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CHAPTER 1 

 
CRITICAL VALUES FOR THE TWO INDEPENDENT SAMPLES WINSORIZED T TEST  

 

Introduction 

 According to Barnett and Lewis (1984, p. 4), an outlier is an observation (or 

subset of observations), in a set of data which appears to be inconsistent with the 

remainder of that set of data.  One of the earliest references to outliers was suggested by 

Boscovich (1755) in an attempt to determine the ellipticity of the earth by averaging 

measures of excess of the polar degree over the equatorial.  In his study, Boscovich 

determined that two of the ten measured values exceeded the normal range.  In an attempt 

to obtain the best estimate of the mean, Boscovich proceeded to compute the mean minus 

the two extreme scores in an effort to adjust for the effects of the outlying scores.  It was 

later proposed by Bernoulli (1755) that the practice of removing outliers should not be 

condemned but that the determination should be left to the satisfaction of the observer 

and that extreme observations should not be removed or rejected simply because they 

appear inconsistent with remaining data values.   

 In 1838, subsequent attempts to address the presence and effects of outliers were 

made by a German mathematician and astrologer named W. F. Bessel.  In his work with 

outliers, Bessel (1838) acknowledged that “he had never rejected an observation simply 

because of its large residual, and that all completed observations should be given equal 

weight and consideration and allowed to contribute to the results” (Ascombe, 1960, p. 

125).  Peirce (1852) later published the first objective test for anomalous observations, 

which was later followed by the publication of a test for a single doubtful observation by 

Chauvenet (1863).  Their methodology, however, sparked much controversy until 1884 
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when Wright (1884) proposed that the best method for dealing with outliers in 

astronomical readings was for the non observer to reject any observation whose residual 

exceeded in magnitude five times the probable error, or 3.37 times the standard deviation 

(Ascombe, 1960, p.125).  Basing his reasoning on the Gaussian law of error being 

satisfied, Wright (1884) succumbed that “minimal damage would be incurred due to the 

fact that only about one observation in a thousand would be rejected” (Ascombe, 1960, 

p.125). 

 Since then, identifying and treating outliers has become so critical to the study of 

statistics that many suggestions have been made as to what criteria should be used to 

identify outliers, as well as how they should be treated for purposes of statistical analyses.  

Identification and treatment of outliers is crucial to statistical research because if left 

unchecked, outliers can increase error variance, reduce the power of statistical tests, 

decrease normality (if non-randomly distributed), violate assumptions of sphericity and 

multivariate normality (in multivariate analyses), as well as significantly bias or influence 

estimates that may be of considerable interest (Osborne & Overbay, 2004 ).  With recent 

advancements in modern statistical methods, however, the process of identifying and 

treating outliers has become increasingly simplified. 

Problem 

 The two sample t test is the best-known and most popular method for comparing 

two groups according to Wilcox (1996).  In the presence of outliers, however, the test 

becomes inexact and the likelihood of Type I error inflations (or deflations) is 

significantly increased. Over the years, numerous recommendations have been made as to 

how to implement the two sample t test in the presence of outliers in an effort to obtain 
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the most valid and reliable statistical estimates.  This decision is of particular importance 

because removal of outliers has been linked to problems such as increased sampling 

error, particularly when the underlying distribution is unknown or contaminated, as well 

as the increased likelihood of violating underlying assumptions.  These concerns can 

have serious effects on the validity of statistical studies and can negatively impact 

statistical results when making inferences about data.  Tukey and McLaughlin (1963) 

noted that procedures which fare well under normality behaved relatively poorly when 

applied to longer tailed distributions.  With the recent developments in statistical science, 

such as computer simulations with real-world data, and a wider variation of statistical 

procedures, such as nonparametric procedures, to test hypotheses, it has also become 

more evident that the basic assumptions of the normality approach do not hold true in a 

vast majority of situations.  As a result, several attempts have been made to properly 

address the effects of outliers in instances where the two sample t test is employed, while 

preserving the integrity of the data and statistical analyses. 

 Ascombe (1960), for example, recommended that outliers be discarded when they 

occur as a result of large measurement or execution errors which cannot be rectified, and 

if there is no further interest in studying such errors.  Osborne and Overbay (2004) on the 

other hand, argued that steps taken to remedy outliers depend greatly on why they 

initially exist.  Judd and McClelland (1989) contended that outliers, whether legitimate or 

questionable, should be removed to provide the most honest estimate of population 

parameters, while others (Orr, Sackett, & DuBois, 1991) maintained that removal of 

outliers should be contingent upon the training, intuition, reasoned argument, and 

thoughtful consideration of the researcher before a decision is made.  In recent years, 
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however, a more modern and robust statistical method called winsorization has been 

proposed as a solution for the treatment of outliers, as well as preservation of the integrity 

of the data. 

 Moir (1998) noted that early parametric procedures were often used to conduct 

hypothesis tests when analyzing data.  One of the most notable parametric tests for 

analyzing differences between independent groups is the two sample t test.  It is a well-

known fact that the presence of outliers in data sets can cause severe inflations about the 

mean, which can have deleterious effects on estimators which rely on the mean such as 

the variance, standard deviation, and mean squared deviations.  As technology allowed 

for more sophisticated means of data analysis under various treatment conditions, the 

robustness of parametric procedures has become more debatable.  This is particularly true 

in the areas of education and psychology, where variables were once thought to 

approximate the normal distribution, however recent analysis has determined this to be a 

misconception.  Techniques such as trimming and winsorization have often been 

suggested as robust alternatives that were more effective in controlling Type I error 

probabilities associated with data abnormalities, particularly when the distribution of 

errors was nonnormal or unknown or when sample sizes were unusually small (Moir, 

1998). 

Purpose of the Study 

 The purpose of this study will be to implement Monte Carlo techniques in 

conjunction with the two sample winsorized t test to approximate critical values for the 

distribution of the winsorized t.  Critical values will be generated at the 0.01 and 0.05 

alpha levels for both one and two tailed tests.  Prior to this study, the distribution of the 
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two sample symmetrically winsorized t was unknown and had to be approximated using 

Student’s t distribution, with h1+h2-2 df, (Dixon & Tukey, 1968) where h represented the 

number of unwinsorized observations.  The findings of this study will offer table of 

approximate critical values for the two sample independent winsorized t test. 

Assumptions and Limitations 

 To generate the table of critical values for the winsorized t test, 1,000,000 

iterations were performed for each sample size and winsorization level.  The accuracy of 

the critcal values generated are solely based on the number of iterations.  To increase the 

precision of the tabled values, the number of iterations should be incremented beyond 

1,000,000. 

Definition of Terms 

Critical Value: The critical value(s) for a hypothesis test is a threshold to which the value 

of the test statistic in a sample is compared to determine whether or not the null 

hypothesis is rejected.  The critical value for any hypothesis test depends on the 

significance level at which the test is carried out, and whether the test is one-sided or 

two-sided. (http://www.stats.gla.ac.uk/steps/glossary/hypothesis_testing.html#critval). 

Degrees of Freedom (df): The degrees of freedom of an estimate, denoted by the Greek 

letter nu, ν, is equal to the number of independent scores that go into the estimate minus 

the number of parameters estimated as intermediate steps in the estimation of the 

parameter itself. 

Monte Carlo Estimation: Computer intensive method used to test the hypothesis that the 

data are a random sample from a specified population (Noreen, 1989). 
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Non-normality: Used to describe values of which the frequency distribution is markedly 

different from that of the normal probability distribution. 

Nonparametric Statistics:  Statistical techniques designed to be used when the data being 

analyzed depart from the distributions that can be analyzed with parametric statistics. In 

practice, this most often means data measured on a nominal or an ordinal scale.  Also 

called distribution-free statistics (Vogt, p.192).  Statistical procedures that do not require 

that samples come from populations with normal distributions or any other particular 

distributions.  (Triola, 2006, p. 676). 

Outlier: An observation (or subset of observations), in a set of data which appears to be 

inconsistent with the remainder of that set of data (Barnett & Lewis, 1984, p. 4). 

Parametric Tests:  Statistical procedures, based on population parameters, for testing 

hypotheses or estimating parameters (Triola, 2006, p. 676).  A parametric statistical test 

depends on a number of assumptions about the population from which the samples used 

in the test are drawn (Kerlinger & Lee, 2000, p. 414). 

Robustness:  Insensitivity to departures from assumptions surrounding an underlying 

probabilistic model (Hoaglin, Mosteller & Tukey, 1983, p. 2). 

Sample Mean:  The sum of the measurements divided by the number of measurements 

contained in the batch of numbers (Wilcox, 1996, p. 13).   

Skewed Distribution:  A distribution of scores or measures that, when plotted on a graph, 

produces a nonsymmetrical curve.  In a unimodal skewed frequency distribution, the 

mode, mean, and median are different.  When the skewness of a group of values is zero, 

their distribution is symmetrical (Vogt, 1993, p. 266). 
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Significance Level: A fixed probability of wrongly rejecting the null hypothesis H0, if it 

is in fact true.  It is the probability of a Type I error and is set by the investigator in 

relation to the consequences of such an error.  The significance level should be made as 

small as possible in order to protect the null hypothesis and to prevent, as far as possible, 

the investigator from inadvertently making false claims.  The significance level is usually 

denoted by  where: 

  Significance Level = P(Type I error) =  

(Http://www.stats.gla.ac.uk/steps/glossary/hypothesis_testing.html#sl). 

Trimmed mean: A measure of central tendency that allows the researcher to deal 

separately with a distribution’s outlier.  It is a mean computed without the extreme 

observations (Vogt, 1993, p. 295).  

Type I Error: Rejecting the null hypothesis (Ho) when in fact it is true.  In a given 

statistical test, the probability of a Type I error is equal to the alpha level (α). 

Type II Error: Failing to reject the null hypothesis (Ho) when in fact it is false.  In a given 

statistical test, the probability of a Type II error is also known as power or beta (β). 

Violation of Assumptions: Statistical hypothesis tests generally make assumptions about 

the population(s) from which the data were sampled. For example, many normal-theory-

based tests such as the t test and ANOVA assume that the data are sampled from one or 

more normal distributions, as well as that the variances of the different populations are 

the same (homoscedasticity:). If test assumptions are violated, the test results may not be 

valid. 

http://www.stats.gla.ac.uk/steps/glossary/hypothesis_testing.html#1err
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#population
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#random%20sample
http://www.basic.northwestern.edu/statguidefiles/ttest.html
http://www.basic.northwestern.edu/statguidefiles/anova.html
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#normal%20distribution
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#homoscedasticity
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(ProphetSTATGuide,http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#ske

wness) 

Winsorized Sample Mean:  The mean which replaces the largest r observations with the 

(r + 1) st largest observation and replaces the s smallest observations by the (s + 1) st 

smallest. 

Winsorized Sample Variance:  The variance of the winsorized set of values, W, 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

Overview 

 Outliers have been a problematic concern since the inception of statistics.  One of 

the first known efforts to address issues concerning outliers was made by Boscovich in 

1755.  In an attempt to determine the average ellipticity of the earth using polar degrees 

over the equatorial, Boscovich collected ten measures.  When he determined that two of 

the ten measures exceeded the normal range, Boscovich removed the two extraneous 

values and calculated the mean of the eight remaining values.  As one of the earliest 

attempts to address the presence of outliers, Boscovich set an early precedent for their 

removal.  As attempts to analyze data sets grew popular in several fields such as science, 

psychology and education, the question of what to do with outliers began to pervade 

many statistical studies.  

 Many researchers like Bernoulli (1775) and Bessell (1838) condemned the 

practice of removing outliers simply because the scores seemed to be extreme in 

comparison to the bulk of the data.  Bessel (1838) argued that every data value, no matter 

how extreme should be allowed to contribute to the results.  Others (Bernoulli,1838; Orr, 

Sackett & Dubois, 1991) also agreed that no value should be removed simply because its 

magnitude was extreme in comparison to the other data values, however, they added that 

any determination to remove an observation should be left to the satisfaction of the 

observer.  Ascombe (1960), on the other hand, suggested that outliers be removed if they 

occur as a result of irreparable measurement error, and if there was no future interest in 

studying the extreme value.  Judd and McClelland (1989) argued to the contrary that 
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outliers should be removed to provide the most reasonable estimate of population 

parameters, whether they are legitimate values or not.   

 With the heavy reliance on the Gaussian Theorem, distributional assumptions 

were often ignored based on the assumption that all data somehow approximated the 

normal distribution.  Practitioners then proceeded to conduct statistical tests, ignoring the 

underlying distributional assumptions, and formulating erroneous conjectures about their 

findings.   The failure to address the underlying distribution, as well as to adopt statistical 

procedures that were impervious to outliers, led to increased sampling error, particularly 

when the underlying distribution was unknown or contaminated.  Tukey and McLaughlin 

(1963) noted that the typical distribution of errors and fluctuations has a shape whose 

tails are longer than that of a Gaussian distribution (p. 332)  

 Outliers also occur as a result of inherent variability (Barnett & Lewis, 1984).  

Inherent variability represents occurrences that are uncontrollable and reflect the natural 

distributional properties of a correct basic model which describes the generation of the 

data (Barnett & Lewis, 1984, p. 26).  For example, a researcher who is studying average 

daily high temperatures in January in Michigan may encounter an abnormally high 

reading (e.g., 63 °).  Although some may be quick to dismiss this score as an illegitimate 

outlier, if it is truly representative of the average high temperature readings, then it should 

be included as a valid score for the sake of true statistical analysis.  Barnett and Lewis 

(1984) caution practitioners in labeling and dismissing all spurious scores as outliers, 

noting that not all outliers are illegitimate contaminants and not all illegitimate 

contaminants are outliers.  With all of the aforementioned suggestions on how to address 

the presence of outliers, there was no general consensus among theorists as to which 



11 

 

 

procedure provided the most efficient method for treatment of outliers.  This made it 

extremely difficult to replicate previous studies, as well as make conclusive 

determinations about the validity of studies where outliers were known to exist.   

 Chauvenet (1863) and Peirce (1852) were the first to suggest procedures to aid in 

the detection of outliers prior to analysis.  Their work was proceeded by Stone (1868) 

who followed with a test designed to reject outliers based on a concept of a modulus of 

carelessness, m (Barnett and Lewis, 1984, p.22) and Glaisher (1873), who suggested a 

procedure based on weighting.   Glaisher’s method, however, was highly criticized by 

Stone who later suggested another alternative method of weighting.  Wright (1884) 

finally suggested a more practical and still widely used method of outlier identification 

which involves rejecting any observation that lies more than three standard deviations 

from the mean.  As more advanced methods of analysis developed, such as Monte Carlo 

studies and nonparametric and robust methods, it became evident that removal of outliers 

was not always a feasible approach. 

Nonparametric Procedures and Robustness  

Nonparametric or distribution-free procedures have often been suggested for 

treatment of data where outliers are present.  A nonparametric test, as defined by Bradley 

(1968), is “a test which makes no hypothesis about the value of a parameter in a 

statistical density function” (p.15), whereas distribution free tests “make no assumptions 

about the precise form of the distribution of a population from which a sample is drawn” 

(Bradley, 1968, p.15).  Bradley (1968) noted that “the two definitions are not mutually 

exclusive and that a test can be both nonparametric and distribution-free” (p.15).  The 

advantage of implementing nonparametric or distribution-free tests is the presumption 
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that the tests are robust against the effects of outliers (Andrews et al., 1972; Bradley, 

1977; Stigler, 1977; Tan, 1982).  Robustness against these outliers is crucial to the field 

of statistics because violation of the normality assumption renders a test inexact.  Bradley 

(1968, 1980) was determined to discredit the use of parametric procedures as a panacea, 

despite the studies of parametricians, such as Boneau (1960, 1962), Lindquist (1953) and 

others who claimed that the tests such as the one-sample Z and t tests, as well as other 

parametric estimators, were robust against assumption violations. Despite the arguments 

posed by advocates of nonparametric procedures and the realization that outliers could 

significantly affect the results of statistical tests, disagreement still continued about which 

procedure was most effective in addressing outliers.  

In an attempt to adequately qualify robustness, Bradley (1968) investigated the 

influence of α (0.05, 0.01, or 0.001), location of rejection region (left-, right- or two-

tailed), absolute sample size (2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024), relative sample 

size (ratios of 1, 2, or 3), absolute population shape (L-shape or bell shape), relative 

population shape (i.e. same shapes or mixed shapes), and relative population standard 

deviations (ratios of 1 or 2) (p. 146).  Tests were conducted on Z1, t1, Z2, t2, and Fk with K 

= 3 or 4.  Based on final observations from this study, Bradley (1978) surmised the 

following: 

For every test except t1 there was some combination of conditions for which the 

liberal criterion of robustness ( │ρ - α│≤ α / 2 ) was met at N = 2 (for t1 it was not 

met until N = 128), but there were also some combination for which it was not 

met before N = 1024…The complexity of the combinations required for 

robustness is suggested by the fact that with one unimpressive exception, there 
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was no single condition, (i.e. no α value, no rejection region, no absolute or 

relative sample size, no absolute or relative shape and no relative variance) for 

which the liberal criterion was always met by any of the five tests investigated, 

not even if we consider only those cases in which the size of the smallest sample 

was ≥ 8.  The exception was that the Z2 test met the criterion under all 

combinations when absolute sample size was 1024. (p. 147). 

Bradley’s conclusions illuminated the behavior of some commonly employed statistical 

tests under various, real conditions. 

Parametric Versus Nonparametric Designs 

 In an attempt to boast on the effectiveness of nonparametric procedures over 

parametric procedures, Zimmerman (1994) explored the effect of outliers on modified 

power functions of a test and its nonparametric counterpart.  Using the t test and its 

nonparametric counterpart, the Mann-Whitney-Wilcoxon rank-sum test, simulations were 

conducted to determine the Type I and Type II error probabilities of samples from the 

mixed normal population.  Each test was performed using directional significance at the 

.05 significance level with 5,000 iterations for  each combination of conditions.  The 

Student’s t test was performed first on the initial scores and the scores were then 

transformed into ranks.  The ranked scores were then tested based on the normal 

approximation form of the Mann-Whitney-Wilcoxon rank-sum test.  
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  Figure 1. Effects of variations in the probability of occurrence of 

  an outlier on power functions of the Student’s t test, Zimmerman (1994) 

 
 

 

 

 

    

 

 

 

 

 

 

  Figure 2. Effects of variations in the probability of occurrence of 

  an outlier on power functions of the Mann-Whitney-Wilcoxon test, 

  Zimmerman (1994) 
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 Figures 1 and 2 represent the effects of variation in the probability of occurrence 

of outliers on power functions of the t test and the Mann-Whitney-Wilcoxon test when p 

varies between 0 and .16, when k, the multiplicative constant which determined the 

extremity of outliers, was fixed at 20 (Zimmerman, 1994).  The points represent the 

probability that the test statistic exceeded the critical value associated with the .05 

significance level.  The alternatives, 0 through 9, represent the range in the differences of 

means in increments of one-half a standard error of the mean.  These results led 

Zimmerman (1994) to conclude that outliers had a significant influence on both 

parametric and nonparametric tests and that the change depended on the probability of 

outliers.  It was also noted that in the absence of extreme values, the t test was more 

powerful than its nonparamtric counterpart. 
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   Figure 3. Probability of Type I errors of the Student’s t test  

   when the null hypothesis is true, Zimmerman (1994). 

 

 

  

 

 

 

 

 

 

 

 

 

   Figure 4. Probability of Type I errors of the Mann-Whitney- 

   Wilcoxon test when the null hypothesis is true, Zimmerman  

   (1994). 
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 Figures 3 and 4 depicts the effect of variation in the extremity of outliers on 

power functions on Student’s t test and the Mann-Whitney-Wilcoxon test when p was 

held at 0.05 and k was allowed to vary between 1 and 40.  The variations in k caused the t 

test to variation slightly, however the Mann-Whitney-Wilcoxon test remained constant. 

    Zimmerman (1994) concluded from this, that the decline in probability 

depended jointly on k and p for the parametric test, however the nonparametric test was 

only sensitive to the affects of p ( p. 395).  In addition, Zimmerman’s findings suggest 

correction on previously held positions that Type II errors and the power of some 

nonparametric methods are not affected by the underlying shape of a distribution.  On the 

contrary, this reserach suggests that outliers affect both nonparametric and parametric 

tests, especially when samples are drawn from the mixed-normal distribution.  

Nonparametric tests, however, prove to be more robust under these conditions 

(Zimmerman 1994, p. 397). 

 Lindquist (1953), on the other hand, held strong to convictions that parametric 

procedures were far superior to their nonparametric counterparts.  To prove the 

robustness under non-normality of a classic parametric estimator, the F test, Lindquist 

described a study conducted by his student Norton, in which six different distributions 

(normal, leptokurtic, rectangular, moderately skewed, markedly skewed and j-shaped) 

were investigated.  These distributions were representative of those found in education 

and psychology studies.  Distributions having the same criterion measures were studied 

in four different phases where various types of assumption violations were considered 

through the construction of card populations based on 10,000 cases each.  The resulting 
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distributions were then compared against the normal population for the F distribution.  

The findings of the experiment led Lindquist (1953) to conclude the following:  

The results of the Norton study should be gratifying to anyone who has used or 

who contemplates using the F test of analysis of variance in experimental 

situations in which there is serious doubt about the underlying assumptions of 

normality and homogeneity of variance.  Apparently, in the great majority of 

situations, one need be concerned hardly at all about lack of symmetry in the 

distribution of criterion measures, so long as the distribution is homogenous in 

both form and variance for the various treatment populations, and so long as it is 

neither markedly skewed nor markedly flat…In general, the F distribution seems 

so insensitive to the form of the distribution of criterion measure that it hardly 

seems worthwhile to apply any statistical test to the data to detect non-normality, 

even though such tests are available.  Unless the departure from normality is so 

extreme that it may be easily detected by mere inspection of the data, the 

departure from normality will probably have no appreciable effect on the validity 

of the F test, and the probabilities read from the F table may be used as close 

approximations to the true probabilities. (p. 86) 

Conclusions reached by Norton (1952) and Lindquist (1953) alike served as the 

foundation for the continued implementation of parametric procedures, as well as paved 

the way for parametric robustness studies later conducted by Boneau (1960) and Glass, 

Peckham and Sanders (1972).   

A large part of Boneau’s study (1960, 1962) was dedicated to demonstrating that  

violating assumptions, particularly normality, when using the t test or F test, does not 
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have an effect on the test’s ability to maintain its robustness in terms of Type I error for 

departures from population normality (p.1).  To prove his argument, Boneau (1960) 

computed a large number of t values based on randomly drawn samples from 

distributions (normal, exponential (J-shaped with a skew to the right), and rectangular or 

uniform) having specified characteristics.  Frequency distributions of obtained t values 

were constructed and superimposed over the normal distribution for comparison.  Based 

on his findings, Boneau (1960) concluded that “violating assumptions, particularly 

normality, produced minimal effects on the distribution of t’s and that the t test was an 

essentially robust test in the technical sense of the word” (p.61).  Boneau (1960) further 

asserted that: 

The t test could hold its robustness against violations of homogeneity of variance 

and normality as long as: (a) the two samples were equal or nearly so; and (b) the 

assumed underlying population distributions were of the same shape or nearly 

so…If these conditions are met, then no matter what the variance differences may 

be, samples of as small as five will produce results for which the true probability 

of rejecting the null hypothesis at the .05 level will more than likely be within .03 

of that level…the percentage of times the null hypothesis will be rejected when it 

is actually true will tend to be between 4% and 6% when the nominal value is 5% 

(p.62)…however in situations where a combination of unequal sample size and 

unequal variances exists, there is a risk of inaccurate probability statements being 

produced, which would differ significantly from the nominal values…In these 

situations, alternative testing procedures such as those suggested by Cochran and 
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Cox (1950), Sattertwaite (1946), and Welch (1947) would be more feasible. 

(p.62). 

In a follow-up study, Boneau (1962) expounded on his previous work to compare 

the power of the nonparametric U test against its parametric competitor the t test, to 

determine the probabilities of rejecting the null hypothesis if it was true.  Using methods 

similar to those implemented in his previous study, comparisons of the power of the two 

tests were made under the following assumption:  normal distribution with homogenous 

variance, normal distribution with heterogeneous variance and non-normal distribution.   

From this study, Boneau (1962) concluded: 

…that for normal distributions with homogenous variance, the t test was the 

uniformly most powerful test; however its margin over the U test was very slight.  

Points at which the U test showed superiority over the t test must have been due to 

sampling error because of the power property of the t test under these conditions. 

Under the normal distribution with heterogeneous variance, the t test seemed to be 

relatively unaffected by the homogeneity violation, as well as the U test; however, 

the U test was still slightly less powerful than the t test in this situation. (p.250). 

 Boneau (1962) further noted that “when sampling took place from at least one 

non-normal distribution, in this case the rectangular distribution, the power of the t test 

was quite greater than that of the U test, but never by much except at the .01 level” 

(p.253).  For the exponential distribution with small differences between means, the U 

test held power superiority over the t test, but as mean differences increased, this 

advantage disappeared.  For the non-normal distributions, it was concluded overall that 

“when distributions had the same shape outside of normality, the power functions of the t 



21 

 

 

and U tests had a relatively constant relationship, where the t was more powerful than the 

U in most cases” (Boneau, 1962, p.254). 

In an attempt to further validate the theory of parametric robustness, Glass et al. 

(1972) examined the consequences of failing to meet the assumptions underlying the 

fixed effects ANOVA.  In their study, Glass et al. (1972) asserted that “the relevant 

question was not whether ANOVA assumptions were met exactly, but whether the 

plausible violations of the assumptions of the ANOVA had serious consequences on the 

validity of probability statements based on the standard assumptions” (p. 237).  

Violations of non-independence of errors, non-normality (skewness, kurtosis and 

heterogeneous variances), and combined non-normality and heterogeneous variances of 

the fixed-effects ANOVA were discussed, along with the effects on α for both equal and 

unequal n’s. 

(1952), Lindquist (1953), and Boneau (1960), Glass et. al (1972) proposed the following 

conclusions about the consequences of violating the assumptions of the fixed-effects 

ANOVA and the effects that it had on α: 

1.  Non-independence of errors seriously affected the level of significance of the  

      F test regardless of whether n’s are equal or unequal; 

2. Skewness had a minimal effect on the level of significance of the fixed-effects  

model F test and distortions of nominal significance levels of power values 

were rarely greater than a few hundredths (however, in the case of the one 

tailed or directional test, skewness can have serious implications on the level 

of significance); 
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3.   In reference to kurtosis for both equal and unequal n’s, the actual α was less  

     than the nominal α for leptokurtic populations.  However, for platykurtic  

     populations actual α exceeded nominal α; 

4.  For heterogeneous variances and equal n’s, the effects on α were slight, with  

distortions of no more than a few hundredths; actual α was always slightly 

elevated over nominal α.  For unequal n’s, actual α exceeded nominal α when 

smaller samples were drawn from more variable populations; actual α was 

also less than nominal α when smaller samples were drawn from less variable 

populations; and 

5.  In the case where a combination of non-normality and heterogeneous  

variances existed, the two appeared to combine additively to affect either level 

of significance or power (Glass et. al., 1972, p.273).  

In rebuttal to claims of robustness of the t and F tests under violations of 

assumptions, particularly non-normality, Blair (1981) argued that “previously held 

positions by Boneau (1960, 1962), Glass et al. (1972) and others should be avoided, 

particularly when sampling from non-normal distributions” (p. 499).  Glass et 

al.continued to argue that the asymptotic relative efficiency (A.R.E) or Pitman efficiency 

of the two sample t test was .955 under normality and homogeneity when compared with 

the Wilcoxon rank-sum test (Blair, 1981, p. 500).  Blair (1981), however, refuted this 

argument stating that it “encouraged further exaltation of the superiority of the t test over 

its nonparametric competitors, even under non-normal situations” (p.500) and that Glass 

et al. erred in their conclusions because they failed to consider the following criteria: 
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1. The Type I error issue was only a necessary, rather than a sufficient 

condition for the position they took, because it did not take into account 

the usefulness of nonparametric counterparts of the t test; 

2. The relative power of the t test and its nonparametric counterparts under 

varying population shapes; 

3. In situations where the t test was more powerful than the Wilcoxon test, 

the magnitude of the advantage was modest;  

4. Statistical theory and empirical demonstration indicated that the 

Wilcoxon statistic enjoys very large power advantages over the t test; 

and 

5. Educational data are often distributed in a radically non-normal manner 

(p.506) 

 

Blair et al. (1980) also countered Boneau's (1960, 1962) position on the 

comparative power of the t test against that of the U test in applied research settings.  In a 

challenge to Boneau’s former study, computer simulation techniques were implemented 

to re-examine a portion of work previously conducted to determine if Boneau had erred 

in his conclusions about the alleged power advantage of the t test over the U test.  Using 

the exponential population and 1,000 samples, Blair et al. (1980) utilized a wider range of 

sample sizes and consistent alpha levels to conduct their study. 

 Blair et al. (1980) determined that Boneau (1962) “erred in concluding that in 

applied situations, the Mann-Whitney U test did not demonstrate the power advantages 

that are potentially associated with this statistic according to statistical 

theory”(p.118).  The study cited that one probable cause of Boneau’s error was his 
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application of the U test on small sample sizes and the fact that the U test performs rather 

poorly with small sample sizes (Blair et al.,1980).   

Sawilowsky and Blair (1992) also recognized the power of the Wilcoxon rank-

sum test when testing for shifts in location parameter (p.359).  In a Monte Carlo 

comparison of the power of the independent samples t test and the Wilcoxon rank-sum 

test, samples of size (5,15) were drawn from the extreme asymmetric distribution at α = 

.05 and ES of .2.  Findings indicated the power of the Wilcoxon test was .395, compared 

with .139 for the t test and when the ES was increased to .5, the power of the Wilcoxon 

test measured .723, while the t test was found to be .495 (Sawilowsky & Blair, 1992, 

p.359). 

In another case, Blair and Higgins (1981) argued against the relative efficiency of 

the t test versus nonparametric alternatives, such as the Wilcoxon rank sum test.  In this 

study, a comparison was made of the relative efficiency of the parametric t test against 

the nonparametric Wilcoxon rank sum statistic to test for shift in two-sample cases (Blair 

and Higgins, 1981). Various mixed normal distributions were tested based on theoretical 

considerations and because mixed normal distributions have been shown to be 

appropriate models for variables occurring in a wide variety of disciplines (Blair & 

Higgins, 1981, p.124).  Results of this study seemed to contradict Boneau’s former 

research. 

Two Sample T Test 

It is a well argued fact that the two sample independent t test is one of the best 

known statistical procedures in current use when applied under normal conditions.  This a 

major cause for concern because this test is often applied in both normal and non-normal 



25 

 

 

conditions, which makes violating the normality assumption an even greater concern.  

Sawilowsky and Blair (1992) noted, however, that for the test to be considered robust 

under assumption violations, insofar as Type I errors were concerned to non-Gaussian 

populations, certain stipulations had to be met :  

(a) sample sizes had to be equal or nearly so;   

(b) sample sizes were fairly large; and  

(c) tests were two-tailed rather than one-tailed (Sawilowsky & Blair, 1992, p.352)   

Under these conditions, if differences were found to exist between nominal alpha 

and actual alpha levels, Sawilowsky and Blair (1992), in referencing other sources (see 

e.g., Efron, 1969; Gayen, 1949, 1950; Geary, 1936, 1947; Pearson & Please, 1975) 

contended that “the discrepancies were usually of a conservative rather than a liberal 

nature” (p. 352).  Bradley (1980), however, objected the claim that the t test was robust 

under conditions of nonnormality because the term “large” could not be adequately 

quantified and because many distributions encountered in real-world situations were 

more non-normal than those referenced in robustness studies (Bradley, 1968; 1977; 

1982). 

Sawilowsky and Blair (1992) also conducted Monte Carlo experiments on eight 

real distributions previously studied by Micerri to determine the robustness of the two 

independent samples t test with respect to departures from population normality.  

Independent samples comprised of sizes (n1, n2) = (5,15), (10,10), (10,30), (20,20), 

(15,45), (30,30), (20,60), (40,40), (30,90), and (60,60) were sampled with replacement 

with the independent samples t test computed on each pair of samples (Sawilowsky & 

Blair, 1992, p.353).   Based on conclusions from this study, Sawilowsky and Blair (1992) 
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noted: 

The distributions studied provided a more realistic and stringent test of the t test’s  

sensitivity to population shape than has been afforded by previous studies on this  

topic.  These real distributions highlight situations in which the t test was, by  

definition, nonrobust to Type I error.  The degree of nonrobustness seen in 

 instances was  at times more severe than has been previously reported. (p. 359). 

In addition, it was maintained that “when the normality assumption is violated, 

the mean and variance, (parameters used to estimate the t test), are inexact “(Micerri 

1986, 1989).  Micerri (1986) further argued that: 

As a point estimator of location in the presence of non-normality, the mean has 

not proven relatively robust when estimating the center of symmetry in heavy-

tailed symmetrical distributions (Andrews, Bickel, Hample, Huber, Rogers and 

Tukey, 1972), in the presence of a single outlier (David and Shu, 1978), in the 

presence of serially dependent data (Gastwirth and Rubin, 1975;  Wegman and 

Carroll, 1977), in the presence of asymmetric data (Jaeckel, 1971;  Ansell, 1973; 

Carroll, 1979;  Kimber, 1983, or finally in the presence of specific “real” data 

(Stigler, 1977; Tapia and Thompson, 1978; Hill and Dixon, 1982) (p.2) 

These findings reiterated points stressed in earlier research (Sawilowsky and 

Blair,1992; Wilcox, 1996; Micerri, 1989) of how relatively minute departures from 

normality can cause tests such as the t, F or ANOVA to be inexact.        

Trimmed and Winsorized Means 

As a proposed alternative for implementing the two sample t test under 

nonnormality, several theorists (i.e., Tukey & McLaughlin, 1963; Yuen, 1974; Hogg 
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,1974; Stigler, 1977; Cressie, 1980; Hill & Dixon, 1982) recommended applying trimmed 

means for dealing with distributions whose standard errors were affected by the presence 

of outliers or heavy-tailedness or for improving control over Type I error inflations.  

Yuen’s (1974) study investigated the effects of Welch’s approximate degrees of freedom 

t test and the trimmed t test under unequal variance for both the normal and long-tailed 

distributions.  Using a Monte Carlo simulation, Type I error probabilities were obtained 

for Cauchy,  normal, uniform, Student’s t, and mixed uniform/normal distributions for 

samples sizes of 10 to 20 with nominal sizes 0.01, 0.05, and 0.10 for 5,000 samples with 

10,000 iterations (Yuen, 1974).  Results led Yuen (1974) to conclude that deviations for 

Welch’s test were greater than that for the trimmed t test, meaning that the trimmed t had 

a greater probability of rejecting the null hypothesis when it was actually true.  Power 

results also indicated that the trimmed t never exceeded the power Student’s t under exact 

normality and that small amounts of trimming had minimal affects on the loss of power.  

It also appeared that degree of tail length, level of trimming, and sample size caused the 

trimmed t to hold superior power advantages over Welch’s test. 

Several authors (Kesselman et. al, 2004; Fisher, 1935; Brown & Forsythe, 1974; 

Wilcox, 1990) have argued that the when conducting statistical investigations using the 

two sample t test, the test is highly unstable in the presence of nonnormality and 

heteroscedasticity.  When estimating the mean, some researchers (Dixon, 1960; Tukey & 

McLaughlin,1963; Dixon & Tukey,1968) have suggested feasibility of implementing 

some form of adaptive robust procedure, particularly when it is suspected that some 

individuals in the sample may have come from a population other than the population 

being studied of interest.  Techniques such as trimming and winsorizing have been 
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proposed as ways to minimize the effects of long tailed distributions, which have been 

known to be the cause of outliers.   

The concept of winsorizing data was first suggested by Charles Winsor (1940) 

and later renamed by Tukey (1962) as the winsorized mean (Fuller, 1991).  Rivest (1994) 

suggested implementing the winsorized mean because of its simplicity and efficiency in 

reducing the impact of the largest observations.  Dixon (1960) suggested that the 

efficiency of the symmetrically winsorized mean for location under normality is quite 

high, particularly when compared to the most efficient linear combination of the same 

order statistic (Dixon & Tukey, 1968, p. 83).   

 While trimming data has often been a highly practiced technique, especially when 

the data are heavy-tailed, many practitioners shun the practice because trimming removes 

data values which may or may not affect the significance of statistical results.  The 

winsorized mean, unlike the trimmed mean however, preserves the original observations 

in the data set by pulling outliers towards the middle of the distribution.  The general 

form of winsorization replaces the largest r observations by the (r + 1)st largest 

observation and replaces the s smallest observations by the (s + 1)st smallest (Fuller, 

1991, p. 138).  Bennett (2009) demonstrated calculation of the winsorized mean using the 

following data set, 25, 55, 11, 24, 22, 21, 13, 42, 25, 22.  First, the observations are 

ordered from least to greatest, 11, 13, 21, 22, 22, 24, 25, 25, 42, 55, and the number of 

observations to winsorize calculated using the formula, g =.2 • n, where n represents the 

sample size and g equals the number of observations winsorized from each side.  In this 

case, two observations were recoded on each side of the winsorized sample, 21, 21, 21, 

22, 22, 24, 25, 25, 25, 25, which equates to 20% winsorization.  The winsorized mean, 
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x
_

w, is then calculated by summing the observations and dividing by n, in this case x
_

w = 

23.1.  Dixon and Massey (1969) argued that if the smallest and largest observations are 

given the value of their nearest neighbor, a technique referred to as first-level 

winsorization, the computed mean of the modified sample will not have lost much 

efficiency if the extremes are actually valid (p. 330).   

 In an attempt to prove the effectiveness of the winsorized mean on heavy-tailed 

distributions, Fuller (1991) explored the effects of the once-winsorized mean on the 

Weibull distribution.  The Weibull distribution is a right skewed distribution that is a 

highly used in reliability and life data analysis due to its versatility and ability to model a 

number of real life behaviors.  Fuller (1991) argued that investigation of the Weibull 

distribution is beneficial to the practice of statistics because many empirical distributions 

have tails which resemble the Weibull (p.139).  In the study, the mean square error was 

used as the criterion to prove that the once-winsorized mean is superior to the sample 

mean for the Weibull when the shape parameter is greater than one, has the same 

efficiency as the mean if equal to one, and is less efficient than the mean if less than one  

(Fuller, 1991, p.139).  In concluding the study, Fuller (1991) referenced McElhone’s 

(1970) table of efficiencies of estimators relative to the mean for the Weibull distribution, 

noting that large gains in efficiency when using the once-winsorized mean.  In addition, 

for a Weibull with shape parameter γ = 2 and sample size n = 25, the winsorized mean 

was 24% more efficient than the mean; for n = 25 and γ = 3, the winsorized mean was 

twice as efficient as the sample mean; and for n = 25 and γ = 3, the winsorized mean was 

more than four times as efficient as the sample mean (Fuller, 1991, 144).  Fuller (1991) 

further noted that in instances when r > 1, the mean was uniformly more superior than the 
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winsorized mean on the basis of mean square error, however little difference was 

detected among the mean square errors with reasonable sample sizes (n > 4) for all three 

estimators.  These findings led Fuller to conclude that the once-winsorized mean is 

superior to the mean for the Weibull distribution with parameter γ > 1 (Fuller, 1991, 146). 

 

                   

    Figure 5.Weibull Distribution 

        (http://www.engineeredsoftware.com) 

 

 

Rivest (1994) also suggested winsorizing as a strategy for improving the sample 

mean, which for the exponential distribution, can significantly reduce the mean squared 

error of the sample mean by an O(1/n
2
) term.  Efficiency and bias comparisons of the 

winsorized mean were examined via Monte Carlo  approximations and exact calculations 

for sample sizes varying between 20 and 200 from the Weibull, lognormal, and Pareto 

distributions with coefficients of variation 2 and 4 (Rivest, 1994, p.378).  For the two 

Weibull distributions, as well as the lognormal, where β = 1.27, it was found that 
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winsorizing less than one observation helped maintain efficiency, while significantly 

reducing bias (Rivest, 1994, p.378). The study concluded overall that winsorized means 

are an efficient alternative to the sample mean, especially for populations that are 

skewed, and that even in the presence of heavy skewness, the once-winsorized mean 1  

provides the largest efficiency, whereas the 0.75 mean is better suited for less moderate 

skewness (Rivest, 1994).   

Winsorization techniques have also been shown to play a critical role in 

alleviating power issues.  The two sample winsorized t test is given by the formula: 
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 Dixon and Massey (1969) noted that winsorization techniques can also be applied 

in cases where data are missing or omitted in equal number at either extreme.  In cases 

such as these, efficiency estimates are approximated at 99.9 % when compared to the best 

possible linear estimate based on these same observations for samples from normal 

populations with sample sizes 20 or less (Dixon, 1960).  In the table below, derived from 
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Dixon and Massey (1969), efficiencies for various levels of trimming and Winsorizing 

are compared: 

Table 1. Efficiencies for trimmed and winsorized samples. 

 

 

 It is obvious that Dixon and Massey’s (1969) argument that winsorization is 

superior to trimming is valid.  In cases where the symmetrically placed extreme 

observations are trimmed as opposed to winsorized, the arithmetic mean of the remaining 

observations provided as estimate of smaller efficiency (Dixon and Massey, 1969, p. 

331).   

Micerri (1989) also noted that 97% of all empirical distributions studied in 

psychology and education had longer tails than the normal distribution, with the 

remaining 3% having an approximately normal distribution.  Sawilowsky and Blair 

(1992) argued that in cases where the normality of the underlying distribution was in 

question, the t test would only yield valid results if sample sizes were greater than 30 per 

group, the groups had equal sample sizes and the test being conducted was two-tailed 

rather than one-tailed.  However if those conditions were unmet, which they rarely are in 

empirical studies, validation of statistical results would be questionable. 

Fung and Rahman (1980) recommended the winsorized t be used in situations 

when the underlying distribution is long-tailed.  Often times, however, researchers are not 

N Trim. Wins. Trim. Wins. Trim. Wins. Trim. Wins. 

10 .949 .958 .883 .889 .808 .821 .723 .723 

20 .978 .984 .948 .962 .915 .936 .880 .905 

k  = 1 k  = 2 k  = 3 k  = 4 
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aware of the shape of the underlying distribution prior to implementing statistical 

analysis.  Since the results of this study demonstrate that the distribution of the 

winsorized t test approximates Student’s t distribution, more consideration should be 

given towards implementing nonparametric statistical procedures, such as the winsorized 

t test because of its robustness against concerns of nonnormality.  Implementing 

nonparametric procedures such as the winsorized t test may prove to be invaluable for 

drawing valid statistical inferences, as well as helping to maintain nominal Type I error 

probabilities. 

Monte Carlo Methods 

 Monte Carlo methods refer to a class of mathematical computations which rely on 

repeated random sampling to determine results to make inferences about the population 

from which a sample has been drawn.  The term was also used by Sawilowsky and 

Fahoome (2003), to refer to methods that describe repeatedly sampling from an identified 

probability distribution to determine the long run average of a specific parameter or 

characteristic.  This method relies on sampling with replacement, meaning that when a 

subset of scores has been selected, recorded and analyzed, they are returned to the 

sampling distribution.  The process is then repeated many times with the likelihood of the 

scores previously chosen having the same probability of being chosen again as values not 

previously selected.  Monte Carlo Methods were first introduced in the early 1930’s by 

physicist Enrico Fermi and later adopted and improved by John von Neumann and 

Stanislaw Ulam for simulations of the atomic bomb during the Manhattan Project.  There 

are several classes of Monte Carlo Methods, including Monte Carlo estimation, 

http://www.answers.com/topic/john-von-neumann
http://www.answers.com/topic/stanis-aw-marcin-ulam
http://www.answers.com/topic/atom-bomb
http://www.answers.com/topic/manhattan-project
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bootstrapping, the jackknife, and Markov Chain Monte Carlo estimation, however this 

study will focus solely on Monte Carlo Estimation. 

 Bernard was the first to implement Monte Carlo Estimation in 1963 to test the 

hypothesis that data represented a random sample from a specified population (Noreen, 

1989; Kelly, 1999).  Noreen (1989) added that Monte Carlo estimation is best utilized in 

situations where the population is known, but the sampling distribution has not yet been 

derived.  Sawilowsky and Fahoome (2003) noted that Monte Carlo simulations rely on 

computer models and are particularly useful because the quality of the simulation 

increases as the model increases its ability to mimic reality.  To conduct Monte Carlo 

estimations, the following steps are conducted: 

1. A matrix of artificial data is generated which matches the assumptions of the 

analysis and for which the null hypothesis is true. 

2. The value of the test statistic of interest is computed for each sample. 

3. The computed simulated sample statistics are then ordered in a distribution, called 

the "Monte Carlo distribution" of the statistic. 

4. The "real" statistic is then mapped onto the Monte Carlo distribution using the 

would-be percentile rank of the "real" statistic to identify the 5%, 2.5%, 1% and 

0.5% critical values. 
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CHAPTER 3 

 

METHODOLOGY 

 

Overview 

 To approximate the distribution of the winsorized t test in an effort to generate a 

table of critical values for the two sample winsorized t test, a program was written in 

Excel using Visual Basic with Applications programming language.  First, the code for 

the two sample winsorized t test function was written and tested on real data with 0% 

winsorization to determine the accuracy of the algorithm.  The results of testing the data 

with the winsorized algorithm were then compared to the results of the traditional two 

sample t test.  Both functions yielded a t score equivalent to t = 0.41597, which verified 

the veracity of the winsorization algorithm.  The algorithm was then used to winsorize a 

user specified number of observations from both sides of the data, in this case one and 

two values from both tails were recoded, equating to a 10% and 20% winsorization.  The 

data was computed again using the winsorized t test algorithm, yielding a winsorized t 

score of = 0.27681 for 10% winsorization, and -0.53045 for 20% winsorization. 
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Table 2. Sample data used to verify algorithm 

 
 
 

  

 

 

 

 

 

  

 

  

 The program was then modified to sample random data from Excel’s normal 

distribution, NORMINV, with μ = 0 and σ = 1.  First, an algorithm was written to 

calculate both the winsorized mean and winsorized sample variance for both samples A 

and B.  The winsorized sample variance was then used to calculate the pooled winsorized 

sample variance having n1+ n2 -2 degrees of freedom.  The winsorized mean and pooled 

sample variance were then fed to a subroutine that was used to calculate the two sample 

winsorized t test.  The results of the test statistic were then stored in an array or matrix 

and the procedure reiterated until 1,000,000 repetitions were completed.  Each winsorized 

t score was then sorted from low to high (t1, t2, t3,…t 1,000,000) in an effort to identify the 

critical values at the 95
th

, 97.5
th

, 99
th

 and 99.5
th

 percentiles.  These values represent the 

critical values for both one and two tailed tests for α = 0.05 and 0.01.  The results were 

then arranged in a table according to the formula n1 + n2 – 2, which represents the 

degrees of freedom for the two sample winsorized t test.  To test the accuracy of this 

SAMPLE A SAMPLE B 

-1.39 -1.28 

-1.22 -1.08 

-1.01 -0.87 

-0.77 -0.22 

-0.34 -0.01 

0.44 0.35 

0.74 0.92 

0.88 1.10 

2.80 1.21 

4.10 1.39 
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subroutine, a Monte Carlo simulation was run using random samples with winsorization 

equivalent to 0% for sample size n1 = n2 =2.  Random samples were drawn, with 

replacement, from the normal population and the procedure reiterated 1,000,000 times.  

Results were then sorted, ranked and the corresponding percentiles identified for both 

samples A and B.  The critical values representing the 95
th

, 97.5
th

, 99
th

 and 99.5
th

 

percentiles for both one and two-tailed tests were then compared to the critical values 

produced by Student’s t table and the percentage of error calculated to determine the 

accuracy of the subroutine.  Table 3 below compares the results of the 0% winsorized 

Monte Carlo simulation and Student’s t test critical values for sample size n1 = n2 =2.  

Results from the simulation illustrate that the subroutine provided valid results for 

approximating the distribution of the Student’s t distribution and that the margin of error 

between the two is minimal.  

 

Table 3. Monte Carlo summary results for sample size n1= n2 =2. 

POPULATION TYPE 

 

Normal Random Dist. 

SAMPLE SIZE A 

 

2 

 SAMPLE SIZE B 

 

2 

 WINSORIZATION A 

 

0 Per Side 

WINSORIZATION B 

 

0 Per Side 

ACTUAL WINSORIZED PERCENT A 0% 

 ACTUAL WINSORIZED PERCENT B 0% 

 DEGREES OF FREEDOM 2 

 ITERATIONS 

 

1000000 

  

 

 

    

Conf. 1-Tail p 2-Tail p C.V. abs error error % 

90.00% 0.05 0.1 2.91982 0.00017 0.005832% 

95.00% 0.025 0.05 4.30756 0.00491 0.114101% 

98.00% 0.01 0.02 6.97036 0.00581 0.083393% 

99.00% 0.005 0.01 9.94828 0.02344 0.236175% 
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 Sample sizes equivalent to n1 = n2 = 5 to 30, 45, 60, 90 and 120 were then drawn 

from the normal population and symmetrically winsorized or recoded, up to 20%, where 

r observations were recoded on each side of the data.  Table 4 illustrates the experimental 

sample sizes and the number of observations that were winsorized on each side for each 

sample size. 

 

Table 4. Maximum winsorized values per side for the two sample winsorized t. 

        _______________________________________________________ 
       

  Sample Size    Maximum number of observations  

          Winsorized per side                            

  _______________________________________________________ 

         5-9     1  

   10-14     2 

   15-19     3 

   20-24     4 

   25-29     5 

   30     6 

   45     9 

   60     12 

   90     18 

   120     24 

  __________________________________________________ 
       

 

Computer Hardware and Software 

All of the programs, functions and subroutines generated in Excel were developed 

using an HP Intel (R) Core ™ 2 CPU T7200 notebook with an AMD Athlon(tm) 64 

processor and 2.00 GHz of memory and 2.49 GB of RAM memory.  The hardware was 

supported by the Microsoft Windows XP Tablet PC 2005 Edition operating system with 

Service Pack 3.  Microsoft Visual Basic version 6.5 was utilized to write and execute 
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programs, generate random samples and calculate the specified test statistic.  Monte 

Carlo Simulations of all sample sizes were performed at Wayne State University’s 

College of Education Computer Lab using 30 Apple Dual-Boot Computers with Intel ® 

core ™ with 2.66 GHz memory and 2.98 GB of RAM.  The computers were supported 

by Microsoft Windows XP Professional version 2002 operating system with service pack 

3.   
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CHAPTER 4 

RESULTS 

Synopsis 

 A Monte Carlo experiment was designed to approximate the distribution of the 

two sample winsorized t test.  Samples were drawn from Excel’s normal distribution with 

μ = 0 and σ = 1 for sample sizes n1 = n2 = 5 to 30, 45, 60, 90 and 120.  For each pair of 

samples, the winsorized t statistic was calculated 1,000,000 times on various levels of 

winsorization up to 20%.  The values were then ranked from low to high and the values at 

the 95
th

, 97.5
th

, 99
th

 and 99.5
th

 percentiles identified, which represented the critical values 

for both one and two-tailed tests at α = 0.01 and 0.05.  Finally, the distribution of the two 

sample winsorized t was examined to determine its approximate behavior as sample sizes 

increased.  

Winsorized Trials 

 For sample sizes n = 5 through 9 and df = 8 to 16, one observation was 

symmetrically winsorized from both sides of the sample in order not to exceed 

winsorization levels of more than 20%, and to maintain an unwinsorized core of  at least 

n = 2.  When the critical values were examined in comparison to Student’s t distribution, 

results showed that the values for the winsorized t distribution were 2.2 to 2.8 times 

greater than those of Student’s t distribution.  For example, for df = 8 at the 99.5th 

percentile, the critical value for the winsorized t distribution was 9.3822, whereas the 

value for Student’s t distribution was 3.355.  These findings are significant, because 

according to Fung and  Rahman (1980), in the past researchers have used Student’s t 

distribution to approximate the distribution of the winsorized t using h1 + h2 -2, where h 
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represented the number of unwinsorized observations.  When testing hypotheses of the 

differences between means, the null hypothesis, Ho, is rejected if |T| > t1-α/2 for two tailed 

tests and T > t1-α  and  T <  tα  for one tailed tests.  For example, for a calculated T = 2.883 

for α = 0.05 and df = 8, using Student’s t distribution, the null hypothesis would be 

rejected for both the two sided and right tailed tests.  On the other hand, if the same 

results are compared against the winsorized t distribution, the researcher would fail to 

reject the null hypothesis for both right and two-tailed tests only.  This dilemma can 

certainly have a negative impact on the interpretation statistical results, as well as impede 

researchers’ ability to draw definitive inferences about the effectiveness of their research.  

 When samples sizes were incremented and more than one observation was 

winsorized from each side, results showed that in every case, the once winsorized 

samples provided more nominal critical value levels than samples with more observations 

winsorized on each side.    It was also observed that as degrees of freedom increased, the 

critical values for the winsorized t distribution also began to decrease.  However, as the 

critical values began to decrease, only first level winsorization showed any close 

approximation to Student’s t values.  This illustrates that first level winsorization, or 

recoding of one value from each side of a sample, provides critical value approximations 

which are closer to those of Student’s t distribution. 

 Critical values for subsequent levels of winsorization can also prove useful.  As 

the number of observations symmetrically winsorized increases, the better the winsorized 

mean approximates the median.  As proven by previous research, the median is a measure 

of central tendency which is resistant to the effects of outliers.  Therefore, the more 

observations winsorized, the lesser the impact of outliers and heavy-tailedness on the 
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mean and variance.  While first level winsorization may prove to be more effective in 

cases of mild departures from normality, more severe cases may be better served by 

increasing the number of symmetrically winsorized observations.  According to Tukey 

and Dixon (1968) there is no predetermined threshold of winsorization that has proven to 

be more effective, however, the authors did provide winsorized critical values for various 

sample sizes, leaving winsorization levels to the discretion of the researcher. 
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Table 5. Critical values for the two sample winsorized t test 
 

1-tailed 0.05 0.025 0.01 0.005 

 

 

 

2-tailed 0.1 0.05 0.02 0.01 

  

df (ν) 

    

R  # Winsorized 

        Per Side 

Sample 

Size 

8 4.0844 5.4216 7.4907 9.3822 1 5 

10 3.1400 4.0019 5.2148 6.1936 1 6 

12 2.7239 3.4014 4.3188 5.0422 1 7 

14 2.4813 3.0736 3.8391 4.4223 1 8 

16 2.3368 2.8613 3.5373 4.0538 1 9 

18 2.2268 2.7197 3.3414 3.8090 1 10 

18 3.1680 3.9250 4.9310 5.7130 2 10 

20 2.1545 2.6204 3.2051 3.6385 1 11 

20 2.8913 3.5590 4.4199 5.0690 2 11 

22 2.0950 2.5422 3.0944 3.4948 1 12 

22 2.7071 3.3137 4.0845 4.6552 2 12 

24 2.0484 2.4786 3.0088 3.3974 1 13 

24 2.5658 3.1255 3.8286 4.3598 2 13 

26 2.0090 2.4311 2.9396 3.3045 1 14 

26 2.4543 2.9875 3.6427 4.1156 2 14 

28 1.9803 2.3912 2.8863 3.2440 1 15 

28 2.3734 2.8726 3.4930 3.9484 2 15 

28 2.9765 3.6351 4.4560 5.0747 3 15 

30 1.9521 2.3528 2.8384 3.1900 1 16 

30 2.3029 2.7846 3.3830 3.8116 2 16 

30 2.8216 3.4284 4.1941 4.7568 3 16 

32 1.9289 2.3243 2.8023 3.1377 1 17 

32 2.2444 2.7145 3.2854 3.6941 2 17 

32 2.7013 3.2756 3.9880 4.5066 3 17 

34 1.9099 2.3000 2.7699 3.0952 1 18 

34 2.2001 2.6549 3.2044 3.5932 2 18 
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Table 5 (con’t). Critical values for the two sample winsorized t test 

1-tailed 0.05 0.025 0.01 0.005 

 

 

 

2-tailed 0.1 0.05 0.02 0.01 

  

df (ν) 

    

# Winsorized 

Per side 

Sample 

Size 

34 2.5994 3.1490 3.8203 4.3063 3 18 

36 1.8920 2.2758 2.7362 3.0648 1 19 

36 2.1573 2.5983 3.1358 3.5182 2 19 

36 2.5144 3.0430 3.6938 4.1605 3 19 

38 1.8741 2.2546 2.7133 3.0355 1 20 

38 2.1181 2.5529 3.0820 3.4523 2 20 

38 2.4412 2.9493 3.5728 4.0194 3 20 

38 2.8915 3.5056 4.2682 4.8220 4 20 

40 1.8651 2.2409 2.6920 3.0111 1 21 

40 2.0882 2.5175 3.0262 3.3954 2 21 

40 2.3867 2.8846 3.4781 3.9135 3 21 

40 2.7877 3.3776 4.0932 4.6048 4 21 

42 1.8496 2.2227 2.6658 2.9739 1 22 

42 2.0636 2.4809 2.9816 3.3381 2 22 

42 2.3315 2.8108 3.3885 3.8017 3 22 

42 2.6930 3.2559 3.9307 4.4257 4 22 

44 1.8392 2.2100 2.6488 2.9589 1 23 

44 2.0375 2.4491 2.9421 3.2910 2 23 

44 2.2881 2.7561 3.3162 3.7232 3 23 

44 2.6133 3.1564 3.8220 4.2893 4 23 

46 1.8303 2.1975 2.6366 2.9425 1 24 

46 2.0195 2.4253 2.9139 3.2572 2 24 

46 2.2488 2.7074 3.2608 3.6484 3 24 

46 2.5463 3.0739 3.7151 4.1677 4 24 

48 1.8226 2.1864 2.6228 2.9306 1 25 

48 1.9972 2.3992 2.8851 3.2255 2 25 

48 2.2157 2.6657 3.2119 3.5880 3 25 

48 2.4890 2.9986 3.6248 4.0610 4 25 

48 2.8465 3.4415 4.1657 4.6849 5 25 

50 1.8159 2.1745 2.6065 2.9057 1 26 

50 1.9801 2.3746 2.8487 3.1775 2 26 

50 2.1855 2.6259 3.1519 3.5193 3 26 

50 2.4382 2.9347 3.5395 3.9573 4 26 

50 2.7688 3.3367 4.0308 4.5286 5 26 

52 1.8089 2.1657 2.5984 2.8953 1 27 

52 1.9666 2.3606 2.8327 3.1566 2 27 

52 2.1563 2.5886 3.1071 3.4762 3 27 
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Table 5 (con’t). Critical values for the two sample winsorized t test 

1-tailed 0.05 0.025 0.01 0.005 

 

 

 

2-tailed 0.1 0.05 0.02 0.01 

  

df (ν) 

    

# Winsorized 

Per side 

Sample 

Size 

52 2.3925 2.8827 3.4710 3.8890 4 27 

52 2.6915 3.2457 3.9116 4.3839 5 27 

54 1.7987 2.1577 2.5846 2.8840 1 28 

54 1.9489 2.3387 2.8026 3.1315 2 28 

54 2.1308 2.5573 3.0723 3.4266 3 28 

54 2.3527 2.8331 3.4061 3.8129 4 28 

54 2.6240 3.1637 3.8123 4.2674 5 28 

56 1.7948 2.1503 2.5728 2.8669 1 29 

56 1.9373 2.3227 2.7823 3.1066 2 29 

56 2.1097 2.5292 3.0336 3.3898 3 29 

56 2.3116 2.7786 3.3395 3.7389 4 29 

56 2.5736 3.0947 3.7238 4.1764 5 29 

58 1.7905 2.1421 2.5611 2.8505 1 30 

58 1.9284 2.3104 2.7641 3.0834 2 30 

58 2.0866 2.5056 2.9985 3.3499 3 30 

58 2.2819 2.7432 3.2952 3.6837 4 30 

58 2.5184 3.0299 3.6468 4.0774 5 30 

58 2.8182 3.3997 4.0974 4.5878 6 30 

88 1.7388 2.0782 2.4760 2.7558 1 45 

88 1.8215 2.1823 2.6032 2.8897 2 45 

88 1.9114 2.2932 2.7351 3.0391 3 45 

88 2.0148 2.4146 2.8837 3.2065 4 45 

88 2.1296 2.5510 3.0493 3.3962 5 45 

88 2.2611 2.7097 3.2369 3.6067 6 45 

88 2.4082 2.8870 3.4535 3.8553 7 45 

88 2.5753 3.0861 3.6978 4.1204 8 45 

88 2.7735 3.3291 4.0007 4.4605 9 45 

118 1.7145 2.0474 2.4397 2.7079 1 60 

118 1.7739 2.1192 2.5246 2.8054 2 60 

118 1.8363 2.1949 2.6176 2.9062 3 60 

118 1.9050 2.2768 2.7158 3.0199 4 60 

118 1.9789 2.3662 2.8254 3.1342 5 60 

118 2.0598 2.4641 2.9420 3.2639 6 60 

118 2.1484 2.5709 3.0684 3.4085 7 60 

118 2.2453 2.6879 3.2096 3.5677 8 60 

118 2.3514 2.8163 3.3622 3.7411 9 60 

118 2.4706 2.9579 3.5334 3.9297 10 60 
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Table 5 (con’t). Critical values for the two sample winsorized t test 

1-tailed 0.05 0.025 0.01 0.005 

 

 

 

2-tailed 0.1 0.05 0.02 0.01 

  

df (ν) 

    

# Winsorized 

Per side 

Sample 

Size 

  118   2.6028   3.1197   3.7278   4.1513   11            60 

  118   2.7496   3.2951   3.9443   4.3879   12            60 

  178   1.6914   2.0169   2.3995   2.6662   1            90 

178 1.7272 2.0615 2.4516 2.7184 2 90 

178 1.7650 2.1077 2.5053 2.7759 3 90 

178 1.8096 2.1584 2.5723 2.8544 4 90 

178 1.8530 2.2108 2.6330 2.9199 5 90 

178 1.8978 2.2635 2.6948 2.9850 6 90 

178 1.9461 2.3249 2.7693 3.0736 7 90 

178 1.9963 2.3861 2.8381 3.1463 8 90 

178 2.0517 2.4506 2.9244 3.2449 9 90 

178 2.1062 2.5160 2.9912 3.3150 10 90 

178 2.1689 2.5920 3.0866 3.4343 11 90 

178 2.2325 2.6701 3.1786 3.5386 12 90 

178 2.3007 2.7481 3.2674 3.6286 13 90 

178 2.3757 2.8416 3.3814 3.7500 14 90 

178 2.4528 2.9372 3.4975 3.8947 15 90 

178 2.6266 3.1458 3.7539 4.1739 17 90 

178 2.7264 3.2573 3.8767 4.3136 18 90 

238 1.6780 2.0034 2.3807 2.6367 1 120 

238 1.7055 2.0361 2.4201 2.6804 2 120 

238 1.7339 2.0705 2.4606 2.7246 3 120 

238 1.7630 2.1051 2.5033 2.7735 4 120 

238 1.7937 2.1418 2.5444 2.8200 5 120 

238 1.8269 2.1801 2.5892 2.8693 6 120 

238 1.8600 2.2203 2.6375 2.9243 7 120 

238 1.8954 2.2619 2.6870 2.9753 8 120 

238 1.9309 2.3047 2.7372 3.0338 9 120 

238 1.9676 2.3495 2.7912 3.0919 10 120 

238 2.0067 2.3944 2.8458 3.1527 11 120 

238 2.0479 2.4432 2.9025 3.2208 12 120 

238 2.0892 2.4947 2.9633 3.2860 13 120 

238 2.1327 2.5485 3.0280 3.3563 14 120 

238 2.1792 2.6028 3.0937 3.4307 15 120 

238 2.2275 2.6610 3.1629 3.5058 16 120 

238 2.2790 2.7208 3.2356 3.5888 17 120 

238 2.3322 2.7855 3.3135 3.6764 18 120 
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Table 5 (con’t). Critical values for the two sample winsorized t test 
 

1-tailed 0.05 0.025 0.01 0.005 

 

 

 

2-tailed 0.1 0.05 0.02 0.01 

  

df (ν) 

    

# Winsorized 

Per side 

Sample 

Size 

238 2.3885 2.8525 3.3952 3.7671      19           120 

238 2.4467 2.9235 3.4814 3.8631      20           120 

238 2.5085 2.9974 3.5702 3.9609      21           120 

238 2.5742 3.0763 3.6630 4.0669      22           120 

238 2.6431 3.1603 3.7618 4.1760      23           120 

238 2.7167 3.2480 3.8680 4.2876      24           120 
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CHAPTER 5 

DISCUSSION 

Overview 

Previously, in situations where outliers were present in a data set or the 

underlying distribution was in question, asymptotic adjustments had to be made for the 

two sample winsorized t test using Student’s t test based on h1 +h2-2 degrees of freedom, 

where h is calculated using the formula h = n – 2g, where n represents the sample size 

and g represents the number of values winsorized per side.  The findings of this study 

now make it possible for researchers to reference the distribution of the winsorized t to 

get a better estimate of the correct critical value.   

To illustrate the efficiency of the critical values derived from approximating the 

distribution of the winsorized t, an example was calcualted where two samples were 

analyzed using both the Student’s two sample t test and the two sample winsorized t test.  

The calculated test statistic was then compared against the critical values from both the 

Student’s t distribution Both samples were then comparing the critical values from two 

sample t test to those from the two sample winsorized t test using a random data set 

where n1 = n2 = 25.   
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Table 6. Random data used for comparison. 

 
    SAMPLE A                 SAMPLE B 

-5.84 1.21 -8.75 -0.02 

-1.87 1.49 -2.79 0.04 

-0.43 1.55 -0.91 0.22 

-0.54 1.57 -0.62 0.38 

-0.12 1.57 -0.55 0.51 

-0.02 1.82 -0.41 0.53 

 0.12 1.87 -0.40 0.61 

 0.34 1.90 -0.31 1.09 

 0.40 1.91 -0.28 1.47 

 0.53 1.93 -0.21 1.59 

 0.55 2.34 -0.18 2.39 

 0.62 3.95 -0.16 2.06 

 0.92  -0.03 

________________________________________________________________________ 

  

 For each sample, both the two sample t test and winsorized t test were calculated 

at the 0.05 level for the two-tailed test to determine if the |T| exceeded the tabled critical 

value.  If no difference is found to exist between the two treatment groups, the null 

hypothesis, Ho: μ1 = μ2 will be retained.  The calculated means and standard deviations 

for both groups are as follows: 

    Sample A   Sample B 

  :  0.7108   -0.1892 

 s:  1.7965    2.0667 

Using the formula for the two sample t, 

1 2

1 2

2
x x

X X
t

S
n


  , where 

1 2

1 2

2 2

2

x x

x x

S S
S


 .   

 

 The calculated t value, 1.6433, is compared to the critical value of ± 2.0106 from 

Student’s t table for df = 48 at α = 0.05 for a two-tailed test.  Because the calculated t 

value, 1.6433, is less than the critical value, the null hypothesis is maintained, that there 
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is no difference between treatment effects for Samples A and B.  The same data were 

then used to calculate the two sample winsorized t test.  For sample size n = 25 at 4 % 

symmetric winsorization, where the smallest and largest observatons were recoded from 

each end of the data back to the r +1 smallest, and s + 1 largest observations.   

 

Table 7. Summary of sample A and B original and first level winsorized data, n = 25.  
 

Sample A 

Original Data 

(Ordered from 

least to greatest) 

Sample A 

Winsorized Data 

(First level 

winsorization) 

Sample B 

Original Data 

(Ordered from 

least to greatest) 

Sample B 

Winsorized Data 

(First level 

winsorization) 

-5.84 -1.87 -8.75 -2.79 

-1.87 -1.87 -2.79 -2.79 

-0.54 -0.54 -0.91 -0.91 

-0.43 -0.43 -0.62 -0.62 

-0.12 -0.12 -0.55 -0.55 

-0.02 -0.02 -0.41 -0.41 

0.12 0.12 -0.40 -0.40 

0.34 0.34 -0.31 -0.31 

0.40 0.40 -0.28 -0.28 

0.53 0.53 -0.21 -0.21 

0.55 0.55 -0.18 -0.18 

0.62 0.62 -0.16 -0.16 

0.92 0.92 -0.03 -0.03 

1.21 1.21 -0.02 -0.02 

1.49 1.49 0.04 0.04 

1.55 1.55 0.22 0.22 

1.57 1.57 0.38 0.38 

1.57 1.57 0.51 0.51 

1.82 1.82 0.53 0.53 

1.87 1.87 0.61 0.61 

1.90 1.90 1.09 1.09 

1.91 1.91 1.47 1.47 

1.93 1.93 1.59 1.59 

2.34 2.34 2.06 2.06 

3.95 2.34 2.39 2.06 

N = 25 N = 25 N = 25 N = 25 

: 0.7108 w1: 0.8052 : -0.1892  w2: 0.036 

S: 1.7965 S: 1.1751 S: 2.0667 S: 1.1749 

S
2
: 3.2272 S

2
: 1.3809 S

2
: 4.2714 S

2
: 1.3804 

Sum: 17.77 Sum: 20.13 Sum: -4.73 Sum: 0.9 
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Calculation of the two sample winsorized t is derived using a modification of the 

Student’s t test (see p. 31) and is outlined below: 

    

Computation of the numerator:  0.8052 – 0.036 =0 .7692; 

Computation of the denominator:    =    

1 1
(25 1)1.3809 (25 1)1.3804

25 25

25 25 2

 
     

 

 
                                                              

                                                                          

     = 
 (24)1.3809 (24)1.3804) 0.08

48

 
                    

                                            

     =
 (33.1416 33.1296) 0.08

48

 
 

                           =
 (66.2712) 0.08

48


                                              

      

     =
(5.301696)

48
 

 

     = 0.110452  

    

     = 0.3323431961  

 

  

    So, tw =  0.7692/0.3323431961 

 

                                            tw = 2.31447  

 

 When the calculated winsorized t value, 2.3145, is compared against the critical 

value of ± 2.1864 for first level winsorization for 48 df at α = 0.05 for the two-tailed test, 

it is observed that the calculated winsorized t value exceeds the critical value.  The null 
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hypothesis is then rejected, that there is no difference between treatment effects for 

Samples A and B, which is inconsistent with the results achieved from Student’s t test. 

Conclusions 

 The table of critical values developed from this study are useful in that 

researchers no longer have to rely on or reference critical values from Student’s t table 

when using the two independent samples winsorized t test.  As noted in the previous 

example, making inferences about data that may be prone to outliers using critical values 

from Student’s t table can provide significantly different results than when using critical 

values from the winsorized t table.  The critcal values for the two independent samples 

winsorized t table are useful tools for researchers to reference, particularly in the fields of 

psychology and education, where it was noted by Micerri (1989), that many emperical 

distributions are prone to extreme heavy tailedness.   
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 Through Monte Carlo Simulation, this study explores the approximate behavior of 

the two sample winsorized t test.  Samples are drawn from the normal population and 

symetrically winsorized up to 20%.  The two independent samples winsorized t test is 

then calculated on each sample using Monte Carlo methods using 1,000,000 iterations.  

The t values are then sorted from low to high and the critical values for both one and two 

tailed tests identified at the 95
th

, 97.5
th

, 99
th

 and 99.5
th

 percentiles. A table of critical 

values is then created, which represents the approximate distribution of the winsorized t 

statistic. 
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