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Abstract:  

 

We present palaeoeconomy reconstructions for pre-modern agriculture; we select, wherever re-
quired, features and parameter values specific for the Cucuteni–Trypillia Cultural unity (CTU: 
5,400–2,700 BC, mostly the territory of modern Ukraine, Moldova and Romania). We verify the 
self-consistency and viability of the archaeological evidence related to all major elements of the 
agricultural production cycle within the constraints provided by environmental and technologi-
cal considerations. The starting point of our analysis is the palaeodiet structure suggested by ar-
chaeological data, stable isotope analyses of human remains, and palynology studies in the CTU 
area. We allow for the archeologically attested contributions of domesticated and wild animal 
products to the diet, develop plausible estimates of the yield of ancient cereal varieties cultivated 
with ancient techniques, and quantify the yield dependence on the time after initial planting and 
on rainfall (as a climate proxy). Our conclusions involve analysis of the labour costs of various 
seasonal parts of the agricultural cycle of both an individual and a family with a majority of 
members that do not engage in productive activities that require physical fitness, such as tillage. 
Finally, we put our results into the context of the exploitation territory and catchment analysis, 
to project various subsistence strategies into the exploitation territory of a farming settlement. 

The simplest economic complex based on cereals, domestic and wild animal products, with fal-
low cropping, appears to be capable of supporting an isolated, relatively small farming commu-
nity of 50–300 people (2–10 ha in area) even without recourse to technological improvements 
such as the use of manure fertiliser. Our results strongly suggest that dairy products played a 
significant role in the dietary and labour balance. The smaller settlements are typical of the ear-
liest Trypillia A but remain predominant at the later stages. A larger settlement of several hun-
dred people could function in isolation, perhaps with a larger fraction of cereals in the diet, only 
with technological innovations, such as manure fertiliser and, most importantly, ard tillage. The 
ard relieves radically the extreme time pressure associated with soil preparation for sowing. It 
appears that very large settlements of a few hundred hectares in area, found in the CTU region, 
could function only if supported by satellite farming villages and stable exchange networks. In 
turn, this implies social division of labour and occupation, sufficiently complex social relations, 
stable exchange channels, etc.: altogether, a proto-urban character of such settlements. A model 
is proposed for the lifetime of a farming settlement assuming that it is limited by the soil fertility 
(the depleted resources model), that provides a lifetime estimate consistent with the archaeolog-
ical evidence available (100–150 years). It is shown that the lifetime strongly depends on the 
fraction of the arable land area kept fallow. We also discuss, quantify and assess some strategies 
to mitigate the risks of arable agriculture associated with strong temporal fluctuations in the ce-
real yield, such as manure fertilisation, increased fraction of cereals in the diet combined with 
producing grain surplus for emergency storage. 
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tions that have helped to improve the clarity and consistency of the paper. This work was supported by 
the EC FP6 project FEPRE and the Leverhulme Trust Research Grant F/00 125/AD. 
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1. Introduction 

The economy and demography of the spread and subsequent development of early agriculture, 

and their mathematical modelling, remain one of the predominant themes in the studies of pre-

history. Much previous work on the mathematical modelling has focused on the ‘first arrival’ of 

the Neolithic (see Steele 2009 and Fort 2009 for a review). Here we attempt to provide a quanti-

tative basis for the essentially nonlinear modelling of the subsequent evolution of the farming 

population in a newly colonized area. Among the relevant processes, some of them identifiable 

from archaeological and radiometric evidence, are the evolution of the population density after 

the initial settlement stage, the spatial clustering of the population, as well as the development of 

(hierarchical) settlement patterns and exchange and communication networks. 

Models of the initial spread of the Neolithic involve a number of parameters mainly esti-

mated from ethnographic and archaeological evidence. These include the intrinsic growth rate of 

the population, its mobility (or diffusivity), and the carrying capacity of the landscape. An im-

portant aspect of carrying capacity estimations is the productivity of early farming, including its 

dependence on major environmental parameters. Our subject here is palaeoeconomy reconstruc-

tions that underpin carrying capacity estimates. We verify our results by comparing the resulting 

maximum size and lifetime of a farming settlement with the archaeological data for the Cu-

cuteni–Trypillia culture (ca 5,400–2,700 BC, the territory of modern Ukraine, Moldova and Ro-

mania). 

The economic foundation and context affect virtually all aspects of internal and external 

social interactions, including those of prehistoric farmers and their foraging neighbours. For ex-

ample, the intensity of contacts between them can be expected to depend, among other factors, 
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on the sustainability of the agricultural production and the need to supplement the farmers’ diet 

by wild food products and the foragers’ diet by cereals. Obviously, the appeal and indeed the 

possibility of such an exchange depend on the availability or shortage of surplus agricultural 

products. Therefore, a better understanding of the farming palaeoeconomy (especially when sup-

plemented with a similar insight into the foragers’ economic behaviours) would shed light on the 

interactions between farmers and hunter-gatherers and thus contribute to the clarification of the 

roles of demic and cultural diffusions in the spread and subsequent development of prehistoric 

agriculture. In this paper, we address the farmer’s side of the economic basis for such interac-

tions. 

Palaeoeconomy reconstructions for early agricultural communities are numerous and di-

verse, at both global and regional levels (Higgs and Vita-Finzi 1972; Jarman et al. 1982; Ellen 

1982; Gregg 1988; Ebersbach and Schade 2004; Tipping et al. 2009). There is a number of such 

studies for the CTU agriculture in particular (Bibikov 1964; Krutz 1989; Zbenovich 1996; Ni-

kolova and Pashkevich 2003; Videiko et al. 2004; Pashkevich and Videiko 2006). Many such 

studies aim, explicitly or implicitly, to estimate the carrying capacity of the landscape. However, 

it is impossible to disagree with the opinion expressed in Jarman et al. (1982, p. 24), that “the 

production of precise numerical population estimates” is “a most hazardous undertaking given 

the uncertainty surrounding resource levels… One tends thus to be faced with a figure so hedged 

about with qualifications, or so slenderly justified, as to command little confidence”. Indeed, the 

usefulness of such calculations is not in the resulting figures, even though they must be of a rea-

sonable magnitude and consistent with other relevant knowledge to be acceptable. Any estimates 

of this kind cannot be used to assess, even in rough terms, the population of any region. Their 

significance is rather in (a) an opportunity of quantitative hypothesis testing; (b) confirmation (or 

otherwise) of the mutual consistency of various elements of the overall palaeoeconomy and sub-

sistence picture and, most importantly, (c) assessment of the effect of the input parameters and 
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identification of the most important of them, that is those to which the results are most sensitive. 

Such parameters should be the first to attract further attention as to obtain their reliable values. 

Furthermore, results based on the same principles but applied to different regions or even epochs 

can help to assess their relative similarities and dissimilarities.  

Quoting Jarman et al. (1982, p. 14) again, “Man (along with pigs and rats), however, is 

dietarily an omnivore… Thus the computation of human nutritional requirements is immensely 

complicated”. It is then unavoidable that the calculations presented here involve a large number 

of parameters. The values of many of them in the context of early agriculture are poorly known 

or unknown. Therefore, a large part of our effort was to collect and summarize relevant data, 

translate them to the prehistoric context if required, and then to isolate results that are less de-

pendent on hypothetical constructs. We focus on the sole characteristic of the food production 

system, the calorific value of cereals and animal products leaving aside numerous other compo-

nents of the economic and social system. We are far, however, from suggesting that the simplest 

constraints that can be identified with this approach are predictive and deterministic. But as Ellen 

(1982, p. 123) notes, “Much of what we say about the operation of specific social systems must 

hinge on an accurate appreciation of how social relations articulate with pattern and techniques 

of subsistence”. Our aim here is to contribute to a quantitative understanding of the “pattern and 

techniques of subsistence” of the Neolithic and Bronze Age farmers, those in the CTU area in 

particular. 

Our attempt at the palaeoeconomy reconstruction is somewhat different from the earlier 

approaches. We first establish a set of plausible estimates of the numerous important parameters 

that characterize early farming (both plant and animal husbandry), verify that they are not self-

contradictory by assessing the land use and labour costs of the agricultural production consistent 

with them, and then discuss the dependence of the economic behaviour of the population on var-

ious input parameters and their combinations. The last step allows us to isolate robust results and 
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separate those factors that affect the farming economy most profoundly and thus warrant further 

archaeological investigation. We deliberately neglect a large number of details in our models and 

calculations (such as the difference between calorific values of various cereal varieties grown by 

the CTU farmers, the nutritional differences of hay and leafy fodder, etc.) retaining only those 

parameters that can affect the results rather dramatically. Firstly, many of such details are sub-

sumed into gross features that, unlike the details, can be quantified using archaeological, envi-

ronmental and ethnographic evidence. Secondly, excessive details (which are not, in fact, diffi-

cult to include) can lead to an illusion of a high precision, accuracy and predictive power of the 

results, which are unavoidably very limited in such calculations. 

Apart from generic data on agricultural productivity, our estimates of the cereal yield, 

and its dependence on climate and soil depletion, are derived using data from an experimental 

agricultural farm in the US Midwest, where the climate and soil type are broadly similar to those 

in the Cucuteni–Trypillia area. The data suggest that, for a given soil type and crop variety, the 

January–May rainfall, the use of natural fertilisers, and the cultivation time are the main varia-

bles that control the yield produced. In what follows, we quantify the dependence of the wheat 

crop yield on these variables, and proceed to including animal husbandry and diet variations into 

our model of the productivity of pre-modern agriculture. 

2. The Cucuteni–Trypillia cultural complex 

One of the most important and best-explored early farming communities in Eastern Europe is the 

Late Neolithic–Chalcolithic Cucuteni–Trypillia cultural unity (CTU). Discovered independently 

in eastern Romania (Cucuteni) and in the central-western Ukraine (Trypillia) in the late nine-

teenth century, the CTU underwent several stages in its evolution specified in Table 1. Extensive 

reviews of the nature and development of the CTU, briefly summarised here, can be found in 

Zbenovich (1996) and Videiko (2000). Comprehensive reviews of the CTU archaeology are pre-
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sented by Whittle (1996), Videiko et al. (2004), Videiko (2007), Krutz (2008), Korvin-

Piotrovsky (2008); Chapman et al. (2014) and Rassman et al. (2014) among other authors. 

CTU sites are located either in close proximity to, or within, river valleys, in most cases 

on natural elevations. The number of CTU sites found in the territory of Ukraine alone is about 

2,100; most of them are permanent settlements. Table 2 presents the areas of the sites. The typi-

cal (median) area of Trypillia settlements is significantly smaller than their mean area at each 

stage because there is a relatively small number of exceptionally large settlements that affect the 

average but not the median area. The difference between the mean and the median areas is not 

very strong at the earlier stages A–BI but becomes extreme at the later stages. In such cases, the 

median area best represents a typical site. There is a systematic increase in the size of the settle-

ments, with a maximum during the middle stages. 

Plant remains identified at the CTU sites in the Ukraine and Moldova show that agricul-

ture was already substantially advanced, even at early CTU stages (Pashkevich 2000, 2004, 

2005). The dominant species of cereals were hulled wheats (Triticum dicoccon Schrank, T. mon-

ococcum L. and T. spelta L.), supplemented by naked six-row barley (Hordeum vulgare var. nu-

dum Hook f. coeleste L.) and hulled barley (Hordeum vulgare). Broomcorn millet (Panicum mil-

iaceum L.) was less common. During later periods, changes are observable only in the dominant 

varieties of barley: large amounts of naked barley were particularly typical of 

Trypillia A/Precucuteni sites, but were increasingly replaced by hulled varieties. The list of 

Trypillia cultigens also included pea (Pisum sativum L.) and bitter vetch (Vicia ervilia L.); pulse 

seeds are also frequently recovered in excavations. The fields were cultivated with antler and 

stone hoes, which made the soil more friable and thus better prepared for sowing the spikelets of 

hulled wheats (Pashkevich 1997, 2003; Pashkevich and Videiko 2006). The use of the ard is 

suggested both by a find of what has been interpreted as an antler ard at Grebenukiv Yar (Pash-

kevich and Videiko 2006) and by cattle and horse bone structures that suggest their use for trac-
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tion (Zhuravlev 2008). The harvesting technique was probably specially adapted for cutting ears. 

Low yields, long periods of natural soil regeneration, primitive tools for soil cultivation and har-

vesting, and the use of undemanding cultigens were the basic features of the Early- and Middle-

Trypillia agriculture. 

The animal remains identified at the Trypillia sites belong to both wild species (red deer, 

wild boar, roe deer, elk, etc.) and domesticated species (cattle, pig, sheep/goat and horse); the 

relative occurrence of species varies significantly from site to site, implying considerable varia-

tions in subsistence. Cattle (and possibly horses) were used for transportation and traction as evi-

denced by bone structures and pottery models of sledges with ox heads found at several sites. 

From the early phases, CTU settlements consisted of several one- or two-storey houses, 

each supposedly inhabited by a single family (sometimes, several families). The population of a 

typical settlement (estimated 50 to 500 people) formed a basic community unit, apparently shar-

ing the ownership of land and other resources (Rassman et al. 2014). No communal cemeteries 

are known at the CTU sites from the early and middle periods (Dergatschov 1991). From the ear-

liest periods onwards, female effigies were predominant among the portable figurines (Pogoševa 

1985), possibly symbols of fecundity, as grains of wheat and barley were found included in the 

ceramic fabric of several figurines at the Luka-Vrublevets’ka site (Bibikov 1953). 

There are at least two concepts concerning the origins and expansion of the CTU; in the 

main, it is viewed as a result of migration from west to east and south. A different viewpoint, 

particularly popular in the former Soviet Union, stressed the local origin of the CTU, pointing to 

the Bug–Dniesterian region as the most likely source. Based on the bulk of available evidence 

one may consider the initial emergence of CTU sites in the forest-steppe of Eastern Europe as an 

agricultural colonization, essentially similar to that of the LBK in central Europe, with a com-

plete culture-economic package spreading into a poorly occupied niche at a rapid pace. Similarly 

to the LBK, a limited impact of indigenous (in the CTU case, the Bug–Dniester) groups is rec-
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ognizable in the location of the sites and in the material culture. More recently, the possible in-

fluence on the CTU of agricultural innovations originating further east (e.g., proso millet, hemp), 

and migrating west via the ‘Caucasus corridor’, has received more serious attention (Motuzaite-

Matuzeviciute et al., 2009). 

CTU communities never existed in isolation; their extensive connections with neighbour-

ing groups are recognizable in various aspects of their material culture (Tkachuk 2000, Videiko 

2000). Contact with the East became particularly apparent during the middle phase, when the 

settlements expanded further eastward and grew in size (Videiko 1994, 2007; Whittle 1996). 

Several sites became particularly large: Vesely Kut reached 150 ha in size; Talyanky was still 

larger at 341 ha and had approximately 14,000 inhabitants (Videiko 2007, Krutz 2008, Korvin-

Piotrovsky 2008, Chapman et al. 2014); the area of Maydanetske was 210 ha, with 2,900 houses 

identified by geophysical surveying (Rassman et al., 2014). All these settlements were surround-

ed by fortifications consisting of palisades and houses built next to each other. At this stage, the 

Trypillia sites show signs of a growing social hierarchy, primarily evident in the occurrence of 

élite burials. The earliest recognizable kurgan-type barrow has been found in Moldova, at the site 

of Kainari (Rassamakin 2004). It contained a female skeleton with a rich collection of grave 

goods consisting of ceramic vessels (Trypillia BI) and copper adornments. Several Middle 

Trypillia sites included stone anthropomorphic sceptres and mace heads. 

The areas and population estimates quoted in the previous paragraph correspond to a 

population density of 3,500 person/km2 for Talyanky and 8,200 person/km2 for Maydanetske 

(assuming 6 people per house). These settlements are among the largest known in the CTU, and 

the population density is likely to be lower for smaller villages. We adopt an in-settlement popu-

lation density of 
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 𝜌 = 2,650 person/km! = 26.5 person/ha (1) 

 

as a nominal figure for estimates presented further in the text, corresponding to a settlement area 

of about 380 m2 per person. This implies a population of 53 people in a village of 2 ha in area 

and 265 inhabitants in a 10-ha settlement. 

At that time, several distinct cultural entities arose in the steppe to the east of the 

Trypillia core area, including the Seredni Stig and Mykhailivka (Lower Level) cultures. The un-

fortified dwelling sites and cemeteries of Seredni Stig were located in forested river valleys, be-

tween the lower Dnieper and Don (Telegin et al. 2001). The apparent distinctions in subsistence 

from the Trypillia area are primarily attributable to the ecology: an increasing aridity of the cli-

mate towards the east makes agriculture in the areas east of the Dnieper less sustainable and less 

predictable. One may reasonably suggest that, because of the increasing scarcity of water supply 

in the areas east of the Dnieper, the agricultural activities predominantly took the character of 

stockbreeding. 

The area of Trypillia settlements lies in a temperately continental climatic zone influ-

enced by moderately warm, humid air from the Atlantic Ocean (e.g., Pashkevich and Videiko 

2006, p. 15). Winters in the west of the region are considerably milder than in the east, but the 

eastern part often experiences higher summer temperatures. Average annual temperatures range 

from 5.5–7° in the north to 11–13°C in the south. The average temperature in January, the cold-

est month, is −3°C in the southwest and −8°C in the northeast. The average temperature in July, 

the hottest month, is 23°C in the southeast and 18°C in the northwest. 

Maximum precipitation generally occurs in June and July, while the minimum falls to 

February. The precipitation in the western part of the CTU area is 650 mm/year and decreases to 

450–600 mm/year in the east. Western Ukraine, notably the Carpathian Mountains area, receives 

the highest annual precipitation of more than 1,200 mm/year. Snow falls mainly in late Novem-



 
 
Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol after official publication for the final version. 

 
 

ber and early December, varying in depth from 5–10 cm in the steppe region to several feet in 

the Carpathians. The snow cover in the Dniester–Prut interfluve is unstable but it can stay for up 

to 40 days in the eastern region. 

Trypillia settlements are located in the area of fertile chernozem soils. The most fertile 

varieties, the so-called deep chernozems, lie in the north (about 1.5 m thick and rich in humus). 

Prairie, or ordinary, chernozems, equally rich in humus but only about 1 m thick, occur further 

south and east. The soil in the southernmost belt has an even thinner chernozem layer and has 

still less humus (Pashkevich and Videiko 2006). Interspersed in the uplands and along the north-

ern and western perimeter of the deep chernozems are mixed grey forest and podzolic black-

earth soils, which together form the remaining soil cover. All these soils are very fertile when 

sufficient water is available. The smallest proportion of the soil cover consists of the chestnut 

soils of the southern and eastern regions, which become increasingly salinized to the south closer 

to the Black Sea. 

3. Palaeodiet reconstructions 

The relative importance of plant food versus domestic animal products and wild meat in the diet 

of early farming communities remains a subject of active discussion. Stable isotope analysis of 

human bones by Lösch et al. (2006) suggests that, in the early farming communities of Anatolia 

(Pre-Pottery Neolithic B, mid-ninth millennium BC), “the contribution of stock on the hoof in 

the human diet was modest”. Low 15N values in their samples imply the increased consumption 

of protein-rich cereals and pulses. According to these authors, animal husbandry gained in im-

portance at later Neolithic stages. Bogaard (2004a) concluded, from archaeobotanical evidence, 

that cereals and pulses provided the bulk of the diet in Neolithic Greece, while livestock provid-

ed a vital alternative in the case of crop failure.  
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In contrast, investigations of Copper Age (early- to mid-fifth millennium BC) cemeteries 

in Varna I and Durankulak, Bulgaria (Honch et al. 2006), using stable carbon (13C/12C) and ni-

trogen (15N/14N) isotope ratios, suggest a diet based on terrestrial resources, with a predominance 

of animal products (meat and/or milk, cheese and other secondary products from sheep/goat). 

These sites are roughly coeval with Trypillia A. However, the Bulgarian Copper Age sites are 

more advanced agriculturally. Hence, one might argue that the initial stage of farming at the ear-

ly Trypillia sites may be structurally closer to the early Anatolian farming with the human diet 

being essentially based on cereals and pulses, with greater impact of animal husbandry at the lat-

er stages.  

Ogrinc and Budja (2005) perform a similar stable isotope analysis of the animal (both 

wild and domestic) and human bone collagen as well as of floral remains (mostly wheat, barley 

and peas) from Ajdovska Jama cave in Slovenia, dated to 6,400–5,300 years cal BP, i.e., coeval 

with Trypillia B–C. These authors find convincing evidence for a stable palaeoeconomy during 

this whole period, based on terrestrial food resources. According to these results, the major diet 

components were domestic animal products (44%), cereals (39%) and terrestrial wild meat 

(17%). Bogaard et al. (2007) stress that field manuring can bias the results of such analyses, 

leading to an overestimation of the contribution of animal products to the diet. However, there is 

firm archaeological evidence in favour of the importance of animal husbandry in the CTU agri-

culture. Pashkevich (1989, p. 136) concludes, from palynology data, that land farming and ani-

mal husbandry were equally important at the Maydanetske settlement.  

As a plausible estimate and the starting point of our discussion, we assume that domestic 

animal products and cereals provided each 𝜀d = 𝜀g = 0.4 of the food consumption of the CTU 

population, with the remaining 𝜀w = 0.2 coming from wild animals. The meat weight and its 

calorific value of the hunted animals (mostly red deer, roe deer and wild boar in Trypillia) can be 

found in Jarman et al. (1982, p. 83). We do not include vegetables and other plants in our calcu-
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lations as they could only contribute little to the calorific content of the diet: although as much as 

2–3 kg of leafy vegetables would supply as little as 1000 kcal of energy (Jarman et al. 1982, 

p. 16), this volume of food exceeds the natural biological constraints of the human body. Like-

wise, we do not include any wild plants even if their calorific value might be comparable to that 

of cereals (Stokes and Rowley-Conwy 2002). 

Our calculations presented below refer to the energy content of the food alone, but not to 

any nutritional balance of its individual components such as proteins, vitamins, amino acids, etc. 

Moreover, we only consider cereals, meat and dairy products but neglect legumes. Jarman et al. 

(1982, p. 16) note that, “when adequate calories are available from a varied diet, then considera-

bly more than minimal protein requirements are automatically provided”. Given the unavoidably 

tentative and approximate character of palaeoeconomy calculations, we do not feel that introduc-

ing a more detailed nutritional classification of foods would be justifiable. 

4. Cereal yield 

In this section, we discuss methods of estimating the plausible wheat yield in the CTU region 

using the available data from agricultural experiments in other comparable areas. Apart from 

corrections for ancient wheat varieties, we present evidence for the variation of the yield with 

rainfall, duration of continuous cropping and the efficiency of manure fertilisation. Since no evi-

dence of irrigation has been discovered in the CTU area, we focus on dry farming. 

4.1  Agricultural experiments 

Any attempt to estimate the productivity of prehistoric agriculture faces a number of problems. 

Specifically in the CTU area, the land in the Ukraine, Moldova and Romania today has been cul-

tivated for 9,000–8,000 years and the soils are unlikely at all to have properties like those en-

countered by the first CTU farmers. The varieties of wheat grown today have been modified by 
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plant breeders and the yields have increased greatly, even without fertilisers (Austin et al. 1993). 

Furthermore, agricultural tools have changed over time, undoubtedly affecting the agricultural 

productivity. Added to this is the problem that, in the modern agricultural practice and in most 

agricultural experiments, the soil is amended with nutrients and pests, often made heavier by 

prolonged use of heavy agricultural machinery, and with weeds and diseases controlled using 

synthetic chemicals.  

One way to address a part of these problems is to use the results from long-term agricul-

tural experiments in areas which had not previously been used for agriculture. This excludes vir-

tually the whole of Europe, Africa and Asia. In the central United States, however, there are are-

as that are climatically similar to the Ukraine and where the prairies remained uncultivated until 

the late nineteenth century. In Australia, there are also similar areas that had not been exploited; 

however, in southern Australia, unlike the CTU area, the climate is Mediterranean with a severe 

summer drought. These experiments mostly involve modern wheat varieties rather than those 

used in the early agriculture. This remains a problem which is hard to resolve completely (see 

below).  

Our main data come from the Sanborn Field of the Agricultural Experiment Station of the 

University of Missouri–Columbia, USA (N38°57ʹ, W92°19ʹ) which began in 1888 and still con-

tinues; this is one of the oldest continuous, long-term research plots in the world (Miller and 

Hudelson 1921). In this experiment, we are interested in wheat grown annually and in various 

biennial and rotational systems both with and without the use of manure fertiliser. The Sanborn 

field is divided into 39 experimental plots, each 30 m by 10 m in size, separated by 1.5 m wide 

grass hedges. Changes were made to the experiment over its lifetime. Commercial fertiliser was 

introduced in 1914, and the number of plots receiving manure was reduced, which prevents us 

from using data obtained after 1918. A suitable coherent run of data for a number of replicate 

plots comes from the 1890–1918 period. Climatic data is available for Columbia from the U.S. 
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National Oceanic and Atmospheric Administration, currently from 1890. The average climate 

conditions at the Sanborn field have been very stable over the period 1895–1998, without any 

detectable trends in the temperature and precipitation. The average annual surface temperature in 

1895–1998 was 13°C, with the maximum and minimum monthly mean temperatures of 26°C in 

July and about −2°C in January. Mean annual precipitation was 973 mm, and potential evapo-

transpiration, 790 mm (Hu and Buyanovsky 2003). 

Chernozems and podzolic chernozems are widespread in the CTU area. Chernozems in 

the USA are classified within the Mollisol group (Fanning and Fanning 1989) and Sanborn lies 

at the south-eastern edge of the zone. Currently the detailed classification of the soil is an udollic 

ochraqualf, the mollic properties of the thin loess deposit being modified by the underlying gla-

cial till; the top layer of the soil profile contains 2.5–2.9% organic matter (Hu and Buyanovsky 

2003). 

The yield (here denoted Y, in tonne/ha/year, with Yu obtained without any fertiliser and 

Ym obtained from manured plots) is known for each replicate plot between 1890 and 1918 (Mil-

ler and Hudelson 1921). Measurements of total rainfall between January and May are available 

at the experiment location (denoted R, in mm), and the time since the start of cultivation is 

known for each plot (denoted D, in years). These data are analysed below separately for plots 

with and without manure fertiliser applied, and where the wheat was grown every year, but we 

also considered data for crops grown biennially or in rotation with other species. Data on the air 

and soil temperature at the Sanborn experiment site are also available. However, we do not use 

the temperature data in our analysis since the rainfall and temperature are not independent varia-

bles; on average, lower rainfall implies higher temperature. We use the rainfall data for the Janu-

ary–May period when the growth of the wheat is most critically affected by either drought in the 

early summer period (Arnon 1972) or by excess water leaching nitrogen from the soil (Hall 

1905). 
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4.2  Variability and systematic trends of wheat yield 

The data from the Sanborn experiment come from seven replicate plots of land, five treated with 

manure and two unmanured, with wheat grown annually.  

4.2.1 Yield without fertilisers 

For unmanured wheat grown every year at Sanborn, the average yield is 0.9 tonne/ha/year with a 

standard deviation of 0.7 tonne/ha/year (the coefficient of variation of 80%). The yield variabil-

ity is very large, with a peak frequency at about 0.6 tonne/ha/year and a long positive tail (that is, 

a few years gave exceptionally high yields). There are significant negative correlations between 

the wheat yield Yu and both rainfall from January to May R and the duration of cultivation D. 

The experimental data are shown with open circles in Figures 1a and 1b. 

Assuming that the soil fertility is depleted by the same fraction each year, it might be ex-

pected that the dependence of the yield on time, and perhaps rainfall, is exponential. However, 

because of the large data scatter and relatively narrow ranges of the independent variables, it is 

more reasonable to adopt the simplest linear dependence of the yield at the unmanured plots, Yu, 

on the January–May rainfall, R, and the cultivation duration, D, 

 

 𝑌u = 𝐴 + 𝐵𝑅 + 𝐶𝐷 , (2) 

 

with the constants A, B and C to be determined by fitting this dependence to the data. It is diffi-

cult to justify a more complex model given the data available. A least squares fit to the data from 

unmanured fields, shown in Figures 1a and 1b has the form 

 

 𝑌u
1 kg/ha/year = 2500± 570 − 2.9± 0.14

𝑅
1 mm − 40± 14

𝐷
1 year , 

(3) 
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where the uncertainties represent one standard deviation obtained from the scatter of the data 

points around the fit. The values of Yu obtained from this fit for the corresponding values of R 

and D are shown in the figures with filled circles to appreciate the quality of the fit. 

Figure 1a shows the yield (both observed and fitted) versus the January–May rainfall, and 

Figure 1b presents the variation of the yield with time after initial planting. The yield decreases, 

on average, with both R and D. Rainfall over the period January to May averages to 400 mm 

with a standard deviation of 114 mm; it is clear that the higher rainfalls are not beneficial; the 

same effect was found at the Broadbalk experiment in England (Hall 1905), where yield was re-

duced in wetter seasons. The rainfall of about 300 mm is nearly optimal for the crops as more 

rainfall just removes nutrients from soil. The rainfall at Sanborn was less than 292 mm in only 

two years (256 mm in 1901 and 142 mm in 1914) that showed significantly reduced yields. 

However, the data available are not sufficient to identify such a non-monotonic dependence of Yu 

on R. Conservatively, the fits presented here should only be applied for R ≥ 300 mm for the Jan-

uary–May rainfall. 

The reduction in yield with the cultivation time on these unmanured plots is not unex-

pected, and a similar reduction is clearly noted for the Urrbrae wheat experiment in Australia 

(Grace and Oades 1994). 

This analysis relates to all unmanured replicate plots combined. To ensure that the trends 

are consistent across individual plots, we repeated the analysis for the two individual unmanured 

replicate plots. The fits to the data from the individual plots have much larger errors, but the 

trends with rainfall and time remain. We show the fit coefficients and their errors for the individ-

ual plots and the summary results in Table 3. 
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4.2.2 The effect of manure fertilisation 

We used data from five manure-fertilised plots with wheat grown every year. These received 

15 tonne/ha/year of farmyard manure but were otherwise identical to the unmanured plots. The 

average yield of all unmanured plots is 1.34 tonne/ha/year with a standard deviation of 

0.7 tonne/ha/year (coefficient of variation of about 50%). The variability between the plots and 

years is much smaller than that in the unmanured plots. The yield Ym is significantly correlated 

with the January–May rainfall R and time span D since the beginning of cultivation: 

 
 𝑌m

1 kg/ha/year = 3500± 300 − 4.7± 0.7
𝑅

1 mm − 30± 8
𝐷

1 year . 

 

(4) 

Figure 1c and Figure 1d show the yield data for manured plots (open circles) together with this 

fit (filled circles). Panel (c) shows the yields (both observed and fitted) versus rainfall, Panel (d) 

presents the yield dependence on time. The rate of decrease in yield with time is smaller than for 

the unmanured plots, while that with increased rain is larger. It is not surprising that the decrease 

with time is slower than that for the unmanured plots, as the manure supplied a large part of the 

nutrients removed in the harvested crop. The stronger decrease with rainfall can occur because 

more nutrients are leached from the soil in the wetter years, or because the thicker crop lodged 

(was knocked down) more severely by intense rain. The yield is, most frequently, higher than for 

the unmanured plots, and there is a long positive tail of infrequent very high yields. Again, each 

plot was analysed individually as well as collectively with all other manured plots. Similar trends 

are present at all replicate plots, as shown in Table 3. 

As mentioned above, we also tried fits with exponential dependencies on rainfall and 

time span, but this did not improve the statistical quality of the results. The time span available 

(only around 25 years) is too short to make it practical to distinguish exponential and linear de-
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pendences. We note, however, that it is probable that the decline in productivity is exponential in 

the long term (i.e., there is a constant annual fractional decrease in yield).  

For completeness, we also fitted a constant to the data, to test the hypothesis that the 

yield is independent of the rainfall and time; the resulting fits were significantly worse than the 

linear fits given above, confirming that the systematic trends revealed are meaningful.  

To provide an additional measure of the yield sensitivity to the rainfall and time lag, we 

calculated the Pearson cross-correlation coefficient Cij between these variables. The cross-

correlation coefficients given in Table 4 suggest that, in the case of unmanured plots, the yield is 

slightly more sensitive to time elapsed since the start of cultivation than to the rainfall: |CYD| > 

|CYR|, with CYD = –0.31 and CYR = –0.26. We note, however, that the difference is rather small 

and perhaps statistically insignificant. However, the opposite inequality applies to manured plots, 

where |CYR| = 0.42 is more than a factor of two larger than |CYD| = 0.18. Thus, the dependence on 

the rainfall dominates over the dependence on the time span in the variability and long-term 

trend of the yield from manured plots. The correlation between the rainfall and time span is simi-

lar for both manured and unmanured plots, CRD = −0.33 and −0.30, respectively, which is a natu-

ral consequence of identical climate trends and the difference has no practical significance apart 

from providing a feeling for statistical uncertainties. 

The relatively small values of ℛ! in Table 3 indicate that the yield can significantly de-

pend on other variables apart from the rainfall and the time span. For example, our assumption 

that the temperature and rainfall are strongly negatively correlated, and thus are not independent 

variables, may be questionable. Hu and Buyanovsky (2003) note that, in the study area, higher 

temperatures often occur concurrently with increased rainfall. The relatively low values of the 

cross-correlations CYR and CYD in Table 4 are consistent with this suggestion. This question 

clearly deserves further analysis.  
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We also considered plots of biennial wheat crops, manured or unmanured, with clover as 

the intervening crop. There are fewer measurements available than for the monoculture wheat 

described above, and although the manured plots had a larger yield (1,650 kg/ha/year as opposed 

to 1,340 kg/ha/year at the unmanured plots) there is no qualitative change in the yield trends with 

either the passage of time or the amount of rain that fell.  

The data summarised above are similar to those from other experiments, albeit in differ-

ent climatic regions — Broadbalk in England (Hall 1905) and Urrbrae in the coastal belt of Aus-

tralia (Grace and Oades 1994) — showing comparable response of the crops to the environment 

in such disparate areas, even if the trends may differ quantitatively. The very large variability of 

yield at Sanborn on the monocultural plots was explained by pest and disease attack and weeds 

(Miller and Hudelson 1921). The yield at Rothamsted farm in England (Hall 1905) was less vari-

able from year to year, probably because the impact of the outbreaks of pests and diseases was 

weaker in the cooler climate. Similarly to our results, Hu and Buyanovsky (2003) find that the 

corn yield at Sanborn was higher in years with lower rainfall in April and higher rainfall in May–

August. They conclude that the corn yield is favoured by warmer and dryer spring months (April 

and May) and wetter and cooler July and August. These authors also find that “the average grow-

ing season climate gives little indication of climate effect on corn yield”, and the yield variations 

are mainly controlled by monthly and shorter climate variations.  

4.3  Adjustments to pre-modern agriculture 

The Sanborn data have been obtained for relatively modern wheat varieties. [Unfortunately, Mil-

ler and Hudelson (1921), our main data source, do not identify the specific wheat varieties used 

in the experiments.] Even if the soil and climate conditions can be taken to be broadly similar to 

those of the CTU area, significant corrections are required to allow for the difference in the crop 

species and agricultural techniques. Nikolova and Pashkevich (2003) and Pashkevich and Videi-
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ko (2006) present and discuss evidence that the main cereal crops of the CTU farmers were 

hulled wheats, such as emmer (Triticum dicoccon Schrank), einkorn (T. monococcum L.) and 

spelt (T. spelta L.), as well as barley varieties (Hordeum vulgare and Hordeum vulgare var. coe-

leste). 

Considering adjacent temporal and geographical domains, the cereal crop assemblages in 

early Neolithic cultures in Bulgaria (the second half of the sixth millennium BC) include naked 

and hulled barley (Hordeum sp.) and naked wheat (T. aestivum s.l./durum/turgidum), together 

with pulses, in addition to those cultivated by the LBK farmers: emmer (T. dicoccon), einkorn 

(T. monococcum), as well as peas, lentils and flax (Kreuz et al. 2005). These authors note that 

barley and naked wheat were used in the broader area, including that of the Starčevo–Körös–Čris 

culture (eastern Hungary, Greece, former Yugoslavia, Romania and the Turkish Thrace). A re-

view of other estimates of the wheat yields, including experimental, historical and ethnographic 

data can be found in Table 2.1 of Bogaard (2004b). Her data are generally consistent with our 

estimates, especially given the fact that they refer to naked wheat varieties and barley, whereas 

we focus on hulled wheats. 

Pashkevich and Videiko (2006) suggest that the CTU farmers relied on spring crops and 

did not use winter crops. From the potential weed species recorded at the Neolithic sites (in par-

ticular, winter annuals versus summer annuals), Kreuz et al. (2005) conclude that both summer 

and winter crop growing was typical of the early Bulgarian Neolithic, whereas summer crop cul-

tivation apparently dominated at the LBK sites. The Sanborn crops considered in Section 3 are 

winter crops. We note that winter crops have higher yields than spring varieties on the same land 

(by 25% or more – Percival 1974, p. 422) but, correspondingly, they deplete the soil fertility 

more than the summer crops. As a result, growing winter crops often requires crop rotation, 

which reduces the yield averaged over a sufficiently long period. There are certain disadvantages 

of winter crops as compared to summer ones: the fields need to be prepared for sowing in a ra-
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ther short time, and winter crops are more sensitive to climate fluctuations. A certain balance of 

winter and summer wheats appears to be optimal. 

4.3.1 Correction for the wheat varieties 

Stallknecht et al. (1996) provide data on the yield of selected crossings of emmer, einkorn and 

spelt grown at the Southern Agricultural Research Center, Huntley, Montana, U.S.A. in 1991–

1994. These modern varieties were selected for their high yield, so the data, summarised in Table 

5, should be used with great caution in the present context. The yields of einkorn, emmer and 

spelt are significantly lower than those of modern naked wheats grown under similar conditions; 

the data of Table 5 suggest that the yields of even the best selections of emmer and spelt are 60–

75% of naked wheat yields. We also note the strong variability of the yields, shown in Column 3 

of Table 5 in terms of the yield range. The range for einkorn is based on the data series for indi-

vidual plots, and shows variations by about 100%, whereas the other entries show the range of 

the annual averages over a set of plots, thus showing less variability, at about 25% (if the indi-

vidual plots have 100% variability, such a reduction could be achieved with 10–15 plots in each 

set). 

Percival (1974, pp. 171 and 188) estimates the einkorn yield as 16–80 hectolitres per ha 

(about 1,200–6,000 kg/ha/year) depending on the soil quality (ranging from poor mountainous 

regions to good soils), whereas emmer yields vary from 25 to 50 bushels per acre (about 1,700–

3,400 kg/ha/year). The largest einkorn yield given by Percival is significantly higher than that in 

Table 5, but the emmer yield is in a better agreement with Table 5. We stress again that the em-

mer, einkorn and spelt data in Table 5 and those of Percival (1974) are at the higher end of the 

range even for the modern plant varieties. 

Jarman et al. (1982, p. 158) quote historical data on the average cereal yield of 800–

1,400 kg/ha/year in traditional agricultural systems in Romania and note its strong fluctuations 
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from about 1,400 kg/ha/year in 1913 to 540 kg/ha/year in 1914. Nikolova and Pashkevich (2003) 

quote the emmer yields for 1902 in south Ukraine at the level of 390–1,140 kg/ha/year; with the 

median value (750 kg/ha/year) significantly smaller than that given in Table 5. Russell (1988, 

p. 111) suggests, for the early agriculture in the Near East and Africa, 500 kg/ha/year for the 

emmer and spelt yields, with a range of 400–3,700 kg/ha/year. Gregg (1988, pp. 73–74) quotes 

the range of 757–1,045 kg/ha/year for the late nineteenth century yields of winter and spring ein-

korn and emmer–spelt maslin in Germany, and adopts the larger value in her estimates for the 

LBK agriculture. The yields of autumn-sawn emmer in the Butser Ancient Farm experiment av-

eraged over 15 consecutive seasons at about 2,080 kg/ha/year, grown without using manure on a 

field every second year with a bean crop in between (Reynolds 1992). The author notes a rather 

high yield, “significantly higher than any expectations”, attributable to “the soil, the climate and 

good management”. 

Karagöz (1996) provides data on the yield of einkorn and emmer in Turkey in 1948–1993. 

Although the data are only given for the two species combined, the author notes that emmer was 

planted on much larger areas than einkorn. According to this author, the yield varied from 814 to 

1,391 kg/ha/year, with the mean and standard deviation of 1,110 ± 200 kg/ha/year. This variation 

was not uniform in time: the yield did not change much in 1948–1968 when it was 930 ± 100 

kg/ha/year, but exceeded 1,231 kg/ha/year thereafter. 

Karagöz (1996) also reports an agricultural experiment in northern Turkey, with very lim-

ited use of fertilisers and herbicide. Naked wheat was grown on 1,280 ha, and emmer and barley 

on 542 and 456 ha, respectively, in sloping, marginal forest areas. The average yields of naked 

wheat, barley and emmer in this experiment were 847, 711 and 618 kg/ha/year, respectively. The 

modern annual average rainfall in the area is 567 mm, and the average annual temperature is 

10.4ºC; the soil cover is predominantly the Brown Forest Soil. 
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In another experiment (Castagna et al. 1996), einkorn gross yield (i.e., that of hulled grain) 

varied broadly between 840 and 4,570 kg/ha/year (with a typical value of 2,840 kg/ha/year), with 

the net yield estimated as 77% of the gross value on average. The maximum gross grain yield 

was obtained with a seeding rate of 72 kg/ha/year (300 kernels/m2/year). The yield of two bread 

wheat cultivars (T. aestivum) grown as controls averaged at 7,030 kg/ha/year. 

Considering also the other extreme, we note that the yield of wild einkorn and emmer can 

reach 500–1,000 kg/ha/year (see Araus et al. 2007, and references therein). Araus et al. (2007) 

use the stable carbon isotope ratio 13C/12C in the fossil grains of naked wheat (T. aes-

tivum/durum) recovered from early Neolithic sites to estimate the prehistoric grain yield. The 

total number of 54 grains from Tell Halula and Akarçay Tepe (8,000–6,100 BC, Middle Euphra-

tes region) were used for this purpose. This method relies on the strong connection, observed in 

modern wheat crops, between both the total water inputs during grain filling and grain yield, on 

one side, and the (normalised) difference in 13C/14C between the grain kernels and atmospheric 

CO2, on the other side (Araus et al. 2003). The atmospheric carbon isotope content of the time 

was obtained by the authors from the Antarctic ice-core records. Furthermore, ancient soil fertili-

ty and/or the occurrence of fallow can be estimated from the grain 15N/14N ratio. The estimated 

wheat yield is 1,300–1,700 kg/ha/year, comparable to or even higher than that of modern wheat 

varieties in this region grown without irrigation. This can be attributed to a favourably wetter 

Neolithic climate in the area or to planting in alluvial areas. Furthermore, high values of 15N/14N 

in the ancient grain suggest that it was grown on fertile soils, perhaps with manure application 

and/or the use of natural wet soils. Altogether, Araus et al. (2007) suggest that the yield of naked 

wheat in the early agriculture in the area studied could plausibly be as high as 1,000 kg/ha/year 

(see also Araus et al. 2001). 

Given the differences in agricultural technologies and especially the wheat varieties from 

the modern experimental farms, it is fair to assume that the yields of the CTU crops were signifi-
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cantly lower than those of the Sanborn data presented above. The relation between the yields of 

naked and hulled wheats grown under similar conditions that follows from Table 5 suggests that 

the yield of einkorn, emmer and spelt can be adopted as 70% of the ancient naked wheat yield 

estimated by Araus et al. (2007), i.e., of order 700 kg/ha/year. Incidentally, this figure is close to 

the emmer yield in the early twentieth century Ukraine quoted above, and somewhat smaller than 

the lower-end yields of emmer and einkorn in modern agricultural experiments. Whenever re-

quired, we shall allow for this correction by multiplying the yield of Equations (3) and (4) with a 

factor ε chosen as to adjust the average yield at unmanured Sanborn plots, 900 kg/ha/year, to 

about 700 kg/ha/year. This yields 

 

 ε ≈ 0.8. (5) 

  

This appears to be a very conservative estimate of the correction for the yield of cereals in the 

Neolithic: the yield could be noticeable larger, i.e., ε can be larger. 

4.3.2 Adjusted yield trends with the rainfall and the cultivation time 

We shall be using the trends given in Equations (3) and (4), being aware of the tentative nature of 

these results. Rewriting these equations in a more convenient form, we shall be using fits of the 

following form for Yu and Ym:  

 

 𝑌 = � 𝑌! 1−
𝑅
𝑅∗
−
𝐷
𝐷∗

 , (6) 

 

where � is the correction factor suggested above, and the fitted values of 𝑅∗ and 𝐷∗ are given in 

Table 6, as obtained from the fits for all unmanured and manured plots in Table 3. Here 𝑅∗ and 

𝐷∗ have an intuitively clear meaning of the nominal values of the rainfall and the time span, re-
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spectively, required to reduce the yield to zero if only one of the two parameters varies while the 

other is formally fixed at zero. 

For comparison, Percival (1974, p. 420) provides an approximation to the dependence of 

the average wheat yield in Britain in 1884–1904 on the total rainfall in October–December: yield 

per acre equals 39.5 bushels minus 5/4 of the rainfall expressed in inches, which translates into 

Y0 = 2,660 kg/ha/year/ and 𝑅∗ = 800 mm, figures rather similar to those in Table 6.  

Jarman et al. (1982, p. 141) refer to the Rothamsted Broadbalk continuous wheat experi-

ment (where the soil is a chalk-rich loam) suggesting “that, even without manure or fertiliser, 

average yields of grain showed only a very gradual decline over 60 years”. The data shown in 

their Fig. 52 exhibit a decrease in the yield from 9 to 5–6 cwt/acre/year (1,130 to 630–750 

kg/ha/year) in about 20 years, followed by a variation between the latter value and 

7 cwt/acre/year. Our fits for unmanured Sanborn plots give a decrease in yield by 50% in about 

30 years, in a reasonable agreement with the initial decrease in the Rothamsted Broadbalk exper-

iment. However, Loomis (1978) argues that, for a lower wheat yield of about 1,000 kg/ha/year, 

nitrogen removed by the wheat crop (20 kg N/ha annually) is replaced during a crop–fallow cy-

cle by dust, rain and birds (8–12 kg N/ha/year), by the seed (1 kg N/ha/year for the yield/seed 

ratio of 10 to 1), and by leguminous weeds (2–10 kg N/ha/year) and manuring. As a result, the 

nitrogen budget can be balanced and remain in equilibrium even without manuring (see also 

Gregg, 1988, p. 65). Loomis refers to existing cropping systems in Asia that have maintained 

such equilibria through thousands of years and notes that plots in Rothamsted experiment gener-

ally stabilized at a low yields of 1,000–2,000 kg/ha/year without manuring. The Sanborn data 

series is too short to assess this suggestion: the yield of unmanured plots in Figure 1b do not 

show any signs of reaching any equilibrium value in 30 years of cropping, whereas the manured 

plots of Figure 1d may have reached it in 15–20 years. 



 
 
Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol after official publication for the final version. 

 
 

 We stress that the values of 𝑅∗ and 𝐷∗ have been obtained from our fits to the Sanborn 

data, and we are unable to apply any corrections to make them better applicable to the pre-

modern CTU agriculture, even if such a correction can be reasonably introduced for Y0. Admit-

tedly, this is not satisfactory, but we are not aware of any data or arguments which would help to 

resolve the problem. On the other hand, the trends with time and rainfall may be less sensitive to 

the wheat variety than the yield since they mostly depend on the soil properties. 

4.3.3 On the use of the manure fertiliser 

Having noted the strong variability of the yield, evident from Figure 1 (see also Nikolova and 

Pashkevich, 2003), we suggest that the Neolithic farmer would experience a boom and bust pro-

duction system which could be mitigated to some extent by the use of manure, emergency stor-

age and diet diversification. There is ample evidence for the use of manure as a fertiliser from 

the early stages of farming (Wilkinson 1982; Bogaard et al. 2007, 2013; Vaiglova et al. 2014). 

However, as there would be (at least initially) a large area of virgin land available that was rela-

tively easy to clear for the fields, the extra work of collecting and using manure could have been 

avoided by the use of fresh fertile soil in new fields. In addition, the possibility of collecting ma-

nure in useful quantities depends on how the livestock is kept, and often requires that the cattle 

be brought to barns every night; this may or may not have been the practice in the CTU settle-

ments. However, as the manure helped to reduce yield variability from year to year, this could 

make its use much more advantageous. In the Sanborn data, yields smaller than 400 kg/ha/year 

occurred on fewer than 8% of occasions under manure, but on 27% of occasions on the unma-

nured plots. It can be argued that large, relatively short-term, negative fluctuations in the produc-

tivity, rather than its general low level, can lead to catastrophic consequences and affect the sur-

vival and subsistence strategy and patterns of the population (Feynman and Ruzmaikin 2007; 

Abbo et al. 2010). The fact that manuring stabilises the yield under variable environmental con-
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ditions could make the use of the fertiliser an especially attractive option for the Neolithic and 

CTU farmers. We estimate in Section 6.4 below the maximum fraction of the crop area that 

could be manured given the herd composition of the CTU farmers, 

5. The diet of CTU farmers 

5.1 Cereals 

Following the results of Section 4, we adopt Y = 700 kg/ha/year as a nominal yield of hulled 

wheats, but consider plausible the range of 700–1,200 kg/ha/year; even higher yields may be ap-

propriate, especially for later CTU stages. Usual emmer seeding rates are 76 kg/ha in low-

rainfall regions and 100 kg/ha in high-rainfall areas; 67–100 kg/ha is the seeding rate of spelt on 

dryland (Stallnecht et al. 1996). Einkorn seeding rate is similarly about 72 kg/ha/year (Castagna 

et al. 1996). These estimates agree with the general figure of about 10% or more of a harvested 

grain to be used as seed crop (e.g., Hillman and Davies 1990, p. 178). We adopt the seeding rate 

of 12% in our calculations. For comparison, White (1963) suggests, based on documentary evi-

dence (Varro), the wheat yield in Roman Etruria was between ten- and fifteen-fold. Assuming 

that further 25% of the grain is lost to pests (Hall 1905), about 440 kg/ha/year remains available 

for consumption. 

The World Health Organisation proper nutrition recommendation of c = 2,200–3,000 

kcal/person/day translates into about 𝜀d𝑐 = 𝜀g𝑐 = 900–1,200 kcal/person/day from each of do-

mestic animal products and cereals, assuming that each contributes 𝜀d = 𝜀g = 0.4 of the calorific 

diet content. Using a calorific value of spelt grain of about 𝑒g = 3,150 kcal/kg (Ranhotra et al. 

1996), the required amount of cereals is 
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 𝜀g𝑐
𝑒g

= 100–140 
kg

person year , 
(7) 

 

or 0.27–0.38 kg/person/day. We use the average value of 0.32 kg/person/day as shown in Table 

9. With 440 kg/ha/year of grain available as food, with the rest lost to pests and used as seeds as 

given in Equation (8), this implies the required crop area of about 0.2–0.3 ha/person. Although 

emmer and einkorn dominate over spelt at the CTU sites, the calorific content of their grain, 

3,567 kcal/kg for einkorn (Harlan 1967, p. 198), does not differ much from that of spelt; we con-

servatively adopt the lower figure. 

Palaeoeconomy estimates often neglect the contribution of domestic and wild animal 

products to the diet and assume (explicitly or implicitly) that cereals are the only component of 

the Neolithic diet. Using the above figures, 250–350 kg/person/year of cereals would be required 

as the sole source of calories, which would need the area of 0.5–0.8 ha/person to produce if any 

losses are neglected (as is done equally often). This figure is similar to many earlier results, 

which we believe to be overestimates. 

5.2 Domestic animal products 

To estimate the size of cattle and caprine herds required to satisfy the nutrition needs of the Neo-

lithic and Bronze Age farmer, we assume that the animals were kept for both meat, milk and 

dairy products (and perhaps blood). However, wildlife resources are another source of meat, and 

there is sufficient archaeological evidence, similar to that given in Table 7, to assume that wild 

animal meat was also an important source of nutrition. As discussed above, Ogrinc and Budja 

(2005) suggest that about 𝜀w = 0.2 of the diet at the Ajdovska Jama site was provided by the 

meat of wild animals. 
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Zhuravlev (1990, p. 137) analysed the animal bone assemblage of Maydanetske, one of 

the largest CTU sites known (Trypillia CI, Cherkassy Region, central Ukraine) to estimate the 

fraction of domestic animals as 85% by head, comprising 35% of cattle (Bos taurus L.), 27% of 

sheep (Ovis	aries	L.)	and	goats	(Capra	hircus	L.), 28% of pigs (Sus	domestica	Gray) and 5% of 

horses (Equus caballus L.); this appears to be a typical picture for both early and late Trypillia 

settlements in the Ukraine. These figures are encouragingly similar to those of Tsalkin (1970) 

presented in Table 7. A very detailed and extensive overview of the CTU bone assemblages, 

their biometric characteristics and local variations can be found in Zhuravlev (2008) and Videiko 

et al. (2004, Vol. 1, pp. 152–198). These authors note a relatively large fraction of cattle in the 

apparent herd structure and suggest, from the osteometric data, that bulls, oxen and horses were 

used as draught animals. 

There are several clear trends in the bone assemblages presented in Table 7. The ratio of 

domestic to wild animals (by MNI, the minimum number of individuals) increases from 1.4 in 

the Early Trypillia to 2.4 in the middle period and to 2.8 in the late stage. The composition of the 

domestic livestock apparently remains stable within errors, apart from the increase in the relative 

frequency of the horse MNI from small quantities in the Early and Middle stages to 0.14 ± 0.06 

in the Late Trypillia. The faunal remains at Usatovo (Late Trypillia) are clearly exceptional (e.g., 

Zhuravlev 2008) and are excluded from the averages presented in the table. 

For the herd/flock composition, we adopt the relative mean MNI numbers from the bot-

tom of Table 7, ac = 0.35 of cattle, as = 0.24 of caprines, api = 0.33 of pigs and ah = 0.08 of hors-

es in terms of the relative numbers by head. The energy content of the meat from the domestic 

animal species given in Table 8 can be found in Gregg (1988, p. 152) and Jarman et al. (1982). 

The average culling rate in the modern UK cattle herds is 25% (AHDB 2012); our nominal fig-

ure of the cattle herd fraction culled annually is kc = 0.2; the culling rate of caprines, ks, is as-
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sumed to be 0.2 too. Since pigs are not kept for milk, their culling rate kp can be higher; and we 

adopt kpi = 0.5. 

Following White (1953), we assume that a half of the live weight of both cattle and 

caprines represents usable meat; the figure for pigs is 0.7. The live weight of cattle and caprines 

adopted are 200 kg/head and 50 kg/head, respectively. Neolithic pigs were significantly smaller 

than either wild or modern ones. This difference, noted from the CTU bone assemblages by 

Tsalkin (1970, p. 179) and Zhurvalev (2008, p. 17), is interpreted as evidence that the pigs were 

isolated from their wild relatives using fences or pens. Following Gregg (1988, p. 118), we adopt 

30 kg/head for a pig’s live weight.  

Bökönyi (1971) suggests that, in the Middle Neolithic, cows could provide only little 

surplus milk after the calf had been fed. This would of course depend on the feeding of the cow, 

and the size, vigour and the weaning age of the calf. However, dairy foods appear to be used in 

the Neolithic (Craig 2002; Copley et al. 2003; Craig et al. 2005; Spangenber et al. 2006; Ever-

shed et al. 2008), and the importance of dairy farming apparently increased qualitatively in the 

Bronze Age (Sherratt 1983, 2010; Greenfield 2005; Brochier 2013). Milk was valued to the point 

that calves seem to have been weaned early during the Neolithic (Balasse and Tresset 2002). 

Composition of the milk is affected by the diet of the animal (Boland 2003), with those fed on 

grass having a lower yield, more butterfat and similar protein content as compared to the milk 

obtained from animals on concentrate feed. The breed and species also have a strong effect on 

milk composition (Crawford 1990), with modern breeds such as the Holstein having lower but-

terfat content. 

It is difficult to estimate the milk yield in the CTU or any other prehistoric farming sys-

tem. To start at the lower end of the modern productivity, we note that, in modern subhumid Ni-

geria, milk yield from ‘traditional’ cattle is 280.7 litres per annum of which 111.5 litres is a sur-

plus to the calf’s requirement (Otchere 1986). A figure of 0.59 litre/day (or about 215 litre/year) 
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surplus for the Zebu cattle in Tanzania was reported by Kavana et al. (2006). ‘Indigenous’ cattle 

in Ethiopia on smallholdings produce a total of 1.5–3.6 litre/day with the average lactation length 

of 232 days (Abraha et al. 2009), as compared to 1.6–2.4 litre/day for ‘indigenous’ stock in Zim-

babwe (Masama et al. 2003). It is notable that, in some of the above cases where the milk yield is 

very low, the cattle is kept mostly for prestige and other similar non-economic reasons. It is hard 

to find suitable European data since even in the less developed areas such as Moldova, the ‘tradi-

tional’ breeds produce nearly 10 times the above yield (Moldova 2004), and even the worst pro-

ducer (in a survey of, predominantly, smallholders with less than 3 cows) could achieve 1,400 

litre/year or more in 2001 and 2003 (Dumitrasko et al. 2006). Todorova (1978) suggests that a 

Neolithic cow produced some 600–700 litres of milk annually. Gregg (1988, p. 106) adopts a 

cow’s milk yield of 1.78 litre/day, which leads to about 360 litre/year/head for a lactation length 

of 200 days. As a nominal figure, we adopt the surplus cow milk yield of yc = 400 litre/head/year 

but consider a range of 0–2,000 litre/head/year. For comparison, modern European cow breeds 

typically produce 10,000 litre/head/year of milk. 

For the milk yield of sheep and goats, we adopt values at the lower end of the modern 

range. For a 12-week annual lactation period and hand-milking, non-dairy goats and sheep pro-

duce in Malawi 61 and 34 kg/head/year of milk, respectively (Banda et al. 1992). Gregg (1988, 

p. 118) quotes 170–680 kg/head/year for sheep and 340–1,417 kg/head/year for goats (as the lat-

ter have a longer lactation period). We prefer to use the conservative lower estimates, and the 

nominal figure used in our calculations is a rounded mean of the figures of Banda et al. (1992), ys 

= 50 litre/head/year. Since caprines represent a relatively small fraction of the livestock, this 

choice does not greatly affect our results. 

Estimates of the cattle grazing area range from 1 ha/head/month in deciduous forests to 

1.5 ha/head on pasture (Gregg 1988, pp. 106–107). Jarman et al. (1982, p. 108) adopt the grazing 

area required for cattle of about Ac = 10 ha/head but note that it can be as low as 0.3–0.5 ha/head 
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on seasonally and permanently flooded pasture. Gregg (1988, p. 123) suggests that the grazing 

area required for the herd should be doubled to allow for at least one-year recovery of the graz-

ing land. Glass (1991, p. 28) quotes a number of estimates of the forest pasture area ranging from 

0.8 to 8 ha/head. We adopt Ac = Ah = 10 ha/head as the nominal figure for both cattle and horses; 

detailed knowledge of the landscape around specific sites would be required to refine this esti-

mate. Caprines’ needs in grazing are about ten times smaller than those of cattle. When kept in 

large herds and under extensive grazing systems, sheep and goat need about As = 0.5 ha/head of 

grazing area (Coop 1986); this is the figure we adopt. However, the grazing characteristics of 

cattle, sheep and goats are complementary, as cattle and sheep relish grasses and herbs, respec-

tively, whereas goats prefer weeds and woody vegetation not used by the other animals (Coop 

1986; Gregg 1988, p. 123). We neglect any pasture area for the pigs as they can graze in wood-

lands and/or near the rural settlements; to some extent, this also applies to goats. 

Fodder for four winter months is another requirement of livestock imposing constraints 

on both the exploitation area and the labour costs. Apart from meadow hay, cereal straw and 

leaves of certain trees such as elm (Rasmussen 1990), elder, ash and acacia provide good fodder. 

Modern grass–legume pastures can yield up to 5–20 tonne/ha/year of dry hay (Coop 1986); ma-

ture cows consume about 400 kg/head/month of hay and sheep/goat require about ten times less 

food (Gregg 1988, pp. 108 and 118). Gregg adopts the yield of a natural meadow on low-lying 

damp soils to be 1,470 kg/ha/year. We follow this author to assume that about Mc = Mh = 

0.5 ha/head of hay meadow is required to produce winter fodder for cattle and horses, and Ms = 

0.02 ha/head for sheep/goats (Gregg 1988, pp. 110, 120 and 121). Since not only natural or culti-

vated meadows but also forests are a source of leafy fodder, we assume that only half of the fod-

der is hay and cereal straw, ℵ = 0.5. We include the area required to produce hay into the calcu-

lations of the exploitation area of a settlement in Section 7, and the time to cut grass on them in 

the labour costs and labour return in Section 8. 



 
 
Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol after official publication for the final version. 

 
 

5.3 Wild animal products 

The faunal remains found at CTU sites indicate that wild animals provided a significant source 

of food, especially at the early CTU stages. The ratio of wild to domestic MNI in Table 7 de-

creases from about 0.7 in the Early Trypillia to 0.4 at later stages. A more recent analysis of 

Zhuravlev (2008) shows a lower fraction of wild animals, of order 0.2. We adopt this figure in 

our calculations. The composition of the hunting trophy given in Table 8 is taken according to 

the relative mean MNI in the bone assemblages: 0.48 of red deer (Cervus elaphus L.), 0.24 of roe 

deer (Capreolus capreolus L.) and 0.29 of wild boar (Sus scrofa ferus L.) by head. The calorific 

value of the meat is taken from Jarman et al. (1982, p. 83). 

6. Land use 

In this section we estimate the land area required for a farming population to subsist in a given 

environment, with a given subsistence strategy and agricultural technology. The results will be 

used in Section 7 to calculate the size of the exploitation territory and, hence, the carrying capac-

ity of the landscape. The starting point for such a calculation are the human dietary requirements. 

Any estimate of the carrying capacity of a landscape strongly depends on the subsistence 

strategy and on the land use. Ethnographic evidence presented by Jarman et al. (1982, p. 30) 

suggests that land could be exploited within 1–11 km of a settlement. This radius is limited by 

the time required to travel to the field, with one hour as a reasonable maximum, and 1.5–2 hours 

as an undesirable upper limit (similarly to the commuting times of modern urban workers, as 

Jarman et al. note). The average outer limit of the cultivated land area is suggested as 5 km, with 

most land under cultivation within 1–2 km of the settlement. Higgs and Vita-Finzi (1972) sug-

gest a radius of 5 km for the exploitation territory by a sedentary population (and 10 km for 

semi-sedentary people), and note that time spent on travel is more important than distance (see 
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also Jarman et al. 1982, pp. 30–32). Tipping et al. (2009) carefully analysed and modelled pollen 

data from an early Neolithic site in north-east Scotland (a timber ‘hall’ at Warren Field), to con-

clude that land within a radius of at most 2.5 km was in use. Cereals were cultivated immediately 

around the ‘hall’, but no evidence of pasture for livestock has been recorded. Following 

Chisholm (1979, p. 72), Higgs and Vita-Finzi (1972), Jarman et al. (1982) and many other au-

thors, we assume that the cultivated fields will tend to be located in a close proximity, within not 

more than about 5 km of the settlement, and preferably within 1–2 km. The livestock can be kept 

at larger distances: up to 5 km if walking to the pasture and returning to the farm daily, or 10 km 

if the animals are kept around a temporary camp. 

The family size is another important parameter. Five to seven people is a reasonable es-

timate for the size of an extended farming family, of which 2–4 may be fit to work in the fields, 

the remaining being too young or too weak. We adopt six people in a family as a representative 

value. Although a few family members could be involved in the physically demanding work 

such as land tillage, many other production activities can be assigned to other family members. 

For example, a large proportion of the herding and care of the domestic animals can be assigned 

to children. Tillage with the ard or plough requires two people to work simultaneously, but guid-

ing the draught animal(s) does not require much physical force. Likewise, reaping, threshing (es-

pecially using animals), winnowing and later preparation of grain could involve virtually the 

whole family. Therefore, our discussion of the labour costs and the seasonal time stress largely 

focuses on the land preparation for sowing, an activity that requires significant physical force 

and must be completed in a short and strongly limited time. 

Gaydarska (2003) presents land use analysis of Maydanetske, a proto-urban site 

(Trypillia CI) that had an area of A0 = 210 ha (Müller at al. 2014) and an estimated N = 10,000–

15,000 inhabitants; sites that large are rare but not exceptional: the area of the nearby Tallianky 

is 341 ha. The giant settlements emerged at late Trypillia stages. Typical settlement areas at vari-
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ous Trypillia stages are given in Table 2. Houses in CTU settlements are often arranged along 

nearly elliptical contours closer to the settlement boundary (perhaps to provide easier access to 

the fields) with large open spaces in the central part of the settlement that could be used for hor-

ticulture. According to Gaydarska (2003), about 78% of the area within 7 km of Maydanetske is 

suitable for agriculture; thus, δu = 0.2 appears to be an acceptable estimate of the fraction of un-

usable area in the central part of the CTU area in the Dnieper–Southern Bug interfluve. We fur-

ther assume that a fraction δa = 0.35 of the total land area is potentially arable; the rest can be 

used as grazing land. We further assume that part of the arable land lies fallow; the ratio of the 

fallow to cropped land areas is denoted δf . The nominal value adopted is δf = 2, that is any plot 

is cropped once in three years. As an example from another region, the LBK study area of 

Ebersbach and Schade (2004), Mörlener Bucht in Hesse north of Frankfurt am Main, has 82% of 

the area suitable for fields (loess soil), 11% are water meadows suitable for grazing and 7% are 

steep slopes suitable neither for fields nor for grazing. 

To make our results properly robust and flexible, we first derive general algebraic ex-

pressions for the key variables involved in palaeoeconomy reconstructions before using specific 

values of the input parameters and exploring the effects of their variation within ranges con-

sistent with what we know about the CTU agriculture. The nominal values of the input parame-

ters, their dimensions and the mathematical notation used in the equations are given in Table 8, 

whereas Table 9 contains the most important results of the calculations and references to the 

equations used to derive them, presented in a similar format. Section 8.2.1 illustrates how the 

results of Table 9 can be obtained. The text contains sufficient detail to reproduce all the results 

of Table 9, and to calculate any other quantity if it is not given there. 
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6.1 Per capita cereal production and arable land area 

With the daily dietary requirement of c [kcal/person/day], the annual diet must have the calorific 

value C = 365c [kcal/person/year]. The relative contributions of cereals, domestic animal prod-

ucts and wild animal products to the diet are denoted εg, εd and εw, respectively (see Section 5). 

Thus, the annual calorific values of grain (cereals), domestic and wild animal products required 

for one person to subsist are εgC, εdC and εwC, respectively. 

The cereal yield available for consumption, Yg [kg/ha/year], is obtained from the total 

yield Y by subtracting various losses and the amount required for seeding. We assume that a frac-

tion γ of the cereal yield is used for seeding and a fraction λ of the total grain amount is lost to 

pests and other losses; the nominal figures are γ = 0.12 and λ = 0.25 (Section 5.1). The usable 

cereal yield is then 

 

 Yg = (1 − γ − λ)Y ≈ 0.63Y. (8) 
 

With the calorific value of grain equal to eg [kcal/kg] and the crop area per person equal to Ag 

[ha/person], the calorific value of the cereals grown annually per person is given by 

 

 Eg = eg Yg Ag . (9) 
 

The per capita crop area required to satisfy the dietary needs in cereals follows from the re-

quirement that the energy produced annually, denoted Eg , equals the annual cereal dietary ener-

gy requirement, εgC : 

 

 
𝐴g =

𝜀g𝐶
𝑒g𝑌g

 . (10) 
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However, only a fraction of the arable area is used for the crops, and the rest is fallow; the area 

of the fallow fields exceeds that under the crops by a factor δf . Furthermore, only a fraction δa of 

the total land area is arable (and the rest is agriculturally unproductive). Thus, the total land area 

containing the cereal fields, the fallow land and the agriculturally unproductive areas associated 

with them, required to satisfy the dietary requirements of a single person, is given by 

 

 𝐴f = 𝐴g
1+ 𝛿f
𝛿a

 . (11) 

 

For the sake of simplicity, we assume that there is only one type of cereal (and domestic plants in 

general) grown for food, but the diversity of crops (including legumes) can easily be allowed for 

by introducing the dependence of the usable cereal yield Yg on the yields and nutrition values of 

any other cereal varieties and including other cultivated plants into the calorific dietary budget, 

in the same manner as it is done below for the animal products. We restrain ourselves from in-

cluding all these factors into our calculations because various cereals have rather similar energy 

content whereas legumes provide little calories. Including this level of detail may only lead to an 

illusion of high accuracy without adding much substance to the results and conclusions. 

6.2 Per capita consumption of domestic animal products and the livestock 

grazing area 

A similar calculation for animal food products is slightly more complicated, as there is more than 

one kind of domestic animals kept and wild animals hunted for. Since the amount of food pro-

duced and the grazing area required are rather different for different animals, it is more important 

to allow explicitly for the herd diversity than for the crop diversity. 
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The bone assemblages discussed above provide the relative average numbers of cattle, 

sheep/goat, pig and horse among the domestic animals kept, denoted here ac, as, api and ah, re-

spectively. Their usable meat weight per head is denoted mc, ms, mpi and mh , respectively. Con-

sider a herd of this composition that has na animals per capita. Given that fractions kc [1/year] of 

the cattle, ks of the sheep/goat and kpi of pigs are slaughtered for meat, the per capita energy con-

tent of the meat procured per year [kcal/year/person] can be calculated as 

 

 𝐸a = 𝑛a 𝑘c𝑎c𝑚c𝑒c + 𝑘s𝑎s𝑚s𝑒s + 𝑘pi𝑎pi𝑚pi𝑒pi + 𝑘h𝑎h𝑚h𝑒h  , (12) 

 

where individual terms in the brackets represent the calorific per-head contributions of beef, 

lamb/mutton and pork, respectively. We include horses in this equation for generality, although 

we will later assume that horses are not kept for food and neglect their contribution to the diet, 

formally putting mh = 0. Since the cattle and caprines are kept for both meat and milk, it is rea-

sonable to assume equal cull rates for these animals, kc = ks, but the cull rate of pigs can be larg-

er. 

The per capita area Aa required for the animals to graze is given by 

 

 𝐴a = 𝑛a 𝑎c𝐴c + 𝑎s𝐴s + 𝑎pi𝐴pi + 𝑎h𝐴h  , (13) 

 

where ai Ai (with i = c, s, pi, h for the cattle, sheep/goats, pigs and horses, respectively) is the 

grazing area per head of the corresponding animal. The grazing area includes meadows, fallow 

land and woodland; pigs and goats can find food even near to or within a rural settlement. In cal-

culations presented below, we assumed that pigs do not need any grazing area additional to that 

used by other animals; formally, we put Api = 0. 
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The per capita area required to collect winter fodder for the livestock is similarly calcu-

lated as 

 

 𝐴p = 𝑛a 𝑎c𝑀c + 𝑎s𝑀s + 𝑎h𝑀h  , (14) 

 

where Mi (with i = c, s, h for the cattle, sheep/goats and horses, respectively) is the land area re-

quired to produce fodder for one head of the corresponding animal. 

A perhaps unexpected result of our calculations (confirmed by Jorgenson 2009) is that 

dairy products can play quite a significant and important role in the diet. With the per capita 

numbers of cows and caprines given by naac and naas , respectively, the per capita amount of milk 

that can be obtained annually from the herd [litre/year/person] is given by 

 

 𝑌m = 𝑛a 𝜅c𝑎c𝑦c + 𝜅s𝑎s𝑦s  , (15) 

 

where κc and κs are the fractions of milk-producing cows and caprines in the herd, 𝑦c and 𝑦s are 

the annual milk yields of cows and caprines (or the daily yields if the daily figures are required), 

and the individual terms in the brackets represent the milk yield per head of the corresponding 

animal. Having in mind the limited accuracy of any estimates of this kind, we neglect the rela-

tively small number of male cattle in the herd and thus assume that the value of ac is the same 

here and in Equation (12) for the meat production and Equation (13) for the grazing area. How-

ever, we allow for the fact that only a fraction of the cows, ewes and does can be milked at any 

time by introducing the factors κc and κs. The lactation period of a cow is close enough to half a 

year, ranging from 180 to 230 days (Gregg, 1988, p. 106); thus, we adopt κc = 0.5. The lactation 

period of unimproved breeds of caprines varies from 12 weeks (Banda et al. 1992) to 19 weeks 

for sheep and 30 weeks for goats (Redding 1981, cited in Gregg, 1988, p. 116). We adopt the 
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lower value, 12 weeks annually, to have κs = 0.25 but the range κs = 0.25–0.5 appears to be a 

realistic possibility. 

Analyses of archaeological bone assemblages do not always distinguish between the 

sheep and the goat. This may affect the estimate of the energy content of the dairy products since 

the energy content of the cow milk, about emc = 600 kcal/litre on average, differs significantly 

from that of the sheep milk, 1,030 kcal/litre, but not the goat milk, 680 kcal/litre (Table 3.1 of 

Muchlhoff et al. 2013). We adopt the energy content of the caprine milk at about the average of 

the latter two figures at ems = 800 kcal/litre. Then the energy content of the milk available per 

capita annually from na animals [kcal/person/year] follows as the sum of the contributions from 

the cow and caprine milk: 

 

 𝐸m = 𝑛a 𝜅c𝑎c𝑦c𝑒mc + 𝜅s𝑎s𝑦s𝑒ms  , (16) 

 

where we recall that na [head/person] is the number of domesticated animals per person. We as-

sume that all this energy is consumed in the form of various dairy products if not milk itself. 

Equating the total calorific value of the meat and dairy products obtained from the herd, 

Ea + Em from Equations (12) and (16), to the calorific value of domesticated animal products re-

quired to satisfy the dietary requirements of one person, εdC [kcal/person/year], 

 

 𝐸a + 𝐸m = 𝜀d𝐶 , (17) 

 

we obtain na, the number of animals in the herd required to satisfy the dietary requirements of a 

single person in animal products: 
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 𝑛a =
𝜀d𝐶

𝑘c𝑎c𝑚c𝑒c + 𝑘s𝑎s𝑚s𝑒s + 𝑘pi𝑎pi𝑚pi𝑒pi + 𝜅c𝑎c𝑦c𝑒mc + 𝜅s𝑎s𝑦s𝑒ms
 , (18) 

 

where the first three terms in the denominator represent the contributions of meat products from 

the cattle, sheep/goat and pigs, respectively, whereas the last two terms account for the dairy 

products from the cattle and caprines; the estimates of each of these terms are given in Table 9 

together with the per-capita numbers of various animals. Assuming that horses are not used for 

food (in part, because of their relatively small numbers relative to the cattle), we have neglected 

their contribution to the meat supply, formally setting mh = 0. This is consistent with the fact that 

the relative number of horses increases in the Late Trypillia (Table 7), as the need in draught an-

imals is likely to increase as agriculture becomes more intensive. The grazing area required for 

the pigs is also neglected, Api = 0 (see Section 5.2). 

The number of domestic animals required to satisfy the dietary requirements of N people 

can be calculated as 

 

 𝑁a =  𝑁𝑛a . (19) 

 

Then the numbers of the cattle, caprines, pigs and horses in the herd are equal to, respectively, 

 

 𝑛c =  𝑁a𝑎c ,      𝑛s =  𝑁a𝑎s ,      𝑛pi =  𝑁a𝑎pi ,      𝑛h =  𝑁a𝑎h . (20) 

 

6.3 Wild animal products 

The final contribution to the calorific value of the palaeodiet considered here comes from the 

meat of wild animals, red deer, roe deer and wild boar. As discussed in Sections 5.2 and 5.3, 
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bone assemblages at the CTU as well as other Neolithic and Bronze Age sites suggest that about 

εw = 0.2 of the total energy intake was from the wild animal meat. Using their relative numbers, 

meat weight and calorific values given in Table 7 and Table 8, one can convert the required en-

ergy content into the numbers of the wild animals per person implied by the bone assemblages in 

the same way as is done for domesticated animals. We do not write out all of these relations here 

since they are similar to Equations (12) and (18) with the only modification that all the parame-

ters involved should be taken for the wild animals with, obviously, the dairy products neglected, 

𝐸m = 0 in Equation (17). For example, the number of animals that should be hunted annually to 

provide a fraction 𝜀w of the energy requirement C is given by an equation similar to (18): 

 𝑛w =
𝜀w𝐶

𝑎r𝑚r𝑒r + 𝑎ro𝑚ro𝑒ro + 𝑎b𝑚b𝑒b
 , (21) 

 

where each term in the denominator represents the contribution of the red deer, roe dear and wild 

boar meats to the diet, respectively, and a, m, and e with the corresponding indices are the frac-

tion of the corresponding animals, usable meat weight and its energy content. Table 9 includes 

the estimates of each of these contributions together with the corresponding per capita numbers 

of the animals hunted. 

6.4 The maximum fraction of manured fields 

The estimates of the wheat yield of Section 4 can be used to estimate the expected average cereal 

yield at the CTU sites with allowance for the possible use of manure fertiliser. The overall yield 

Y [kg/ha/year], given the fraction of manured land, fm, is obtained as 

 

 𝑌 = 𝑓m𝑌m + 1− 𝑓m 𝑌u ,  (22) 
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where Yu and Ym are the yields from unmanured and manured fields, respectively. The amount of 

manure available depends on the amount of livestock kept and on its management. The finds of 

faunal remains at the CTU sites (Table 7) can be used to estimate the maximum amount of ma-

nure which could be used as a fertiliser. To estimate fm, we use the following variables: µ, the 

amount of manure applied to the soil [kg/ha/year]; m, the amount of manure collected annually 

per head of cattle [kg/head/year] (this parameter can be adjusted to reflect the loss of manure as 

appropriate for a specific method of livestock management); nc, the number of cattle kept per 

person [head/person]; and εgC, the consumption of wheat per person [kg/person/year]. We will 

not be counting manure in the same detail as the meat, milk and grazing area, although it is easy 

to do so, and will only include cattle manure into the calculation. The manure produced by 𝑛c 

animals can fertilize an area 𝑚𝑛c/𝜇 per person. The field area (both under crop and fallow) re-

quired to meet the dietary requirements of one person in cereals is equal to (1+ 𝛿f)𝐴g, where 𝐴g 

is the per capita crop area given in Equation (10). Then the maximum fraction of the manured 

arable land, attainable if all the manure produced is used in the fields without any losses, is esti-

mated as 

 

 𝑓m =
𝑚𝑛c

𝜇(1+ 𝛿f)𝐴g
 . (23) 

 

However, 𝐴g depends on the cereal yield 𝑌g and, thus, on the fertilized area. Using Equation (22) 

for Y, we obtain 𝑌g from Equation (8) as 

 

 𝑌g = 1− 𝛾 − 𝜆 [𝑓m𝑌m + 1− 𝑓m)𝑌u  , (24) 
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and then express 𝐴g as a function of 𝑓m using Equation (10). Then Equation (23) leads to a sim-

ple equation for fm, which solves to yield  

 

 
𝑓m = 1−

𝑌m
𝑌u
+

𝐶𝜇𝜀g(1+ 𝛿f)
𝑚𝑛c𝑒g𝑌u(1− 𝛾 − 𝛿)

!!

. (25) 

 

We take µ = 15 tonne/ha/year, as in the Sanborn experiments, and m = 2.5 tonne/head/year for 

the manure from cattle (LWFH 1993), assuming that 50% of the total amount of the manure is 

lost. The Sanborn data on wheat yields from manured and unmanured plots, summarized in 

Equation (8) and Table 6, suggest Ym/Yu = 1.2 for D = 10 years and the typical January–May 

rainfall in the CTU area, R = 550 mm. Assuming Yu = 650 kg/ha/year, with the nominal per capi-

ta cattle number nc = 1.8 head/person and other variables from Table 9, we obtain fm ≈ 0.4, that 

is, about half of the total field area (both cropped and fallow) could be fertilised with the manure 

available for the nominal values of the parameters. Using Equation (22), we then obtain the nom-

inal average yield of Y = 700 kg/ha/year to be used in Section 10 (in fact, we have adjusted the 

above value of Yu to 650 kg/ha/year in order to preserve consistency with the nominal parameter 

values of Table 8 and Table 9). 

7. The exploitation territory of a settlement and the subsistence car-

rying capacity 

Equipped with the estimates derived above, we can calculate the land area exploited by the popu-

lation of a rural settlement and then obtain the maximum population density within that area. 

Hence, we shall derive, in Section 7.2, the subsistence carrying capacity, Ks , defined as the den-

sity of a population producing just enough food to survive. This quantity should be distinguished 
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from the carrying capacity with respect to a population whose economic behaviour is aimed at 

creating a surplus product for exchange or trade (see Section 9.5). 

7.1 The exploitation area 
Consider a settlement of an area A0 with a population of N people. Here and below, we assume 

for simplicity that the settlement area is circular, so that 

 

 𝐴! = 𝜋𝑅! 
! , (26) 

 

where R0 is its radius. In fact, many CTU settlements have a roughly elliptical shape; then R0 is 

understood as the geometric mean of the minor and major semi-axes of the settlement, r1 and r2: 

𝑅!! = 𝑟!𝑟!. 

We divide the land around a settlement into three functional zones shown in Figure 2. 

The field zone is the closest to the settlement, where both currently cultivated and fallow fields 

are located. Fallow fields in this zone can be used for grazing. The next outer zone is used as 

summer pasture for the livestock. The outermost zone is where winter fodder for the animals is 

collected. The total area of the field zone serving N people, including the agriculturally unpro-

ductive land, is given by 

 

 𝐴! = 𝑁𝐴f , (27) 

 

with the per capita total field area Af given in Equation (11), containing the crop area NAg and the 

fallow land of an area Nδf Ag ; the remaining land is agriculturally unproductive. Most of the pas-

ture and grazing areas are located in the grazing zone at a larger distance from the settlement. 
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The fallow area Nδf Ag in the field zone can be used for grazing, so that the useful area of the 

grazing zone has to be equal to 

 

 𝑁𝐴! − 𝑁𝛿f𝐴g = 𝑁 𝐴! − 𝛿f𝐴g , (28) 

 

where NAa is the total grazing area required, with Aa given in Equation (13). The total area of the 

grazing zone (including unproductive land of the fractional area δu) is then given by 

 

 𝐴! = 𝑁
𝐴a − 𝛿f𝐴g
1 − 𝛿u

 . (29) 

 

Finally, the area required to collect fodder for the animals kept by N people is given by 𝑁𝐴p with 

𝐴p the fodder area per livestock head from Equation (14), and the total fodder area (including the 

unusable land) follows as 

 

 
𝐴! =

𝐴p
𝛿m

 , (30) 

 

where δm is the fraction of the total area bearing meadows and trees providing leafy fodder; we 

adopt, more or less arbitrarily, δm = 0.5. (We note that 𝛿m, 𝛿a and 𝛿u do not need to add to unity 

as the same land can be usable for several purposes.) The per-head grazing and fodder areas, 𝐴a 

and 𝐴p, are calculated using Equation (18) for 𝑛a, the per capita number of animals in the herd. 

Since the radius of the fodder zone is relatively large (Section 9.1), the magnitude of δm affects 

significantly the zone area but only slightly its radius. For example, the outer radius of the fodder 
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zone around a settlement with 2000 inhabitants changes by just 10% as δm changes from 0.1 to 

0.9. 

It is straightforward to calculate the radial distances to the boundaries of the three exploi-

tation zones from either the centre of a settlement or its border assuming that they are of circular 

shape. The maximum distance from the settlement border to the outer boundary of the field zone 

is given by 

 

 
𝐷! =

𝐴! + 𝐴!
𝜋 − 𝑅! , (31) 

 

and similarly for the maximum distance to the pasture and fodder zones, respectively: 

 

 
𝐷! =

𝐴! + 𝐴! + 𝐴!
𝜋 − 𝑅! ,          𝐷! =

𝐴! + 𝐴! + 𝐴! + 𝐴!
𝜋 − 𝑅! . (32) 

 

7.2 Per capita subsistence land area and the subsistence carrying capacity 

The total land area required to provide the amounts of cereals, meat and dairy products of do-

mestic animals to satisfy the calorific dietary requirements of a single person, denoted 𝐴 

[km2/person], is the sum of the specific land areas under cereals and pasture, as well as that used 

to collect fodder. These areas are estimated in Sections 6.1 and 6.2, given in Equations (11), (13) 

and (14) and used to calculate the radius of the exploitation area in Equation (32). Thus, we have 

 

 𝐴 =  𝜋𝐷!! , (33) 
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and the local subsistence carrying capacity Ks [persons/km2] follows as 

 

 𝐾s =
1
𝐴 . (34) 

 

This estimate needs careful qualification to be useful. Although Ks is called here a carry-

ing capacity, it should not be confused with the maximum population density averaged over a 

large area that appears in demographic and population dynamics models. It is based on the land 

area required to support a single person and is used below to calculate the area required to sup-

port a rural settlement (the exploitation territory). However, the exploitation areas of settlements 

do not need and, indeed, are unlikely to cover the landscape completely while the land between 

the exploitation areas, which is not used in the agricultural activities included here or unsuitable 

for them, does not enter our calculations. Therefore, Ks represents the upper limit of the carrying 

capacity, attainable only under an unrealistic condition of densely packed exploitation areas. To 

extend such calculation to the global carrying capacity, careful analysis of the spatial patterns 

and lifetimes of the settlements is required as well as detailed environmental data. An example of 

such analysis can be found in Zimmermann et al. (2009) who suggest 8.5 persons/km2 for the 

local carrying capacity of LBK settlements in 5,250–5,050 BC and note its strong spatial varia-

bility, whereas their global estimate is 0.6 persons/km2. Ellen (1982, p. 43) also notes that the 

actual population densities are most often well below the local carrying capacity, suggesting a 

level of 25–70%. Estimates of the Trypillian population and its evolution require the knowledge 

of the settlement patterns; this analysis will be presented elsewhere (Shukurov and Videiko 

2016). 
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8. Labour costs of the agricultural cycle 

For the estimates described above to be useful, one has to demonstrate that the food required can 

indeed be produced with the labour resources and agricultural techniques available. The availa-

bility of human labour rather than land could be the limiting factor for early agriculture (Halstead 

1996); our calculations confirm this. In this section, we discuss the labour required for a farming 

population to subsist, starting with estimates of labour productivity in pre-modern agriculture 

and proceeding to evaluating the labour costs of the agricultural cycle and then, the labour effi-

ciency. 

8.1 Experiments on agricultural labour productivity 

Archaeological finds at CTU sites include a range of agricultural tools, including stone and antler 

hoes and flint sickle blades; remarkably, an artefact found at Grebenukiv Yar (near 

Maydanetske) was tentatively interpreted as an antler ard, dated to the late-fifth–early-fourth mil-

lennium BC (Pashkevich and Videiko 2006, pp. 88–95). Numerous ceramic models of sledges 

with ox heads clearly suggest the use of cattle for traction (Pashkevich and Videiko 2006, p. 89), 

confirming conclusions drawn from osteometric analyses of faunal remains (Zhuravlev 2008). 

Semyonov (1974, pp. 194–226) describes in detail extensive experiments conducted in 

1969–1970 at the Laboratory of Primitive Techniques in the Leningrad Branch of the Institute of 

Archaeology of the Academy of Sciences of the USSR. The experiments involved tilling and 

harvesting with primitive tools modelled upon prehistoric and ethnographic examples. The tools 

tested include various digging sticks; stone, wood and antler hoes; wooden ards; and sickles with 

flint blades. In those experiments, friable soil could be prepared for sowing (tilled to a depth of 

20–25 cm) with an oak dibble at a rate ranging from st = 50 m2/person-hour on a well-manured 

field to 10 m2/person-hour on a denser soil and to 5 m2/person-hour on a dense, half-virgin soil. 
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Adding an iron point to an oak dibble increased the tillage productivity to st = 6–8 m2/person-

hour on virgin soil, and to st = 8–15 m2/person-hour when the stick was further equipped with a 

pedal. Work with a dibble with an additional weight was slightly more productive but required a 

significantly larger physical effort. With a stone hoe, st = 13–17 m2/person-hour of light soil 

could be tilled, somewhat better than with an antler hoe at st = 6–17 m2/person-hour. Tilling of 

virgin soil covered with high grass and dense turf could be done at a rate st = 2.5 m2/person-hour 

with an oak dibble and about st = 6 m2/person-hour with hoes (2 hours 10 min of work with an 

antler hoe followed by 1 hour 15 min using an iron hoe on a plot 25 m2 in size). Altogether, the 

productivity of hand tilling with a digging stick or stone hoe can be adopted as st = 10–20 

m2/person-hour depending on the soil quality. 

Tilling with horse-drawn oak ards, modelled on the earliest prehistoric evidence, in-

volved two people, one to guide the horse and the other to manipulate the ard. A plot of 250 m2 

in size, with soil tilled earlier but hardened after a 12-day drought, could be tilled with a Døstrup 

(spade) ard in 40 minutes (375 m2/hour) to the depth of 30–35 cm, whereas tilling a similar plot 

on the same field with digging sticks and hoes took about 50 hours. Thus, the ard increases the 

tillage efficiency by more than a factor of 50. Cross-ploughing of the plot with a Walle (crook) 

ard was equally successful. However, both ards failed to perform on virgin soil covered with 

grass. The Walle ard was tested on a previously harvested pea–oat field with stubble, plant roots 

and weed on dry soil compressed by the heavy machinery used for harvesting. An area of 

1430 m2 was tilled to a depth of 10–20 cm in 2 hours 50 minutes (about 500 m2/hour). Although 

the depth of tilling with hand tools was 1.5–2 times larger and the furrows made with the ard 

were unevenly spaced, the soil tilled with the ard was better pulverised. Cross-ploughing of the 

plot removed the imperfections in additional 2 hours 35 min. Trials of the Døstrup ard on a clay-

ey soil after a strong rain demonstrated the difficulties of working on sticky soil with higher re-

sistance from wet plant roots and weeds. A single ploughing of 1430 m2 took 3 hours 20 minutes 



 
 
Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol after official publication for the final version. 

 
 

(about 430 m2/hour) in this case. Altogether, ploughing 1430 m2 twice by two people took 5 

hours 25 minutes, or at the overall rate of about st = 260 m2/person-hour. We note in passing that 

of the two workers involved in ploughing, a physically weaker person, e.g., an older child, can 

guide the animal. 

Semyonov (1974, p. 252) cites Steensberg (1943, pp. 10–22) who experimented with 

harvesting ripe barley and partially ripe oats with modern and primitive sickles in 1938–1939 

near Lviv (Lemberg) in Western Ukraine, in Slovakia and in Denmark. With a flint sickle, cut-

ting low on the stem at a height of 12–30 cm above ground, the harvesting was done at a rate sr = 

30–40 m2/person-hour (10 m2/person-hour are equivalent to 100 person-day/ha for an assumed 

10-hour working day). Mowing of 50 m2 with a Viking- or Roman-type scythe took 17–

30 minutes. Semyonov’s (1974, pp. 253–254) own experiments on cutting wet grass (stem diam-

eter 0.5–0.7 mm) with flint sickles, modelled on those found at the CTU site Luka-Vrublevets'ka, 

resulted in a reaping productivity of sr = 20–25 m2/person-hour. Ripe rye could be reaped at a 

slightly higher rate, sr = 20–35 m2/person-hour. A cultivated fodder field (oats, barley, peas, 

goose-foot and 10% of various weeds, up to 1.5 m in height and 0.8 cm in the stem diameter) 

could be reaped (by cutting the stem at a height of 25 cm or more above ground) with flint sick-

les at a rate 20–30 m2/person-hour. Altogether, Semyonov (1974, pp. 255–256) concludes that 

the productivity of reaping with a flint sickle is only twice lower than with a modern steel tool. 

White (1965) assesses as credible Columella’s estimates of the average labour cost for 

Roman Italy to be about 44 person-day/ha (18 person-day/acre) for the whole wheat cultivation 

cycle, excluding harvesting, with four ploughings (including ploughing-in the seed), and further 

5.7 person-day/ha (1.5 person-day/iugerum) for reaping. Halstead and Jones (1989) describe tra-

ditional farming in modern Greek islands. These authors emphasize the highly seasonal nature of 

agricultural activity with maximum time stress in the harvesting period and, to a lesser extent, 

the ploughing season. These authors also note that overproduction and storage of more than one 
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year’s supply of food is a relevant response to the risk of a failing crop inherent in a highly sea-

sonal climate environment. A typical labour cost of reaping cereals with a modern sickle was 

10–30 person-day/ha, and the crop processing (threshing, winnowing, etc.) required about the 

same amount of labour as the reaping. Assuming 0.75–1.2 ha/person of per capita cultivated 

land, harvesting at this rate would take 7.5–36 person-day/person. A typical modern productivity 

of tilling is 25 m2/person-hour (1 ha in 400 hours) when using hand tools, and about 

150 m2/person-hour (1 ha in 65 hours) when tilling with a pair of oxen (Ellen 1982, p. 137). 

8.2 The agricultural cycle and labour return 

Using the estimates of the labour productivity presented above, the dietary requirements present-

ed in Section 3 and the land use estimates of Section 6, it is straightforward to estimate the labour 

cost of the arable farming and livestock maintenance required for the population to subsist. 

 Equation (10) expresses the area under crops in terms of the per capita dietary require-

ments in cereals and the cereal yield. Using the nominal values of the labour productivity pre-

sented in Table 8, we obtain the estimates of the labour cost of various agricultural activities col-

lected in Table 9. Whenever required, we assumed that a working year consists of 250 days, al-

lowing for bad weather, holidays, etc. (White 1965). 

Some (but not all) important aspects of the organization of farming can conveniently be 

summarized in terms of the labour return, denoted η, which can be defined as the ratio of energy 

produced to the energy spent or, alternatively, as the ratio of the length of time over which a per-

son can subsist (here, in terms of the calorific food content alone) on the food produced, here de-

noted 𝜏!, to the working time 𝜏! required to produce it: 

 

 𝜂 =
𝜏!
𝜏!

 . (35) 
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Based on ethnographic evidence, Ellen (1982, p. 45) suggests that an overall labour re-

turn of η = 10 is about the minimum acceptable in subsistence societies, with 1750 kcal pro-

duced per person-hour of labour for major economic activities. However, the labour return of 

plant cultivation alone can be as low as η = 2.4 among swidden horticulturalists in modern Indo-

nesia (Ellen 1982, p. 152). To illustrate the significance of this quantity, we note that, theoreti-

cally, one person can support themselves with the labour return of at least unity. To support a 

family of six, two working family members must achieve a labour return of at least η = 3; with 

three workers in such a family, the minimum is η = 2. If any surplus food should be produced, as 

an emergency storage or for exchange, higher labour return is required. 

In our calculations, we focus on the costs of labour that requires a certain physical fitness, 

such as land tillage, and on those seasonal activities that must be completed in a limited time, 

such as land preparation for sowing and reaping the harvest and winter fodder. These are the 

most demanding parts of the agricultural cycle in terms of either the workforce or time. We as-

sume that only a fraction w of a family members are capable of physically demanding work, with 

w = 1/3–1/2. Many other activities, such as sowing, cleaning the grain, collecting leafy fodder, 

can be assigned to less capable family members and/or spread over longer time. 

8.2.1 Illustrative examples 

Before discussing systematic features of the agricultural production system, we present a few 

specific calculations that both justify the typical values of parameters presented in Table 9 and 

illustrate how the equations given above can be used.  

Consider first the time required to prepare soil for sowing. With the fiducial cereal yield 

of Y = 700 kg/ha/year and other parameters from Table 8, the amount of grain available for con-

sumption (with allowance for losses and seeding) follows from Equation (8) as 𝑌g = 441 

kg/ha/year. This amount of grain provides a daily energy 𝑒g𝑌g = 3,806 kcal/ha/day. With the 
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fraction of cereals in the diet of 𝜀g = 0.4, the energy provided by the cereals must be equal to 

𝜀g𝑐 = 1,000 kcal/person/day (equivalent to 0.32 kg/person/day of cereals). Equating the energy 

in the cereals harvested from an area 𝐴g to the annual dietary requirement, 𝐴g𝑒g𝑌g = 𝜀g𝐶 as in 

Equation (10), we obtain the per-capita area of the cereal field of 𝐴g = 0.26 ha/person. If the 

land is tilled with hand tools at st = 15 m2/person-hour, such a field can be prepared for sowing in 

about 17.5 person-days. Then 53 working days (of 10 hours in length) are required to meet the 

requirements of a family of six in cereals if the family field (of 1.56 ha in area) is tilled by two 

people. If an ard is used for the tillage at st = 260 m2/person-hour, it only takes 6 person-days to 

prepare the family field for sowing. Harvesting the cereal field of such a family with a flint sick-

le (sr = 30 m2/person-hour) requires 53 person-days/family of work, and the same amount of la-

bour is needed to thresh and winnow the wheat. 

A similar calculation for the animal products involves more details. With the fraction 

𝜀d = 0.4 of domestic animal products in the diet, the daily per capita production should be 

𝜀d𝑐 = 1,000 kcal/person/day (equivalent to 625 g/person/day of beef alone). With the relative 

numbers of the cattle, sheep/goats and pigs in the herd (with the horses not used for food) sug-

gested by the faunal remains (𝑎c,𝑎s,𝑎pi), the various culling rates (denoted k with the corre-

sponding subscript, ‘c’, ‘s’ or ‘pi’), and the calorific contribution of each meat variety per head 

(denoted e with the corresponding subscripts), the calorific content of the meat produced is given 

by Equation (12). With the similar contributions of cow and caprine milk from Equation (15), the 

number of animals per person required to meet the annual requirement 𝜀d𝐶 is given by Equation 

(18). For the typical parameter values from Table 8, the result is 𝑛a ≈ 5.2 head/person, compris-

ing 𝑛a𝑎c ≈ 1.8 cow/person, 𝑛a𝑎s ≈ 1.2 caprine/person, 𝑛a𝑎pi ≈ 1.7 pig/person, and 𝑛a𝑎h ≈ 0.4 

horse/person using 𝑎h = 0.08. This herd can provide 100 g of beef, 20 g of lamb/goat meat, 50 g 
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of pork, 1 litre of cow milk and 0.04 litre of caprine milk for the daily consumption of one per-

son. 

Using these figures, we can estimate the amount of land required to maintain the herd us-

ing Equations (13)–(14). The calculation of the pasture area, based on the per-head grazing areas 

(𝐴c and 𝐴s for the cattle and caprines, respectively) and areas to collect winter fodder (𝑀c and 

𝑀s), we obtain 22.8 ha/person for the pasture and 0.35 ha/person for collecting fodder. The latter 

figures should be corrected for the fact that only a part of the landscape is suitable for these ac-

tivities. As explained in Sections 6 and 7.1, we assumed that a fraction 𝛿u = 0.2 of the land area 

is not agriculturally productive, 𝛿a = 0.35 of the total area is suitable for arable fields, and 

𝛿m = 0.5 of the total area can be used as grass meadows and to collect leaf fodder. 

If cutting grass requires the same effort as harvesting wheat, sr = 30 m2/person-hour with 

a flint sickle, preparing hay for the family herd from an area ℵ𝐴p per person would take 69 per-

son-day/family. We do not include in our calculations the time required to tend the animals and 

to collect leafy fodder (assumed to contribute a fraction ℵ = 0.5 of the winter fodder) as these 

activities can be assigned to physically weaker family members. 

Finally, given the contribution of 𝜀w𝑐 = 500 kcal/person/day (equivalent to 350 

g/person/day of red deer meat alone) and the relative numbers of hunted animals suggested by 

the bone remains given in Table 7, the number of wild animals hunted annually per person (and 

the corresponding amount of meat) follows from equation (21) as 0.83 head/person/year, includ-

ing 0.4 of red deer (140 g/person/day), 0.2 of row deer (6 g/person/day) and 0.25 of wild boar 

(85 g/person/day). 

The labour required to satisfy the annual dietary requirements of one person consists of 

18 person-day/person for tillage with hand tools (and 1 man-day/person if using the ard), 8 per-

son-day/person for each of reaping and threshing/winnowing, 12 person-day/person for cutting 

grass for winter fodder. Altogether, these activities take about 47 person-day/person if hand till-
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age tools are used and 30 person-day/person for the ard tillage, resulting in the labour returns of 

about η = 8 and 12, respectively. 

8.2.2 Seasonal time stress of the annual agricultural cycle 

As estimated above, even at the lower-end tillage productivity of 15 m2/person-hour, it takes on-

ly 47 person-day/person to satisfy the annual dietary requirements of a single person. Consider-

ing a family of six people of whom only two are physically fit to work (w = 1/3), the cost of pro-

ducing food required for its annual subsistence is just 279 person-days per family per year, as 

compared to 500 person-days available annually in such a family. 

However, a problem with this option is that the tilling of a family cereal field requires 

105 person-days/family, or 53 days if done by two workers, while the soil preparation and sow-

ing must be done in not more than 30 days to avoid significant crop losses (Percival 1974, 

p. 423). Tilling the family field with hand tools by two people can only be finished in 31 days if 

the productivity is st ≈ 25 m2/person-hour. This is marginally acceptable but leaves little room 

for any eventualities such as bad weather or difficult soil. There are several ways to resolve the 

problem. An obvious one is to have more family members working in the fields, especially dur-

ing the tillage and sowing. For half of the family members (w = 1/2) tilling the field at a rate st = 

15 m2/person-hour, the work can be finished in about 30 days. Another obvious option could be 

to use wheat varieties that provide higher yield. However, this does not lead to any significant 

saving in the labour. For example, two people working at st = 15 m2/person-hour could till the 

family field in 30 days only provided the wheat yield was as implausibly high as Y = 

2200 kg/ha/year (with a high labour return of about η = 9, though). Neither winter crops nor ma-

nuring alone is likely to boost the yield to that level. Yet another option is to reduce the reliance 

on cereals by reducing their contribution to the diet. This could be achieved, for instance, if a 

fraction 𝜀g = 0.2 of the calorific content of the diet was from cereals and 𝜀d = 0.6 from domestic 
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animal products, provided the cereal yield is Y = 1100 kg/ha/year. An advantage of this solution 

is that domestic animals can be tendered by weaker members of a family releasing the labour 

reserves for the soil tillage. However, animals require large land areas for pasture, and the size of 

the exploitation area limits the number of animals that can be kept (see Section 9.1). 

A more radical, and long-term, solution is to replace the hoe with the ard. Then two 

workers can plough the family field, of about 1.6 ha for six people, in just 3 days, as opposed to 

about 50 days if working with hand tools. As mentioned above, primitive ards are not efficient 

on heavy and virgin soils where the hoe appears to be the only alternative. This fact highlights 

the difficulty of moving the fields to a virgin soil if the settlement has to be relocated. 

Another bottleneck in the agricultural cycle is cutting grass for the winter fodder. If only 

meadow grass was used for fodder, working with a flint sickle would require 114 person-days to 

provide the family livestock for winter. This is obviously untenable, even for three workers. 

However, leaves of certain tree species also provide excellent fodder (see Section 5.2), and 

younger or weaker members of a farmer’s family could collect them. We assume, admittedly ar-

bitrarily, that only a fraction ℵ = 0.5 of the fodder required is meadow hay. Then the labour cost 

of fodder (excluding collecting the leaves) is quite acceptable at 67 person-days. A further la-

bour-saving option is to improve technology and cut grass with scythe. 

 There are innumerable such combinations of various techniques and strategies of farm-

ing, and there is no point in trying to discuss them all. The diversity in the implementation of 

farming strategy between individual CTU sites and between CTU evolutionary stages apparent 

from archaeological evidence is likely to reflect the wide breadth of possibilities. Instead of dis-

cussing a large number of hypothetical scenarios, we present our results in a graphical form to 

show the dependence of the labour return on the wheat yield, the diet structure, etc., with the aim 

of identifying the limiting elements of a farming strategy. To make the results mutually compa-
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rable, we only vary one or a few parameters at a time, having the others fixed at their nominal 

values given in Table 8. 

9. Trends in the labour return and land use 

Calculations of the labour costs of various agricultural activities readily identify the well-known 

seasonal labour bottlenecks in the farmer’s year (e.g., Fuller et al. 2010) where large parts of the 

annual work have to be done in a limited time: preparation of the land for sowing, collection of 

winter fodder, and harvesting. The land tilling time, limited to about 30 days, appears to be an 

especially demanding challenge. Depending on weather, harvesting may need to be completed in 

a few weeks or even a few days while the spikelets have not yet dried and shattered and the field 

remains dry. This limits mostly the reaping time since the grain can be threshed and cleaned lat-

er. Since naked wheat grains are easily detached from the ear, they are better threshed immedi-

ately after reaping. On the other hand, hulled wheats can be reaped and then stored to be threshed 

on a daily basis. Thus, we focus on the reaping time in our assessment of the labour costs. Col-

lecting hay, straw and leaves for winter fodder is another activity that may impose stringent time 

limits. However, younger and weaker members of the family can be involved, relieving pressure 

on those fit for hard physical work. This is also true of crop reaping. Land tilling thus appears to 

be the most demanding seasonal activity in terms of the time and labour stress. 

To illustrate the results of the calculations, we present per capita figures, e.g., the labour 

cost of producing enough food to support a single person. Furthermore, we discuss the require-

ments, and how they could be met, of a family of six people of whom only two or three (w = 1/3 

or 1/2) are capable of doing work that requires a certain degree of physical fitness. To support 

such a family, the labour return of two workers must be equal to at least three if w = 1/3, or three 

workers should work with a return of at least two if w = 1/2. Finally, we discuss the limiting fac-

tors in the agricultural cycle of typical settlements of 2 and 10 ha in area that presumably host 



 
 
Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol after official publication for the final version. 

 
 

about 50 and 270 inhabitants, respectively (assuming a constant population density within the 

settlements – see Section 2). 

Conclusions drawn from the calculations presented further in this section are testable 

with relevant archaeological material and its proper analysis. In general, our results imply that 

certain types of the temporal evolution of the diet are more advantageous and efficient than oth-

ers, and that different stages in the development of agriculture can have different preferable sub-

sistence strategies. 

9.1 Cereal yield and agricultural technology 
One of the constraints on the size of the exploitation area of a rural settlement is that its fields 

should be within 5 km at most (see Section 6). This constraint can safely be satisfied even for a 

large settlement of 75 ha in area, with the population about N = 2,000 person/settlement, as long 

as the cereal yield exceeds about 350 kg/ha/year. Then 𝑌g = 221 kg/ha/year is available for food 

– see Equation (8). The annual per capita grain consumption under the standard diet structure is 

𝜀g𝐶/𝑒g  = 116 kg/person/year, and this requires 𝐴g=0.53 ha/person of per capita land under 

crops. Allowing for the fallow and unproductive land, the per capita area of the field zone fol-

lows as 𝐴! = 1+ 𝛿f 𝐴g/𝛿a = 4.50 ha/person and the area of the settlement’s field zone is 

𝑁𝐴! = 9,000 ha (all the figures are presented rounded). Then the distance from the settlement 

boundary to the outer boundary of the field zone is obtained from Equation (31) as 𝐷! = 4.9 km. 

Figure 3 illustrates a strong effect of the cereal yield on the labour return, for land tillage 

with either hand tools or ard. Unsurprisingly, the use of ard reduces the labour costs and increas-

es the labour return rather dramatically, by a factor 1.5–2 over the whole agricultural cycle. For a 

given diet structure, lower yields require larger field areas and, consequently, a larger distance to 

them. For a settlement of N = 53 people and A0 = 2 ha in size, the maximum distance to the crops 

from the settlement border varies from D1 = 0.65 km to 0.35 km as Y increases from 500 to 
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1500 kg/ha/year. The maximum distance to the grazing zone varies very little remaining about 

D2 = 2.2 km; the maximum distance to the fodder zone, D3 , differs from D2 by just 50 m (see 

Table 9, obtained for Y = 700 kg/hs/year and other parameter values from Table 8). 

The distances to the grazing and fodder zones are affected more weakly by the yield than 

the radius of the field zone since their radii are larger. For example, when the distance to the 

fields changes by 𝑑! from 𝐷! to 𝐷! + 𝑑! (𝑑! can be either positive or negative but the magnitude 

of 𝑑! is here assumed to be much smaller than 𝐷!), the distance to the grazing zone changes by 

 

 𝑑2 ≈
𝐷!
𝐷!
𝑑! , (36) 

 

a distance much smaller than 𝑑! when 𝐷! is much smaller than 𝐷!. Likewise, the corresponding 

change in the distance to the fodder zone is given by 

 

 𝑑3 ≈
𝐷!
𝐷!
𝑑! +

𝐷!
𝐷!
𝑑!  ≈ 2

𝐷!
𝐷!
𝑑!. (37) 

 

These estimates apply when 𝐷! is the only variable that changes and the change is small (say, by 

30 per cent or less). 

The labour cost of the cereal production varies with the size of the cultivated fields. With 

𝜀g = 0.4 of the diet’s calorific content coming from cereals, yields below about 400 kg/ha/year 

are untenable as the amount of labour required to till the land required to feed one person ex-

ceeds 31 person-days using hand tools. (Indeed, since only 𝑌g = 252 kg/ha/year remains availa-

ble for food, the required per capita annual amount of grain 𝜀g𝐶/𝑒g = 116 kg/person/year is grown 

on 𝐴g = 0.46 ha/person and requires 𝐴g/𝑠t = 31 person-day/person to till.) For a family of six, 

yields in excess of 1,230 kg/ha/year are required to till the family plot in less than 60 person-
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days; this is just acceptable if two members of the family are fit for hard physical work. Thus, 

land tillage causes a significant time stress if done with hand tools. 

The use of the ard removes this constraint and leaves abundant time to continue using 

hand tools, say, in vegetable gardens. Even for implausibly low yields of Y < 150 kg/ha/year, the 

labour required to till a family plot is less than just 28 person-days: in the calculation of the pre-

vious paragraph, reducing the yield from Y = 400 to 150 kg/ha/year would lead to the propor-

tional in-crease in the per capita crop area to 𝐴g = 1.23 ha/person. Ard tillage of this area would 

take 𝐴g/𝑠t = 4.72 person-day/person, or 28.2 person-days/family for a family of six. 

However, the earliest tentative ard found in the CTU area dates to Trypillia BI. The earli-

est CTU framers most probably used only hand tools. One option to avoid the excessive time 

stress in the land tilling and sowing season is to reduce the contribution of cereals to the diet. If 

the relative contributions of cereals, domestic and wild animal products were εg/εd/εw = 

0.23/0.57/0.20 (instead of the nominal 0.4/0.4/0.2), the per capita crop area reduces to 

0.15 ha/person for Y = 700 kg/ha/year, and its tilling would take 10 person-day/person. The la-

bour to prepare a family plot for sowing is, correspondingly, 60 person-day/family. Keeping the 

livestock is more efficient in terms of the energy return: with the diet containing only a fraction 

𝜀g = 0.23 of cereals, the labour return is as high as 𝜂 = 10. Cutting grass for the herd requires 

96 person-day/family; this is a large load but not untenable given that fodder can be collected 

between the sowing and harvesting seasons by virtually all family members. A possible problem 

with this option is not in the labour cost but in the distance to the grazing area as the large herd 

needs a large area to be fed. The distance to the outer boundary of the grazing area around a set-

tlement of about 50 inhabitants (2 ha in area) remains acceptably small at D2 = 2.2 km for this 

diet structure. However, larger settlements become problematic. For instance, a 10-ha village of 

about 270 people would have its fields within D1 = 1.2 km from the settlement but the outer bor-
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der of the grazing area would become D2 = 4.9 km away (see Table 9). The distance to the fod-

der zone differs insignificantly (by about 100 m) from that to the grazing area. 

This scenario may be consistent with the fact that the total mean amount of domestic an-

imal remains (MNI) shown in Table 7 increases from 62 in the Early Trypillia to 71 in the middle 

stage but then decreases to 22 in the Late Trypillia. The mild increase in the livestock kept in the 

middle stages may reflect an attempt to reduce the seasonal time stress of arable agriculture. The 

reduction in the apparent size of the herd in the late stages can be attributed to the increase in the 

efficiency of the cereal production resulting from the advent of the ard. The mean wild animal 

MNI decreases from 43 to 29 and to 8 through these stages suggesting a steady reduction in the 

importance of the wild food resources. 

The magnitude of D2 obviously depends on the grazing area per animal head while our 

nominal figure of Ac = 10 ha/head is rather generous. Given that less than 1 ha/head of a flooded 

pasture is sufficient for cattle, D2 can be reduced to 3.8 km for a conveniently located village of 

10 ha in area if Ac = 5 ha/head, corresponding to an approximately equal split between meadow 

and forest grazing (and all other parameters unchanged). With Ac = 5 ha/head, a settlement of 20 

ha in area still has D2 ≈ 5.8 km, but the problem arises again for larger settlements. 

Since arable fields represent a relatively small fraction of the exploitation area, changes 

in the cereal yield affect the local carrying capacity only weakly. As Y varies from 500 to 

1500 kg/ha/year for the nominal diet structure, Ks varies by a few percent remaining close to 

3.3 persons/km2. Changing the diet to εg/εd/εw = 0.23/0.57/0.20 leads to Ks ≈ 2.3 persons/km2. 

Altogether, we suggest that large, exclusively farming settlements of a few thousand 

people and a few hundred hectares in area, found in the CTU region, unavoidably would have an 

excessively large exploitation area: for example, a settlement of 100 ha in area (2650 inhabitants) 

has the crop area at a maximum distance of 3.8 km but the maximum distance to the grazing 

zone is as large as 15.4 km. Settlement of such size and larger can be sustainable only if they are 
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supported by satellite farming villages, which would imply complex social organization, labour 

and occupation division, and well-established, stable exchange networks. The development of 

such complex social structures based on technological advances is implausible at the early stages 

of the CTU. This can be a reason for the dominance of smaller and medium-size settlements in 

the early CTU. Large, proto-urban settlements have to be supported by adequate technology 

and/or the developed social relations that presumably emerged at the later stages. 

9.2 The diet structure and labour return 
Having identified and quantified specific mechanisms of the influence of the population diet on 

agricultural activities, we explore this connection in more detail. It appears that reducing the 

fraction of cereals in the diet in favour of meat and dairy products is the only obvious way to 

cope with the labour bottlenecks in a crop-based agriculture, especially if the cereal yield is low. 

The variation of the labour return and the local subsistence carrying capacity with the rel-

ative contribution of cereals to the diet is shown in Figure 4 assuming a constant cereal yield of Y 

= 700 kg/ha/year and a constant contribution of the wild animal food to the diet, εw = 0.2. Solid 

and dashed lines show the dependencies obtained under the land cultivation with hand tools and 

with the ard, respectively. A significant constraint that arises if hand tools are used is that a fami-

ly plot can be tilled in less than 60 person-day/family only for small contributions of cereals to 

the diet, εg/εd < 0.4. An advantage of a diet with a relatively small fraction of cereals, which 

could be attractive at early stages of the development of farming, is that the labour return is 

higher when the cereal fraction is lower. For εg/εd < 0.4, the labour return exceeds 𝜂 = 10 even if 

hand-tools are used. 

As shown in Figure 4, the tillage with ard takes less than 10 person-day/family for εg/εd < 

4, and the labour return exceeds η = 10 for any reasonable fraction of cereals in the diet. 
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The size of the exploitation territory remains reasonable across a large part of the range 

shown in Figure 4, with 0 < D1 < 0.7 km, 6.9 > D2 > 1.5 km and 7.0 > D3 > 1.6 km for 0 < εg/εd < 

3 and a settlement of 2 ha in area with about 50 inhabitants. A larger settlement has larger ex-

ploitation territory, with 0 < D1 < 1.5 km, 3.1 < D2 < 3.4 km and 3.2 < D3 < 3.5 km for 0 < εg/εd 

< 3. The sense of the inequalities for D2 and D3 changes as compared to the smaller settlement 

because the radii of the grazing and fodder areas are larger while the zone area increases quadrat-

ically with its radius. 

An increase in the fraction of cereal products (larger εg/εd) beyond the equal split, εg ≈ εd, 

affects the labour return rather weakly. The labour return varies from 𝜂 = 8 to 6 for hand-tillage 

and from 12 and 10 under ard-tillage as εg/εd increases from 1 to 10. (However, values of εg/εd 

above about 0.5 do not appear to be practical with hand-tilling because of the time constraints 

noted above.) Thus, the diet structure, at least after the introduction of the ard, is flexible in this 

sense as long as the contribution of cereals is large enough, allowing much room for change 

without any strong effect on the amount of labour required to support it. The change in the la-

bour efficiency is relatively weak mainly because changes in εg/εd lead to a seasonal redistribu-

tion of the labour cost between collecting winter fodder and tilling the land and harvesting. Thus, 

a diet dominated by cereals permits a change of labour resources with little effect on the labour 

efficiency in case of poor or even failed harvest or any other hazard in food production. This is 

true, of course, if a change in the diet does not create an insurmountable seasonal time stress (see 

Section 8.2) 

The proportion of cereal food affects noticeably the local subsistence carrying capacity 

since a larger fraction of domestic animal products makes the economy more land-extensive 

through the demand for grazing and fodder lands. The magnitude of Ks increases slightly faster 

than linearly with εg/εd as stronger reliance on cereals means smaller exploitation area. 
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These calculations confirm that changing the diet can hardly help to remove the labour-

cost and time bottlenecks in the soil preparation for sowing: only when the contribution of the 

cereals is less than half of that from domestic animal products, can two workers till the fields of a 

family of six in less than 30 days. A diet with similar contributions of cereal and domestic ani-

mal products is only possible if the ard replaces hand tools in the land tillage. On the other hand, 

a diet dominated by cereals (where possible) is rather flexible, and can be adjusted widely with-

out much effect on the labour return. This observation may be relevant to discussions of the risks 

involved in growing cereals: if the harvest is poor but the (reduced) dominance of cereals can 

still be maintained (e.g., because of a stored grain), a switch to a stronger reliance on animal 

products does not affect the labour efficiency much, but rather requires a seasonal redistribution 

of the workload. 

To make this point clearer, consider another trajectory in the parameter space that may 

help to clarify possible risk management strategies associated with arable agriculture. Figure 5 

shows the variations of the labour return and the relative fraction of cereals in the diet with the 

cereal yield, where we assume that the relative contribution of cereals to the diet is proportional 

to the cereal yield, εg = 0.4Y/700 kg/ha/year, keeping the total contribution of domestic products 

constant, εg + εd = 0.8. The crop area is then independent of the cereal yield remaining equal to 

0.26 ha/person. This scenario is supposed to model the reaction to a failed harvest or a possible 

diet evolution as the cereal yield increases systematically with time (e.g., because of the selection 

of better cereal varieties). 

With the cereal fraction increasing together with the cereal yield, the labour return is sig-

nificantly higher, and its variation with the yield weaker, than in the case of a fixed diet illustrat-

ed in Figure 4. This version of the subsistence strategy is apparently advantageous as it both 

maximizes the labour return and provides flexibility in terms of the redistribution of resources 
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between growing of crops and animal husbandry. As mentioned above, this strategy may also 

help to offset the damage of a failed harvest. 

9.3 The role of dairy products 
Dairy products appear to have been a part of the European human diet since the Early Neolithic. 

However, previous palaeoeconomy analyses rarely, if ever, included dairy products. The general 

attitude felt in the literature is that they are an attractive but optional addition rather than an es-

sential component of the diet. Based on our calculations, we argue that milk and dairy products 

could be an essential component of the diet, providing an opportunity to reduce labour costs. 

Figure 6 illustrates the role of the dairy products showing the dependence of the labour 

return and other variables on the milk yield. The results shown are obtained by increasing the 

cow and caprine milk yields together, ys = 50 (yc/400)1/3, where both ys and yc are measured in 

litre/head/year. This dependence is chosen exclusively for illustrative purposes to ensure that the 

range of variation of the caprine milk yield remains reasonable as the cow milk yield varies. In 

particular, the nominal figures ys = 50 litre/head/year for yc = 400 litre/head/year are reproduced, 

and, at the top end of the range, ys = 146  litre/head/year for yc = 10,000  litre/head/year are simi-

lar to the modern livestock figures. 

Unsurprisingly, increasing milk yield boosts the labour return η. What is surprising is 

that the effect is so significant. As the milk yield increases from zero to 2,000 litre/head/year, the 

efficiency of the hand-tool agriculture grows from η = 5 to 10, and labour assisted by the ard has 

the return boosted from η = 6 to 16 (as shown by solid and dashed curves in Figure 6, respective-

ly). For larger milk yields, the size of the herd required to satisfy the dietary requirements reduc-

es, and hence the grazing and fodder zones become smaller. As a result, the local carrying capac-

ity (shown with dotted line) increases with the milk yield nearly linearly from Ks = 1 to 12 per-

sons/km2 as yc increases from 0 to 2,000 litre/head/year and ys increases simultaneously from 0 
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to about 90 litre/head/year. The nearly linear variation of the subsistence carrying capacity with 

the milk yield is explained by the fact that an increase in the milk yield leads to a proportionate 

reduction in the grazing and fodder areas if the total amount of calories produced remains un-

changed. Since these zones dominate in the area of exploitation territory, the carrying capacity 

changes approximately in inverse proportion to the areas used by the livestock. 

We have neglected the labour costs of milking, tending the animals, collecting leaf fod-

der, etc., and this, of course, contributes to the magnitude of the increase in the labour return 

quoted above. Again, these activities can be assigned to the weaker family members: the labour 

returns quoted here refer to the physically most demanding activities performed by a few physi-

cally stronger people. 

The effect of the milk yield on the carrying capacity is so strong because the number of 

domestic animals that need to be kept reduces significantly if their milk is used for food, as 

shown with the dash-dotted curve in Figure 6. For yc = 0, an implausibly large herd of nc = 16 

head/person is required to satisfy the dietary requirements of a single person for the diet structure 

assumed (εg/εd/εw = 0.4/0.4/0.2). This illustrates once more the importance of dairy products. For 

yc = 400 litre/head/year, the herd size decreases to about nc = 5.2 heads per capita (1.8 heads of 

cattle, 1.2 caprines, 1.7 pigs and 0.4 horses per person), still a rather large herd to keep. The rap-

id decrease continues to 1.4 head/person, comprising 0.5 cattle, 0.3 sheep or goats, 0.5 pigs and 

0.1 horses for yc = 2,000 litre/head/year. It is clear that even for this productivity of the milk 

herd, still low by modern standards, there are many opportunities to produce surplus agricultural 

product beyond the subsistence requirements. 

Another illustration of the importance of dairy products involves the nutritional aspect of 

the diet. As mentioned above, if no milk is used at all and the calorific fraction of domestic ani-

mal products (then, meat alone) remains equal to εd = 0.4, the size of the per capita herd increas-

es to na = 16 head/person for the nominal parameters values. This is clearly an untenably large 
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number. Moreover, the implied daily consumption of meat from domestic animals alone be-

comes as high as 500 g/person/day (as compared to 160 g/person/day if milk is used). To put this 

figure into a simple but relevant context, we note that a fillet steak served in a typical British res-

taurant weighs 230 grams. It is thus clear that palaeodiet reconstructions with a significant frac-

tion of animal products are inconsistent with the constraints of human physiology and nutrition 

unless a significant part of the animal food are dairy products. 

9.4 The exploitation territory 
The above discussion contains references to the size of the exploitation territory of a settlement 

in connection with the expectation that the distance to the arable fields should not exceed 5 km 

and preferably be within 1–2 km of a settlement, whereas the distance to the pasture areas should 

be within 5–10 km (see Section 6). In this section, we summarize this aspect of our results. 

Figure 7 shows the maximum distances from a settlement border to the field zone (D1), 

grazing zone (D2) and the fodder zone (D3). For this illustration, we have chosen a typical set-

tlement size of the Early Trypillia, of an area A0 = 2 ha with about 50 people (Table 2). Each 

panel of Figure 7 corresponds to one of the models discussed above and illustrated in Figure 3–

Figure 6. The maximum distance to the fields D1 is close to 0.5 km in all cases except for ex-

tremely low cereal yields (Panel a) or extremely high fraction of cereals in the diet (Panel b), but 

even then it does not exceed 1.5–0.8 km. The distance to the grazing area, D2, never exceeds 

3 km and is smaller than 2 km under rather realistic choices of parameters. The distance to the 

fodder zone, D3, differs from D2 insignificantly because the radius of this zone is large, and 

hence even a narrow annulus can have a substantial area. 

The situation is not that simple for larger settlements. Assume, for the sake of argument, 

that the population density is independent of the population size and equal to 𝜌 = 26.5 per-

son/ha, or 375 m2 of settlement area per person. Then a settlement of an area 𝐴! = 10 ha has 

about 𝜌𝐴! = 270 people. With the nominal values of parameters of Table 8, the outer radii of 
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the three zones, D1 = 1.2 km, D2 = 4.8 km and D3 = 5.0 km, are approaching the maximum ac-

ceptable values. A 40-ha settlement (about 1,100 people) is only marginally sustainable with D1 

= 2.4 km, D2 = 9.7 km and D3 = 9.9 km. Of course, optimisation of the subsistence strategy by 

changing the diet (perhaps only slightly) or a higher cereal or milk yield, to mention just a few 

options, can make a 40-ha village a viable option. We note that the amount of fallow land adopt-

ed (twice the area of the fields under direct cultivation, δf = 2) might be unrealistically small as it 

implies a triennial fallow. Early agricultural systems could use longer fallow intervals; ethno-

graphic data suggest that fallow length of 8–15 years is not unusual (Styger and Fernandes 

2006). Longer fallow would obviously result in larger exploited land area. Notably, the median 

size of the Trypillia settlements given in Table 2 does not exceed 8.4 ha. It is clear that signifi-

cantly larger settlements would need a fundamental change in the organization of their food sup-

plies, and the division of labour and occupation, with ensuing increased social complexity. 

Figure 8 shows the variation of the maximum distance to the field zone from a settlement 

boundary with the fallow ratio 𝛿f, the size of the fallow area relative to the cropped area, for sev-

eral typical settlement sizes. It is noteworthy that the distances to the grazing and fodder zones 

do not change as δf varies since the larger fallow land is used for pasture, so that the size of the 

dedicated grazing area reduces as the fallow area increases. 

The distance to the field zone increases with the fallow ratio at a modest rate (roughly, as 

the square root of δf). The field zone remains within 1–2 km of a village only if the length of the 

fallow is not too large: D1 < 1.5 km for δf < 20 for a settlement of 𝐴! = 2 ha in area but only for 

δf < 7.5 around a 5 ha settlement. The fields of a bigger settlement of 10 ha are within this dis-

tance only for δf < 3; for a still larger settlement of 𝐴! = 20 ha, the maximum acceptable value 

of δf is the marginal 1.5. Of course, these figures would be smaller for a higher cereal yield, with 

D1 decreasing roughly in inverse proportion to the square root of the yield. However, this illus-
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trates once more that settlements of more than a few tens of hectares in area, with more than a 

few hundred people, are likely to function differently from smaller villages as the need to import 

food from satellite farming villages rapidly increases with the size of the settlement. 

9.5 Surplus food production 

The above estimates present an overall economic picture of farming based on the immediate die-

tary requirements of the population. There is another aspect of cereal farming that we have 

touched upon only in passing: the risks of agricultural production mainly associated with failed 

crops (Halstead 2004). The diversification of the domesticated plants and livestock, storage of 

emergency reserves and wider use of wild resources are among the strategies that could mitigate 

this risk. The storage for emergencies obviously requires some surplus of food to be produced 

implying higher labour costs. An opportunity to produce a surplus product can also profoundly 

affect the economic behaviour of the farmer. If a surplus product can be, and indeed is, produced 

beyond the needs of the farmers and their families, the importance of transportation and commu-

nication greatly increases, as the surplus produce needs to be transported to the consumer on a 

regular basis. This makes it more important for the farm to be located conveniently with respect 

to (most often, close to) transportation routes, of which waterways are most obvious. In turn, this 

makes isolated hamlets a less attractive option for a farmer to occupy, thereby facilitating the 

agglomeration and clustering of the population. 

In the discussion above, we have identified a direct route to a surplus food production via 

the use of dairy products: by providing a significant food resource that requires relatively little 

labour investment from the physically fit family members, it provides an opportunity to redirect 

the labour resources to producing surplus product in any branch of agriculture. We shall explore 

these opportunities in another publication. 
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10. The lifetime of a farming settlement 

10.1 Archaeological evidence 

There are many indications that most Trypillian settlements had a relatively short lifetime of less 

than 100 years. Most of the settlements have a single-layer stratigraphy. Tells are found only in 

the Carpathian piedmont areas, and even there only isolated phases and stages are represented in 

the excavation finds, often separated by significant gaps. This is also true of the multi-layered 

sites discovered in the eastern part of the CTU area, where material finds are restricted to 2–3 

phases. For example, the largest settlements, such as Talianky and Maydanetske, belong to a lim-

ited part of a single stage, CI (Smaglii and Videiko 1990; Ryzhov 1990). 

There have been several attempts to estimate the Trypillia settlement lifetime, converging 

to 50–100 years (e.g., Krutz 1989; Markevich 1981). These estimates were based on archaeolog-

ical dating and pottery typology, together with 14C and archaeomagnetic dating. For example, 

Ryzhov (1990) identified distinct phases in the development of the Trypillia sites in the Dnieper–

Southern Bug interfluves in the fourth millennium BC. The types of painted pottery found there 

suggest up to five development phases belonging to Stage BII and four, to CI, nine phases alto-

gether. According to archaeomagnetic dating, the overall duration of these phases is 500–600 

years (Telegin 1985, pp. 11–17). The author of these archaeomagnetic measurements, 

G. F. Zagnii (private communication) suggests that their accuracy is 25–50 years, sufficiently 

high for our purposes; for comparison, recent archaeomagnetic studies of Neolithic sites in Bul-

garia (Jordonova et al. 2004) and Greece (Aidona and Kondopoulou 2012) report accuracies of 

up to ±70 and ±85 years, respectively (from the 95% range of dates). (The accuracy of the ar-

chaeological dates obtained from 14C measurements is as yet insufficient to make them useful for 

our present purposes.) The average duration of a single phase, which can be tentatively identified 

with the settlement lifetime, follows as 50–70 years. However, the stratigraphic structure within 
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a single phase (e.g., Maydanetske – Shmaglii and Videiko 2001–2002) suggests that at some 

sites the lifetime could be somewhat longer but never exceeding 80–150 years. In the vast major-

ity of cases, a repeated occupation of a given site, if it happened, occurred with prolonged peri-

ods of abandonment, often of 200–500 years long. 

10.2 The depleted resources model 

From the available archaeological and agricultural evidence, it is possible to estimate the maxi-

mum lifetime of a farming settlement if it is limited by the decreasing soil fertility alone. As 

above, we use 𝛿f to denote the ratio of the fallow to cropped areas. Thus, at any time, a plot is 

either being farmed, and so has decreasing fertility, or it is fallow and then its fertility is recover-

ing. Let TR be the recovery time scale of the soil fertility and TD the fertility depletion time. In a 

depletion phase (i.e., when a field is under crops), the soil nutrients are being depleted, which 

can be described as a continuous reduction in the yield Y with time t, 

 

 𝑌 𝑡 = 𝑌! exp −𝑡/𝑇D  , (38) 

 

where the cultivation phase starts at t = 0 and Y0 is the starting yield (e.g., that of virgin land). 

When discussing the Sanborn data in Section 4, we used linear fits to the yield variation with the 

time span after the start of the cultivation, which proves to be sufficient over relatively short pe-

riods of order 30 years. On longer timescales, the yield is likely to decrease exponentially with 

time as adopted here, assuming that a constant fraction (rather than amount) of nutrients is ex-

tracted annually from the soil by the crop plants and removed by leaching. 

Suppose that the plot is farmed for a period t1 and then left fallow for a period t2 = δf t1 

while one of the other plots (there are 𝛿f of them) is cultivated. The recovery of the potential 
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yield of the fallow field from (𝑡!), the yield of Equation (38) at the end of the cultivation phase, 

is then described by 

 

 𝑌 𝑡 = 𝑌 𝑡!  exp
𝑡 − 𝑡!
𝑇R

 ,         𝑡! < 𝑡 ≤ 𝑡! 1+ 𝛿f  . (39) 

 

A complete recovery of a fallow field is perhaps not waited for, simply as it takes too 

long (the recovery time is usually 3–5 times longer than the cropping time). Rather, a plot is 

cropped again after the full rotation, at a time t = (1 + δf)t1 , and the cycle repeats again and 

again. The resulting variation of the yield from the whole field area containing all the plots in-

volved is shown in Figure 9a. The cycle is repeated until the yield reduces to a level Ym too low 

to be useful, and then the whole site is abandoned and a new settlement location is sought. After 

a number of such cycles, at a time t, the yields of a given plot just before and just after the fallow 

phase, 𝑌! and 𝑌! respectively, can be shown to be 

 

 𝑌! 𝑡 = 𝑌! 𝑒!(!!!!) !/!D!!f/!R !!!/!D     and     𝑌! 𝑡 = 𝑌! 𝑒!! !/!D!!f/!R  . (40) 

 

The average yield (with the saw-tooth changes smoothed-out as shown with dashed line in Figure 

9a) is then given by 

 

 𝑌 𝑡 =
1
2 𝑌! 𝑡 + 𝑌! 𝑡 =

1
2𝑌! 𝑒!! !/!D!!f/!R 1− 𝑒!!f!!/!R  . (41) 

 

We assume that the land will be abandoned at the time T such that the yield obtained immediate-

ly after the fallow time, 𝑌!(𝑇), reduces to a certain minimum acceptable level 𝑌m: 
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 𝑇 =
𝑇D

1− 𝛿f𝑇D/𝑇R
ln
𝑌!
𝑌m

 . (42) 

 

Before discussing the general properties of the model, we consider the plausible values of 

parameters that enter it. From the fits to the Sanborn data discussed above, the average half-life 

of a plot of land (i.e., the average time for the yield to halve) is approximately τu = 17 years for 

unmanured plots and τm = 28 years where manure fertilizer was applied. This gives the combined 

half-life of TD = [(1 − fm)/τu + fm /τm]−
1 ≈ 20 years, for the fraction of manured fields fm = 0.4 ob-

tained in Section 6.4. We assume a recovery time of TR = 100 years (e.g., Boserup 1965) and 

adopt δf = 2. The adopted minimum yield is Ym = 250  kg/ha/year, corresponding to the mini-

mum acceptable labour return with hand tillage by three people (see Figure 3). For Y0 = 

700 kg/ha/year and the duration of cropping of t1 = 1 year, we obtain T ≈ 130 years as the settle-

ment lifetime in this model. This estimate is rather sensitive to the amount of land kept fallow 

but only weakly to the initial and minimum values of the yield, 𝑌! and 𝑌m. For example, for δf = 

3 and other parameters unchanged, we obtain T ≈ 300 years. 

To understand the reason for this sensitivity, consider the properties of the settlement 

lifetime given by Equation (42). It is useful to note that the lifetime measured in the units of the 

depletion time 𝑇D, that is 𝑇/𝑇D, only depends on two dimensionless parameters: the fallow ratio 

𝛿f and the ratio of the time scales 𝑇D/𝑇R. The dependence of T on the ratio 𝑌!/𝑌m is rather weak 

(logarithmic). Figure 9b shows the dependence of 𝑇/𝑇D on 𝛿f for three plausible values of 𝑇D/𝑇R. 

The settlement lifetime grows rapidly as 𝛿f increases and tends to infinity (corresponding to un-

limited existence of the settlement) as the fallow ratio approaches 𝛿f = 𝑇R/𝑇D. For example, if 

the recovery time is five times longer than the depletion time, a settlement that has 𝛿f = 5 (each 

plot cropped every six years) can exist forever in this model. This happens because, under such 

conditions, the fallow period is long enough to recover the initial yield. As a result, the average 
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yield given by Equation (41) remains constant. As discussed in Section 4.3.2, lower yields of or-

der Y =1,000 kg/ha/year may be maintained for a long time with little use of fertilisers. 

Of course, there are other reasons why a settlement lifetime would be limited even if the 

average yield does not decline. A few failed harvests can destroy a farming village. Krutz (1989) 

argues that deforestation could cause shortage of timber for building and thus force a settlement 

to be abandoned and the population relocated. The model suggested here provides a convenient 

and simple framework that can easily be adapted to allow for various effects of this kind. 

11. Conclusions and discussion 

From the very beginning of its evolution, the CTU possessed a developed agricultural technolo-

gy with a wide spectrum of domesticated plants and animals. We have presented palaeoeconomy 

reconstructions of pre-modern agriculture selecting, wherever required, features specific for the 

CTU, and paying special attention to the self-consistency of all the elements of the model within 

the constraints provided by the archaeological, environmental and technological evidence availa-

ble. There are a few parameters of the palaeoeconomy model developed that may be narrowly 

specific to the CTU. One of them is the cereal yields and its variation with time and rainfall (as a 

climate proxy): these are sensitive to the soil structure and fertility specific for the region. An-

other such specific aspect is the composition of the domestic animal herd, i.e., the fractions of 

the cattle, caprines, pigs, horses, etc. Related to the two is the human diet structure. Other pa-

rameters, such as the labour productivity, appear to be less dependent on the specific area. To 

make our results useful in a broader context of the Neolithic and Bronze Age agriculture, we dis-

cussed in detail their sensitivity to and dependence on the key subsistence and technological pa-

rameters. 

With full appreciation of the tentative and approximate nature of any palaeoeconomy es-

timates, our calculations firmly demonstrate the sustainability of the CTU agriculture. Our mod-
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els include several equally important elements. We start with the calorific content of the pal-

aeodiet suggested by archaeological data, stable isotope analyses of human remains, and paly-

nology studies in the area. We allow for all known domestic and wildlife elements of the diet and 

provide plausible estimates of the pre-modern yield of ancient cereal varieties and its dependence 

on the rainfall and duration of continuous land cultivation. Importantly, we pay proper attention 

to the labour costs of various seasonal parts of the agricultural cycle, not only for an individual 

but also for the farmer’s family (with its majority of weak and young members not capable of 

hard physical labour); this was rarely, if ever, done systematically in the earlier studies of pre-

modern agriculture. Finally, we put our results into the context of the exploitation territory and 

catchment analysis to translate the subsistence needs and strategy of an individual to those of set-

tlements of various sizes. Many (but not all) aspects of the economy are conveniently summa-

rised in terms of the labour return, the ratio of the amount of food energy produced to the energy 

spent or, equivalently, the total amount of labourer-time available to the working time. Another 

important aspect of the agricultural activities is the relation of the labour productivity to the time 

available to seasonal agricultural activities. Of those, the land preparation for sowing causes the 

strongest time stress. We address this aspect of the problem using the published results of exper-

iments on tillage, reaping, threshing and winnowing using primitive tools and/or traditional tech-

niques. 

The simplest subsistence strategy, based on a complex of cereals, domestic and wild ani-

mal products, with fallow cropping, appears to be capable of supporting an isolated, relatively 

small farming community of up to 300 people, in a village of up to 10 ha in area, even without 

recourse to technological improvements such as the use of manure fertiliser. The most important 

factor limiting the size of such a community is the labour productivity and the labour cost of land 

cultivation with hand tools. The time stress at the crop sowing time can be relieved by reducing 

the fraction of cereals in the diet to about 𝜀g = 25 in terms of calorific content. Reduction in the 
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soil fertility with time, estimated here from the continuous agricultural experiment on virgin land 

at Sanborn (Missouri, USA), suggests that soil fertility around such a settlement would be de-

pleted within 60–150 years even with a fallow system. This factor can limit the lifetime of a 

small farming village. Such settlements are typical of the earliest Trypillia A. 

A larger settlement of several hundred people could function in isolation only with a 

larger fraction of cereals in the diet and with technological innovations such as the use of manure 

fertiliser and, most importantly, land tilling with ard rather than hand tools. The ard relieves rad-

ically the extreme time pressure at the time of soil preparation for sowing. There is tentative ar-

chaeological evidence for the use of ard from the Trypillia BI. Another constraint on the settle-

ment size arises from the fact that animal husbandry is land-extensive, and the distance to the 

grazing area increases very rapidly with the size of the cattle herd. It appears that very large set-

tlements of a few hundred hectares in area could function only if supported by satellite farming 

villages. In turn, this implies division of labour, sufficiently complex social relations, stable ex-

change channels, etc.: altogether, a proto-urban character of such settlements. 

Arable agriculture is more labour expensive and involves stronger seasonal time stress 

than animal husbandry. However, variations in the labour return under varying fraction of cereals 

in the diet indicate that a diet dominated by cereals is more flexible in the sense that labour redis-

tribution between obtaining food from cereals and domestic animals does not affect the labour 

return significantly but leads to a seasonal redistribution of the labour costs. This feature can be 

relevant to the mitigation of the risk of failed crops: when cereals dominate in the diet, applying 

more effort to the livestock is easy in this respect. Another ways to counter the risk is the use of 

the manure fertiliser as it halves the yield variability. We have quantified this using the Sanborn 

experimental data.  

Yet another strategy to handle the agricultural risks is the storage of an annual supply of 

grain to be used when the harvest is low. Typical labour returns of order η = 6–8 if using hand 
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tools for the tillage and η = 10 for the ard tillage imply that a surplus grain (beyond the immedi-

ate subsistence needs of the farmers and their families) can indeed be produced and, hence, keep-

ing such a storage is indeed possible. In a family of six with two members fit for hard agricultur-

al labour (so that each of the workers feeds three people), the minimum labour return required 

for immediate subsistence (i.e., without any surplus cereals produced) is η = 3. Any effort be-

yond this figure can be used to produce a surplus, part of which can be stored as insurance. 

Even when the insurance grain storage has been laid out, there is sufficient reserve in the 

labour return to produce surplus food that can be exchanged or traded externally. However, the 

tillage bottleneck prevents significant surplus grain being produced unless the ard is used to till 

the land. Thus, exchange networks, labour division, etc., can indeed be expected to develop start-

ing from the middle CTU stages, after the introduction of the ard. 

The significant fraction of cattle and horses in the CTU faunal assemblages and osteo-

metric evidence of their use for traction suggest that agricultural activities involved more than 

one (extended) family to justify the costs of maintaining animals for anything other than food 

(Halstead 1996). Reducing the fraction of cattle in the herd from the nominal figure 𝑎c = 0.35 to 

0.25 (say, with an increase in the number of caprines to keep the diet structure unchanged), and 

simultaneously increasing the fraction of milked animals from 𝜅c = 0.5 to 0.7 to keep the num-

ber of milking cows the same, reduces the annual subsistence labour cost from 47 to 22 person-

day/person/year and the labour return increases from 𝜂 = 7.8 to 8.3. This example (illustrative 

and not necessarily realistic) clearly demonstrates the high cost of keeping traction animals and 

stresses advantages of cooperation between farmers who need animal traction only for limited 

periods in the seasonal agricultural cycle. Thirty cattle appear to be a minimum herd size for the 

reproductive maintenance of a herd (Bogucki 1982, p. 109; Glass 1991, p. 28). Thus, the need to 

combine the resources of several farming households may be another factor that determines the 

minimum size of an isolated farming village. 
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It is tempting to apply the palaeoeconomy model to later stages of the CTU development 

and to larger settlements. However, larger settlements are rare and, hence each of them may be 

special. Therefore, such an application should be based on careful analysis of the specific land-

scape and environment at the giant CTU settlements. Gaydarska (2003) has started such work for 

Maydanetske. In addition, quantitative analysis of connections between the CTU sites, e.g., sug-

gested by pottery typology, is required to assess the intensity of exchange networks. 
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Table 1. Chronology of the Cucuteni–Trypillia Unity (Videiko 2003; Klochko and Krutz 1999; 

Kovalyukh et al. 1996; Rassamakin and Menotti 2011) 

 

Typo-Chronological Stage Time Span, years BC 

In Ukraine In Romania  

Trypillia A Precucuteni I, II, III 5,400/5,300–4,800/4,700 

Trypillia BI Cucuteni A (1–4) 4,800/4,700–4,500/4,400 

Trypillia BI/II Cucuteni A-B (1–2) 4,500/4,400–4,100/4,000 

Trypillia BII + CI Cucuteni B (1–3) 4,100/4,000–3,400/3,300 

Trypillia CII-γII Gorodiştea–Folteşti–Erbiceni 3,400/3,300–2,800/2,700 
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Table 2. The mean, median and maximum areas of CTU sites in the Ukraine per stage, and the 

number of sites with known area 

. 

Stage A BI BI–BII BII BII–CI CI CII 

Mean area, ha 3.0 9.9 28.8 14.6 12.1 20.2   9.1 

Median area, ha 2.0 5.0   6.4   2.0   8.4   6.0   1.8 

Maximum area, ha 14 60 150 261 150 341 160 

Number of sites 20 15 28 119 53 151 56 
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Table 3. Fits to the wheat yield from individual plots and to the overall yield from all the plots in 

the Sanborn experiment: the fitted parameters A, B and C of Equation (2), together with their re-

spective standard deviations σA, σB and σC. Note that the unit chosen is based on kilogram rather 

than tonne as used elsewhere in the text. The value of ℛ!, given as a percentage, indicates the 

fraction of the variation in the data accounted for by the fit (higher values of ℛ! indicate a better 

fit, with the maximum of 100%). 

 

  A σA  B σB  C σC ℛ2 

 kg/ha/year  kg/ha/year/mm  kg/ha/year2 % 

 Unmanured 

Both Plots 2500 570  −2.9 1.4  −40 14 27 

Plot 1 2100 670  −2.8 1.6  −24 14 22 

Plot 2 3000 1000  −2.9 2.4  –63 39 27 

 Manured 

All Plots 3500 300  −4.7 0.7  −30   8 37 

Plot 1 2900 740  −2.2 1.8  −46 21 33 

Plot 2 4300 820  −6.0 2.0  −38 23 46 

Plot 3 3600 750  −5.0 1.8  −24 21 39 

Plot 4 3900 650  −4.9 1.6  −48 18 53 

Plot 5 3100 590  −4.2 1.3  −12 13 35 
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Table 4. The cross-correlation matrix between the wheat yield at Sanborn (Yu and Ym for unma-

nured and manured plots, respectively), rainfall (R) and time since the beginning of cultivation 

(D), denoted in the text Cij with i, j = Y, R, D. Larger correlation coefficients (by magnitude) in-

dicate stronger statistical dependence between the corresponding variables; negative values indi-

cate an anti-correlation (i.e., one variable decreases as the other increases). 

 

Unmanured Plots Manured Plots 
 Yu R D  Ym R D 
Yu 1   Ym 1   
R −0.26 1  R −0.42 1  
D −0.31 −0.33 1 D −0.18 −0.30 1 
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Table 5. Yields of spring emmer and einkorn, and winter spelt, together with naked wheat yields 

grown under comparable conditions, under dryland cropping in south central Montana, U.S.A. in 

1992–1994 (emmer and einkorn) and 1991–1994 (spelt) (after Stallknecht et al. 1996). The em-

mer, einkorn and spelt grain yields were estimated as 60% of the hulled grain when dehulled. 

 

Wheat variety Mean grain yield Yield range Relative to naked wheat 

Unit kg/ha/year kg/ha/year % 

Emmer (a) 1,990 1,540–2,550 (e) 58 

Einkorn (a) 2,600   120–4,160 (f) 76 

Naked wheat (b) 3,417 2,250–5,370 (e) 100 

Spelt (a),(c) 3,040 2,090–4,240 (e) 72 

Naked wheat (c),(d) 4,233 3,430–5,910 (e) 100 

Notes:   (a) Data for five highest-yielding selections.   (b) ‘Newana’ hard red spring wheat.   

(c) Winter multi-year yields.   (d) ‘Tiber’ hard red winter wheat.   (e) Range of average yields over a 

set of plots.   (f) Yield range for individual plots. 
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Table 6. Fit parameters and their standard deviations for Equation (8), based on the wheat yields 

at Sanborn given in Table 3 and Equations (3) and (4), with and without manure fertilization. 

 

Parameter Y0 σY  𝑹∗ σR  𝑫∗ σD 

Unit kg/ha/year  mm  year 

Unmanured plots 2,539 571  879 457  64 26 

Manured plots 3,540 306  758 134  117 32 
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Table 7. Animal bone assemblages from Trypillia sites: the minimum numbers of individuals 

(MNI) at the sites specified in Column 1 (after Appendices 2–5 of Tsalkin 1970) and mean and 

relative numbers for each Trypillia stage (italics). Data are given here only for the animals suita-

ble as a food resource and occurring in significant numbers. The relative mean MNI values and 

their standard deviations are given separately for the domestic and wild animals. 

 

 Cattle Sheep 

/goat 

Pig Horse Total 

domestic 

Red 

deer 

Roe 

deer 

Wild 

boar 

Total 

wild 

Early Trypillia (Stage A) 

Sabatinovka 2   22   11 10     9    8   4   3  

Luka-Vrublevets’ka   42   38 93     4  57 31 33  

Bernovo-Luka   23     9 11     2  25 17 17  

Lenkovtsy   30   10 19     5  25   9   9  

Soloncheny I   17   14 19     3  20   7 15  

Galerkany     5     4   1     3    6   2   6  

Karbuna   11     7   6     4    2   2   2  

Mean MNI   21   13   23     4 62   20   10   12 43 

Relative mean MNI (a) 0.35 0.22 0.37 0.07 1.00 0.48 0.24 0.28 1.00 

Standard deviation of the rel-

ative mean MNI (a) 0.09 0.05 0.14 0.08  0.08 0.07 0.086  

Middle Trypillia (Stages BI, BI-II and BII) 

Sabatinovka 1   30   14 14     9  10   4   8  

Berezovskaya GES   12     6   6     3  20   3   8  

Soloncheny II   39   14 26     6  34   7 20  

Khalepje   11   17   8     2    2   –   1  

Kolomijshchina II     8     5   3     2    1   –   2  

Vladimirovka   36   30 25     5  11   3   1  

Polivanov Yar   33   39 92     3  24 14 16  
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Mean MNI   24   18 25     4 71 15   6   8 29 

Relative mean MNI (a) 0.34 0.25 0.35 0.06 1.00 0.51 0.22 0.28 1.00 

Standard deviation of the rel-

ative mean MNI (a) 0.10 0.09 0.13 0.04  0.14 0.07 0.18  

Late Trypillia (Stages CI and CII) 

Podgortsy 2   11     6 16     6    1   –   1  

Syrtsy     5   12   1     1    –   3   –  

Koshilovtsy     5     2   3     1    –   1   –  

Sukhostav     3     1   2     1    –   –   –  

Usatovo 266 438 25 163  16   3   6  

Starye Bezradichi     2     3   2     1    2   1   1  

Kunisovtsy     5     3   3     –    2   –   1  

Andreevka     3     4   2     1    1   –   –  

Sandraki     4     5   3     3    3   3   5  

Stena   13     9 14     9    6   4   5  

Gorodsk   14     8 14     7    4   6   3  

Troyanov   13     7   6     5    4   2   4  

Pavoloch’     6     6   3     1    3   1   1  

Kolomijshchina I   12     8   7     3    –   –   –  

Podgortsy I   12     2   2     2    5   1   3  

Mean MNI (a,b)     8     5   6     3 22   3   2   3   8 

Relative mean MNI (a,b) 0.35 0.25 0.25 0.14 1.00 0.38 0.30 0.32 1.00 

Standard deviation of the rel-

ative mean MNI (a,b) 0.11 0.14 0.09 0.06  0.21 0.35 0.10  

Grand total 

Relative mean MNI (a,b) 0.35 0.24 0.33 0.08 1.00 0.47 0.24 0.29 1.00 

Standard deviation of the rela-

tive mean MNI (a,b) 0.10 0.11 0.11 0.06  0.21 0.25 0.15  

(a) Given separately for domestic and wild animals. (b) Excluding the Usatovo data 
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Table 8. Input parameters related to the palaeodiet and agricultural practice, their dimensions, 

nominal values and notation. Justification of the nominal values and references can be found in 

the text. 

 

Parameter Unit Nominal 

value 

Notation 

Dietary requirements 

Energy content of the daily diet per person kcal/person/day 2,500 c 

Annual energy content of the diet per person kcal/person/year 912,500 C 

Calorific fraction of cereal products in the diet  0.4 εg 

Calorific fraction of domestic animal products in the diet  0.4 εd 

Calorific fraction of wild animal products in the diet  0.2 εw 

Cereals 

Cereal yield kg/ha/year 700 Y 

Seeding fraction of the yield  0.12 γ 

Yield fraction lost to pests and other losses  0.25 λ 

Energy content of the grain kcal/kg 3,150 eg 

Herd composition: relative numbers of various animals, by head 

Cattle  0.35 ac 

Caprines (sheep and goat)  0.24 as 

Pig  0.33 api 

Horse  0.08 ah 

Meat of domestic animals and dairy products 

Cattle: usable meat weight kg/head 100 mc 

Sheep/goat: usable meat weight kg/head 25 ms 

Pig: usable meat weight kg/head 20 mpi 

Horse: usable meat weight kg/head 100 mh 

Energy content of beef kcal/kg 1,600 ec 

Energy content of lamb/mutton kcal/kg 1,600 es 



 
 
Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol after official publication for the final version. 

 
 

Energy content of pork kcal/kg 3,000 epi 

Energy content of horse meat kcal/kg 1,600 eh 

Fraction of milking cows in the cattle herd  0.5 κc 

Fraction of milking ewes/does in the caprine herd  0.25 κs 

Surplus cow milk yield (after weaning) litre/year/head 400 yc 

Surplus sheep/goat milk yield (after weaning) litre/year/head 50 ys 

Energy content of cow milk kcal/litre 600 emc 

Average energy content of caprine milk kcal/litre 800 ems 

Animal husbandry 

Fraction of cattle and sheep/goat killed-off annually 1/year 0.2 kc 

Fraction of pigs killed-off annually 1/year 0.5 kpi 

Grazing area per cow ha/head 10 Ac 

Grazing area per sheep/goat ha/head 0.5 As 

Area for winter cattle/horse fodder per head ha/head 0.3 Mc 

Area for winter sheep/goat fodder per head ha/head 0.02 Ms 

Fraction of leafy fodder  0.5 ℵ 

Wild animal products 

Red deer usable meat weight kg/head 130 mr 

Roe deer usable meat weight kg/head 11 mro 

Wild boar usable meat weight kg/head 130 mb 

Fraction of red deer among hunted animals, by head  0.47 𝑎r 

Fraction of roe deer among hunted animals, by head  0.24 𝑎ro 

Fraction of wild boar among hunted animals, by head  0.29 𝑎b 

Energy content of red deer meat kcal/kg 1,400 er 

Energy content of roe deer meat kcal/kg 1,400 ero 

Energy content of wild boar meat kcal/kg 3,500 eb 

Labour productivity 

Fraction of a farming family fit to work in the fields  0.33 w 

Area tilled with hand tools by one person in one hour m2/person-hour 15 𝑠t 
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Area ploughed with ard by one person in one hour m2/person-hour 260 𝑠t 

Crop or grass area reaped by one person in one hour m2/person-hour 30 𝑠r 

Crop area threshed and winnowed by one person in one hour m2/person-hour 30 𝑠w 

Length of a working day hour/day 10 τ 

Length of a working year day/year 250  

Land use and the settlement exploitation area 

Arable fraction of the land area  0.35 𝛿a 

Ratio of the fallow field to the crop area  2 𝛿f 

Fraction of agriculturally unproductive land  0.2 𝛿uu 

Fraction of the land area producing winter fodder  0.5 𝛿m 

Settlement 1: area ha 2 A0 

Settlement 2: area ha 10 A0 

Population density within a settlement person/ha 26.5 𝜌 
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Table 9. Results (rounded) of calculations related to the palaeodiet and agricultural practice for 

the nominal parameter values given in Table 8, presented in a similar format, together with the 

notation used in the text and equations used to derive those results. 

 

Variable Unit Nominal 

value 

Notation Equation 

Cereals  

Wheat yield available for consumption kg/ha/year 441 Yg (8), (24) 

Per capita daily amount of cereals consumed kg/person/day 0.32  𝜀g𝑐/𝑒g 

Per capita herd composition and land use  

Total number of domestic animals head/person 5.2 𝑛a (18) 

Cattle head/person 1.8 𝑛c 𝑎c𝑛a 

Sheep/goat head/person 1.3 𝑛s 𝑎s𝑛a 

Pig head/person 1.7 𝑛pi 𝑎pi𝑛a 

Horse head/person 0.4 𝑛h 𝑎h𝑛a 

Grazing area ha/person 22.8 𝐴a (13) 

Fodder area ha/person 0.7 𝐴p (14) 

Grass meadow area ha/person 0.35  ℵ𝐴p 

Per capita daily consumption of domestic meat and dairy products  

Beef kg/person/day 0.1  𝑛c𝑘c𝑚c𝑒c 

Cow milk litre/person/day 1.0  𝑛c𝜅c𝑦c𝑒mc 

Lamb/kid/mutton kg/person/day 0.02  𝑛s𝑘s𝑚s𝑒s 

Caprine milk litre/person/day 0.04  𝑛s𝜅s𝑦s𝑒ms 

Pork kg/person/day 0.05  𝑛pi𝑘pi𝑚pi𝑒pi 

Per capita consumption of wild animal products  

Total number of wild animals hunted annually head/person/year 0.8 𝑛w (21) 

Read deer hunted annually head/person/year 0.4 𝑛r 𝑛w𝑎r 

Roe deer hunted annually head/person/year 0.2 𝑛ro 𝑛w𝑎ro 
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Wild boar hunted annually head/person/year 0.2 𝑛b 𝑛w𝑎b 

Red deer meat, daily consumption kg/person/day 0.138  𝑛r𝑚r𝑒r 

Roe deer meat, daily consumption kg/person/day 0.006  𝑛ro𝑚ro𝑒ro 

Wild boar meat, daily consumption kg/person/day 0.085  𝑛b𝑚b𝑒b 

Per capita labour costs and labour return  

Tillage with hand tools person-day/person 17.5  𝐴g/𝑠t 

Tillage with ard person-day/person 1  𝐴g/𝑠t 

Reaping, threshing and winnowing person-day/person 18  𝐴g(1/𝑠r + 1/𝑠w) 

Grass cutting for winter fodder person-day/person 12  𝐴!/𝑠r 

Labour return: ratio of the total time available to working time:  η (35) 

tilling with hand tools  7.8   

ploughing  12.2   

Per capita land use and the settlement exploitation area  

Crop area ha/person 0.26 Ag (10) 

Fallow area ha/person 0.53  𝛿f𝐴g 

Grazing area within the field zone ha/person 1.01  𝐴a − 𝛿f𝐴g 

Field zone area (including fallow and unproductive land) ha/person 2.25 𝐴1 (27), (11), (10) 

Grazing zone area (including unproductive land) ha/person 24.76 𝐴2 (29), (13), (10) 

Fodder zone area (including unproductive land) ha/person 1.38 𝐴3 (30), (14) 

Local subsistence carrying capacity person/km2 3.3 Ks (34), (33), (32) 

Settlement 1: 𝐴! = 2 ha     

Population person/settlement 53  𝜌𝐴! 

Settlement radius km 0.08 R0 (26) 

Maximum distance to the field zone km 0.54 D1 (31) 

Maximum distance to the grazing zone km 2.18 D2 (32) 

Maximum distance to the fodder zone km 2.23 D3 (32) 

Settlement 2: 𝐴! = 10 ha     

Population person/settlement 265  𝜌𝐴! 

Settlement radius km 0.18 R0 (26) 
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Maximum distance to field zone km 1.21 D1 (31) 

Maximum distance to the grazing zone km 4.88 D2 (32) 

Maximum distance to the fodder zone km 4.99 D3 (32) 
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Figure 1. The dependence of wheat yield, Yu for unmanured (a, b) and Ym for manured (c, d) 

Sanborn plots, as a function of the January–May rainfall R (a, c) and the duration of continuous 

cultivation D (b, d). Open circles show the experimental Sanborn data whereas filled circles rep-

resent fitted values calculated using Equations (3) and (4) for the corresponding values of R or D 

as appropriate. One outlying data point with R = 142 mm is not shown in Panels (a) and (c) and 

not included in the fit.  

 

Figure 2. A schematic representation of the land use of a settlement for the nominal diet structure 

with the relative fractions of cereals, domestic and wild animal products of 𝜀g = 0.4, 𝜀d = 0.4 

and 𝜀w = 0.2, respectively, and the cereal yield of Y = 700 kg/ha/year. Percentages given in each 

part of the diagram represent the fractional areas within each annular zone. The settlement is rep-

resented by the innermost circle, surrounded by the field zone containing the area under crops 

(12%), fallow fields (23%) used for pasture, and specialized grazing area (45%), leaving 20% of 

the area for unproductive land (unshaded – ravines, dense forests, etc.). The next outer zone is 

used exclusively for livestock grazing; it also contains 20% of the area that cannot be used for 

any agricultural purposes. The outermost zone is used to collect animals’ winter fodder from 

both grass meadows and suitable trees that are assumed to occupy a half of the total area in that 

zone. The settlement radius R0 and the maximum distances to the zones, D1, D2 and D3 (shown 

not to scale), are discussed in the text and given in Table 9. 

 

Figure 3. The effect of the cereal yield and the tillage technology on the annual labour return η, 

i.e., the amount of output as a fraction of nutritional energy requirement per working hour (or the 

ratio of the energy produced to the energy spent on the production, or the inverse ratio of the 

working time required to produce food to the time the output can sustain the worker). Solid 

(blue): tillage with hand tools; dashed (red): tillage with ard. The diet structure is assumed to be 
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fixed at εg/εd/εw = 0.4/0.4/0.2 for the relative contributions of the cereals, domestic and wild an-

imal products. 

 

Figure 4. The role of the diet structure: the labour return as a function of the ratio of the cereal 

food to the domestic animal food in the diet, εg/εd, for tillage with hand tools (solid/blue) and 

with ard (dashed/red). Dotted/black line shows the local subsistence carrying capacity Ks. The 

cereal yield and the total contribution of cereals and domestic animal food to the diet are as-

sumed to be constant at Y = 700 kg/(ha year) and εg + εd = 0.8, respectively. 

 

Figure 5. The effect of the cereal yield under a different diet structure on the annual labour return 

with hand tools (solid/blue) and ard tillage (dashed/red), and the ratio of the contributions of ce-

reals and domestic animal products to the diet, εg/εd (dotted/black). The contribution of cereals is 

assumed to be proportional to the cereal yield, εg = 0.4Y/700 kg/(ha year), and the total contribu-

tion of domestic foods to the total diet is kept constant, εg + εd = 0.8. 

 

Figure 6. The effect of the milk yield on the labour return (solid/blue: hand-tool tillage; 

dashed/red: ard tillage), the local subsistence carrying capacity (dotted/black) and the per capita 

number of domestic animals required to satisfy dietary requirements (dash-dotted/green).  

 

Figure 7. The maximum distances from the settlement border (R0 = 80 m) to the three exploita-

tion zones around a settlement of 2 ha in area with about 50 inhabitants: D1, the field zone (sol-

id/blue); D2, the grazing zone (dashed/red); and D3, the fodder zone (dotted/black). The model 

illustrated in each panel is one of those discussed and illustrated above: (a) Figure 3, (b) Figure 

4, (c) Figure 5, and (d) Figure 6. 
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Figure 8. The dependence of D1, the maximum the distance from a settlement boundary to the 

field zone (see Figure 2) for settlements of various areas and populations: 2 ha, 50 people (sol-

id/blue), 5 ha, 130 people (long-dashed/red), 10 ha, 270 people (short-dashed/green) and 15 ha, 

400 people (dash-dotted/dark-blue). 

 

Figure 9. (a) An illustration of the cereal yield changes (solid/red) in a fallow system with the 

initial yield Y0 = 700 kg/ha/year, the ratio of fallow to cultivated field areas δf = 2 (so that any 

given plot is used for the crops for one year and then stays fallow for two years), the fertility de-

pletion time scale TD = 23 years and the fertility recuperation time scale TR = 100 years. Note 

that the time plotted includes only the periods of cultivation. (The fallow periods correspond to 

the step-wise increases of yield after each year of cultivation.) Dashed/blue line shows the aver-

age yield as given in Equation (41). (b) The variation of the settlement lifetime, measured in the 

units of 𝑇D, with the fallow fraction 𝛿f for 𝑇R/𝑇D = 3 (solid/red), 4 (dashed/blue) and 5 (dot-

ted/black). 
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Figure 5 

 

 

 

 

Figure 6 

 

  



 
 
Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol after official publication for the final version. 

 
 

Figure 7a  

 

Figure 7b 
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Figure 7c 

 

 

 

 

Figure 7d 
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Figure 8 
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