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Short Title: Mongolians in the Genetic Landscape of Central Asia 

 

Abstract Genetic data on North Central Asian populations are under-

represented in the literature, especially autosomal markers. In the present study 

we use 812 single nucleotide polymorphisms that are distributed across all the 

human autosomes and that have been extensively studied at Yale to examine the 

affinities of two recently collected, samples of populations: rural and 

cosmopolitan Mongolians from Ulaanbaatar and nomadic, Turkic-speaking 

Tsaatan from Mongolia near the Siberian border. We compare these two 

populations to one another and to a global set of populations and discuss their 

relationships to New World populations. Specifically, we analyze data on 521 

autosomal loci (single SNPs and multi-SNP haplotypes) studied on 57 
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populations representing all the major geographical regions of the world. We 

conclude that the North Central Asian populations we study are genetically 

distinct from all other populations in our study and may be close to the ancestral 

lineage leading to the New World populations. 

 

North Central Asian (NCA) populations have been studied by many investigators 

but are underrepresented in more comprehensive population genetic surveys, 

such as the HGDP (Cann et al. 2002; Rosenberg et al. 2002; Li et al. 2008) and 

the 1000 Genomes project (www.ncbi.nlm.nih.gov/bioproject). Because the 

Mongolian population occupies a geographically central area in Eurasia they 

may provide genetic information about a number of questions: e.g., (1) What are 

the genetic relationships of the modern Mongolian subset of the North Central 

Asian population to a global sample of populations? (2) What are the 

relationships of ancient and modern Mongolian populations to those of the 

Americas? (3) Has there been temporal continuity of populations of the region? 

(4) What have been the migration routes both into and out of Mongolia (5) What 

can we learn about the demography of these contemporary Mongolian 

populations? (6) Does the intermediate position in Eurasia of Mongolian 

populations correspond to an intermediate position on a genetic cline across 

Eurasia? As genetic data are accumulating, answers (and more questions) are 

emerging. Some of these studies involve uniparental DNA [mitochondrial (mt) 
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and non-recombining Y chromosome DNA (NRY)] (Chatters et al. 2014; 

Duggan et al. 2013; Fedorova et al. 2013; Hertzberg et al. 1989; Kemp et al. 

2015; Kitchen et al. 2008; Kolman et al. 1996; Lell et al. 2002; Malyarchuk et al. 

2011; Malyarchuk et al. 2013; Mulligan et al. 2008; Nasidze et al. 2005; Dulik et 

al. 2012; Shi et al. 2013; Starikovskaya et al. 2004; Sukernik et al. 2012; 

Raghavan et al. 2014a; Volodko et al. 2008; Zhong et al. 2011; Zhong et al. 

2010), ancient DNA (aDNA, uniparental and autosomal) (Crubezy et al. 2010; 

Keyser-Tracqui et al. 2003, Keyser-Tracqui et al. 2006; Malyarchuk et al. 2011; 

Raghavan et al. 2014b). Mitochondrial DNA haplogroups offer a fairly crude 

inference of continental ancestry, conveying only information regarding possibly 

one or two top ancestry components while losing other ancestry information 

(Emery et al. 2015). Other studies used contemporary autosomal DNA (Fedorova 

et al. 2013; Keyser-Tracqui et al. 2003; Keyser-Tracqui et al. 2006; Kidd et al. 

2011a,b; Nasidze et al. 2006; Reich et al. 2012; Tian et al. 2008). These studies 

were excellent but many more autosomal markers must be investigated, 

particularly in sparsely studied populations such as Mongolians, especially Outer 

Mongolians who have been less studied than Mongolians living in Chinese Inner 

Mongolia whose demographic history is also somewhat different, to clarify 

population relationships. 

Progress in answering the questions posed above is underway though by 

no means are the answers definitive yet. In this report we shall review some of 
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the relevant studies that include population data from North Central Asia and 

contribute our findings to help answer some of those questions.  

Relationship of Mongolians Populations to a Global Sample of Populations.

 First from studies of ancient DNA; Raghavan et al. (2014a) obtained 

mitochondrial DNA, Y chromosome sequence, and autosomal DNA from a 

24,000 year old person (MA-1) from south-central Siberia and suggested that 14 

to 38% of Native American ancestry may have originated through gene flow 

from populations related to contemporary western Eurasians who had a more 

north-easterly distribution 24,000 years ago than commonly thought. Zhong et al. 

(2010) used an ancient Y-chromosome haplogroup C-M130 (Hg C) to propose 

that ancient migration routes were derived from the African exodus and 

gradually colonized South Asia, Southeast Asia, Oceania and East Asia by a 

single Paleolithic migration from Africa to Asia and Oceania which occurred 

more than 40 KYA, and then moved north in mainland East Asia; likely 

following the coastline. Hertzberg et al. (1989) used an Asian-specific 9-bp 

deletion of Mitochondrial DNA to support the thesis that an independent group 

of pre-Polynesian ancestors who colonized into the Pacific were ultimately 

derived from East Asia. Duggan et al. (2013) used mtDNA and NRY DNA to 

investigate the prehistory of Tungusic-speaking reindeer herders and hunter-

gatherers (Evenks and Evens) from Northern Asia and other groups in the 

southern part of Siberia. Their data argue that the Evens and Evenks do stem 
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from a common ancestral population but genetic drift and differential admixture 

with neighboring populations have added to the divergence of the two 

populations.  

Second for more modern DNA the Reich et al. (2012) study used 

autosomal DNA and typed SNPs, both single and when combined into 

haplotypes to also analyze Native American ancestry. Reich et al. masked 

genomic segments containing ancestry thought to be non-Native American and 

analyzed the population structure with Principal Components Analysis. They 

also computed pair-wise population Fst. Reich et al. used multiple applications of 

their 4 Population Test to demonstrate the existence of a minimum of three gene 

flow events from Asia to explain the data from Native American populations 

jointly which they called: First American ancestry and two additional streams, 

the Eskimo-Aleut and finally Na-Dene speaking Chipewyan. These latter two 

lineages derive large portions of their genomes from First American ancestors. 

The uniparental markers show individuals with different haplogroups, 

some of which are related to haplogroups common in more eastern populations 

and some of which, especially in ancient DNA, show relationships to more 

Western Eurasian populations (Zhong et al. 2011; Duggan et al. 2013; Keyser et 

al. 2009, Keyser-Tracqui et al. 2003). However, different studies have used 

different sets of populations for comparisons making a general conclusion 

difficult. Further, because these uniparental markers represent only a fraction of 
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genetic ancestry and are subject to strong genetic drift, overall genetic 

relationships are difficult to quantify. Fedorova et al. (2013) have utilized 

mtDNA, NRY DNA, and autosomal DNA to add additional Siberian populations 

to the dataset. These data included autosomal SNPs from 40 newly genotyped 

individuals, published data on Siberia; and relevant global reference populations 

now studied with Fst, principal component analysis (PCA) and ADMIXTURE. 

As well, 829 mtDNAs and 375 Y chromosomes from five populations were 

studied by phylogenetic analysis. Federova et al. (2013) concluded that the 

indigenous people of the Sakha Republic of Russia descended mostly from the 

common East Asian gene pool with little West Eurasian influence. Turkic-

speaking Yakuts have some relationship to Altai-Sayan populations and 

distinctive maternal and paternal lineages originating in the Mongolic peoples in 

the Lake Baikal area or influenced from long timescale residence in Sakha close 

to Tungusic-speaking Evenks. They conclude that Sakha was colonized by 

multiple migrations from South Siberia with only minor gene flows from the 

lower Amur/Southern Okhotsk region and/or Kamchatka (in the South-East). 

Relationship of Mongolian Populations to Populations of the Americas. 

 There is general agreement that the population(s) that founded the 

Americas originated from ancient Siberian populations (Kitchen et al. 2008; 

Kolman et al. 1996; Lell et al., 2002; Schurr 2004; Schurr et al. 2010; 

Malyarchuk et al. 2011; Mulligan et al. 2008; Raghavan et al. 2014a; Reich et al. 
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2012; Starikovskaya et al. 2003; Sukernik et al. 2012; Volodko et al. 2008), and 

there is general agreement that the Native American populations were separated 

from Old World populations by at least 12,000 to 16,000 ybp as they colonized 

the New World. The group(s) who expanded into the New World may have 

initially experienced an additional period of about 15,000 years of isolation 

within Siberia/Beringia (Kitchen et al. 2008; Kolman et al. 1996; Mulligan et al. 

2008; Volodko et al. 2008) before entering the subglacial Americas. This timing 

(Kitchen et al. 2008; Mulligan et al. 2008) makes the evidence for Bronze and 

Iron Age migration eastward into Siberia much too recent to bear on migration 

into the New World from Siberia. The particular modern Siberian populations 

most closely sharing ancestry with Native Americans are not certain. 

Migration. 

 Analyses of 32 ancient DNAs (Keyser et al. 2009) ranging from Middle 

Bronze Age (1800 BC) to the Iron Age (about 1600 years ago) of Kurgan burials 

in Siberia between Krasnoyarsk (~91° E, 53° N) and Abakan (~93° E, 53° N) 

immediately adjacent to Mongolia led to the conclusion that the people 

represented by these Kurgan burials were light skinned with blond or light brown 

hair and that 60% had blue or green eyes (European phenotypes). This 

conclusion was based on a few autosomal phenotypic markers but is also 

supported by the Y-chromosome haplotypes [op cit] of the Kurgans present 

today predominantly in Eastern Europe. On the other hand, five of these 
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individuals (all from Iron Age samples) bore an East Asian mtDNA. These DNA 

analyses thus support Kurgan migration into Mongolia both from the West and at 

a somewhat later time period from the East.  

Ancient DNA and Temporal Continuity.  

Comparisons of ancient DNA with DNA from contemporary populations 

provides conflicting evidence. Genetic distance analysis of autosomal STR data 

(Keyser-Tracqui et al. 2006) found no significant differences among three 

populations, present-day Mongolians, a present-day Egyin Gol population, and 

an ancient (about 2400 years old) Egyin Gol cemetery population of Xiongnu 

(i.e., those three populations are genetically indistinguishable). Roughly the same 

trend was reported for mtDNA and Y chromosome DNA. In a separate paper that 

ignores their own conflicting STR results, Keyser et al. (2009) conclude that 

south Siberian Kurgan populations were predominantly of European phenotype 

during the Bronze and Iron ages. Thus, since modern populations are not 

European, there would appear to be no continuity over these several thousand 

years, answering our question 3. Pakendorf et al. (2006) reported uniparental 

DNA (mt and Y chromosome) data showing Yakut origins to have been in the 

cis-Baykal region. Crubezy et al. (2010) supported the Pakendorf et al. (2006) 

data with their analysis of autosomal STRs, Y-chromosomal STRs, SNPs and 

mtDNA to analyse 58 mummified frozen bodies dating from the fifteenth to the 

nineteenth century, excavated from Yakutia in Eastern Siberia. The Yakuts had 
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been assumed to originate from South Siberian populations but the precise origin 

of their paternal lineages and their admixture rate with indigenous populations is 

not fully understood. With this study Crubezy et al. (2010) traced the male 

lineages back to a small group of horse-riders from the Cis-Baikal area. Their 

mtDNA data showed that intermarriages occurred between the first settlers and 

Evenks women and established genetic characters during the fifteenth century 

that exist today. 

Kidd et al. (2011a,b) studied phylogenetic origins and ancestry 

differentiation with SNPs and haplotypes concluding that a single dataset of a 

small number of markers cannot answer both questions of phylogeny and 

differentiation. They found that random SNPs and haplotyped loci are best to 

decide evolutionary relationships on a global level and concluded that more 

populations must be studied for a single large set of markers to clarify these 

population relationships. In the present study we are expanding the number of 

populations and the number of autosomal loci available to help improve our 

understanding of how Mongolian populations are related to the development of 

modern human populations. The results we report will provide additional SNPs 

for ancestry inference, a long time interest of ours (Kidd et al. 2014a,b). 

 

Material and Methods 
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Population Samples. 

Samples of 104 unrelated individuals from Mongolia were the focus of our study 

using DNA purified from saliva samples. These included 58 Mongolian students 

attending Health Sciences University of Mongolia (HSUM) in the capital city of 

Ulaanbaatar and 46 individuals from the isolated, migratory population of 

Tsaatan reindeer herders. The HSUM students represent individuals from all 

geographic regions of Mongolia. These students were invited to donate saliva 

samples for the study and those who agreed to participate were sampled at the 

University. The Tsaatan participants were drawn from a small population (of 

about 400 total) reindeer herders who speak Dukha, a Turkic language. All 

samples were collected with the informed consent of all subjects and under 

protocols approved by all relevant and appropriate Institutional Review Boards. 

(Research Ethics Board, The Scarborough Hospital, 3050 Lawrence Ave. East, 

Toronto, Ontario, M1P 2V5; and Health Sciences University of Mongolia, S. 

Zorig Street, 3 Health Sciences University of Mongolia, Ulaanbaatar, Mongolia.) 

The informed consent was also consistent with that required by the IRB at Yale. 

The consent forms contained questions about the maternal and paternal names 

and languages and also about those of the maternal and paternal grandparents. 

These data documented the population attribution of the sampled individuals. 

In addition to these two North Central Asian population samples, we have 

previously genotyped and extensively analyzed 2478 samples from 55 
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populations described elsewhere (Kidd JR et al. 2011; Kidd KK et al. 2014a,b) 

which we will refer to as our reference populations here. The total present data 

set consists of 2582 DNA samples from 57 populations from around the world. 

Table 1 lists the names of the populations studied, the number of individuals in 

each population sample, and the general geographical region of origin. 

Loci Studied. 

Genotype data were collected for 812 single nucleotide polymorphisms (SNPs). 

The final data set consisted of 157 multiallelic haplotype loci (defined by 448 

SNPs) and 364 single nucleotide polymorphisms for a total of 521 loci. The final 

data set included a panel of individual SNPs that had already been genotyped on 

a large number of individuals from diverse regions of the world. In almost all 

cases, supplies to test these markers were already available. These markers had 

been studied over the years for several different reasons, including studies of 

normal variation at disease-related genes, as well as evaluations of SNPs for 

being ancestry informative but that subsequently showed less than optimal 

variation for that purpose. The ancestry informative markers genotyped included, 

among others, the 128 SNPs from Kosoy et al. (2009), 55 SNPs from Kidd et al. 

(2014a and b). Overall other than a bias for higher levels of global gene 

frequency variation, there should not be a bias for the particular pattern of 

difference/similarity of these two populations among the existing populations. 

SNPs chosen for this study were clearly not random but the selection should not 
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have biased the qualitative relationship between the populations. The remainder 

were chosen as part of a high global Fst project underway in the lab including 

past typing of the 55 reference populations on the Illumina 650Y chip (Donnelly 

et al. 2010; Han et al. 2005; Speed et al. 2009; Pakstis et al. 2012). SNPs close 

enough to show significant linkage disequilibrium with at least moderate to 

strong values were combined into haplotypes. All individual SNPs are listed in 

Supplemental Material by their dbSNP ‘rs’ number. Allele frequencies for the 

haplotypes and for all individual SNPs are either available in ALFRED 

(http://alfred.med.yale.edu/) or from the authors upon request. 

Genotyping.  

The samples from Mongolia were collected in Oragene saliva collection kits 

available from DNA Genotek and DNA was isolated using the manufacturer’s 

protocol. DNA for all other populations was purified (Sambrook et al. 1989) 

from lymphoblastoid cell lines (Anderson and Gusella 1984).  

All genotyping utilized TaqMan SNP Genotyping Assays. The data on the 

55 reference populations were mostly pre-existing or, when one of our reference 

populations had not been genotyped for a specific SNP in this study, were typed 

on genomic DNA directly following the manufacturer’s protocol in 3 µl 

reactions. To maximize the number of SNPs that could be typed on the limited 

amounts of DNA available on the samples of the two Mongolian populations, a 
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brief pre-amplification was performed. To a pool of 1 µl each of 96 20x TaqMan 

assays we added 250 µl of Master Mix and 200 µl of water. In a 96 well plate 5 

µl of that cocktail were added to approximately 30 ng of DNA for each 

individual. These samples were then pre-amplified as follows: 10 minute presoak 

at 95 degrees, followed by 12 cycles at 95 degrees for 15 seconds and 60 degrees 

for 4 minutes. Each of these pre-amplification reactions was diluted with water 

to a volume of 250 µl. Then 2 µl of each preamplified sample were aliquoted to a 

designated well in 384-well plates—one well for each individual, and one plate 

for each SNP in the assay pool. The material in the plates became the basic 

template for the individual TaqMan assays following the manufacturer’s 

protocol. 

Statistical Methods. 

Data on all SNPs and haplotypes were tested for deviations from Hardy-

Weinberg ratios in all population samples using simple chi-square tests and/or 

simulation. The haplotypes were inferred by PHASE (Stephens et al. 2001; 

Stephens and Scheet 2005). Population clusterings were based on STRUCTURE 

v 2.3.3 (Pritchard et al. 2000). Each run consisted of 20,000 burn-ins plus 20,000 

MCMC with 20 replicates at each K value. 

Principal Component Analysis (PCA) of the populations based on the 

population-specific SNP and haplotype allele frequencies used the software in 
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XLstat 2010 (version 2009.4.07; Addinsoft SARL, 

www.xlstat.com/en/company/). Multiple Dimensional Scaling (MDS) also used 

the matrix of allele frequencies and the functions in XLstat. 

A matrix of pairwise Tau genetic distances (Kidd and Cavalli-Sforza 

1974) was calculated from the allele frequencies of 521 loci, single SNPs and 

haplotypes. Under simplifying assumptions these distances are theoretically 

additive and equal to time in generations divided by twice the effective 

population size separating two populations; the correct tree should have the 

pairwise distances equal to the sum of the branches connecting the two 

populations. The Neighbor Joining (NJ) algorithm in the Phylogeny Inference 

Package (PHYLIP) software (Felsenstein 1989; 2009) uses such a pairwise 

genetic distance matrix to generate a bifurcating tree structure and the segment 

lengths that are an approximate additive least squares (LS) solution to the 

pairwise distances. Bootstrap values based on 1000 iterations were calculated 

using the Reynolds distance measure (Reynolds et al. 1983) and programs in 

PHYLIP. 

 

Results 

The SNPs were uniformly typed in all individuals with missing data for no more 

than 9% of the individuals for any SNP or 10% of the SNPs for any individual 
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(total 1.7% missing data overall). There were no significant Hardy-Weinberg 

deviations for the SNP frequencies beyond what would be expected by chance 

for the number of tests.  

MDS (multidimensional scaling) of the populations generated a graphic of 

the relationships (Figure 1) based on the allele frequency matrix of all 521 loci, 

individual SNPs and haplotyped loci. The first dimension contrasts the Native 

South American populations (most specifically the Karitiana) opposite African 

populations (most specifically Mbuti and Biaka). The second dimension is 

defined by Europeans and the South West Asians (most specifically Samaritans) 

opposite Pacific populations (most specifically Ami, Atayal, and Papua New 

Guinea). The three East Indian populations (Keralite, Thoti, and Kachari) and the 

Khanty occupy a very central position; the next most central populations are the 

Tsaatan, Mongolians, and Yakut. We then reran the MDS without the African, 

SW Asian, and European populations because they are so distinctly different 

from the Mongolian populations. The resulting plot (Figure 2) shows the two 

Mongolian populations and the Yakut from Eastern Siberia to be quite central 

with the East Asians, Native Americans, South Asians, and Pacific populations 

off to the right, upper left, lower left, and lower right, respectively. (Comparable 

PCA analyses are in Supplemental Figures 1 and 2.) 

Figure 3 illustrates the STRUCTURE analysis solution with the highest 

likelihood among the largest set of highly correlated solutions (pairwise 
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similarity statistic--G > 0.9) out of 20 replicates. The column on the right of the 

figure indicates the frequency of the illustrated solution for each value of K 

(number of assumed different underlying populations). As shown in 

Supplemental Figure S3, the likelihoods of the “best” solutions continue to rise 

from values of K = 2-11. At all K values of seven or greater the two Siberian 

populations (Khanty and Yakut) cluster with the two Mongolian populations 

(Mongolian and Tsaatan). There are indications of some small similarities of 

some individuals to European and/or East Asian clusters. It is clear that African, 

European, and south Asian populations are largely different with the exception of 

some European similarity for the Khanty. 

Figure 4 displays the outcome of a similar STRUCTURE analysis of a 

subset of the populations—those from the Ural Mountains eastward into the 

Americas. As shown in Supplemental Figure 4, the likelihoods for the 20 

replicate runs continues to improve to K = 8. In this analysis we can see (1) more 

clearly the distinction between India (Keralites, Thoti, and Kachari) and the rest 

of Asia, and (2) the distinction between South East Asia (Lao and Cambodians) 

from the East Asian groups and from the Yakut, Mongolians, and Tsaatan. As in 

Figure 3 the column on the right of Figure 4 shows the frequency of the 

illustrated general solution for each value of K. We note the Khanty (from 

Western Siberia) now show relationship to South Asia at K = 6 or greater. This is 

explained as Khanty sharing some Western Asia ancestry that would have shown 
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up if South-West Asian populations had been included (data not shown) as in the 

earlier analysis based on all the populations studied. 

In summary with reference to point #1 in the introduction the Mongolian 

and Tsaatan populations share similarity with the Yakut but are clearly distinct 

from all other populations studied. 

Figure 5 is the Neighbor Joining tree. The branches with high bootstrap 

values are indicated. Overall, there is very strong support for this grouping of 

populations. The African cluster is separated from the rest of the populations 

with a 100% bootstrap value. Within the African cluster three segments have 

100% bootstrap values and three have values between 98% and 100%. The 

Kuwaiti are significantly closer (100% bootstrap value) to African populations 

than to the Middle East and Europe but there are no high bootstrap values within 

the Middle East - Europe cluster. Moving to the East there are high bootstrap 

values flanking the western Siberian Khanty and two (Kachari and Thoti) of the 

three Indian populations as distinct from both the western and eastern 

populations. The branch into the Americas is separated from all other 

populations by 100% bootstrap values. The other highly significant branches are 

the one into Melanesia (100%), the one into the central Pacific (99.67%), and 

several branches among East Asian populations (98 to 100%). While the major 

structure of this tree is unambiguous, the branch defining the Mongolian 

populations and the Yakut has a 94.4% bootstrap value even though it is a 
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miniscule branch connecting to the Native American branch. The branch 

connecting Native Americans and the three populations just mentioned to the rest 

of the tree has an 86.1% bootstrap value. Regarding Introduction point #2 this 

Native American/Mongolian/Yakut/Tsaatan branch suggests that the 

Mongolian/Tsaatan/Yakut populations may be close to the ancestral lineage 

leading to the New World populations. The Pacific populations as a group, and 

the Malaysians are not well supported. 

 

Discussion 

Our study provides information on 517 autosomal loci (composed of single SNPs 

and multi-SNP haplotypes) from 57 populations. New data on two Mongolian 

populations, cosmopolitan Mongolians and Tsaatan, with reasonably large 

sample sizes (58 and 46 samples, respectively) greatly increase the genetic 

information from North Central Asia. With reference to point #1 in our 

introduction Structure analysis demonstrates that the Mongolians, Tsaatan, and 

Yakut are clearly distinguishable from all other world populations in our 

analysis. These data extend the autosomal SNP studies of Tian et al. (2008) and 

Reich et al. (2012) and the uniparental marker studies of Schurr et al. 2004, 

2010. With respect to global diversity, we found clear similarity between the 

nomadic, isolated Tsaatan group and the sample of metropolitan Mongolians. 
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The moderately high bootstrap values of 94.4% grouping the two Mongolian 

with Yakut and 86.1%, separating these and Native Americans from the rest of 

the populations we studied are consistent with the idea that modern Mongolian 

populations are genetically close to the original lineage leading to Native 

Americans (Point #2). In conjunction with the study of Fedorova et al. (2013) 

and Schurr et al, 2010, the relationships between Mongolians and Siberian 

populations are clarifying. 

With these populations, STRUCTURE analysis (Figures 3 and 4) shows 

the Mongolian, Tsaatan, Yakut cluster is distinct from the current East, South, 

South East, and Pacific clusters and that Native Americans are not similar to any 

Old World populations. The Neighbor Joining Tree (Figure 5) is compatible with 

a long period of separation and random genetic drift since the separation of 

Native Americans from Old World populations. The Native Americans are at a 

shorter distance from the present day Mongolians etc, than others; this can be 

due to admixture and not necessarily due to a common founding lineage. What 

can be stated at the best is that the conclusion that—there was a long period of 

separation and random genetic drift since a founding lineage—is potentially 

compatible with the Neighbor Joining Tree found here. These data relate to Point 

#4 in the introduction and suggest that the migration routes from ancient Siberia 

to North American may have occurred from around Mongolia and Lake Baikal. 

With regard to Point #5 our data suggests that the contemporary Mongolian 
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populations are clearly distinguishable from all other world populations in our 

analysis. With regard to our last point (Point #6) Mongolia’s (including Tsaatan, 

and Yakut) position in North Central Asia intermediate in Eurasia and at the root 

of a branch on the Neighbour Joining tree leading to Native Americans likely 

represents a genetic intermediate position in a genetic cline across Asia. Future 

genetic studies in the North Central Asian geographic area will clarify and 

extend these findings. 

 

Conclusion 

This study adds to and strengthens the suggestion that North Central Asian 

populations are distinct from those of Far East Asia and have the shortest genetic 

distance from New World populations of all our reference populations. 
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Table 1. The populations studied (57), the number of individuals in each 

population sample (total 2582), and the general geographical region of the origin 

of population groups 

Fig. 1. Graphic of the MDS analysis of all 57 populations. In this analysis the first 

dimension is bounded by South American populations opposite African 

populations and the second dimension by Europeans and South West Asians 

opposite Pacific and South East Asian populations. The remaining populations are 

more centrally located 

Fig. 2. Graphic of the MDS analysis of the 28 populations east of the Ural 

Mountains through the Americas. In this analysis the both dimensions are 

bounded by the South American populations opposite the Pacific populations. The 

Mongolians, Tsaatan, Yakut, and Khanty are very central 

Fig. 3. Graphic of the highest likelihood of the most common mode 

STRUCTURE solutions for K values from 2-11 for 57 populations. The ratio on 

the right indicates the fraction of the 20 independent runs that had the pattern 

illustrated 

Fig. 4. Graphic of the highest likelihood of the most common mode 

STRUCTURE solutions for K values from 2-8 for 28 populations. As in Figure 3 

the ratio on the right indicates the fraction of the 20 independent runs that had the 

pattern illustrated 
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Fig. 5. The Neighbor Joining tree. Bootstrap values are indicated on the segments 

across which the opposite sides of the branch are separated by >98% of the 1000 

bootstraps. Note, significance by bootstrap values is not represented by the length 

of the segments. Bootstrap values represent consistency among loci while 

segment lengths represent average difference among populations based on fitting 

an additive model to pairwise genetic distances  

 

Captions of Figures in Supplementary Material 

Fig. S1. PCA based on Tau genetic distances of 57 populations. (a) Principal 

components 1 and 2; (b) principal components 1 and 3. 

Fig. S2. PCA of East Asians & the Americas. (a) Principal components 1 and 2; 

(b) principal components 1 and 3. 

Fig. S3. The likelihood plot for STRUCTURE on all 57 populations. 

Fig. S4. The likelihood plot for STRUCTURE on 28 populations. 
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TABLE 1. Populations studied	
Region Population N  Region Population N 
Africa Biaka 66  W Siberia Komi Zyrian 46 
 Mbuti 38  E Siberia Khanty 49 
 Lisongo 7   Yakut 49 
 Yoruba 77   Tsaatan 46 
 Ibo 47   Outer Mongolians 58 
 Hausa 38  S Asia Keralites 30 
 Chagga 45   Thoti 13 
 Masai 20   Kachari 17 
 Sandawe 40  E Asia Chinese, San 

Francisco 
56 

 Zaramo 37   Chinese, Taiwan 48 
 Afr Americans 89   Hakka 41 
 Ethiopian Jews 31   Koreans 54 
     Japanese 44 
SWAsia Yemenite Jews 41  SE Asia Laotians 118 
 Kuwaiti 12   Cambodians 23 
 Druze 101   Ami 40 
 Samaritans 38   Atayal 41 
 Ashkenazi 79  Pacific Papuans, New 

Guinea 
22 

     Nasioi 23 
Europe Adygei 54   Malaysians 10 
 Chuvash 41   Samoans 9 
 Hungarians 89   Micronesians 34 
 Russians, 

Archangelsk 
33  Americas Pima, Mexico 53 

 Russians,Vologda 47   Maya, Yucatan 48 
 Finns 34   Guihiba, 

Colombia 
11 

 Danes 51   Quechua, Peru 22 
 Irish 111   Ticuna 65 
 Euro Americans 88   Rondonian Surui 43 
 Sardinians 34   Karitiana 50 
 Roman Jews 27   Total Individuals 2582 
  



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol after official publication to acquire the final version. 
 

Figure 1. 
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Figure 3 
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Figure 4. 
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Figure 5.  
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Supplementary Figures Figure S1a 
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Figure S1b 
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Figure S2a 
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Figure S2b 
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Figure S3 
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Figure S4 
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