infinite version of Theorem 4.7 in addition to the assumptions of this corollary we 
suppose that the function t E T 1--+ 9t(x) is continuous in T. 

The next example shows that the PMFCQ condition cannot be replaced by the EMFCQ 
one in Theorem 4.7 to ensure the unperturbed normal cone representations (4.18) and (4.19) 
in the presence of the NFMCQ. 
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Example 4.8 (EMFCQ combined with NFMCQ does not ensure the unper­
turbed normal cone representations). We revisit the semi-infinite inequality constraint 
system in Example 3.3. It is shown there that this system satisfied the EMFCQ but not 
PMFCQ at x = (-1, 0). It is easy to check that the set 

cone { (\7 gt(x), (\7 gt(x), x) - gt(x)) I t E T} cone ( (1, 0, -1) u { (t, 0, 0) It E (0, 1]}) 

= {xEJR3Ix1+x32::0, X12::02::x3, X2=0} 

is closed in JR3, i.e., the NFMCQ condition holds at x. Observe however that both repre­
sentations (4.18) and (4.19) are not satisfied for this system since we have 

N(x;n) = N(x;n) =J cone{Vgt(x)l t E T(x)} = cone{(1,0)} = lR+ x {0}. 

Now we present a consequence of Theorem 4. 7 with the corresponding discussions. 

Corollary 4.9 (normal cone for infinite convex systems). Assume that all the func­
tions gt, t E T, in (3.1) are convex and uniformly Prechet differentiable and that h = A 
is a surjective continuous linear operator. Suppose further that system (3.1) satisfies the 
PMFCQ (equivalently the SSG) at x E n. Then the normal cone to n at x in sense of 
convex analysis is computed by 

N(x;n) = n cl*cone{Vgt(x)l t E Te:(x)} +A*(Y*). 
e>O 

If in addition the NFMCQ holds at x, then we have 

N(x; n) =cone {\7 gt(x) I t E T(x)} + A*(Y*). 

Proof. It follows directly from Proposition 3. 7 and Theorem 4. 7. 

(4.25) 

6 

For h = 0 in (3.1) the equality in (4.25) can be deduced from [11, Corollary 3.6] under 
another Farkas-Minkowski Constraint Qualification (FMCQ) defined as follows: 

(FMCQ) The conic hull cone{epigt'l t E T} is weak* closed in X* x 1R under the 
additional assumption that the functions gt are l. s. c., where 

<p*(x*) :=sup { (x*,x)- <p(x)l x EX}, x* EX*, 

stands for the Fenchel conjugate of a convex function. 

It is worth noting that the above FMCQ condition is a global property, and hence 
formula (4.25) holds at every x En. By the contrary, our new NFMCQ condition (3.11) is 
constructed at a fixed point x E n. The next example shows that the combination of the 
PMFCQ (or the SSC) and the NFMCQ conditions for infinite convex inequality systems is 
not stronger than the FMCQ one. 

Example 4.10 (PMFCQ combined with NFMCQ does not imply FMCQ for 
convex inequality systems). Define a function gt : 1R2 -t 1R by gt(Xl, x2) := txi- x2 
for all (x1,x2) E JR2 and t E T := (0,1), and let x = (0,0) E JR2. It is easy to see that 
all the functions gt, t E T, are convex and differentiable and that the standing assumptions 
are satisfied. For each t E T we have 

gt'(al, a2) = sup { a1x1 + a2x2- txi + x2} = 4~ if a2 = - 1, 
{ 

a2 

(x1,x2)ElR2 oo otherwise. 
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This implies that epi gt' = { (a, -1, ~~ + r) I a E JR, r 2:: 0}, which yields in turn that 

C := cone { epi g; I t E T} = cone { (a, -1, : + r) \ a E JR, r 2:: 0}. 
The latter set is not closed in JR3 since {0} x {0} x IR+ ¢.. C while {0} x {0} x IR+ C clG. 
Moreover, we see that \lgt(x) = (0, -1) for all t E T, and then the PMFCQ is satisfied. 
Furthermore, it follows that the set 

cone { (\lgt(x), (V'gt(x), x)- gt(x))i t E T} = cone{(O, -1, 0)} = {0} x JR_ x {0} 

is closed in JR3. Hence the PMFCQ and NFMCQ conditions hold but the FMCQ does not. 

Finally in this section, we give specifications of obtained normal cone representations in 
the case linear infinite systems. 

Proposition 4.11 (normal cone representations for linear infinite constraint sys­
tems). Consider the constraint system (3.1) with 9t(x) = (at',x)- bt for all t E T, and 
let h = A : X ---+ Y. Assume that A is a surjective continuous linear operator and that the 
coefficient set {a; I t E T} is bounded in X*. If the sse condition holds at X' then 

N(x; 0) = n cl*cone {at It E Te(x)} + A*(Y*) 
e>O 

for the feasible set n := {x E XI Ax = 0, (at, x)- bt :::; 0, t E T}. On the other hand, 
assuming the weak* closedness of cone { (at', bt) I t E T} in X* x IR and that h = 0 gives us 

N(x;O) = cone{a;l t E T(x)}. 

Proof. The first statement is a specification of Corollary 4.9. The second one follows from 
the proofs given in [5, Proposition 3.1] and [6, Theorem 3.2] by using the classical Farkas 
Lemma for linear infinite systems. /'::, 

5 Optimality Conditions in Nonlinear Infinite Programming 

In this section we employ general principles in optimization and the calculus results on com­
puting the normal cones to the infinite constraint sets in Section 4 to deriving necessary 
optimality conditions for problems of infinite and semi-infinite programming. We confine 
ourselves to optimality conditions of the "lower" subdifferential type conventional in min­
imization. Condition of the other ("upper" or superdifferential) type can be derived from 
the calculus results of Section 4 using an approach developed in [22, Chapter 5]; see also the 
recent paper [6] for the implementation of the latter approach in the case of semi-infinite 
and infinite programs with linear constraints. 

Our first theorem in this section concerns infinite programs of type (1.1) in arbitrary 
Banach spaces involving Frechet differentiable cost functions. 

Theorem 5.1 (necessary optimality conditions for differentiable infinite pro­
grams in general Banach spaces). Let x be a local minimizer of the infinite program 
(1.1) under the PMFCQ condition imposed on the constraints at x. Suppose further that 
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the inequality constraint functions gt, t E T, are uniformly Prechet differentiable at x and 
the cost function f is Frechet differentiable at this point. Then we have the inclusion 

0 E \1 f(x) + n cl*cone {v gt(x) I t E Te;(x)} + \i'h(x)*(Y*). (5.1) 
e:>O 

If in addition the NFMCQ holds at x, then there exist multipliers A E JR~ and y* E Y* 
satisfying the differential KKT condition 

0=\i'f(x)+ .L AtY'gt(x)+\lh(x)*y*. 
tET(x) 

(5.2) 

Proof. It is clear that x is a local optimal solution to the following unconstrained opti­
mization problem with the infinite penalty: 

minimize f(x) + o(x; 0), (5.3) 

where n is the feasible constraint set (1.2). Applying the generalized Fermat rule to the 
latter problem (see, e.g., [22, Proposition 1.114]), we have 

o E 8(! + 8(·; n)) (x). (5.4) 

Since f is Frechet differentiable at x, it follows from the sum rule of [22, Theorem 1.107] 
applied to (5.4) and from the first relationship in (2.4) that 

0 E \7 f(x) + ao(x; O)(x) = \7 f(x) + N(x; n). (5.5) 

Now using the Frechet normal cone representation of Theorem 4.2 in (5.5), we arrive at 
(5.1). The second part (5.2) of this theorem readily follows from Theorem 4.7. 6 

The next theorem establishes necessary conditions for local minimizers of infinite pro­
grams (1.1) with general nonsmooth cost functions in the framework of Asplund spaces. 

Theorem 5.2 (necessary optimality conditions for nonconvex infinite programs 
defined on Asplund spaces, I). Let x be a local minimizer of problem (1.1), where the 
domain space X is Asplund while the image space Y is arbitrary Banach. Suppose that 
the constraint functions gt, t E T, are uniformly strictly differentiable at x, that the cost 
function f is l.s.c. around x and SNEC at this point, and that the qualification condition 

o00 f(x) n [- n cl*cone{Y'gt(x)l t E Te:(x)}- V'h(x)*(Y*)] = {0} (5.6) 
e:>O 

is fulfilled; the latter two assumptions are automatic when f is locally Lipschitzian around 
x. If the PMFCQ condition holds at x, then 

0 E of(x) + n cl*cone{Y'gt(x)l t E Te:(x)} + \i'h(x)*(Y*). 
e:>O 

If in addition we assume that the NFMCQ holds at x and replace (5.6) by 

800 f(x) n [-cone {Y'gt(x)l t E T(x)}- \i'h(x)*(Y*)] = {0}, 

(5.7) 

(5.8) 

then there exist multipliers A E JR~ and y* E Y* such that the following subdifferential KKT 
condition is satisfied: 

o E of(x) + .L AtY'gt(x) + \lh(x)*y*. 
tET(x) 
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Proof. Observe first that the feasible set n is locally closed around x. Indeed, it follows 
from (3.3) that there are 'Y > 0 and rJ > 0 sufficiently small such that 

\\h(x)- h(x')\\::; (\\V'h(x)\\ + 'Y)\\x- x'l\ and \\gt(x)- 9t(x')\\::; sup(\\V'gr(x)\\ + 'Y)\\x- x'\\ 
rET 

for all x,x' E JB71 (x) and t E T. Picking any sequence {xn} c n n JB71 (x) converging to 
some xo as n ---+ oo, we have 

\\h(xo)\\::; (\\V'h(x)\\ +'Y)\\xn- xo\\ and 9t(xo)::; sup(\\V'gr(x)\\ + 'Y)\\xn- xo\\ + 9t(xn) 
rET 

for each t E T and n E IN. By passing to the limit as n ---+ oo, the latter yields that 
h(xo) = 0 and 9t(xo) ::; 0 for all t E T, i.e., xo E 0 n .1B7J(x), which justifies the local 
closedness of the feasible set n around x. 

Employing now the generalized Fermat rule to the solution x of (5.3) with the closed set 
n and using [22, Theorem 3.36] on the sum rule for basic/limiting subgradients in Asplund 
spaces when f is SNEC at x yield that 

o E a(f + 8(·; n) )(x) c 8f(x) + a8(x; n) = 8f(x) + N(x; n) (5.10) 

provided that 800 f(x) n (- N(x; 0)) = {0}. We apply further to both latter conditions the 
limiting normal cone representation of Theorem 4.2. This gives us the optimality condition 
(5.7) under the fulfillment of (5.6) and the PMFCQ at x. Applying finally Theorem 4.7 
instead of Theorem 4.2 in the setting above, we arrive at the KKT condition (5.9) under 
the assumed NFMCQ at x and (5.8), which completes the proof of the theorem. /':::,. 

An important ingredient in the proof of Theorem 5.2 is applying the subdifferential sum 
rule from [22, Theorem 3.36] to the sum f + 8(·; n), which requires that either f is SNEC 
at x or n is SNC at this point. While the first possibility was used above, now we are 
going to explore the second alternative. The next proposition presents verifiable conditions 
ensuring the SNC property of the feasible set nat x. 

Proposition 5.3 (SNC property of feasible sets in infinite programming). Let X 
be an Asplund space, and let dim Y < oo in the framework of (1.1). Assume that all the 
functions 9t, t E T, are Frechet differentiable around some x En and that the corresponding 
derivative family {\7 gt}tET is equicontinuous around this point, i.e., there exists c: > 0 such 
that for each x E lBc:(x) and each 1 > 0 there is 0 < 'i' < c: with the property 

\\V'gt(x')- 'V'gt(x)\\ ~ 'Y whenever x' E IB-e(x) n 0 and t E T. (5.11) 

Then the feasible set n in (1.2) is locally closed around x and SNC at this point provided 
that the PMFCQ condition holds at x. 

Proof. Consider first the set 01 := {x EX\ 9t(x)::; 0, t E T}. By using arguments similar 
to the proof of Theorem 5.2, we justify the local closedness of n1 around x. Now let us 
prove that nl is SNC at this point. To proceed, pick any sequence ( Xn, x~) E nl X X*, 
n E IN, satisfying 

Xn ~ x, X~ E N(xn; nl) and X~~ 0 as n---+ 00. 

Taking (5.11) into account, we see that the functions 9t. t E T satisfy the standing as­
sumptions (SA) at Xn for all n E IN sufficiently large. Moreover, the proof showing 
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that assumption (3.3) holds at Xn follows from the discussions right after Corollary 4.5. 
Since the PMFCQ condition holds at x, there exist 8 > 0, c > 0, ai1d x E X such that 
(\7 9t(x), x) ~ -28 for all t E T2.,(x). Observe that T.,(xn) c T2.,(x) for all large n E IN. 
Indeed, whenever t E T.,(xk) we have 

0 2': 9t(X) > 9t(Xn)- ('\lgt(X),Xn- x) -1\xn- x\\s(\\xk- x\\) 

> -c- sup \\'lgr(x)\\·1\xn- x\\-1\xn- x\\s(\\xn- x\\) 2': -2c 
rET 

for all large n E IN, where s(·) is defined in (3.2). Further, it follows from (5.11) that 

when n E IN is sufficiently large. Hence we suppose without loss of generality that 

T.,(xn) C T2.,(x) and sup (\7 9t(xn), x) ~ -8 whenever n E IN. (5.12) 
tETe(Xn) 

Applying now Theorem 4.2 in this setting, we have that for each n E IN there exists a net 
{ AnJvEN c JR~e(xn) such that 

X~= w* -li~ L Atnv 'Vgt(Xn)· 
tETe(xn) 

Combining this with (5.12) yields that 

(x~,x) = li~n L Atnv('Vgt(Xn),X) ~ -8lim)nf L Atnv· 
tETe(xn) tET.,(xn) 

Furthermore, for each x E X we get the relationships 

which imply that \\x~\\ ~- (x1,x) suprET \\'Vgr(xn)\\ for all n E IN. Since x~ ~ 0, it follows 
from the latter that \\x~\1 ----+ 0 as n----+ oo and thus the set fh is SNC at x. 

Consider now the set fh := {x E X\ h(x) = 0}, which is obviously closed around x. 
It follows from [22, Theorem 1.22] and finite dimensionality of Y that fh is SNC at x. 
Moreover, we get from [22, Theorem 1.17] that N(x;!12) = 'Vh(x)*(Y*). Thus for any 
x* E N(x;n1) n (-N(x;!12)) there is y* E Y* such that x* + 'Vh(x)*y* = 0, and then 

(x*,x) = -('Vh(x)*y*,x) = -(y*, 'Vh(x)x) = o. 

Since x* E N(x; !11), we find by Theorem 4.2 such a net Pv }vEN E IR~ that 

x* = w* -li~ L Atv'l9t(x), 
tETe(x) 

which yields in turn that 

0 = (x*;x) = li~ L Atv('Vgt(x),x) ~ -281im)nf L Atv· 
tETe(x) tETe(x) 
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This ensures the relationships 

(x*,x)=liminf L Atii('Vgt(x),x)~liminf L Atvsupii(Vgr(x)lillxii=O 
11 

tETe(x) 
11 

tETe(x) rET 

for all x EX. Hence we have x* = 0, and so N(x;fh) n (-N(x;02)) = {0}. It finally 
follows from [22, Corollary 3.81] that the intersection n = 01 nn2 is SNC at x, which thus 
completes the proof of the proposition. 6. 

Observe that the assumption dim Y < oo is essential in Proposition 5.3. To illustrate 
this, consider a particular case of (1.1) when T = 0. It follows from [22, Theorem 1.22] 
that the inverse image n = h-1 (0) is SNC at x E n if and only if the set {0} is SNC at 
0 E Y. Since N(O; {0}) = Y*, the latter holds if and only if the weak* topology in Y* 
agrees with the norm topology in Y*, which is only the case of dim Y < oo by the classical 
Josefson-Nissenzweig theorem from theory of Banach spaces. 

Now we are ready to derive an aforementioned alternative counterpart of Theorem 5.2. 

Theorem 5.4 (necessary optimality conditions for nonconvex infinite programs 
defined on Asplund spaces, II). Let x be a local minimizer of infinite program (3.1) 
under the assumptions of Proposition 5.3. Suppose also that f is l.s.c. around x and that 
the qualification condition (5.6) is satisfied. Then we have the optimality condition (5. 7). 
If in addition we assume that" the NFMCQ holds at x and replace (5.6) by (5.8), then there 
exist multipliers A E Jk~ andy* E Y* such that the subdifferential KKT condition (5.9). 

Proof. It is similar to the proof of Theorem 5.2 with applying Proposition 5.3 on the SNC 
and closedness property of n in the sum rule (5.10) of [22, Theorem 3.36]. 6. 

The next result provides necessary and sufficient optimality conditions for convex prob­
lems of infinite programming in general Banach spaces. 

Theorem 5.5 (necessary and optimality conditions for convex infinite programs). 
Let both spaces X andY be Banach. Assume that all the functions 9t, t E T, are convex and 
uniformly Frechet differentiable and that h = A is a surjective continuous linear operator. 
Suppose further that the cost function f is convex and continuous at some point inn. If the 
PMFCQ condition (equivalently the SSG condition) holds at x, then x is a global minimizer 
of problem (1.1) if and only if 

0 E af(x) + n cl*cone{Vgt(x)l t E Te:(x)} +A*(Y*). 
e:>O 

If in addition the NFMCQ condition holds, then x is a global minimizer of problem (1.1) if 
and only if there exist A E Jk~ and y* E Y* such that 

o E af(x) + I:: At'V9t(x) + A*y*. 
tET(x) 

(5.13) 

Proof. Observe that x is a global minimizer of problem (1.1) if and only if it is a global 
minimizer of the convex unconstrained problem (5.3), which is equivalent to the fact that 

o E a(!+ 8(·; n)) (x). 
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Applying the convex subdifferential sum rule to the latter inclusion, we conclude that x is 
a global minimizer of problem (1.1) if and only if 

o E af(x) + ao(x; n) = 8f(x) + N(x; n). 

The rest of the proof follows from Corollary 4.9~ 

Note that some versions of necessary optimality condition of the KKT type (5.13) were 
derived in [6, Theorems 3.1 and 3.2] for infinite problems with linear constraints but possibly 
nonconvex cost functions under the SSC and the linear counterpart of the FMCQ; see 
Example 4.10 and the corresponding discussions above. 

Observe also that the results of Theorem 5.4 and Theorem 5.5 are formulated with no 
change in the case of semi-infinite programs, while in Theorem 5.1 we just drop the SNEC 
assumption on f, which holds automatically when X is finite-dimensional. 

In conclusion we present a consequence of our results for the classical framework of 
semi-infinite programming while involving nonsmooth cost functions. 

Corollary 5.6 (necessary optimality conditions for semi-infinite programs with 
compact index sets). Let x be a local minimizer of program (1.1), where both spaces X 
andY are finite-dimensional with dim Y <dim X. Assume that the index set Tin (1.1) is a 
compact metric space, that the mappings (x, t): X x T H- 9t(x) and (x, t) :X x T H- \lgt(x) 
are continuous, and that the cost function f is l.s.c. around x with the fulfillment of (5.8). 
If in addition the EMFCQ holds at x, then there exist multipliers >. E JR~ and y* E Y* 
satisfying the subdifferential KKT condition (5.9). 

Proof. By Proposition 3.9 we have that the NFMCQ condition holds at x under the 
assumptions made. Then this corollary follows directly from Theorem 5.2. !:::,. 

When f is smooth around x, assumption (5.8) holds automatically while (5.9) reduced to 
the differential KKT condition (5.2). Then Corollary 5.6 reduces to a well-known result in 
semi-infinite programming that can be found, e.g., in [15, Theorem 3.3] and [21, Theorem 2]. 
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