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1

CHAPTER 1

INTRODUCTION

Data mining is the task of discovering the interesting patterns from large amounts of data. Data

clustering and visualization are two important research fields in data mining. The most widely-

used methods in data mining for prediction and data analysis are classification and clustering

[36, 90]. Classification is a purely supervised learning model, whereas clustering is completely

unsupervised. Recently, there has been a lot of interest in the combination between completely

supervised and unsupervised learning in the data mining research community [93]. Frequently

based on the results of classification or clustering, data visualization further provides a quali-

tative overview of large and complex data sets, summarizing data and assisting in identifying

regions of interest [37].

In this chapter, we first give an overview of traditional supervised classification and unsu-

pervised clustering, and then describe semi-supervised learning, which can produce consider-

able improvement in learning accuracy when combining classification and clustering. Second,

we provide a brief introduction on data visualization. At last, we review the matrix factor-

ization mathematical framework, which can be applied to effectively solve problems in data

clustering and visualization.

1.1 Classification and Clustering

1.1.1 Classification

Classification is supervised learning, where a category label for each pattern in a training

set is provided by a supervisor [36]. The goal of classification is to learn a function from the

training data that gives the best predication of the class label of the test data set. Supervised

classification can be divided into two main categories: Generative model and Discriminative

model [92]. In the generative model, classification requires the estimate of the class-conditional
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densities via the use of the Bayes rule (or probabilistic). In the discriminative framework, the

focus is on optimizing certain error criterion through discriminant analysis (or geometric),

where the boundaries are directly learnt from data. It can be shown that the discriminative

model of classification has better generalization error than the generative model under cer-

tain assumptions, which has made discriminative classifiers such as Support Vector Machines

(SVM) [110] very popular.

1.1.2 Clustering

Clustering or unsupervised learning is a generic name for a variety of procedures designed

to find natural groupings or clusters in multidimensional data based on measured or perceived

similarities among the patterns [64, 36]. The purpose of clustering is to extract useful infor-

mation from unlabeled data. Applications of data clustering are found in many fields, such

as information discovery, text mining, web analysis, image grouping, medical diagnosis, and

bioinformatics.

Homogenous Clustering

Traditional clustering algorithms focus on grouping one data type, also called as homogenous

clustering. Hundreds of homogenous clustering methods can be categorized as the follow-

ing two popular techniques: Agglomerative hierarchical clustering and Iterative square-error

partitional clustering. Hierarchical techniques organize data in a nested sequence of groups

which can be displayed in the form of a dendrogram or a tree. Square-error partitional algo-

rithms (e.g., graph-theoretic clustering) attempt to obtain that partition which minimizes the

within-cluster scatter or maximizes the between-cluster scatter. Partitional clustering tech-

niques are used more frequently than hierarchical techniques in data mining applications since

the related clustering algorithms are generally formalized as optimization problems and can

be easily solved by iterative methods [25], approximation methods [63] or heuristic methods

[70]. Among partitioning clustering algorithms, clustering based on spectral graph cut the-
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ory has emerged as a popular method over the years with applications across various domains

[38, 39, 40, 22, 103]. This method models the data objects as vertices of a weighted graph with

edge weights representing the similarity between two data objects. Clustering is then obtained

by “cutting” the graph vertices into different partitions. Partitioning of the graph is obtained by

solving an eigenvalue problem where the clustering is inferred from the top eigenvectors.

Heterogeneous Clustering

With the fast growth of Internet and computational technologies in the past decade, many data

mining applications have advanced swiftly from the simple clustering of one data type to the

co-clustering of multiple data types, usually involving high heterogeneity. For example, the

interrelations of words, documents and categories in text corpus, Web pages, search queries

and Web users in a Web search system, papers, keywords, authors and conferences in a sci-

entific publication domain can be identified through simultaneous clustering of several related

data types. This is not achievable by traditional clustering methods. First, heterogeneous data

contain different types of relations. Processing and interpreting them in a unified way presents

a major challenge. Ad hoc integration or normalization (e.g., concatenating different features

into a vector of fixed length) rarely works. Second, various data types are related to each other.

Tackling each type independently will lose these interactions, which are essential to gaining

a full understanding of the data. Consequently, co-clustering is introduced in the data mining

literature, for both two data types (i.e., pairwise co-clustering) [55, 26, 27, 2, 85, 81], and

multiple (more than two) data types (i.e., high-order co-clustering) [112, 44, 45, 83, 84, 6].

Through co-clustering, we are able to discover a hidden global structure in the heterogeneous

data, which seamlessly integrates multiple data types to provide us a better picture of the un-

derlying data distribution, highly valuable in many real world applications.
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1.2 Semi-supervised Learning
In many practical learning domains (e.g. text processing, bioinformatics), there is a large

supply of unlabeled data but limited labeled data, and in most cases it can be expensive to

generate large amounts of labeled data. Consequently, semi-supervised learning, i.e. learning

from a combination of both labeled and unlabeled data, has become a topic of significant

recent interest. The framework of semi-supervised learning is applicable to both classification

and clustering.

1.2.1 Semi-supervised Classification

Supervised classification has a fixed known set of categories, and category-labeled training

data is used to induce a classification function. In semi-supervised setting, the training can

also exploit additional unlabeled data, frequently resulting in a more accurate classification

function. Several semi-supervised classification algorithms that use unlabeled data to improve

classification accuracy have become popular in the past few years, which include co-training

[10], transductive support vector machines [66], and using Expectation Maximization (EM) to

incorporate unlabeled data into training [47, 93]. A good review of semi-supervised classifica-

tion methods is given in [100].

1.2.2 Semi-supervised Clustering

Semi-supervised clustering uses class labels or pairwise constraints on data objects to aid

unsupervised clustering [4, 75, 111, 114, 5, 76, 68]. It can group data using the categories of

the initial labeled data as well as unlabeled data in order to modify the existing set of categories

which reflect the whole regularities in the data. Two sources of information are usually avail-

able to a semi-supervised clustering method: the similarity distance measurement in unsuper-

vised clustering and class labels or some pairwise constraints. For semi-supervised clustering

to be profitable, these two sources of information should not completely contradict each other.

Existing methods for semi-supervised clustering based on source information generally

fall into two categories: (1) Semi-supervised clustering with labels. The algorithms based
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on prior knowledge is available in the form of labeled data: e.g., semi-supervised seeded

or constrained k-means algorithm (SS-Seeded-Kmeans or SS-Constrained-Kmeans) enforces

constraints to be satisfied during the cluster assignment in the clustering process [111]; (2)

Semi-supervised clustering with constraints. The algorithms based on pairwise constraints are

known: e.g, semi-supervised constraints partitioning k-means algorithm (SS-COP-Kmeans)

initializes clusters and infers clustering based on neighborhoods derived from labeled exam-

ples [4]. Semi-supervised clustering algorithms have recently received a significant amount

of attention in the machine learning and data mining communities since they can incorporate

prior information about clusters into the algorithms to improve the clustering results [76].

1.3 Visualization
Data visualization is to present data and summary information using graphics, animation,

3-D displays, and other multimedia dimensional reduction tools. The main goal of data vi-

sualization is to communicate information based on learning (eg., classification or clustering)

results with people clearly and effectively through graphical means.

A number of different techniques [113, 12, 24] were proposed in the literature for visual-

izing a large dataset, among which multidimensional projection is the most popular one. It is

to map the raw data matrix into a d-dimensional space with d = 1, 2, 3 by employing dimen-

sionality reduction techniques. The objective is to preserve in the projected space the distance

relationships among the data in their original space. Depending on the choice of mapping func-

tions, both linear (e.g., principle component analysis (PCA) [67]) and nonlinear (e.g., ISOMAP

[107]) dimensionality reduction techniques have been proposed in the literature. However, all

of above methods can not solve three real-world challenges in visualization applications, which

can be summarized as follows: (1) Scalability: Facing the increasing amount of data, a major

challenge is to develop scalable approaches that are able to process and map massive data sets

in a low dimensional space. From a computational point of view, large data set significantly

raises the bar on the efficiency of a processing algorithm; (2) Accuracy: A visualization model
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for displaying data need to have a well-defined objective function and build-in mechanism to

combat noises such that it can provide accurate visualization of data; (3) Interpretability: All

data are shown in the limited visualization space. Thus, how to avoid overlaps and clearly dis-

play objects is highly important. Therefore, there is an urgent need to develop a visualization

model which provides people a more efficient, effective and interpretable view of ever-growing

large-scale data.

1.4 Mathematical Framework: Matrix Factorization
Recently, matrix-based method has emerged as an effective approach for analyzing data in

the high dimensional space. Factorization of matrices is to decompose of a matrix into a prod-

uct of other matrices, or factors, which when multiplied together give the original. There are

many different matrix factorizations; each finds use among a particular class of problems. The

well-known approaches include Principal Component Analysis (PCA) for multi-dimensional

projection, Singular Value Decomposition (SVD) for matrix approximation and Non-negative

Matrix Factorization (NMF) for data clustering.

In this dissertation, we focus on discussion of NMF. NMF was initially proposed for “parts-

of-whole” decomposition [79] and later extended to provide a general framework for data clus-

tering [29]. It can model widely varying data distributions and accomplish both hard and soft

clustering simultaneously. Let X = (x1, ..., xn) ∈ Rd×n be the data matrix with nonnegative

elements. NMF factorizes X into two non-negative matrices,

X ≈ FGT , (1.1)

where F ∈ Rd×k is the cluster centroid, G ∈ Rn×k is the cluster membership indicator which

corresponds to the degree object xi associated with cluster k, and k is the number of clusters.

The factorization is typically obtained by the least square minimization. A simple example of
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NMF clustering is illustrated as follows:

X =




0.185 0.326 0.761 2.799 2.375 2.970 2.585

0.508 0.380 0.884 2.134 2.374 2.342 2.524

0.452 0.887 0.457 2.065 2.484 2.253 2.163

1.486 1.843 1.858 0.566 0.103 0.417 0.269

1.496 1.806 1.610 0.612 0.158 0.560 0.784




≈ FGT =




1.7621 0.2165

1.5164 0.3013

1.4388 0.3101

0.0000 1.0424

0.1327 0.9891




×




0.0000 0.0000 0.0522 0.4740 0.5074 0.5203 0.4944

0.4924 0.6104 0.5686 0.1599 0.0213 0.1244 0.1419


 . (1.2)

In Equation (1.2), based on the membership indicator G, clearly the first three columns form

one cluster, and the last four columns give another.

In [115], it is shown that NMF outperforms spectral methods, achieving higher cluster-

ing accuracy, less computation cost and more intuitive interpretability. In addition, NMF has

been proved to be very useful for applications such as face recognition, text mining, multi-

media analysis, and DNA gene expression grouping. Noticeable variations or extensions of

NMF include block value decomposition [85], orthogonal-NMF [34], sparse-NMF [57], and

convex-NMF [31]. To some extent, these methods can provide higher computational efficiency

and better interpretability by imposing additional constraints such as orthogonality, sparsity or

convexity in the factorization process, however, they are still not applicable to clustering data

with prior knowledge or visualize data at an extremely large scale.
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1.5 Problem Statement
In order to fuse the advantages of NMF into semi-supervised data clustering or data visual-

ization, in this dissertation, we propose to integrate NMF-based mathematical framework into

real-world data clustering and visualization applications, which leads to increased efficiency

and better results. The major contribution of this dissertation can be summarized as follows:

• How to incorporate prior or background knowledge into matrix factorization to

improve the quality of clustering or co-clustering?

In Chapter 3, we proposed a Non-negative Matrix Factorization (NMF) [79, 78] based

framework to incorporate prior knowledge into data clustering. Under the proposed

Semi-Supervised NMF (SS-NMF) methodology, user is able to provide pairwise con-

straints on a few data objects specifying whether they “must” or “cannot” be clus-

tered together. An iterative algorithm is derived to perform symmetric non-negative

tri-factorization of the data similarity matrix.

Moreover, in chapter 4, we proposed a Semi-Supervised NMF (SS-NMF) based frame-

work to incorporate prior knowledge into heterogeneous data co-clustering. In the pro-

posed SS-NMF co-clustering methodology, users are able to provide constraints on data

samples in the central type, specifying whether they “must” (must-link) or “cannot”

(cannot-link) be clustered together. Our model improves the quality of co-clustering

by learning a new distance metric based on these constraints. Then tri-factorizations

of the new data matrices are performed using an iterative algorithm, obtained with the

learned distance metric, to infer the central data clusters while simultaneously deriving

the clusters of related feature modalities and their correspondence saliency.

• How to introduce matrix factorization into exemplar-based clustering to provide a

high quality of large-scale data visualization?

In Chapter 5, we proposed a novel technique, Exemplar-based Visualization (EV), to

visualize an extremely large data collection. Capitalizing on recent advances in matrix
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approximation and factorization, EV presents a probabilistic multidimensional projec-

tion model in the low-rank subspace with a sound objective function, and the visual-

ization is obtained through iterative optimization. By selecting the representative rows

and columns, a compact approximation of the data is obtained, making the visualization

highly efficient and effective. In addition, the selected exemplars neatly summarize the

entire data set and greatly reduce the cognitive overload in the visualization, leading to

easier interpretation of the complex data.

From a theoretical perspective, our matrix-based clustering approaches are mathematically

rigorous. The convergence and correctness are proved. In addition, we show that the advan-

tages of our models over existing ones. Experiments performed on various publicly available

data sets demonstrate the superior performance of the proposed work.

The rest of this dissertation is organized as follows. Chapter 2 reviews the related work of

homogeneous data clustering and heterogeneous data co-clustering, followed by semi-supervised

data clustering and co-clustering. Specifically, we focus on matrix factorization method review

since it is a general framework for data clustering. Then we overview some related methods on

data visualization. In Chapter 3, we present a SS-NMF model for data clustering with algorithm

description and experiments verification. A detailed discussion on SS-NMF for heterogenous

data co-clustering model, algorithm and applications are showed in Chapter 4. Chapter 5 fur-

ther introduces matrix factorization into exemplar-based clustering model and employs it into

visualizing large-scale data collections. Finally, Chapter 6 summarizes and points towards the

future work.
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CHAPTER 2

RELATED WORK

In this chapter, we provide a review of related work. First, we describe the categories of tradi-

tional homogeneous clustering and heterogenous co-clustering methods that are well-known

in the literature. Then we introduce the representative semi-supervised clustering and co-

clustering models. Finally, we give an overview of data visualization techniques.

2.1 Data Clustering

2.1.1 Homogeneous Data Clustering

As explained in Section 1.1.2, there are two categories of clustering algorithms: Hierarchi-

cal clustering and Partitional clustering, depending on whether the algorithm clusters the data

into a hierarchical structure or generates a flat partitioning of the data.

Hierarchical Clustering

Hierarchical clustering aims to obtain a hierarchy of clusters, called dendrogram, that shows

how the clusters are related to each other. The clustering result of the data items can be obtained

by cutting the dendrogram at a desired level. These methods proceed either by iteratively

merging small clusters into larger ones (agglomerative algorithms) or by splitting large clusters

(divisive algorithms). Based on these, it can be classified into the following categories:

• Agglomerative Algorithm:

Agglomerative method creates the cluster dendrogram in a bottom-up agglomerative

fashion, starting with each data point in its own cluster and merging clusters successively

according to a similarity measure till a convergence criterion is reached, e.g., hierarchical

agglomerative clustering [71], Birch [116], etc.
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• Divisive Algorithm:

Divisive method creates the cluster dendrogram in a top-down divisive fashion, where all

the data points initially are in a single cluster. This cluster is then split successively ac-

cording to some measurement till a convergence criterion is reached, e.g., Cobweb [41],

recursive cluster-splitting using a statistical transformation [35], and PDDP (principal

direction divisive partitioning) [11].

Partitional Clustering

Partitional clustering attempts to obtain a partition which minimizes the within-cluster scatter

or maximizes the between-cluster scatter based on minimum square-error function. To guar-

antee that an optimum solution has been obtained, one has to examine all possible partitions

of the n d-dimensional patterns into k clusters (for a given k), which is not computationally

feasible. Therefore, various heuristic methods are used to reduce the search, however, there

is no guarantee of optimality. Partitional clustering techniques are used more frequently than

hierarchical techniques in the real clustering applications. It can be further divided into the

following categories:

• Density-based Algorithm:

These methods model clusters as dense regions and use different heuristics to find arbi-

trary shaped high-density regions in the input data space and group points accordingly.

Well-known methods include Denclue, which tries to analytically model the overall den-

sity around a point [53], and WaveCluster, which uses wavelet-transform to find high-

density regions [102]. Density-based methods typically have difficulty scaling up to very

high dimensional data (> 10, 000 dimensions), which are common in domains like text

mining for instance.

• Mixture-based Algorithm:

Mixture-based methods assume that the data items in a cluster are drawn from one of
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several distributions (usually Gaussian) and attempt to estimate the parameters of all

these distributions. The introduction of the Expectation Maximization (EM) algorithm in

[25] was an important step in solving the parameter estimation problem. Mixture-based

methods have a high computational complexity and make rather strong assumptions re-

garding the distribution of the data. Most mixture-based methods view each cluster as a

single simple distribution (such as Gausssian distribution) and thus strongly constrain the

shape of the clusters; this explains why we did not include these methods in the category

of density-based clustering. The most popular mixture model-based clustering algorithm

is k-means [88].

The k-means algorithm performs iterative relocation to partition a data set into k clusters,

locally minimizing the overall distortion measurement between the data points and the

cluster means (a.k.a. “centroids”). We use Rd to denote the d-dimensional real vector

space; p denotes a probability density function; X = {xi}n
i=1 denotes the set of n data

points, where the ith data point is a vector represented by xi whose mth component is

xim. The k-means algorithm creates a k-partitioning {Xh}k
h=1 of X so that if {fh}k

h=1

represents the k partition centroids, then the following objective function

Jk−means =
k∑

h=1

∑
xi∈Xh

‖xi − fh‖2 (2.1)

is locally minimized. Note that finding the global optima for the k-means objective

function is an NP-complete problem [46]. Considering Y denotes the set of n cluster

labels, where yi is the cluster label of the ith data point xi, that is yi ∈ {h}k
h=1, then an

equivalent form of the k-means clustering objective function of Equation (2.1) is:

Jk−means =
∑
xi∈X

‖xi − fyi
‖2. (2.2)

• Graph-theoretic Algorithm:
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Given an undirected graph G = (V,E) which is constructed from the data set, each

vertex vi ∈ V corresponding to a data point xi and the weight of each edge eij ∈ E

corresponding to the similarity between the data points xi and xj according to a domain-

specific similarity measure. The k clustering problem becomes equivalent to finding the

k-mincut in this graph, which is known to be a NP-complete problem for k ≥ 3 [46].

One class of methods use heuristics to find low-cost cuts in G: methods like Rock [49]

and Chameleon [69] group nodes based on the idea of defining neighborhoods using

inter-connectivity of nodes in G, Metis [70] performs fast multi-level heuristics on G

at multiple resolutions to give good partitions, while Opossum [104] uses a modified

cut criterion to ensure that the resulting clusters are well-balanced according to a speci-

fied balancing criterion. The second class of methods for solving the graph partitioning

problem take a real relaxation of the NP-complete discrete partitioning problem: these

include spectral graph partitioning method that performs clustering by using the second

eigenvector of the graph Laplacian to define a cut [91] and the isoperimetric graph par-

titioning model that performs clustering by solving a system of linear equations to find

the lowest isoperimetric ratio [48].

Spectral clustering has many fundamental advantages compared to traditional mixture-

based clustering algorithms such as k-means. Results obtained by spectral clustering

very often outperform these traditional approaches, and it is very simple to implement

and can be solved by computing eigenvalue/eigenvector problem. The most referenced

algorithm proposed by Shi and Malik [103] is to minimize the Normalized Cut (NC)

objective function as follows,

JNC =
k∑

l=1

gT
l (D− A)gl

gT
l Dgl

, (2.3)

where g is cluster indicator vector, A is pairwise similarity matrix, and D is diagonal
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matrix.

General Clustering Framework: NMF

Nonnegative matrix factorization (NMF) is another recently developed data clustering method.

It was initially proposed for “parts-of-whole” decomposition [79] and has been shown to be

equivalent to the (kernel) k-means clustering and the Laplacian-based spectral clustering [29].

It can model widely varying data distributions and can do both hard and soft clustering simul-

taneously.

Let X = (x1, ..., xn) ∈ Rd×n be the data matrix of nonnegative elements. The NMF fac-

torizes X into two non-negative matrices, X ≈ FGT , where F = (f1, ..., fk) ∈ Rd×k is cluster

centroid and G = (g1, ..., gk) ∈ Rn×k is cluster indicator, and k is a pre-specified parame-

ter. The factorization is obtained by the least square minimization. The NMF-based clustering

method is described in Algorithm 1.

Algorithm 1 Nonnegative Matrix Factorization Clustering Algorithm
INPUT: Data matrix X ∈ Rd×n, number k of clusters to construct
OUTPUT: Clusters {Xh}k

h=1 with Yh = {i|xi ∈ Xh}
METHOD:

1. Initialize F and G with nonnegative values,

2. Iterate for each 1 ≤ i ≤ n, 1 ≤ m ≤ d and 1 ≤ h ≤ k until convergence,

(a) Cluster centroid:

Fmh ← Fmh
(XG)mh

(FGT G)mh

,

(b) Cluster indicator:

Gih ← Gih
(XT F)ih

(GFT F)ih

.

Ding et al. [29] theoretically analyzes the relationships among NMF, (kernel) k-means and

spectral clustering. This theoretical work gives an unified framework of clustering algorithms.
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• NMF and k-means Clustering

Theoretically, NMF is inherently related to (kernel) k-means clustering [82].

Theorem 1. Orthogonal NMF

JNMF = min
F≥0,G≥0

‖X− FGT‖2, s.t. GT G = I, (2.4)

is equivalent to (kernel) k-means clustering.

Proof. We write JNMF = ‖X−FGT‖2 = Tr(XT X−2FT XG+FT F). The zero gradient

condition ∂JNMF /∂F = −2XG + 2F = 0 gives F = XG. Thus JNMF = Tr(XT X −
GT XT XG). Since Tr(XT X) is a constant, the optimization problem becomes

max
G≥0

Tr(GT XT XG) s.t. GT G = I. (2.5)

In addition, the k-means clustering is to minimize the objective function as,

Jk−means =
k∑

h=1

∑
xi∈Xh

‖xi − fh‖2

where fh is the cluster centroid of the h-th cluster. More generally, the kernel k-means

maps xi → φ(xi). Thus, the objective function of kernel k-means becomes

Jkernel−kmeans = min
k∑

h=1

∑
xi∈Xh

‖φ(xi)− φh‖2, (2.6)

where φh is the centroid in the feature space. This can be solved via the optimization

problem,

max
G≥0

Tr(GT AG) s.t. GT G = I, (2.7)

where G are the cluster indicators and Aij = φ(xi)
T φ(xj). Specifically, for k-means,
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φ(xi) = xi, Aij = xT
i xj . Therefore, it is proved that the objective function of NMF

(Equation (2.5)) is equivalent to the objective function of (kernel) k-means (Equation

(2.7)). We also note that Theorem 1 holds even if X and F are not nonnegative, i.e., X

and F have mixed-sign entries. The proof is completed.

NMF has clustering capabilities which is generally better than k-means. In k-means, an

exact orthogonality of columns of cluster indictor G implies that each row of G can have

only one nonzero element, which implies that each data object belongs only to 1 cluster.

This is hard clustering. While in NMF, the near-orthogonality condition of G relaxes

this a bit, i.e, each data object could belong fractionally to more than 1 cluster. This is

soft clustering. Thus, NMF has better clustering flexibility.

• NMF and Spectral Clustering

In addition, we discuss the relationship between NMF and spectral clustering. There are

three popular objectives in spectral clustering: the Ratio Cut [50], the Normalized Cut

[103], and the MinMax Cut [30]. We are interested in the multi-way clustering objective

functions as,

J = min
k∑

h=1

s(Xh, Xh)

ρ(Xh)
, (2.8)

where

ρ(Xh) =





|Xh| for Ratio Cut
∑

xi∈Xh
di for Normalized Cut

s(Xh, Xh) for MinMax Cut

,

Xh is the complement of subset Xh in graph G, s(S, S̄) =
∑

i∈S

∑
j∈S̄ aij , di =

∑
j aij ,

and aij is the (ij)th component of similarity matrix A.

Here, we show that the minimization of these objective functions (e.g, Normalized Cut)

can be equivalently carried out via the NMF.
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Theorem 2. Normalized Cut using pairwise similarity matrix A is equivalent to kernel k-

means clustering with the kernel matrix Ã = D−1/2AD−1/2, where D = diag(d1, ..., dn).

Theorem 3. Normalized Cut using similarity matrix A is equivalent to symmetric NMF,

JNMF = min
G≥0

‖Ã− GGT‖2, (2.9)

where G is indicator vector as,

G = (g1, ...gk), gT
l gh = δlh, gl = (0, ..., 0,

nl︷ ︸︸ ︷
1, ..., 1, 0, ..., 0)T )/n

1/2
l , (2.10)

where 1 ≤ l ≤ k, nl is the number of vectors in the l-th cluster.

Proof. Let gl be cluster indicators as in Equation (2.9). One can easily see that

s(Xh, Xh) =
∑

xi∈Xh

∑

xj∈Xh

aij = gT
l (D− A)gl,

and
∑

xi∈Xh

di = gT
l Dgl.

Define the scaled cluster indicator vector zl = D1/2gl/‖D1/2gl‖, which obeys the orthog-

onal condition zT
l zh = δlh, or ZT Z = I, where Z = (z1, ..., zk). Substituting into the

Normalized Cut objective function, we have

JNC = min
k∑

l=1

gT
l (D− A)gl

gT
l Dgl

= min
k∑

l=1

zT
l (I− Ã)zl. (2.11)

Since the first term is a constant, thus, the above minimization problem becomes

max
Z≥0

Tr(ZT ÃZ) s.t. ZT Z = I. (2.12)
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Once the solution Ẑ is obtained, we can recover G by optimizing

min
G≥0

∑

l

∥∥∥∥ẑl − D1/2gl

‖D1/2gl‖

∥∥∥∥
2

. (2.13)

The exact solution is gl = D−1/2ẑl, or G = D−1/2Z. It means that row i of Z is multiplied

by a constant d−1/2
i . The relative weights across different clusters in the same row remain

same. Thus, G represents the same clustering as Z does. As a result, the spectral clus-

tering objective function (Equation (2.12) is identical to the NMF clustering objective

function (Equation (2.5) if let Z = G and Ã = XT X. The proof is completed.

Comparing to the spectral graph model, NMF does not require the derived cluster indi-

cator space G to be orthogonal, and it guarantees that each data takes only non-negative

values. These two characteristics make NMF superior to spectral clustering methods

because of the following reasons: First, when overlap exists among clusters, NMF can

still find a direction for each cluster, while the orthogonal requirement by the eigenvec-

tor computation makes the derived directions less likely to correspond to each of the

clusters. Second, as the direct benefit of the above two NMF characteristics, the clus-

ter membership of each data can be easily identified from NMF, while indicator space

derived by the spectral clustering model does not provide a direct indication of the data

partitions, and consequently, traditional data clustering methods such as k-means have to

be applied in this eigenvector space to find the final set of data clusters. Third, standard

factorization of a data matrix uses SVD as widely used in spectral clustering. However,

for many data sets such as images and text, the original data matrices are nonnegative. A

factorization such as SVD contain negative entries and thus has difficulty for clustering

interpretation.

To summarize, NMF, kernel k-means clustering and spectral clustering are unified in a

simple way: they are different prescriptions of the same problem with slightly different
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constraints.

2.1.2 Heterogeneous Data Co-clustering

In general, co-clustering approaches can be divided into three categories: probability-based

analysis, information-theory based models, and graph theoretic approaches.

Co-clustering with Probability-based Model

In the first category, Hoffman et al. [55] proposed the Probabilistic Latent Semantic Anal-

ysis (PLSA) model for co-occurrence data and used it for collaborative filtering. In PLSA,

the data objects are embedded into a low dimensional space using Singular Value Decompo-

sition (SVD) for efficient pairwise co-clustering. Later, PLSA was further developed into a

more comprehensive generative model, Latent Dirichelt Allocation (LDA), to cluster rows and

columns of data simultaneously. Within the framework of LDA, many pairwise co-clustering

approaches, such as Infinite Relational Model [74], Mixed Membership Blockmodel [1] and

Bayesian co-clustering [101], were introduced recently using different inference engines. Also

recently, Long et al. proposed a high-order co-clustering framework, Mixed Membership Rela-

tional Clustering (MMRC) model [86], in which parametric soft clustering results are derived

using Expectation Maximization (EM) for a large number of exponential family distributions.

MMRC can identify multiple cluster structures for each type of data and interactive patterns

between different types of data. Generally, probabilistic techniques provide good cluster accu-

racy but cost more computation overhead.

Co-clustering with Information Theory Model

Concerning the information-theory based models, Dhillon et al. [27] presented a pairwise

co-clustering algorithm to maximize the mutual information between the clustered random

variables subject to the constraints on the number of row and column clusters. A more general

framework was presented in [2] wherein any Bregman divergence can be used as the objective
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function for co-clustering. Later, Gao et al. [45] extended pairwise information theoretic

models to high-order data co-clustering. More recently, Bekkerman and Jeon [6] proposed

the Combinatorial Markov Random Field (CMRF) algorithm for high-order co-clustering, in

which each data modality is modeled as a single combinatorial random variable in Markov

Random Field. However, theoretical proof of the effectiveness and correctness of information-

theory based models is typically not presented.

Co-clustering with Graph Theory Model

Graph theoretical approaches have a well-defined objective function for data co-clustering and,

thus, are widely used. Spectral learning, such as Bipartite Spectral Graph Partitioning (BSGP)

[26], was proposed and applied to co-cluster documents and words. BSGP formulates the

data matrix as a bipartite graph and seeks to find the optimal normalized cut for the graph.

With a similar philosophy, Gao et al. proposed Consistent Bipartite Graph Co-partitioning

(CBGC) using semi-definite programming for high-order data co-clustering and applied it to

hierarchical text taxonomy preparation [44]. Due to the nature of graph partitioning theory,

these algorithms have the restriction that clusters from different types of objects must have

one-to-one association. More recently, Long et al. [83] proposed Spectral Relational Cluster-

ing (SRC), in which they formulated heterogeneous co-clustering as collective factorization on

related matrices and derived a spectral algorithm to cluster multi-type interrelated data objects

simultaneously. SRC provides more flexibility by lifting the requirement of one-to-one asso-

ciation in graph-based co-clustering. However, to obtain data clusters, all the aforementioned

graph theoretical approaches require solving an eigen-problem, which computationally is not

efficient for large-scale data sets.

2.1.3 Semi-supervised Clustering

We provide a review of related work on using user provided information to improve data

clustering. We first discuss some algorithms in which prior knowledge is in the form of labeled
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data. Next, we describe other algorithms for which pairwise constraints are required to be

known a priori.

Semi-supervised Clustering with Labels

SS-Constrained-Kmeans [111] and SS-Seeded-Kmeans [4] are the two well-known algorithms

in semi-supervised clustering with labels. The SS-Constrained-Kmeans seeds the k-means

algorithm with the given labeled data and keeps that labeling unchanged throughout the algo-

rithm. Moreover, it is appropriate when the initial seed labeling is noise-free, or if the user

does not want the labels of the seed data to change. On the other hand, the SS-Seeded-Kmeans

algorithm changes the given labeling of the seed data during the course of the algorithm. Also,

it is applicable in the presence of noisy seeds, since it does not enforce the seed labels to remain

unchanged during the clustering iterations and can therefore abandon noisy seed labels after

the initialization step. Semi-supervised clustering with labels has been successfully applied

to the problem of document clustering. [56] proposed incorporating background knowledge

into document clustering by enriching the text features using WordNet1. Recently, [58] pre-

sented a probabilistic generative model to incorporate extended feedback that allows the user

and the algorithm to jointly arrive at coherent clusters that capture the categories of interest

to the user. [94, 10, 66] proposed methods where the user provided class labels a priori to

some of the documents. These algorithms use the labeled data to generate seed clusters that

initialize a clustering algorithm, and use constraints generated from the labeled data to guide

the clustering process.

Semi-supervised Clustering with Constraints

In certain applications, supervision in the form of class labels may be unavailable. For example,

complete class labels may be unknown in the context of clustering for speaker identification in

1http://wordnet.princeton.edu
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a conversation [3], or clustering GPS data for lane-finding [111]. In some domains, pairwise

constraints occur naturally, e.g., the Database of Interacting Proteins (DIP) dataset contains

information about proteins co-occurring in processes, which can be viewed as must-link con-

straints during clustering. Similarly, for document clustering, user knowledge about which few

documents are related or unrelated can be incorporated to improve the clustering results. More-

over, it is easier for a user to provide feedback in the form of pairwise constraints than class

labels, since providing constraints does not require the user to have significant prior knowl-

edge about the categories in the data set. Amongst the various methods proposed for utilizing

user provided constraints for semi-supervised clustering, two of the well-known include the

semi-supervised kernel k-means (SS-KK) [76] and semi-supervised spectral clustering with

normalized cuts (SS-SNC) [65]. While, SS-KK transforms the clustering distance measure

by weighted kernel k-means with reward and penalty constraints to perform semi-supervised

clustering of data given either as vectors or as a graph, SS-SNC utilizes supervision to change

the clustering distance measure with pairwise information by spectral methods.

Even though the research on semi-supervised clustering have attracted substantial atten-

tion in the past years, to date, most semi-supervised clustering models are only applicable

to homogeneous data. Recently, Bekkerman and Sahami proposed a semi-supervised CMRF

model (SS-CMRF) for pairwise co-clustering [7] under the information theoretic framework.

However, without proof of correctness and convergence, their approach is not mathematically

rigorous. Comparatively speaking, semi-supervised on heterogenous clustering has limited

research in the literature until now.

2.2 Data Visualization
Visualization enables us to browse intuitively through huge amounts of data and thus could

expand the human ability for comprehending complex datasets. A number of different tech-

niques [113, 12, 24] were proposed in the literature for visualizing a large dataset, among which

multidimensional projection is the most popular one. Assuming X = {x1, x2, ..xn} ∈ Rd1×n
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with a high dimension d1 is the data matrix where columns index the objects and rows de-

note the features appearing in them, multidimensional projection is to find the embedding of

data Y = {y1, y2, ..yn} ∈ Rd2×n in the visualization space, usually d2 = {1, 2, 3} and min-

imize |δ(xi, xj) − D(f(xi), f(xj))|, where δ(xi, xj) is the original dissimilarity distance and

D(f(xi), f(xj)) is the Euclidean distance between the corresponding two points in the pro-

jected space, and f : X → Y is a mapping function [106].

In general, multidimensional projection techniques [67, 23, 107, 99, 96] can be divided

into two major categories based on the function f employed: Linear projection methods and

Non-linear projection methods. Linear projection creates an orthogonal linear transformation

that transforms the data to a new coordinate system such that the new variable is a linear

combination of the original variables. Among such techniques, the widely known is Princi-

ple Component Analysis (PCA) [67]. However, many data sets contain essential nonlinear

structures that are invisible to PCA. For those cases, non-linear projection methods, using in-

formation not contained in the covariance matrix, are more appropriate. Several approaches,

such us multidimensional scaling (MDS) [23] and ISOMAP [107], have been proposed for

reproducing nonlinear higher-dimensional structures on a lower-dimensional display, and they

differ in how the different distances are weighted and how the function are optimized.

Although multidimensional project techniques can extract a low-dimensional representa-

tion of a high-dimensional dataset, most of them take no account of the latent structure in the

given data. To this end, Least Square Projection (LSP) [96] first chooses a set of control points

using k-medoids method [8] based on the number of classes and then obtains the projection

through the least square approximation, in which the data are projected following the geom-

etry defined by the control points. Recently, incorporating probabilistic semantic models into

analyzing large datasets has attracted great research interests [42, 61] since it can provide a

higher quality (i.e., more meaningful) visualization. In Probabilistic Latent Semantic Analysis

(PLSA) [54], a class is modeled as a probability distribution over features, and salient objects
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are embedded together even if they do not share any features through Parametric Embedding

(PE) [60]. Consequently, the objects that tend to be associated with the same class would be

embedded nearby, as would class that tend to have the similar objects associated with them.

Unfortunately, all the aforementioned methods are inapplicable to visualize a large-scale

dataset. When dealing with tens of thousands of objects, for example, PCA will fail to run due

to insufficient memory and high computational cost of solving the eigen problem. The ever-

increasing online data collection presents an unprecedented challenge for the development of

highly scalable methods that can be implemented in a linear polynomial time. More recently,

hierarchical-clustering based methods [43, 95] are proposed to partially solve the memory and

computation problem, in which a hierarchical cluster tree is first constructed using a recursive

partitioning process, and then the elements of that tree are mapped to the lower dimensional

space to create a visual representation. However, these methods lack a mathematically rigorous

objective function to minimize f . In addition, all determinations are strictly based on local

decisions, and the deterministic nature of the hierarchy technique prevents reevaluation after

points are grouped into a node of tree. Therefore, an incorrect assignment made earlier in the

process cannot be corrected.

On the other side, humans can gain insight into the information embedded in data more

strongly when presented in the visual system. A list of the most common multi-dimensional

visualization interfaces is presented in [72], for examples, iconic displays [21], dense pixel

displays [73], stacked displays [62], parallel coordinates [59], etc. To this end, it is desired to

supplement clustering algorithms by visualization models to build a user-friendly system, thus

providing more meaningful insights into a complex data set.
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CHAPTER 3

SEMI-SUPERVISED DATA CLUSTERING BASED ON

NMF

In this chapter, we propose a Non-negative Matrix Factorization (NMF) based framework to

incorporate prior knowledge into data clustering. Under the proposed Semi-Supervised NMF

(SS-NMF) methodology, user is able to provide pairwise constraints on a few data objects spec-

ifying whether they “must” or “cannot” be clustered together. We derive an iterative algorithm

to perform symmetric non-negative tri-factorization of the data similarity matrix. The cor-

rectness and convergence of the algorithm is proved by showing that the solution satisfied the

KKT optimality and the algorithm is guaranteed to converge. We also prove that SS-NMF is a

general and unified framework for semi-supervised clustering by establishing the relationship

between SS-NMF and other existing semi-supervised clustering algorithms.

In the following, we first formulate the SS-NMF model in Section 3.1 and derive the

agorithm in Section 3.2. Theoretically, we prove the correctness and convergence of the al-

gorithm in Section 3.3.1. Equivalence of SS-NMF to SS-KK and SS-SNC is proven in Section

3.3.2, followed by a discussion of advantages of SS-NMF in Section 3.3.3. Finally, experiments

performed on various publicly available data sets demonstrating the superior performance of

the SS-NMF for clustering are illustrated in Section 3.4.

3.1 Model Formulation
We assume the data consists of n objects, and that d features have been extracted from each

of the objects. Correspondingly, the data can be represented using a matrix X ∈ Rd×n where

columns index the data objects to be clustered and rows denote the features. An entry xmi in

this matrix denotes the value of feature m for object i.

We propose a SS-NMF model for data clustering. In the proposed model, we perform
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symmetric non-negative tri-factorization of the similarity matrix A = XT X ∈ Rn×n as,

A ≈ GSGT , (3.1)

where G ∈ Rn×k is the cluster indicator matrix. An entry gih in G gives the degree of associ-

ation of object xi with cluster h. The cluster membership of an object is given by finding the

cluster with the maximum association value. S ∈ Rk×k is the cluster centroid matrix that gives

a compact k × k representation of X.

Supervision is provided as two sets of pairwise constraints on the data objects: must-link

constraints CML and cannot-link constraints CCL. Every pair, (xi, xj) ∈ CML implies that xi

and xj must belong to the same cluster. Similarly, all possible pairs (xi, xj) ∈ CCL implies

that the two objects should belong to different clusters. The constraints are accompanied by

associated violation cost matrix W. An entry wij in this matrix denotes the cost of violating

the constraint between xi and xj , if such a constraint exists, that is, either (xi, xj) ∈ CML

or (xi, xj) ∈ CCL. The model relies on a distortion measure D : Rd → R, to compute

distance between the data objects. For a given k, the goal is to partition the data objects

into k disjoint clusters {Xh}k
h=1, such that the total distortion between the objects and the

corresponding cluster representatives (i.e., centroid) is (locally) minimized according to the

given distortion measure D, while constraint violations are kept to a minimum.

3.2 Algorithm Derivation
We define the objective function of SS-NMF as,

JSS−NMF = min
S≥0,G≥0

‖Ã−GSGT‖2, (3.2)

where Ã = A−Wreward+Wpenalty is affinity or similarity matrix A with constraints Wreward =

{wij|(xi, xj) ∈ CML, s.t.yi = yj} and Wpenalty = {wij|(xi, xj) ∈ CCL, s.t.yi = yj}, wij is the

penalty cost for violating a constraint between xi and xj , and yi is the cluster label of xi.



27

S ∈ Rk×k is the cluster centroid, and G ∈ Rn×k is the cluster indicator.

We propose an iterative procedure for the minimization of Equation (3.2) where we update

one factor while fixing the others. The updating rules are

Sih ← Sih
2

√
(GT ÃG)ih

(GT GSGT G)ih

, (3.3)

Gih ← Gih
4

√
(ÃGS)ih

(GSGT GS)ih

. (3.4)

Thus, the SS-NMF algorithm for data clustering can be illustrated in Algorithm 2.

Algorithm 2 SS-NMF Algorithm
INPUT: Data similarity matrix A ∈ Rd×d, number of clusters k, constraint penalty matrix
Wpenalty, and constraint reward matrix Wreward

OUTPUT: Clusters {Xh}k
h=1 with Yh = {i|xi ∈ Xh}

METHOD:

1. Initialize S and G with non-negative values,

2. Construct Ã = A−Wreward + Wpenalty,

3. Iterate for each i and h until convergence,

(a) Cluster centroid:

Sih ← Sih
2

√
(GT ÃG)ih

(GT GSGT G)ih

,

(b) Cluster indicator:

Gih ← Gih
4

√
(ÃGS)ih

(GSGT GS)ih

.

3.3 Theoretical Analysis

3.3.1 Algorithm Correctness and Convergence

We now prove the theoretical correctness and convergence of SS-NMF. Motivated by [85,

83, 34], we render the proof based on optimization theory, auxiliary function and several matrix
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inequalities.

1. Correctness

First, we prove the correctness of the algorithm, which can be stated as,

Proposition 1. If the solution converges based on the updating rules in Equations (3.3)

and (3.4), the solution satisfies the KKT optimality condition.

Proof. Following the standard theory of constrained optimization, we introduce the La-

grangian multipliers λ1 and λ2 to minimize the lagrangian function,

L(S, G, λ1, λ2) = min
S≥0,G≥0

‖Ã−GSGT‖2 − Tr(λ1ST )− Tr(λ2GT ). (3.5)

Based on the KKT complementarity conditions ∂J
∂S = 0 and ∂J

∂G = 0, we obtain the

following two equations,

2GT ÃG− 2GT GSGT G + λ1 = 0, (3.6)

4ÃGS− 4GSGT GS + λ2 = 0. (3.7)

Applying the Hadamard multiplication on both sides of Equations (3.6) and (3.7) by S

and G, respectively, and using KKT conditions of

λ1 ¯ S2 = 0,

λ2 ¯G4 = 0,

where ¯ denotes the Hadamard product of two matrices, we can prove that if S and G

are a local minimizer of the objective function in Equation (3.5), the following equations
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are satisfied,

(GT ÃG)¯ S2 − (GT GSGT G)¯ S2 = 0, (3.8)

(ÃGS)¯G4 − (GSGT GS)¯G4 = 0. (3.9)

Based on Equations (3.8) and (3.9), we derive the proposed updating rules of Equations

(3.3) and (3.4). If the updating rules converge, the solution satisfies the KKT optimality

condition. The proof is completed.

2. Convergence

Next, we prove the convergence of the algorithm. In Propositions 2 and 3, we show that

the objective function decreases monotonically under the two updating rules. This can

be done by making use of an auxiliary function similar to that used in [78].

Proposition 2. If G is a fixed matrix, then J(S) = ‖Ã−GSGT‖2 = Tr(Ã
T

Ã−2GT Ã
T

GS+

GT GSGT GST ) decreases monotonically under the updating rule of Equation (3.3).

Proof. A function F (S(t+1), S(t)) is called an auxiliary function of L(S(t+1)) if it satis-

fies F (S(t+1), S(t)) ≥ L(S(t+1)) and F (S(t+1), S(t)) = L(S(t+1)) for any S(t+1) and S(t).

Define S(t+1) = arg minS F (S(t+1), S(t)). By construction, L(S(t)) = F (S(t), S(t)) ≥
F (S(t+1), S(t)) ≥ L(S(t+1)). Thus, L(S(t)) is monotonic decreasing (non-increasing).

The key step is to find appropriate auxiliary function F (S(t+1), S(t)). Assuming G is

fixed, we write

L(S(t+1)) = Tr(Ã
T

Ã− 2GT Ã
T

GS + GT GSGT GST ) (3.10)
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and show that

F (S(t+1), S(t)) =‖ Ã ‖2 (3.11)

−
∑

ih

2(GT ÃG)ihS(t)
ih (1 + log

S(t+1)
ih

S(t)
ih

) +
∑

ih

(GT GS(t)GT G)ihS2(t+1)
ih

S(t)
ih

is an auxiliary function of L(S(t+1)).

First, we show that the inequality F (S(t+1), S(t)) ≥ L(S(t+1)) holds. We can see the

second term in F (S(t+1), S(t)) (aside from the negative sign) is always smaller than the

second term in L(S(t+1)) because of the inequality S(t+1)
ih

S(t)
ih

≥ 1 + log(
S(t+1)

ih

S(t)
ih

), ∀S(t+1)
ih

S(t)
ih

>

0. In addition, the third term in F (S(t+1), S(t)) is always bigger than the third term in

L(S(t+1)) [34]. Thus, the condition F (S(t+1), S(t)) ≥ L(S(t+1)) holds. Second, we show

the equality F (S(t+1), S(t)) = L(S(t+1)) holds. It is obvious when S(t+1) = S(t), the

equality F (S(t+1), S(t)) = L(S(t+1)) holds.

Therefore, F (S(t+1), S(t)) is an auxiliary function of L(S(t+1)). Since we have

S(t+1) = arg min
S

F (S(t+1), S(t)), (3.12)

S(t+1) is given by the minimum of F (S(t+1), S(t)) while fixing S(t). The minimum value

is obtained by setting

∂F (S(t+1), S(t))

∂S(t+1)
ih

= −
∑

ih

2(GT ÃG)ih
S(t)

ih

S(t+1)
ih

(3.13)

+ 2
∑

ih

(GT GS(t)GT G)ihS(t+1)
ih

S(t)
ih

= 0.

Thus, we can derive the updating rule of Equation (3.3) as Sih ← Sih
2

√
(GT ÃG)ih

(GT GSGT G)ih
.

Under this updating rule, J(S) decreases monotonically. The proof is completed.



31

Proposition 3. If S is a fixed matrix, J(G) = ‖Ã− GSGT‖2 = Tr(Ã
T

Ã− 2GT Ã
T

GS +

GT GSGT GST ) decreases monotonically under the updating rule of Equation (3.4).

Proof. A function F (G(t+1), G(t)) is called an auxiliary function of L(G(t+1)) if it sat-

isfies F (G(t+1), G(t)) ≥ L(G(t+1)) and F (G(t+1), G(t)) = L(G(t+1)) for any G(t+1)

and G(t). Define G(t+1) = arg minG F (G(t+1), G(t)). By construction, L(G(t)) =

F (G(t), G(t)) ≥ F (G(t+1), G(t)) ≥ L(G(t+1)). Thus, L(G(t)) is monotonic decreasing

(non-increasing).

The key step is to find appropriate auxiliary function F (G(t+1), G(t)). Assuming S is

fixed, we write

L(G(t+1)) = Tr(Ã
T

Ã− 2Ã
T

GSGT + GT SGT GST GT ) (3.14)

and show that,

F (G(t+1), G(t)) =‖ Ã ‖2 (3.15)

−
∑

ih

2(ÃG(t)S)ihG(t)
ih (1 + 2log

G(t+1)
ih

G(t)
ih

)

+
∑

ih

(G(t)SGT (t)G(t)S)ihG4(t+1)
ih

G4(t)
ih

is an auxiliary function of L(G(t+1)).

Following the proof of Proposition 2, it is not difficult to prove F (G(t+1), G(t)) is an aux-

iliary function of L(G(t+1)). Since G(t+1) = arg minG F (G(t+1), G(t)), G(t+1) is given

by the minimum of F (G(t+1), G(t)) while fixing G(t). The minimum value is obtained

by setting ∂F (G(t+1),G(t))

∂G(t+1)
ih

= 0. Thus, we can derive the updating rule of Equation (3.4) as

Gih ← Gih
4

√
(ÃGS)ih

(GSGT GS)ih
. Under this updating rule, J(G) decreases monotonically. The

proof is completed.
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3.3.2 Equivalence of SS-NMF and Other Semi-supervised Clustering Meth-

ods

We now show that SS-NMF is a general and unified framework for semi-supervised cluster-

ing by establishing the relationship between SS-NMF and other well-known semi-supervised

clustering algorithms, i.e., semi-supervised kernel k-means (SS-KK) [76] and semi-supervised

spectral clustering with normalized cuts (SS-SNC) [65]. In fact, both these algorithms can be

considered to be special cases of SS-NMF.

Proposition 4. Orthogonal SS-NMF clustering is equivalent to SS-KK clustering.

Proof. The SS-NMF objective function is

JSS−NMF = min
S≥0,G≥0

‖Ã−GSGT‖2. (3.16)

The equation can be written as, JSS−NMF = ‖Ã − GSGT‖2 = ‖Ã − G′G′T‖2 = Tr(Ã
T

Ã −
2G′T ÃG′ + G′T G′) if let S = QT Q and G′ = GQT . Since Tr(Ã

T
Ã + G′T G′) is a constant, the

minimization of J becomes a maximization problem as,

max
G′≥0

Tr(G′T ÃG′) s.t. G′T G′ = I. (3.17)

The SS-KK [76] is to minimize the objective function as,

JSS−KK =
k∑

h=1

∑
i∈Xh

‖φ(xi)− φh‖2 −
∑

(xi,xj)∈CML,s.t.yi=yj

wij +
∑

(xi,xj)∈CCL,s.t.yi=yj

wij, (3.18)

where φ(·) is the kernel function and φh the centroid. Let E be the matrix of pairwise squared

Euclidean distance among the data points, W the constraint matrix and G the cluster indicator.
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Equation (3.18) becomes the minimization of the following function,

min
G≥0

Tr(GT (E− 2W)G) s.t. GT G = I. (3.19)

We can convert the minimization of Equation (3.19) to a maximization of the problem as,

max
G≥0

Tr(GT KG) s.t. GT G = I, (3.20)

where K = A + W and A the similarity matrix.

It is clear that the objective function of SS-NMF (Equation (3.17)) is equivalent to that of

SS-KK (Equation (3.20)) if K = Ã. The G′ in Equation (3.17) represents the same clustering

as G of Equation (3.20) does. The proof is completed.

Proposition 5. Orthogonal SS-NMF clustering is equivalent to SS-SNC clustering.

Proof. The objective function of SS-SNC [65] is,

JSS−SNC = min
k∑

h=1

gT
h (D̃− Ã)gh

gT
h D̃gh

= min
k∑

h=1

zT
h (I− Ȧ)zh, (3.21)

where Ã = A − Wreward − Wpenalty is the pairwise similarity matrix with constraints, D̃ =

diag(x̃1, ..., x̃n) is the diagonal matrix, gh is the cluster indictor, scaled cluster indicator vector

zh = D̃
1/2

gh/‖D̃
1/2

gh‖, and Ȧ = D−1/2ÃD−1/2.

It can be shown that the minimization of Equation (3.21) becomes a maximization problem

as,

max
Z≥0

Tr(ZT ȦZ) s.t. ZT Z = I. (3.22)

Also, it can be seen that Equation (3.17) is equivalent to Equation (3.22) if Ã = Ȧ. More-

over, the G′ in Equation (3.17) represents the same clustering as Z of Equation (3.22) does.

The proof is completed.
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From the above two proofs, we can see that SS-NMF, SS-KK, and SS-SNC are mathemat-

ically equivalent. However, notice that in SS-NMF, the matrix Ã might have some negative

values, which is not permitted in traditional NMF. In this case, one possible solution is to per-

form some normalization techniques to guarantee non-negative values. Alternatively, we can

simply relax the non-negative constraint to allow negative values as in Semi-NMF [82]. In

either of the approaches, the clustering result will not get affected too much. In SS-NMF, the

cluster indicator G′ is near-orthogonal and can produce soft clustering results. The cluster cen-

troid S can provide good characterization of the quality of data clustering because the residue

of the matrix approximation J = min ‖Ã−GSGT‖ is smaller than J = min ‖Ã−GGT‖. On

the other hand, for SS-KK and SS-SNC, if input matrix is added with constraint weight W, in

order to ensure positive definiteness, certain additive constraints need to be enforced. More-

over, these constraints are difficult to be relaxed. Also, the cluster indicator G or Z is required

to be orthogonal, leading to only hard clustering results. Hence, both SS-KK and SS-SNC

can be viewed as special cases of SS-NMF with orthogonal space constraints. Thus, SS-NMF

essentially provides a general and unified mathematical framework for semi-supervised data

clustering.

3.3.3 Advantages of SS-NMF

Then, we further illustrate the advantages of SS-NMF using a toy data set shown in Figure

3.1a, which follows an extreme distribution consisting of 20 data points forming two natu-

ral clusters: two circular rings with 10 data points each. Traditional unsupervised clustering

methods, such as (kernel) k-means, spectral normalized cut or NMF, are unable to produce

satisfactory results on this data set. However, after incorporating knowledge from the user in

the form of constraints, we are able to achieve much better results.

Unlike SS-SNC, SS-NMF maps the samples into a non-negative latent semantic space.

Moreover, SS-NMF does not require the derived space to be orthogonal. Figures 3.1b and c

show the data distributions in the two spaces for SS-NMF and SS-SNC, respectively. Data
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Figure 3.1: (a) An artificial toy dataset consisting of two natural clusters. (b) Data distribution
in the SS-NMF subspace of the two column vectors of G. The data points from the two clusters
get distributed along the two axes. (c) Data distribution in the SS-SNC subspace of the first
two singular vectors. There is no relationship between the axes and the clusters.

Table 3.1: Cluster indicator G of SS-KK and SS-NMF for the toy data set.

G SS-KK SS-NMF
g1 1 0 0.2778 0.0820
g2 1 0 0.2977 0.0486
g3 1 0 0.4301 0.0009
g4 1 0 0.1295 0.0494
g5 1 0 0.1377 0.0021
g6 1 0 0.3845 0.0000
g7 1 0 0.1281 0.0001
g8 1 0 0.1426 0.0097
g9 1 0 0.3119 0.0023
g10 1 0 0.4691 0.0080
g11 0 1 0.0651 0.3959
g12 0 1 0.0599 0.4449
g13 0 1 0.1161 0.4108
g14 0 1 0.0978 0.2985
g15 0 1 0.0592 0.2506
g16 1 0 0.1220 0.1233
g17 0 1 0.1047 0.1735
g18 0 1 0.1503 0.2028
g19 0 1 0.1233 0.2866
g20 0 1 0.1181 0.3800
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points belonging to the same cluster are depicted by the same symbol. For SS-NMF, we plot

the data points in the space of two column vectors of G, while for SS-SNC the first two singular

vectors are used. Clearly, in the SS-NMF space, every data point takes non-negative values in

both the directions. Furthermore, in SS-NMF space, each axis corresponds to a cluster, and all

the data points belonging to the same cluster are nicely spread along the axis. The cluster label

for a data point can be determined by finding the axis with which the data point has the largest

projection value. However, in the SS-SNC space, there is no direct relationship between the

axes (singular vectors) and the clusters.

Table 3.1 shows the difference of cluster indicator between the hard clustering of SS-KK

and soft clustering of SS-NMF. An exact orthogonality in SS-KK means that each row of

cluster indicator G has only one nonzero element, which implies that each data object belongs

to only 1 cluster. The near-orthogonality of cluster indicator G in SS-NMF relaxes this a

bit, i.e., each data object could belong fractionally to more than 1 cluster. This can help in

knowledge discovery in the cases where the data point is evenly projected along the different

axes. For instance, g16 = {0.1220, 0.1233} indicates that this data point may belong to any one

of the two clusters.

SS-NMF uses an efficient iterative algorithm instead of solving a computationally expen-

sive constrained eigen decomposition problem as in SS-SNC. The time complexity of SS-NMF

isO(tkn2) where k is the number of clusters, n is the number of data objects, and t is the num-

ber of iterations. In fact, the time complexity is similar to that of the classical SS-KK cluster-

ing algorithm. However, compared to SS-KK, SS-NMF algorithm is simple as it only involves

some basic matrix operations and hence can be easily deployed over a distributed computing

environment when dealing with large data sets. Another advantage in favor of SS-NMF is that

a partial answer can be obtained at intermediate stages of the solution by specifying a fixed

number of iterations.

In Figure 3.2, we demonstrate the computational speed of SS-NMF with respect to SS-KK
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Figure 3.2: Computational speed comparison for SS-KK, SS-SNC and SS-NMF.

and SS-SNC. This experiment was performed on a machine with a 3 GHz Intel Pentium 2

processor with 2 GB RAM. As the number of data samples increase, SS-SNC turns out to be

the slowest of the three algorithms. SS-KK is the quickest with SS-NMF closely following

it. In the next section, we show the superior performance of SS-NMF in terms of clustering

accuracy in comparison with other clustering algorithms.

3.4 Experiments and Results
In this section, we empirically demonstrate the performance of SS-NMF for data clustering.

We present the details of our experiments, starting with the descriptions of the data sets (Sec-

tion 3.4.1), the methodology and evaluation metrics (Section 3.4.2), followed by thorough per-

formance comparisons with leading unsupervised and semi-supervised clustering algorithms

(Section 3.4.3).

3.4.1 Data Description

We thoroughly evaluate the proposed algorithm on a variety of data sets, with number of

classes ranging from 2 to 10, having between 27 to 500 data samples, and the dimensionality
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(attributes) ranging from 4 to 12,600. These data sets represent applications from different

domains such as text mining, image grouping and bioinformatics.

1. Text Data Sets

We use eight text data sets for document clustering. In particular, we created the data

sets by mixing some of the data sets used in [51] 1. Data sets oh0 and oh5 are from

OHSUMED collection [52], a subset of MEDLINE database, which contains 233, 445

documents indexed using 14, 321 unique categories. Data set re0 is from Reuters-21578

text categorization collection Distribution 1.0 [80]. Data set Fbis is from the Foreign

Broadcast Information Service data of TREC-5 [108]. For all data sets, the common

words are removed and the words are stemmed using Porter’s suffix-stripping algorithm

[98].

Table 3.2 shows the document data sets used in our experiments. These data sets were

created as follows:

• Classes Graft-Survival and Phospholipids from oh5 were mixed to form the

Graft-Phos data set.

• Data set England-Heart was created by mixing classes England and Heart-

V alve-Prosthesis from oh0.

• Interest-Trade was formed by mixing Interest and Trade classes of re0 data

set.

• We randomly selected 2, 3, 4, 5, and 10 classes from Fbis to form data sets Fbis2,

Fbis3, Fbis4, Fbis5 and Fbis10, respectively.

In addition, we performed feature selection on the words by retaining the top 10% of the

words based on mutual information in each of the data sets.
1http://www.cs.umn.edu/˜han/data/tmdata.tar.gz
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Table 3.2: Summary of text data sets used in the experiments.

Data sets No. of clusters No. of words No. of docs
Graft-Phos 2 2432 293

England-Heart 2 2504 375
Interest-Trade 2 2682 438

Fbis2 2 2000 200
Fbis3 3 2000 300
Fbis4 4 2000 400
Fbis5 5 2000 500

Fbis10 10 2000 500

2. Gene Expression Data Sets

The five data sets used in our experiments from Kent Ridge Biomedical Data Repository2

are: AML/ALL, Colon Tumor, Prostate Cancer, ALL/MLL/AML, and Central Nervous

System (CNS).

• The ALL/AML data set includes two types of human tumor-acute myelogenous

leukemia (AML, 11 samples) and acute lymphoblastic leukemia (ALL, 27 samples).

• The Colon Tumor data set contains 62 samples collected from colon-cancer pa-

tients. Among them, 40 tumor biopsies are from tumors and 22 normal biopsies are

from healthy parts of the colons of the same patients. 2, 000 out of around 6, 500

genes were selected based on the confidence in the measured expression levels.

• The Prostate Cancer data set contains 52 prostate tumor samples and 50 non-tumor

prostate samples with around 12, 600 genes.

• The ALL/MLL/AML data set contains 57 leukemia samples which are divided into

20 ALL, 17 MLL and 20 AML.

• The Central Nervous System (CNS) data set consists of 34 samples: 10 classic

medulloblastoms, 10 malignantgliomas, 10 rhabdoids and 4 normals.

These data sets are summarized in Table 3.3.

2http://datam.i2r.a-star.edu.sg/datasets/krbd/
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Table 3.3: Summary of gene expression data sets used in the experiments.

Data sets No. of clusters No. of genes No. of samples
ALL/AML 2 7129 38

Colon Tumor 2 2000 62
Prostate Tumor 2 12600 102
ALL/MLL/AML 3 12582 57

CNS 4 7129 34

3. Image Data Sets

All the images used in our experiments come from the Corel image database 3. Each im-

age category has images between 100 and 300, and the total number of image is 10,000.

Each Corel category is treated as a human-labeled cluster and is used as ground truth for

our clustering task. Some sample images are shown in Figure 3.3. The image categories

used in our experiments were Owls, Roses, Lions, Elephants and Horses. We refer to

the categories using the first alphabet in the figures and tables as O, R, L, E, and H, re-

spectively. The entire image database consists of 1, 500 images with 300 images in each

category. For the image features, we adopted the HSV space and performed principal

component analysis (PCA) along H, S and V dimensions separately. The image was

then projected in the eigen vector space to get weights along the principal components.

A feature vector for each image was formed by concatenating weights along the three

dimensions.

4. UCI Data Sets

We utilize three data sets from the UCI data repository 4: Iris, LettersIJL, and Soybean.

• Iris plant data contains three classes: Iris Setosa, Iris Versicolour and Iris Virginica

with four attributes sepal length, sepal width, petal length and petal width.

• LettersIJL is a randomly sampled subset of three letters I, J, L with 300 samples

from Letters data set.
3http://wang.ist.psu.edu/docs/related/
4http://archive.ics.uci.edu/ml/
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Figure 3.3: Image samples for semi-supervised clustering.
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• Soybean comes from Soybean Small data with 4 classes: D1, D2, D3 and D4.

The data sets are summarized in Table 3.4.

Table 3.4: Summary of UCI data sets used in the experiments.

Data sets No. of clusters No. of attributes No. of samples
Iris 3 4 150

LettersIJL 3 16 300
Soybean 4 35 47

3.4.2 Methodology and Evaluation Metrics

We compare the performance of SS-NMF model on all data sets with the following six clus-

tering methods: (1) k-means, (2) kernel k-means, (3) spectral normalized cuts, (4) NMF, (5)

SS-KK, (6) SS-SNC. The first four methods are the most popular unsupervised data clustering

methods, whereas SS-KK and SS-SNC are the representative semi-supervised ones. Through

these comparison studies, we demonstrate the relative position of SS-NMF with respect to

unsupervised and semi-supervised approaches in real-world data clustering.

We evaluate the clustering results using confusion matrix and the accuracy metric AC. Each

entry (i, j) in the confusion matrix represents the number of objects in cluster i that belong to

true class j. The AC metric measures how accurately a learning method assigns labels ŷi to the

ground truth yi, and is defined as,

AC =

∑n
i=1δ(yi, ŷi)

n
, (3.23)

where n denotes the total number of objects in the experiment, and δ is the delta function that

equals one if ŷi = yi; otherwise it is zero. Since iterative algorithm is not guaranteed to find the

global minimum, it is beneficial to run the algorithm several times with different initial values

and choose one trial with a minimal objective value. In reality, usually a few number of trials

is sufficient. In the case of NMF and k-means, for a given k, we conduct 20 test runs. 3 trials
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are performed in each of the 20 test runs and final accuracy value is the average of all the test

runs.

3.4.3 Results

1. Document Clustering

We first perform comparison of the four unsupervised clustering approaches with SS-

NMF having pairwise constraints on only 3% pairs of all the possible document pairs,

which is (total docs
2 ). Each of the constraints were generated by randomly selecting a pair

of documents. Other datasets also use similar defined constraints in the following exper-

iments. If both the documents have the same class label (must-link) , then the constraint

is assigned maximum weight in the document-document similarity matrix. On the other

hand, if they belong to different classes (cannot-link), then the minimum weight in the

similarity matrix is used for the constraint. For kernel k-means, we used a Gaussian (ex-

ponential) kernel K(x1, x2) = exp(−‖x1 − x2‖2/2σ2), with variance σ = 0.00001 for 2

clusters and σ = 0.01 for more than 2 clusters. In Table 3.5, we compare the algorithms

on all the text data sets using AC values. The performance of the first three methods is

similar with NMF proving to be the best amongst the unsupervised methods. However,

the accuracy of NMF greatly deteriorates and is unable to produce meaningful results on

data sets having more than 2 clusters. On the other hand, the superior performance of

SS-NMF is evident across all the data sets. We can see that in general a semi-supervised

method can greatly enhance the document clustering results by benefitting from the user

provided knowledge. Moreover, SS-NMF is able to generate significantly better results

by quickly learning from the few pairwise constraints provided. Table 3.6 demonstrates

the performance of SS-NMF when varying amounts of pairwise constraints are available

a priori. We reported the results in terms of the confusion matrix C and the cluster cen-

troid matrix S. As the available prior knowledge increases from 0% to 5%, we can make

the following two key observations. Firstly, the confusion matrices tend to become per-
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Table 3.5: Comparison of document clustering accuracy between k-means, kernel k-means,
spectral normalized cuts (SNC), NMF and, SS-NMF with 3% constraints.

Dataset Graft-Phos England-Heart Interest-Trade Fbis2 Fbis3 Fbis4 Fbis5 Fbis10
k-means 0.6849 0.7108 0.7228 0.5650 0.4728 0.4620 0.4180 0.2320

kernel k-means 0.7986 0.7147 0.7420 0.5700 0.5533 0.5525 0.5140 0.3780
SNC 0.6553 0.6320 0.7032 0.9900 0.6367 0.5975 0.5420 0.3920
NMF 0.8157 0.7840 0.9566 0.9950 0.6533 0.6125 0.5900 0.4160

SS-NMF 0.9932 0.9973 1.0000 1.0000 0.8833 0.8775 0.7520 0.6740

(a) (b) (c)

Figure 3.4: (a) Typical document-document matrix (shown here England-Heart) before clus-
tering. (b) England-Heart similarity matrix after clustering with SS-NMF. (c) Fbis5 similarity
matrix after clustering with SS-NMF.

fectly diagonal indicating higher clustering accuracy. Second observation pertains to the

cluster centroid matrix S which represents the similarity or distance between the clusters.

Increasing values of the diagonal elements of S indicate higher inter-cluster similarities.

As expected, when the amount of prior knowledge available is more, the performance of

the algorithm clearly gets better.

In Figure 3.4a, the sparsity pattern of a typical document-document matrix A = XT X

(England-Heart in the figure) before clustering is shown. The SS-NMF algorithm is

applied to the modified similarity matrix Ã. Document clustering leads to re-ordering

of the rows and columns of the matrix. Figures 3.4b and c, show the Ã matrices for

England-Heart and Fbis5 data sets after clustering with 5% pairwise constraints. Docu-

ment clusters are indicated by the dense sub-matrices in these matrices.
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Table 3.6: The comparison of confusion matrix C and cluster centroid matrix S of SS-NMF for
different percentages of document pairs constrained.

% of Comp. Graft-Phos England-Heart Interest-Trade Fbis5
const. matrix dataset dataset dataset dataset

0%

C

116 21 181 81 215 15 1 1 4 1 4

33 123 0 113 4 204 84 95 0 0 1

14 1 11 1 0

0 0 0 96 3

1 3 85 2 92

S

0.7771 0 1.0364 0 2.2788 0 1.0695 0 0 0 0

0 0.7733 0 1.1500 0 2.0855 0 0.8690 0 0 0

0 0 1.0392 0 0

0 0 0 0.87 0

0 0 0 0 1.0416

1%

C

130 3 181 31 216 1 92 17 0 8 0

19 141 0 163 3 218 0 0 22 0 0

0 0 64 0 1

0 0 1 89 0

8 83 13 3 99

S

0.9143 0 1.2164 0 2.6920 0 2.5203 0 0 0 0

0 0.9442 0 1.5346 0 2.4075 0 2.4751 0 0 0

0 0 2.4251 0 0

0 0 0 2.6532 0

0 0 0 0 2.8233

3%

C

147 0 193 0 219 0 55 0 0 7 0

2 144 1 181 0 219 33 99 0 0 0

0 0 0 0 0

0 0 90 89 0

72 1 10 4 100

S

1.2317 0 2.5813 0 3.3250 0 4.2578 0 0 0 0

0 1.3005 0 2.7989 0 3.7290 0 4.6787 0 0 0

0 0 4.2349 0 0

0 0 0 4.0898 0

0 0 0 0 4.0951

5%

C

149 0 194 0 219 0 100 0 0 0 0

0 144 0 181 0 219 0 100 0 0 0

0 0 100 0 0

0 0 0 100 0

0 0 0 0 100

S

1.6094 0 3.4279 0 4.1829 0 6.5171 0 0 0 0

0 1.5981 0 2.5649 0 4.5167 0 6.3111 0 0 0

0 0 6.0427 0 0

0 0 0 6.7312 0

0 0 0 0 5.9222
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We also compare SS-NMF with the other two semi-supervised clustering approaches.

As before, for SS-KK, a Gaussian kernel was used. In Figure 3.5, we plot the AC values

against increasing percentage of pairwise constraints available, for the algorithms on all

the data sets. On the whole, all three algorithms perform better as the percentage of

pairwise constraints increases. While the performance of SS-KK is close to that of SS-

SNC on the data sets in Figures 3.5a-3.5c, it is clearly left out of the race completely in

Figures 3.5d-3.5h. This is mainly because of the fact that SS-KK is unable to maintain

its accuracy when producing more than 2 clusters. While the performance of SS-SNC

is head-to-head with SS-NMF on Fbis2 and Fbis3, it is consistently outperformed by

SS-NMF on the rest of the data sets. Another noticeable fact is that the curve for SS-

KK and SS-SNC might take a slow rise in some cases indicating that they need more

amount of prior knowledge to improve the performance. Comparatively, SS-NMF gets

better accuracy than the other two algorithms even for minimum percentage of pairwise

constraints.

2. Gene Expression Clustering

Second, we present the comparison of SS-NMF with the other algorithms on real-world

gene expression data sets. We first compare the four unsupervised clustering approaches

with SS-NMF having pairwise constraints on only 3% pairs of all the possible sample

pairs. For kernel k-means, we used a Gaussian (exponential) kernel, with variance σ =

0.00001 for ALL/AML and Colon Tumor data sets and a polynomial kernel K(x1, x2) =

(1 + x1 ∗ x′2)p with polynomial parameter p = 1 for the other gene expression data sets.

In Table 3.7, we compare the algorithms on all the five gene expression data sets with

AC values. As is the case with document clustering, SS-NMF performs to be the best

across all the data sets. It is evident that the algorithm learns quickly in spite of having

few constraints. Table 3.8 demonstrates the performance of SS-NMF improves when the

number of pairwise constraints on the gene expression data sets increase from 0% to 5%.
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Figure 3.5: Comparison of document clustering accuracy between SS-KK, SS-SNC, and SS-
NMF for different percentages of document pairs constrained (a) Graft-Phos, (b) England-
Heart, (c) Interest-Trade, (d) Fbis2, (e) Fbis3, (f) Fbis4, (g) Fbis5, and (h) Fbis10 dataset.
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These results are reported in terms of the confusion matrix C and the normalized cluster

centroid matrix S as before.

Table 3.7: Comparison of gene expression clustering accuracy between k-means, kernel k-
means, spectral normalized cuts (SNC), NMF and, SS-NMF with 3% constraints.

Dataset ALL/AML Colon Tumor Prostate Cancer ALL/MLL/AML CNS
k-means 0.5263 0.6290 0.5784 0.6316 0.5294

kernel k-means 0.5263 0.5323 0.6078 0.6491 0.6765
SNC 0.6316 0.5968 0.5980 0.5601 0.6553
NMF 0.6842 0.6613 0.6471 0.6667 0.7674

SS-NMF 0.7632 0.7581 0.6667 0.7368 0.8529

Next, we compare SS-NMF with the other two semi-supervised clustering approaches on

the gene expression data sets. Figure 3.6 shows a plot of the AC values against increasing

percentage of pairwise constraints for the three semi-supervised algorithms on all the five

data sets. All three algorithms perform better as the percentage of pairwise constraints

increases. SS-NMF performs significantly better than the other two algorithms with any

percentage of constraints when distinguishing between tumor and non-tumor samples,

as in Figures 3.6b-3.6c. Also, for clustering subtypes of tumors, although the differences

are small, SS-NMF outperforms the other two algorithms as seen from Figures 3.6a,

3.6d-3.6e.

3. Image Clustering

We perform comparison of three popular unsupervised image clustering methods: kernel

k-means (KK), spectral normalized cuts (SNC), and NMF, with the proposed algorithm.

For SS-NMF, we provide only 3% pairwise constraints out of a total of possible image

pairs. For KK, we use a polynomial kernel K = (1 + XT
1 X2)

p with p = 1. In Table 3.9,

we compare the algorithms using AC values. Amongst the unsupervised methods, NMF

proves to be the best one. However, the accuracy of all the unsupervised methods greatly

deteriorates and is unable to produce meaningful results on data sets having more than

2 clusters. This is because these methods only rely on the visual features of the images
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Table 3.8: The comparison of confusion matrix C and cluster centroid matrix S of SS-NMF for
different percentages of gene expression sample pairs constrained.

% of Comparison ALL/AML ALL/MLL/AML CNS
constraints matrix dataset dataset dataset

0%

C

17 2 17 6 0 7 1 2 0
10 9 1 6 5 0 7 0 0

2 5 15 2 0 8 0
1 2 0 4

S

1.3679 0 1.3501 0 0 3.7739 0 0 0
0 1.3063 0 1.0768 0 0 4.6714 0 0

0 0 1.3498 0 0 2.9214 0
0 0 0 3.3950

1%

C

18 1 17 3 0 9 1 1 1
9 10 1 8 6 1 7 0 0

2 6 14 0 0 8 0
0 2 1 3

S

1.3735 0 1.3886 0 0 3.8979 0 0 0
0 1.3145 0 1.0815 0 0 4.6859 0 0

0 0 1.3506 0 0 2.9348 0
0 0 0 3.4125

3%

C

19 1 16 1 7 9 1 1 1
8 10 4 13 0 1 8 0 0

0 3 13 0 0 9 0
0 1 0 3

S

1.3824 0 1.3614 0 0 4.0468 0 0 0
0 1.3277 0 1.1008 0 0 5.0569 0 0

0 0 1.3575 0 0 3.1888 0
0 0 0 3.5181

5%

C

21 1 15 3 0 10 0 1 0
6 10 5 14 1 0 9 0 0

0 0 19 0 0 8 0
0 1 1 4

S

1.3917 0 1.3915 0 0 4.7369 0 0 0
0 1.3331 0 1.122 0 0 5.2554 0 0

0 0 1.3582 0 0 3.3510 0
0 0 0 3.6125
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Figure 3.6: Comparison of gene expression clustering accuracy between SS-KK, SS-SNC, and
SS-NMF for different percentages of sample pairs constrained (a) ALL/AML, (b) Colon Tumor,
(c) Prostate Cancer, (d) ALL/MLL/AML, and (e) CNS dataset.
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to perform the clustering. On the other hand, the superior performance of SS-NMF is

evident across all the image data sets. From this experiment, we can infer that in general

a semi-supervised method can greatly enhance the image clustering results by benefitting

from the user provided knowledge. Moreover, SS-NMF is able to generate significantly

better results by quickly learning from the few pairwise constraints provided. Table 3.10

demonstrates the performance of SS-NMF when varying amounts of pairwise constraints

are available a priori. The results in terms of the confusion matrix C and the cluster

centroid matrix S are reported as before. It is clear to see that the performance of the

SS-NMF algorithm clearly gets better as the available prior knowledge increases from

0% to 5%.

Table 3.9: Comparison of image clustering accuracy between KK, SNC, NMF and, SS-NMF
with only 3% pairwise constraints.

Dataset O-R L-H R-L O-R-L O-R-L-E O-L-E-H
KK 0.6933 0.6553 0.8600 0.6750 0.6012 0.5775
SNC 0.8300 0.7900 0.8750 0.7092 0.6150 0.5975
NMF 0.8400 0.7950 0.8950 0.7167 0.6550 0.6525

SS-NMF 0.9400 0.8500 0.9300 0.8833 0.7125 0.7095

In addition, we compare SS-NMF with the two semi-supervised clustering approaches:

SS-KK and SS-SNC. As before, for SS-KK, a polynomial kernel was used. In Figure 3.7,

we plot the AC values against increasing percentage of pairwise constraints available for

different combinations of the image categories. On the whole, all the three algorithms

perform better as the percentage of pairwise constraints increases. SS-KK is unable to

achieve decent clustering results and is clearly the weakest of the three algorithms. The

performance of SS-SNC is head-to-head on few categories such as in Figures 3.7(d) and

(h), however it is consistently outperformed by SS-NMF in the rest of the results. For

experiments involving the image categories Lions, Elephants and Horses, the accuracy

of SS-NMF improves significantly when the percentage of pairwise constraints available

are around 4% to 5%. This is because there is a considerable resemblance in the images
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Table 3.10: The comparison of confusion matrix C and cluster centroid matrix S of SS-NMF
for different percentages of image pairs constrained.

% of Comparison O-R L-E-H
constraints matrix data set dataset

0%

C
81 13 48 20 16
19 87 46 41 3

6 39 81

S
45.659 0 42.276 0 0

0 48.837 0 50.797 0
0 0 64.711

1%

C
84 11 49 20 16
16 89 45 42 3

6 38 81

S
46.029 0 45.455 0 0

0 48.837 0 55.531 0
0 0 68.019

3%

C
89 1 50 10 16
11 99 45 60 3

5 30 81

S
47.071 0 45.603 0 0

0 48.931 0 57.330 0
0 0 68.390

5%

C
94 2 56 21 13
6 98 15 74 5

29 5 82

S
48.289 0 48.289 0 0

0 49.491 0 61.883 0
0 0 71.650

of these categories, and hence more prior knowledge is required. Another noticeable fact

is that the curve for SS-KK and SS-SNC might take a slow rise in some cases indicating

that they need more amount of prior knowledge to improve the performance. Compar-

atively, SS-NMF gets better accuracy than the other two algorithms even for minimum

percentage of pairwise constraints.

4. UCI Data Clustering

Table 3.11 shows the comparison of SS-NMF with the four unsupervised clustering al-

gorithms on three UCI data sets. As before, for kernel k-means, we use a Gaussian

(exponential) kernel with variance σ = 1 for Iris data and polynomial kernel with poly-

nomial parameter p = 1 for the other data sets. As can be seen, with just 5% constraints,

SS-NMF yields significantly better results than the unsupervised approaches. For in-

stance, on Soybean data, SS-NMF improves the accuracy over 25%. Similar trends can

also be observed for other two data sets.



53

0   1% 2% 3% 4% 5%
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

percentage of pairs constrained

ac
cu

ra
cy

 v
al

ue

 

 

SS−KK
SS−SNC
SS−NMF

(a)

0   1% 2% 3% 4% 5%
0.65

0.7

0.75

0.8

0.85

0.9

percentage of pairs constrained

ac
cu

ra
cy

 v
al

ue

 

 

SS−NMF
SS−SNC
SS−KK

(b)

0   1% 2% 3% 4% 5%
0.86

0.88

0.9

0.92

0.94

0.96

percentage of pairs constrained

ac
cu

ra
cy

 v
al

ue

 

 

SS−KK
SS−SNC
SS−NMF

(c)

0   1% 2% 3% 4% 5%
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

percentage of pairs constrained

ac
cu

ra
cy

 v
al

ue

 

 

SS−KK
SS−SNC
SS−NMF

(d)

0   1% 2% 3% 4% 5%
0.45

0.5

0.55

0.6

0.65

0.7

0.75

percentage of pairs constrained

ac
cu

ra
cy

 v
al

ue

 

 

SS−KK
SS−SNC
SS−NMF

(e)

0 1% 2% 3% 4% 5%

0.6

0.65

0.7

0.75

0.8

0.85

percentage of pairs constrained

ac
cu

ra
cy

 v
al

ue

 

 

SS−KK
SS−SNC
SS−NMF

(f)

0   1% 2% 3% 4% 5%
0.55

0.6

0.65

0.7

0.75

0.8

percentage of pairs constrained

ac
cu

ra
cy

 v
al

ue

 

 

SS−KK
SS−SNC
SS−NMF

(g)

0   1% 2% 3% 4% 5%
0.45

0.5

0.55

0.6

0.65

0.7

0.75

percentage of pairs constrained

ac
cu

ra
cy

 v
al

ue

 

 

SS−KK
SS−SNC
SS−NMF

(h)

Figure 3.7: Comparison of image clustering accuracy between SS-KK, SS-SNC, and SS-NMF
for different percentages of image pairs constrained (a) O-R, (b) L-H, (c)R-L, (d) O-R-L, (e)
L-E-H, (f) O-R-L-E, (g)O-L-E-H and (h) O-R-L-E-H dataset.

Table 3.11: Comparison of UCI data clustering accuracy between k-means, kernel k-means,
spectral normalized cuts (SNC), NMF and, SS-NMF with 5% constraints.

Dataset Iris LettersIJL Soybean
k-means 0.8263 0.5167 0.7234

kernel k-means 0.6933 0.5167 0.7021
SNC 0.6667 0.4467 0.7234
NMF 0.6733 0.5200 0.7447

SS-NMF 0.9267 0.6300 0.9149
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Figure 3.8 illustrates the performance of SS-NMF and the two semi-supervised algo-

rithms for increasing number of pairwise constraints on the UCI data sets. We can ob-

serve that SS-NMF clustering always produces best accuracy performance when the di-

mensionality of the data sets is high (Figure 3.8b-3.8c). However, it is unable to achieve

quality clustering on low dimensionality data sets for fewer constraints. For Iris data set

which has dimensionality of 4 (Figure 3.8a), SS-NMF yields low accuracy initially and

tends to slowly catch up with SS-KK as the percentage of pairwise constraints increase.

This shows that SS-NMF is a viable proposition for low-dimensional data as well but

needs higher percentage of constraints.
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Figure 3.8: Comparison of UCI data clustering accuracy between SS-KK, SS-SNC, and SS-
NMF for different percentages of sample pairs constrained (a) Iris, (b) LettersIJL, and (c)
Soybean dataset.

3.5 Summary
We present SS-NMF: a semi-supervised approach for clustering based on non-negative ma-

trix factorization. In the proposed framework, users are able to provide supervision in terms

of must-link and cannot-link pairwise constraints on the data objects. We derive an iterative

algorithm to perform symmetric tri-factorization of the data similarity matrix. We mathemat-

ically show the correctness and convergence of SS-NMF. Moveover, we prove that SS-NMF

provides a general and unified framework for semi-supervised data clustering. Existing ap-

proaches can be considered as special cases of it. Empirically, we show that SS-NMF out-
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performs well-established unsupervised and semi-supervised clustering methods in grouping

publicly available datasets.
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CHAPTER 4

SEMI-SUPERVISED DATA CO-CLUSTERING BASED ON

NMF

In the previous chapter, we show that SS-NMF provides a general and unified framework for

semi-supervised clustering. Here, we extend the SS-NMF model to incorporate prior knowl-

edge into heterogeneous data co-clustering. In the proposed SS-NMF co-clustering methodol-

ogy, users are able to provide constraints on data samples in the central type, specifying whether

they “must” (must-link) or “cannot” (cannot-link) be clustered together. Our goal is to improve

the quality of co-clustering by learning a new distance metric based on these constraints. Us-

ing an iterative algorithm, we then perform tri-factorizations of the new data matrices, obtained

with the learned distance metric, to infer the central data clusters while simultaneously deriving

the clusters of related feature modalities.

In the following, we first present SS-NMF co-clustering model in Section 4.1 and derive

its solution in Section 4.2. Then, we prove the correctness and convergence of the algorithm in

Section 4.3.1 and show the relationship between SS-NMF with other well-known co-clustering

models in Section 4.3.2 from a theoretical prospective. Empirically, the details of experimental

evaluations are given in Section 4.4.

4.1 Model Formulation
In this section, we propose a SS-NMF model for heterogeneous data co-clustering. Specif-

ically, we will discuss 1) how to incorporate prior knowledge into data co-clustering through

distance metric learning and modality selection and 2) how to efficiently infer clusters of dif-

ferent data types simultaneously using NMF.

In our model, given a Star-structured Heterogeneous Relational Data (SHRD) set, with a

central data type Xc, and l feature modalities X1, ..., Xp, ..., Xl, the goal is to cluster central
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data type Xc into kc disjoint clusters simultaneously with feature modality X1 into k1 disjoint

clusters, ..., Xp into kp disjoint clusters, ... , and Xl into kl disjoint clusters. Notice that SHRD

provides a very good abstraction for many real-world data mining problems. For example, it

can be used to model words, documents and categories in text mining, where the document

is the central data type; authors, conferences, papers and keywords in academic publications,

where the paper is the central data type; and images, color, and texture features in image

retrieval, where the image is the central data type. As such, co-clustering SHRD can provide

a global data structure, which shows correlations of various feature modalities, leading to a

better understanding of the underlying process that generates the data. For instance, through

image and low-level feature co-clustering, images can be grouped together with different kinds

of features. By linking certain feature modalities to a cluster of images, we can perform more

efficient and effective content-based image retrieval.

To derive a solution of the co-clustering problem under matrix factorization framework, we

first model SHRD using a set of relation matrices. That is, a matrix R(cp) ∈ Rnc×np is used to

represent the relation between a central data type Xc and a feature modality Xp (1 ≤ p ≤ l).

See Figure 4.1(a) for an example of SHRD, in which the relations between the central data type

and four feature modalities are modeled by relational matrices R(c1), R(c2), R(c3) and R(c4),

respectively. Then, we can formulate the task of co-clustering as an optimization problem with

nonnegative tri-factorization of R(cp),

J = min
G(c)≥0,G(p)≥0,S(cp)≥0

l∑
p=1

‖R(cp) −G(c)S(cp)G(p)‖2, (4.1)

where G(c) ∈ Rnc×kc and G(p) ∈ Rkp×np are the cluster indicator matrices, and S(cp) ∈ Rkc×kp

is the cluster association matrix which provides the relation between the central data type and

each feature modality.

In semi-supervised co-clustering, we assume that the supervision is provided as two sets of
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Figure 4.1: (a) Heterogeneous star-structured relational data. (b) Star-structured triplet co-
clustering with must-link (M) and cannot-link (C) constraints.

pairwise constraints derived from the given labels on the central data type: must-link constraints

M = {(xi, xj)} and cannot-link constraints C = {(xi, xj)}, where (xi, xj) ∈ M implies that xi

and xj are labeled as belonging to the same cluster, while (xi, xj) ∈ C implies that xi and xj are

labeled as belonging to different clusters. Note that our assumption is made based on the fact

that in practice constraints are much easier to specify on the central data type (e.g., documents

in document-word co-clustering) than on the feature modalities (e.g., words). Figure 4.1(b)

shows a data triplet, the basic element of SHRD, with constraints on the central data type. The

green edges indicate the must-link constraints M, while the red edges denote the cannot-link

constraints C. The dotted line shows the optimal co-clustering result.

4.2 Algorithm Derivation
Let R(c1) ∈ Rnc×n1 denote the relational matrix. The objective of pairwise co-clustering is

to cluster the nc data points in the central type c along with the n1 features in feature modality 1

while keeping the constraint violations to a minimum. In order to accomplish semi-supervised

co-clustering, it is necessary to discover a new distance metric over the features based on the

constraints provided by the users on the central data type. Specifically, given two data points

xi and xj of R(c1), the Mahalanobis distance between them can be defined as d(x(c1)
i , x(c1)

j ) =



59

√
(x(c1)

i − x(c1)
j )T L(c1)(x(c1)

i − x(c1)
j ). Thus, learning the distance metric L(c1) is equivalent to

finding a linear projective mapping
√

L(c1) in the feature space [114] such that data points

(x(c1)
i , x(c1)

j ) ∈ M are moved closer to each other while (x(c1)
i , x(c1)

j ) ∈ C are pushed further

away. That is, we solve the following optimization problem,

max g(L(c1)) =

∑
(x(c1)

i ,x(c1)
j )∈C ||x

(c1)
i , x(c1)

j ||L(c1)

∑
(x(c1)

i ,x(c1)
j )∈M ||x

(c1)
i , x(c1)

j ||L(c1)

, (4.2)

where ‖.‖ is the Frobenius matrix norm. This maximization problem is equivalent to the gen-

eralized Semi-Supervised Linear Discriminate Analysis (SS-LDA) problem as follows,

J = min
trace(L(c1)WM

(c1))

trace(L(c1)B(c1)
C )

, (4.3)

where WM is the within-distance matrix from must-link constraints, BC is the between-distance

matrix from cannot-link constraints. The solution of Equation (4.3) can be obtained accord-

ingly [114].

Through learning, the distance metric L(c1) implicitly embeds the must-link and cannot-link

constraints. Thus, the original data R(c1) is projected into a new space R̃
(c1)

=
√

L(c1)R(c1).

We then perform non-negative tri-factorization of the new matrix R̃
(c1)

as,

J = min
G(c)≥0,G(1)≥0,S(c1)≥0

‖R̃
(c1) −G(c)S(c1)G(1)‖2. (4.4)

The minimization of Equation (4.4) can be done by updating one factor while fixing others

[34].

An example of SS-NMF for pairwise co-clustering is illustrated in Figure 4.2. Figure 4.2(a)

shows the relational data R(c1) ∈ R30×2 with two clusters (15 asterisk points and 15 circle

points), both following Gaussian distributions. The first step of SS-NMF co-clustering, dis-

tance metric learning, is shown in Figure 4.2(c), in which a new relational data R̃
(c1)

is learned



60

through embedding the distance metric L(c1) into the original R(c1). Clearly, with the must-link

and cannot-link constraints, the data points within the same cluster are placed closer while

points in different clusters are moved away. The result of the second step, tri-factorization of

R̃
(c1)

, is illustrated in Figure 4.2(d). As a comparison, we also show the result obtained by the

unsupervised NMF co-clustering in Figure 2(b). It is clear that the semi-supervised model has

a better performance.
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Figure 4.2: An illustration of SS-NMF for data co-clustering: (a) Relational data R(c1) with two
clusters. (b) Clustering result of R(c1) with unsupervised NMF. (c) New relational data R̃

(c1)

after a linear projection with distance metric L(c1). (d) Clustering result of R̃
(c1)

with SS-NMF.

In general SHRD co-clustering, the central data type has to be clustered together with all

feature modalities. Again, let R(cp) (1 ≤ p ≤ l) denote a relational matrix between a central
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data and each feature modality, the goal of SS-NMF co-clustering is to iteratively cluster the

rows and columns of each R(cp), subject to the M and C constraints. Similar to the case of pair-

wise co-clustering, the first step in high-order co-clustering is to obtain the new matrix R̃
(cp)

. In

other words, we need to learn a distance metric L(cp) for each relation based on the constraints

such that the clustering result on the central type is globally optimized. Moreover, high-order

co-clustering introduces an additional layer of complexity: because feature modalities can play

different roles in the grouping of the central data type, we have to consider the issue of modal-

ity selection. To this end, we introduce a modality importance factor, a = [α(cp)], to denote the

relative weighting of each modality. Specifically, a is computed by solving an unconstrained

linear regression problem. The solution of this problem has a close form and is easy to ob-

tain. However, such an unconstrained least square solution may not provide satisfactory results

if considering prediction accuracy and interpretation. Thus, we further apply the coefficient

shrinkage technique [13] to limit α(cp) in the range of [0, 1]. Note that the modality selection

and distance metric learning are strongly dependent. This suggests that these two objectives

must be achieved simultaneously. In Algorithm 3, we propose an algorithm to iteratively learn

the optimal distance metric L(cp) and modality importance factor a. Based on these two vari-

ables, we compute a new relational data matrix R̃
(cp)

. Thus, R̃
(cp)

incorporates information

captured by a and L(cp).

To achieve high-order co-clustering, we again need to perform non-negative tri-factorization

of R̃
(cp)

shown in Equation (4.1). In order to obtain the (local) optimal solution for the above

minimization problem, the cluster structure for each data type has to be updated iteratively. In

Algorithm 4, we derive an EM style approach that iteratively performs the matrix decomposi-

tion using a set of multiplicative updating rules.
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4.3 Theoretical Analysis

4.3.1 Algorithm Correctness and Convergence

We now prove the theoretical convergence and correctness of the SS-NMF co-clustering

algorithm. Motivated by [78, 34], we render the proof based on optimization theory, auxiliary

function and several matrix inequalities.

1. Correctness

First, we prove the correctness of the algorithm, which can be stated as,

Proposition 6. If the solution converges based on the updating rules in Equations (4.5)-

(4.7), the solution satisfies the KKT optimality condition.

Proof. Following the standard theory of constrained optimization, we introduce the La-

grangian multipliers λ0, λp and λp+l to minimize the lagrangian function,

L(G(c), G(p), S(cp), λ0, λp, ..., λp+l)

=
l∑

p=1

‖R̃
(cp) −G(c)S(cp)G(p)‖2

− Tr(λ0G(c)T

)− Tr
l∑

p=1

(λpS(cp)T

)− Tr
l∑

p=1

(λp+lG(p)T

). (4.8)

Based on the KKT complementarity conditions ∂L
∂G(c) = 0, ∂L

∂S(cp) = 0, and ∂L
∂G(p) = 0, we

obtain the following three equations,

l∑
p=1

(2R̃
(cp)

G(p)T

S(cp)T − 2G(c)S(cp)G(p)G(p)T

S(cp)T

) + λ0

= 0,

2G(c)T

R̃
(cp)

G(p)T − 2G(c)T

G(c)S(cp)G(p)G(p)T

+ λp = 0,

2S(cp)T

G(c)T

R̃
(cp) − 2S(cp)T

G(c)T

G(c)S(cp)G(p) + λp+l = 0.
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We apply the Hadamard multiplication on both sides of the three equations by G(c), S(cp)

and G(p), respectively. Using KKT conditions of

λ0 ¯G(c) = 0 λp ¯ S(cp) = 0 λp+l ¯G(p) = 0,

where ¯ denotes the Hadamard product of two matrices, we can prove that if G(c), S(cp)

and G(p) are a local minimizer of the objective function in Equation (4.8), the following

three equations are satisfied,

(
l∑

p=1

(R̃
(cp)

G(p)T

S(cp)T

)−
l∑

p=1

(G(c)S(cp)G(p)G(p)T

S(cp)T

))

¯G(c) = 0,

((G(c)T

R̃
(cp)

G(p)T

)− (G(c)T

G(c)S(cp)G(p)G(p)T

))

¯ S(cp) = 0,

((S(cp)T

G(c)T

R̃
(cp)

)− (S(cp)T

G(c)T

R(cp)))¯G(p) = 0.

Based on the above three equations, we derive the proposed updating rules of Equations

(4.5)-(4.7). If the updating rules converge, the solution satisfies the KKT optimality

condition. The proof is completed.

2. Convergence

Next, we prove the convergence of the algorithm. In Proposition 7, we show that the

objective function decreases monotonically under the three updating rules of Equations

(4.5)-(4.7) . This can be done by making use of an auxiliary function similar to that used

in [78].

Proposition 7. If any two of three matrices G(c), S(cp) and G(p) are fixed, J =
∑l

p=1 ‖R̃
(cp)

−G(c)S(cp)G(c)‖2 decreases monotonically under the updating rules of Equations (4.5)-
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(4.7).

Proof. Assume S(cp) and G(p) are fixed matrices, a function F (G(c)[t+1]

, G(c)[t]) is called

an auxiliary function of J(G(c)[t+1]

) if it satisfies F (G(c)[t+1]

, G(c)[t]) ≥ J(G(c)[t+1]

) and

F (G(c)[t+1]

, G(c)[t+1]

) = J(G(c)[t+1]

) for any G(c)[t+1]

and G(c)[t] . Define G(c)[t+1]

= arg minG(c) F (G(c)[t+1]

, G(c)[t]), then we can construct

J(G(c)[t]) = F (G(c)[t] , G(c)[t])

≥ F (G(c)[t+1]

, G(c)[t]) ≥ J(G(c)[t+1]

).

Thus, J(G(c)[t]) is monotonic decreasing (non-increasing).

The key step is to find an appropriate auxiliary function F (G(c)[t+1]

, G(c)[t]). Since G(p)

and S(cp) are fixed, we write

J(G(c)[t+1]

) =
l∑

p=1

Tr(R(cp)T R(cp) − 2R(cp)G(p)T

S(cp)T

G(c)T

+ G(c)S(cp)G(p)G(p)T

S(cp)T

G(c)T

),

and show that

F (G(c)[t+1]

, G(c)[t]) =
l∑

p=1

{‖ R(cp) ‖2

−
∑

ih

2(R(cp)G(p)T

S(cp)T

)ihG(c)[t]

ih (1 + 2log
G(c)[t+1]

ih

G(c)[t]

ih

)

+
∑

ih

(G(c)[t]S(cp)G(p)G(p)T

S(cp)T

)ihG(c)4[t+1]

ih

G(c)3[t]

ih

} (4.9)

is an auxiliary function of J(G(c)[t+1]

).

First, we show that the inequality F (G(c)[t+1]

, G(c)[t]) ≥ J(G(c)[t+1]

) holds. We can see the
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second term in F (G(c)[t+1]

, G(c)[t]) (aside from the negative sign) is always smaller than

the second term in J(G(c)[t+1]

) because of the inequality G(c)[t+1]

ih

G(c)[t]

ih

≥ 1 + 2log(
G(c)[t+1]

ih

G(c)[t]

ih

),

∀G(c)[t+1]

ih

G(c)[t]

ih

> 0. In addition, the third term in F (G(c)[t+1]

, G(c)[t]) is always bigger than

the third term in J(G(c)[t+1]

) [34]. Thus, the condition F (G(c)[t+1]

, G(c)[t]) ≥ J(G(c)[t+1]

)

holds. Second, we show the equality F (G(c)[t+1]

, G(c)[t+1]

) = J(G(c)[t+1]

) holds. It is

obvious when G(c)[t] = G(c)[t+1]

, the equality F (G(c)[t+1]

, G(c)[t+1]

) = J(G(c)[t+1]

) holds.

Therefore, F (G(c)[t+1]

, G(c)[t]) is an auxiliary function of J(G(c)[t+1]

). Since we have

G(c)[t+1]

= arg minG(c) F (G(c)[t+1]

, G(c)[t]), G(c)[t+1]

is given by the minimum of F (G(c)[t+1]

, G(c)[t]) while fixing G(c)[t] . The minimum value is obtained by setting

∂F (G(c)[t+1]

, G(c)[t])

∂G(c)[t+1]

ih

=
l∑

p=1

{−
∑

ih

4(R(cp)G(p)T

S(cp)T

)ih
G(c)[t+1]

ih

G(c)[t+1]

ih

+ 4
∑

ih

(G(c)[t]S(cp)G(p)G(p)T

S(cp)T

)ihG(c)3[t+1]

ih

G(c)3[t]

ih

} = 0.

Thus, we can derive the updating rule of Equation (4.5) as G(c)
ih ←

G(c)
ih

∑l
p=1(R(cp)G(p)T S(cp)T )ih∑l

p=1(G(c)S(cp)G(p)G(p)T S(cp))ih

. Under this updating rule, J(G(c)[t]) decreases monoton-

ically.

Alternatively, we can assume that S(cp) and G(c), or G(c) and G(p), are fixed matrices. In

both cases, we can render a similar proof for the updating rules of Equations (4.6) and

(4.7). The proof is completed.

4.3.2 Relationship with Other Data Co-clustering Models

We now discuss the relationship between NMF-based co-clustering and other well-known

co-clustering algorithms (e.g., probability based, information-theory based and graph-theory

based co-clustering). We show that existing methods can be considered as variations of our
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model under certain conditions.

Probability based co-clustering

In real world data sets, objects may belong to multiple clusters with varying degrees. Con-

sequently, probability based co-clustering models have emerged as a flexible modeling tool

for complex relational data, where each row and column have a mixed (soft) membership.

MMRC, a unified framework for probability based co-clustering, is proposed recently in [86].

Assuming that R(12) is the relational matrix, with rows and columns representing two variables

x1 and x2, respectively, the objective of MMRC for pairwise co-clustering is to maximize the

likelihood as,

JMMRC = max

n1∏
i=1

n2∏
j=1

R(12)
ij logp(x1i, x2j)

= min

n1∏
i=1

n2∏
j=1

R(12)
ij log

R(12)
ij

p(x1i, x2j)
, (4.10)

where the joint occurrence probability is factorized as R(12)
ij = p(x1i, x2j) = p(x1i|zk)p(zk)

p(x2j|zk), and zk is a set of cluster indicators.

On the other hand, NMF-based pairwise co-clustering using the KL-divergence (NMF-KL)

as the cost function is to minimize

JNMF−KL = min

n1∏
i=1

n2∏
j=1

R(12)
ij

[log
R(12)

ij

p(x1i, x2j)
− R(12)

ij + (G(1)S(12)G(2))ij]. (4.11)

It can be shown that Equation (4.10) is identical to Equation (4.11), i.e., JMMRC = −JNMF−KL

+constant, by setting (G(1)S(12)G(2))ij = p(x1i, x2j) [32]. Thus, we have G(1)
ik = p(x1i|zk),

G(2)
jk = p(x2j|zk), and S(12)

kk = p(zk). In other words, the co-clustering solution is similar even
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though different inference engines are used by the two methods. The relationship between

high-order co-clustering using NMF-KL and MMRC can be derived similarly.

Information-theory based co-clustering

The representative algorithms for information-theory based co-clustering include Information-

Theoretic for pairwise Co-Clustering (ITCC) [27] and high-order co-clustering [45], Combi-

natorial MRFs (CMRF) for pairwise co-clustering [7] and high-order co-clustering [6].

ITCC was proposed in [27] to maximize the mutual information between the clustered ran-

dom variables subject to the constraints on the number of row and column clusters. Let X1 and

X2 be discrete random variables that take values in the sets {x11, ..., x1n1} and {x21, ..., x2n1},

respectively, and X̂1 and X̂2 be the cluster (partition) random variables that take values in the

sets {x̂11, ..., x̂1n1} and {x̂21, ..., x̂2n2}, respectively. The objective of ITCC is to minimize the

mutual information loss I(X1; X2) − I(X̂1; X̂2). CMRF is to maximize the Most Probable

Explanation I(X̂1; X̂2) based on the basic principles in MRF graph inferences. It is clear to

see that CMRF is a simplified version of ITCC, assuming that I(X1; X2) is a constant.

In our NMF model, the joint distribution of X1 and X2 can be formulated as R(12) by

assigning the probability p(x1n1 , x2n2) as the weight on the edge between the node n1 of the

central data type X1, and the node n2 of the feature modality X2. After the tri-factorization,

R(12) is decomposed into three parts: S(12), G(1) and G(2). The association matrix S(12) can be

considered as the joint probability p(x̂s1 , x̂s2) of hidden variables s1 and s2, while the indicator

matrix G(1) or G(2) can be considered as the conditional probability of the hidden variables in

S(12): p(xn1 | x̂s2) or p(xn2 | x̂s2). Based on this formulation, we can see that the objective

function of pairwise NMF is a variation of ITCC (CMRF).

If the multi-information I(X̂1; ...; X̂l) is introduced into ITCC (CMRF) as the combina-

tions of several pairwise relations, it can be extended to co-clustering involving more than two

random variables. The similarity between high-order NMF and high-order ITCC (CMRF) can
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be derived accordingly.

Graph-theory based co-clustering

Some of the well-known graph-theory based co-clustering algorithms include Bipartite Spec-

tral Graph Partitioning (BSGP) [26] for pairwise co-clustering and Spectral Relational Cluster-

ing (SRC) [83] for high-order co-clustering.

BSGP was proposed for pairwise data co-clustering in [26]. BSGP formulates the data

as a bipartite graph; its adjacency matrix can be written as




0 R(c1)

R(c1)T

0


, where R(c1) ∈

Rnc×n1 is a relational matrix. It was shown that spectral partitioning on the bipartite graph can

be converted to a partial singular value decomposition (SVD) problem. That is,

min
G(c)T G(c)=I,G(1)T G(1)=I,S(c1)is diag

‖R(c1) −G(c)S(c1)G(1)‖2.

On the other hand, NMF-based pairwise co-clustering is to minimize the following objective

function,

min
G(c)≥0,G(1)≥0,S(c1)≥0

‖R(c1) −G(c)S(c1)G(1)‖2.

The advantage of NMF over BSGP has been discussed in [83].

SRC is proposed in [83] for high-order data co-clustering. It iteratively embeds each type

of data into low dimensional spaces and benefits through the interactions in the hidden structure

of different data types. The underlying objective function is

min
G(c)T G(c)=I,G(p)T G(p)=I

l∑
p=1

‖R(cp) −G(c)S(cp)G(p)‖2.
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On the other hand, NMF-based high-order co-clustering is to minimize the following function,

min
G(c)≥0,G(p)≥0,S(cp)≥0

l∑
p=1

‖R(cp) −G(c)S(cp)G(p)‖2.

The advantage of NMF or SS-NMF over SRC can best be illustrated using an example. We

construct a synthetic data set which has 30 data points in the central type Xc with two feature

modalities X1 (300 features) and X2 (2 features). Each data type has two clusters of equal

size. That is, we build two relational matrices: R(c1) of size 30 × 300 and R(c2) of size 30 ×
2, both binary matrices with 2-by-2 block structures generated by the Bernoulli distribution.

Specifically, R(c1) is generated based on the block structure




0.8 0.1

0.2 0.9


, and R(c2) is based

on the block structure




0.9 0.1

0.3 0.7


.

Unlike SRC, NMF or SS-NMF maps the data into a non-negative latent semantic space

which is not required to be orthogonal. Panels (a)-(c), (d)-(f) and (g)-(i) in Figure 4.3 show the

clustering results obtained by SRC, NMF and SS-NMF, in which the two clusters are denoted

by the red stars and the blue triangles, respectively. For NMF or SS-NMF, we plot the data

points in the subspace of the first two column vectors of G(c), G(1) and G(2), while for SRC

we use the subspace of the first two singular vectors. Note that for either NMF or SS-NMF,

each data point takes a non-negative value on both axes. In the NMF subspace, each axis

corresponds to a cluster, and all the data points belonging to the same cluster are nicely located

close to the axis. In the SS-NMF subspace, the data points belonging to the same cluster almost

spread along each axis. This indicates that SS-NMF can provide better clustering accuracy

than unsupervised NMF because the cluster label for a data point is determined by finding

the axis with which the data point has the largest projection value. On the other hand, in the

SRC subspace, we observe no direct relationship between the axes (singular vectors) and the

clusters.
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Figure 4.3: (a)-(c): Clustering results by SRC in the subspace of the first two singular vectors
of G(c), G(1), and G(2). There is no direct relationship between the axes and the clusters. (d)-
(f): Clustering results by NMF in the subspace of the first two column vectors of G(c),G(1)

and G(2). The data points from the two clusters are distributed closely to the two axes. (g)-(i):
Clustering results by SS-NMF (with 5% constraints) in the subspace of the first two column
vectors of G(c),G(1) and G(2). The data points from the two clusters are distributed exactly
along the two axes.
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4.4 Experiments and Results
In this section, we empirically demonstrate the performance of SS-NMF for data clustering.

we present the details of our experiments, starting with the descriptions of the data sets (Sec-

tion 3.4.1), the methodology and evaluation metrics (Section 3.4.2), followed by thorough per-

formance comparisons with leading unsupervised and semi-supervised clustering algorithms

(Section 3.4.3).

We first conduct pairwise co-clustering on documents (i.e., documents and words) and gene

expressions (i.e., conditions and genes). In these experiments, we compare the performance of

SS-NMF co-clustering with six representative clustering algorithms, including Kernel Kmeans

(KK), BSGP, CMRF, NMF, SS-KK, and SS-CMRF. In addition, we also compare our model

with a well-known semi-supervised classification method, TSVM. Then, we perform high-

order co-clustering for text corpus (i.e., words, documents, and categories, in which the doc-

ument is the central data type) and image data (i.e., color and texture features associated with

images). Similarly, on these data sets, we compare SS-NMF co-clustering with four algo-

rithms, i.e., SRC, CMRF, NMF and SS-CMRF. Through these comparisons, we demonstrate

the relative position of our method with respect to existing approaches on (semi-supervised)

data clustering/classification and show the benefits of integrating prior knowledge into co-

clustering.

4.4.1 Data Description and Preprocessing

Text Co-clustering

We primarily utilize the data sets used in [51] 1. Data sets oh5 and oh15 are from OHSUMED

collection, a subset of MEDLINE database, which contains 233, 445 documents indexed us-

ing 14, 321 unique categories. Data set WAP is from the WebACE Project, and each docu-

ment corresponds to a web page listed in the subject hierarchy of Yahoo!. Data set re0 is the

Reuters− 21578 text categorization collection (distribution 1.0). We also use the Newsgroup

1http://www.cs.umn.edu/∼han/data/tmdata.tar.gz
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data which contains about 2000 articles from 20 newsgroups [77] 2. In our experiments, we

intermix some of the data sets mentioned above. Table 4.1 and Table 4.2 give the details of

the data sets we use for pairwise (e.g., document-word) and high-order (e.g., word-document-

category) co-clustering, respectively.

We use the term frequency to build a document-word matrix. To compare the algorithms

on the same ground and make our results consistent with others [83, 34], we carry out feature

selection to choose the top 1000 words by descending values of the mutual information between

a word w and a document label y:

I(W,Y ) =
∑
Y

∑
W

p(w, y)log(
p(w, y)

p1(w)p2(y)
),

where W and Y are random variables, denoting word and document labels, respectively. The

Document-category matrix is constructed by computing the probability of each document be-

longing to each category. The following technique is used: (1) For each class of documents,

select the top 1000 words based on mutual information. (2) For each document, if any of the

top 1000 word occurs, the amount of occurrence is 1, otherwise 0. (3) The probability of one

document belonging to a category is the ratio of the sum of occurrence of the top 1000 words

in this document to 1000. Thus, every element of document-category matrix is in the range

[0, 1]. In addition, for semi-supervised clustering, we define the percentage (%) of pairwise

constraints with respect to all the possible document pairs, which is (total docs
2 ). The document

constraints are generated by randomly selecting documents from each class of the data set.

Other data sets also use similar defined constraints for the central data type.

2http://www.cs.uiuc.edu/homes/dengcai2/Data/TextData.html
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Table 4.1: Data sets for text pairwise (document-word) co-clustering.

Name Data sets Data structure No. of clusters No. of documents
CT1 oh15 Adenosine-Diphosphate, Blood-Vessels 2 154
CT2 oh15 Aluminum,Blood-Coagulation-Factors 2 122
CT3 re0 interest,reserves 2 261
CT4 re0 housing,jobs 2 55
CT5 re0 housing,interest,jobs 3 274
CT6 oh15 Aluminum,Blood-Vessels,Leucine 3 207
CT7 re0 cpi, housing, ipi, lei,retail 5 144
CT8 re0 bop,cpi,gnp,housing,interest,ipi,jobs,lei,money,reserves 10 1150

Table 4.2: Data sets for text high-order (word-document-category) co-clustering.

Name Data sets Data No. of No. of No. of
structure categories clusters documents

HT1 oh15,re0 {Adenosine-Diphosphate,Aluminum,Cell-Movement}, 2 5 899
{cpi,money}

HT2 oh15,re0 {Blood-Coagulation-Factors,Enzyme-Activation,Staphylococcal-Infections}, 2 5 461
{jobs,reserves}

HT3 oh15,re0 {Aluminum,Blood-Coagulation-Factors,Blood-Vessels} 2 5 256
{housing,retail}

HT4 oh5,re0 {Aluminum,Cell-Movement,Staphylococcal-Infections}, 2 5 391
{cpi,wpi}

HT5 WAP,re0 {media,film,music}, 2 5 404
{cpi,jobs}

HT6 Newsgroup {rec.sport.baseball,rec.sport.hockey}, 2 5 500
{talk.politics.guns,talk.politics.mideast,talk.politics.misc}

HT7 Newsgroup {comp.graphics,comp.os.ms-windows.misc}, 3 6 300
{rec.autos,rec.motorcycles},
{sci.crypt,sci.electronics}

HT8 Newsgroup {comp.graphics,comp.os.ms-windows.misc}, 2 4 3932
{sci.electronics, sci.med},

HT9 Newsgroup {rec.autos,rec.motorcycles, rec.sport.baseball}, 2 6 5942
{sci.crypt,sci.electronics, sci.space},
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Gene Expression Co-clustering

We utilize seven data sets from Kent Ridge Biomedical Data Repository 3 for gene expression

co-clustering, including ALL/AML Leukemia, Breast Cancer, Central Nervous System,Colon

Tumor, Lung Cancer, Ovarian Cancer, and ALL/MLL/AML Leukemia. In our experiment, we

compute the first principal component u1 based on Principal Component Analysis. Since u1

is a linear combination of genes, the magnitude of u1(i) is indicative of the variance of gene

i [28]. We sort all genes in a descending order based on the variances and retain only the top

2000 genes. The details of these data sets are given in Table 4.3.

Table 4.3: Data sets for gene expression pairwise (condition-gene) co-clustering.

Name Data sets Data structure No. of clusters No. of conditions
BT1 ALL/AML ALL,AML 2 72
BT2 BreastCancer Relapse, Non-relapse 2 97
BT3 CentralNervous Class1, Class2 2 60
BT4 ColonTumor Positive,Negative 2 62
BT5 LungCancer MPM,ADCA 2 181
BT6 OvarianCancer Cancer,Normal 2 253
BT7 ALL/MLL/AML ALL,MLL,AML 3 72

Image Co-clustering

The image data used in our experiments is chosen from Corel CDs, which contains 31,438

general-purpose images of various contents, such as plants, animals, buildings, human society,

etc. To evaluate our algorithm, we construct a data set with 1000 images from ten categories:

“eggs”, “decoys”, “firearms”, “cards”, “buses”, “abstract”, “foliage”, “dawn”, “texture” and

“wave”. Some examples from each category are shown in Figure 4.4. In our experiment, we

mix up some of the aforementioned categories with details in Table 4.4.

For image co-clustering, a large number of visual contents are extracted from each image

[109, 87], belonging to two modalities: color and texture. Specifically, color features include

color channels (RGB, 9 features, including mean, variance and skewness of R, G, B channels),

3http://datam.i2r.a-star.edu.sg/datasets/krbd/
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Figure 4.4: Image samples for high-order co-clustering.

color histogram (CH, 12 features), and color coherence vector (CCV, 24 features). Texture fea-

tures include Gabor wavelet based texture (Gab, 24 features), edge direction histogram (EDH,

9 features), and edge direction coherence vector (EDCV, 9 features). Based on the extracted

visual features, we build two relational matrices image-color and image-texture, and each el-

ement in the matrices is normalized into the range [0, 1]. Co-clustering is then performed on

images, color features (45 dimensions) and texture features (42 dimensions) simultaneously.

Table 4.4: Data sets for image high-order (color-image-texture) co-clustering.

Name Data structure No. of modalities No. of clusters No. of images
IT1 eggs,decoys 3 2 200
IT2 dawn,foliage 3 2 200
IT3 decoys,dawn 3 2 200
IT4 decoys,firearms,cards,buses 3 4 400
IT5 abstract,dawn,foliage,waves 3 4 400
IT6 eggs,decoys,dawn,foliage 3 4 400
IT7 eggs,decoys,buses,abstract,texture,dawn 3 6 600
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4.4.2 Evaluation Method

We evaluate the clustering results using the accuracy rate AC, which measures how ac-

curately a learning method assigns label ŷi to a data point with the ground truth yi. The AC

metric is defined as

AC =

∑n
i=1δ(yi, ŷi)

n
, (4.12)

where n denotes the total number of data points or features in the experiment and δ is the delta

function that equals one if ŷi = yi; otherwise, it is zero. Since an iterative algorithm is not

guaranteed to find the global minimum, it is beneficial to run the algorithm several times with

different initial values and choose the average of all the test runs as the final accuracy value. In

our experiments, for each given cluster number k, we conduct ten test runs, and the final AC

value is the average of all runs.

4.4.3 Pairwise Co-clustering

Text Pairwise Co-clustering

First, we conduct pairwise co-clustering experiments on the text data sets with document-word

matrices and compare the performance of SS-NMF with the following six clustering methods:

(1) KK [76], (2) BSGP [26], (3) CMRF [7], (4) NMF (i.e., SS-NMF with 0% constraints), (5)

SS-KK [76], and (6) SS-CMRF [7]. The first four are popular unsupervised methods, whereas

SS-KK and SS-CMRF are representative semi-supervised ones. Moreover, we also compare

with a well-known semi-supervised classification method: TSVM [66].

The top half of Table 4.5 shows the AC values of document clustering obtained by unsu-

pervised methods: KK, BSGP, CMRF, and NMF, the semi-supervised classification method:

TSVM, and three semi-supervised clustering methods: SS-KK, SS-CMRF and SS-NMF. All of

semi-supervised methods are reported based on incorporating 10% constraints into the central

data. Averaged AC values over all eight data sets are also computed. In the four unsupervised

approaches, KK has the lowest average AC. This is mainly due to the fact that the document-
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word relation is not formulated and utilized in one-way KK clustering. AC values of BSGP or

CMRF, on average, are about 10% lower than NMF, which is the best among the unsupervised

methods. However, all unsupervised methods get a low AC value (around 30%) for the data set

CT8, which has a large number of clusters (k = 10). That is, no meaningful clustering results

are produced. Table 4.5 also shows that semi-supervised clustering methods provide at least a

15% increase on the average AC values when compared with the corresponding unsupervised

ones. This indicates that a semi-supervised clustering method can generally benefit from addi-

tional constraints thus greatly improve the clustering results. Moreover, SS-NMF outperforms

SS-KK and SS-CMRF, especially in the data sets with more than two clusters, i.e., data sets

CT5 to CT8. It is also worth noting that the AC values of SS-NMF are as high as 99% on the

data sets CT2, CT5 and CT7. In other words, SS-NMF provides near perfect clustering results

on these data sets. Another important observation is that all the semi-supervised clustering ap-

proaches outperform TSVM on average AC due to very limited background knowledge (up to

10%). In these cases, the known labels are simply too few to initiate a good classifier training.

Overall, the superior performance of SS-NMF is evident in terms of the average accuracy.

Table 4.5: Comparison of accuracy among unsupervised clustering KK, BSGP, CMRF, NMF,
semi-supervised classification TSVM, and semi-supervised clustering SS-KK, SS-CMRF, SS-
NMF with 10% constraints on text (document-word) data sets (CT1 - CT8) and gene expression
(condition-gene) data sets (BT1 - BT7).

Name KK BSGP CMRF NMF TSVM SS-KK SS-CMRF SS-NMF
CT1 0.7897 0.4870 0.5545 0.8052 0.6270 0.9610 0.7984 0.8606
CT2 0.5164 0.6148 0.6582 0.6475 0.6542 0.7541 0.9041 0.9902
CT3 0.6820 0.7510 0.7264 0.7586 0.8243 0.7588 0.8682 0.8774
CT4 0.5355 0.7190 0.5419 0.4635 0.7163 0.7455 0.8310 0.8248
CT5 0.4652 0.6148 0.4974 0.6364 0.8502 0.6606 0.7682 0.9818
CT6 0.4638 0.5072 0.5585 0.6763 0.4783 0.6618 0.7585 0.9101
CT7 0.4236 0.2778 0.5000 0.6667 0.4665 0.5000 0.7261 0.9944
CT8 0.2857 0.2330 0.3327 0.3774 0.4268 0.4478 0.4667 0.6343

Average 0.5191 0.5256 0.5462 0.6290 0.6293 0.6862 0.7600 0.8842
BT1 0.6050 0.8194 0.8238 0.6111 0.6513 0.8606 0.9538 0.9444
BT2 0.6189 0.5155 0.6156 0.5258 0.6583 0.7320 0.7426 0.7732
BT3 0.5000 0.6000 0.5250 0.5833 0.6491 0.6233 0.7147 0.7667
BT4 0.5000 0.7258 0.6452 0.6613 0.6291 0.7613 0.8400 0.8710
BT5 0.6570 0.5138 0.9118 0.8785 0.8467 0.8569 1.0000 1.0000
BT6 0.5099 0.6522 0.5167 0.4704 0.6650 0.6403 0.7393 0.9960
BT7 0.3750 0.5417 0.4829 0.4306 0.5266 0.4861 0.6778 0.8194

Average 0.5380 0.6241 0.6459 0.5944 0.6609 0.7086 0.8212 0.8815
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In Figure 4.5(a), we plot the average AC value on all eight text data sets against the increas-

ing percentage of pairwise constraints for TSVM, SS-KK, SS-CMRF and SS-NMF. We clearly

see that SS-NMF significantly outperforms TSVM, SS-KK and SS-CMRF in all cases, gain-

ing at least 12% higher clustering accuracy. Another important observation is that the average

accuracy of all four methods consistently increases with the gradual increase of the pairwise

constraints (from 0.5% to 10%). Particularly, SS-NMF is able to generate significantly better

results (over 10%) by quickly learning from just a few constraints (0.5%). Therefore, document

clustering performance can be greatly improved even with very limited prior knowledge.
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Figure 4.5: Comparison of average accuracy for semi-supervised classification TSVM, and
pairwise co-clustering SS-KK, SS-CMRF and SS-NMF, with different amounts of constraints
on (a) text data, and (b) gene expression data.

Gene Expression Pairwise Co-clustering

Second, we conduct co-clustering on gene expressions with condition-gene matrix and com-

pare the performance of SS-NMF with the same set of algorithms used in Section 4.4.3.

The bottom half of Table 4.5 shows the AC values of condition clustering obtained by both

unsupervised methods and semi-supervised ones with 10% constraints. Overall, it is evident

that SS-NMF provides the best clustering result on average when compared with other unsuper-
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vised or semi-supervised methods. As the results demonstrate, the clustering accuracy gain of

SS-NMF over unsupervised methods is over 20% on most data sets even though unsupervised

NMF is not the best among unsupervised approaches. This clearly indicates the outstanding

benefits brought by the partial supervision integrated in SS-NMF. It is also worth pointing out

that the AC values of SS-NMF are (nearly) 100% on the data sets BT5 and BT6.

Figure 4.5(b) illustrates the average AC values against the increasing percentage of pair-

wise constraints for semi-supervised condition clustering/classification. Overall, SS-NMF pro-

vides the highest accuracy among the four semi-supervised methods. Not surprisingly, we see

that more constraints on the patient conditions lead to higher accuracy for all four approaches.

Again, substantial performance improvement is achieved by SS-NMF, up to 20% accuracy

increase, with very limited prior knowledge (e.g., 0.5% constraints).

4.4.4 High-order Co-clustering

Text High-order Co-clustering

First, we conduct experiments to co-cluster words, documents and categories and compare the

performance of SS-NMF with three unsupervised approaches and one semi-supervised method,

namely, (1) SRC [83], (2) CMRF [6], (3) NMF (i.e., SS-NMF with 0% constraints), and (4)

SS-CMRF (the high-order SS-CMRF is directly extended from the prior work in [6] and [7]).

Co-clustering Accuracy: The top half of Table 4.6 shows document co-clustering accuracy

obtained by SRC, CMRF, NMF, SS-CMRF and SS-NMF (both with 15% constraints). Aver-

aged AC values over all nine text data sets are also reported. In our experiment, we observe

that the relations among multiple data types in some text data sets are highly complicated (e.g.,

HT8 and HT9). To achieve reasonable clustering results, more domain knowledge is required.

Thus, up to 15% constraints are used in high-order co-clustering experiments (recall that we

use up to 10% constraints in pairwise co-clustering).

From the top half of Table 4.6, it is obvious that NMF outperforms other unsupervised

methods in six out of nine text data sets. In general, SRC performs the worst amongst the three
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unsupervised ones. Specifically, its accuracy on the data set HT7 with three categories and six

document clusters is only 19%. Also from the top half of Table 4.6, semi-supervised methods

provide significantly better results than the corresponding unsupervised ones. The average AC

of SS-CMRF increases 15% over CMRF, while up to 20% is gained by SS-NMF over NMF.

We also observe that SS-NMF can achieve high clustering accuracy (over 80%) in five out

of the nine data sets. The average AC of SS-NMF is 72.43%, about 10% higher than that

of SS-CMRF. In Figure 4.6(a), we plot the average AC values against increasing percentage

of pairwise constraints for SS-CMRF and SS-NMF. Again, when more prior knowledge is

available, the performance of SS-CMRF and SS-NMF clearly gets better. It is also obvious

that on average SS-CMRF is consistently outperformed by SS-NMF with varying amounts of

constraints.

In the left panel of Table 4.7, we report the accuracy of text categorization by SRC, CMRF,

NMF, SS-CMRF and SS-NMF. In six out of nine text data sets, the AC value of SS-NMF either

ranks the best or the second with exceptions on the data sets: HT3, HT8 and HT9. This result

shows that even though the original document-category matrix is biased in the distance metric

learning towards the constraints on the documents, SS-NMF still can provide a competitive

results on category clustering.

In high-order co-clustering, we also obtain the clusters of words simultaneously with the

clusters of documents and categories. However, for text representation, there is no ground

truth available to compute an AC value. Here, we select the “top” 10 words based on mutual

information for each word cluster associated with a category cluster and list them in the right

panel of Table 4.7. These words can be used to represent the underlying “concept” of the

corresponding category cluster.

Modality Selection: As described in Section 4.2, distance metric and modality importance

are learnt iteratively in Algorithm 3. First, modality selection can provide additional informa-

tion on the relative importance of various relations (e.g., “word” and “category”) for grouping
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Table 4.6: Comparison of clustering accuracy between unsupervised SRC, CMRF, NMF,
and semi-supervised SS-CMRF, SS-NMF with 15% constraints on text high-order (word-
document-category) co-clustering (data sets HT1 - HT9) and image high-order (color-image-
texture) co-clustering (data sets IT1 - IT7).

Name SRC CMRF NMF SS-CMRF SS-NMF
HT1 0.4772 0.5362 0.5250 0.7072 0.8509
HT2 0.4989 0.5785 0.6529 0.7344 0.8243
HT3 0.3359 0.3820 0.5391 0.5779 0.6875
HT4 0.4450 0.5992 0.5601 0.7481 0.8261
HT5 0.6411 0.6171 0.6386 0.7266 0.8267
HT6 0.4989 0.6014 0.5780 0.6877 0.8620
HT7 0.1900 0.3593 0.4333 0.5288 0.6467
HT8 0.2538 0.3226 0.3533 0.4863 0.5244
HT9 0.2243 0.3238 0.3389 0.4600 0.4697

Average 0.3961 0.4800 0.5132 0.6410 0.7243
IT1 0.7500 0.7920 0.8275 0.9823 0.9850
IT2 0.8050 0.8130 0.8200 0.9389 0.9450
IT3 0.8200 0.8300 0.8230 0.9772 0.9900
IT4 0.5100 0.6558 0.6175 0.7701 0.7225
IT5 0.5650 0.5771 0.5810 0.7147 0.6950
IT6 0.5850 0.5350 0.5625 0.7053 0.7125
IT7 0.4210 0.4250 0.4231 0.5879 0.6433

Average 0.6366 0.6611 0.6649 0.8109 0.8133
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Figure 4.6: Comparison of average clustering accuracy between SS-CMRF and SS-NMF with
different amounts of constraints for (a) text high-order co-clustering, and (b) image high-order
co-clustering.
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Table 4.7: Text categorization: clustering accuracy of categories and Text representation: top
ten words for each category.

Name SRC CMRF NMF SS-CMRF SS-NMF Representative words for each category
HT1 0.8 0.8 0.8 0.8 0.8 {via,coverag,calcium,purif,modifi,increm,identif,receiv,explant,delta}

{market,pct,bank,rate,monei,billion,dollar,mln,dlr,currenc}
HT2 0.8 0.8 0.6 0.8 0.8 {studi,activ,patient,suggest,protein,increas,result,effect,treat,infect}

{januari,pct,februari,reserv,unemploy,billion,bank,fell,mln,rose}
HT3 0.4 0.7 0.8 0.8 0.6 {increas,patient,activ,perform,suggest,studi,effect,examin,result,factor}

{februari,adjust,fall,sale,depart,retail,fell,season,level,month}
HT4 0.4 0.8 0.8 1.0 0.8 {cell,treatment,determin,site,bone,neutrophil,single,anim,change,differ}

{consum,statist,index,inflat,rise,compar,base,month,increas,rose}
HT5 0.8 0.6 0.4 0.8 0.8 {pm,star,film,hollywood,set,releas,octob,director,time,million}

{rise,price,rose,statist,unemploy,inflat,compar,consum,januari,increas}
HT6 0.8 0.8 0.6 0.8 0.8 {disregard,jai,pyramid,winner,aaron,baltimor,dean,leaf,ban,stanlei}

{sahak,ohanus,melkonian,appressian,serazuma,armenian,serdar,escap,
turkish,sdpa}

HT7 0.8 0.5 0.5 0.7 0.7 {mac,color,al,push,bit,sse,lower,size,traffic,screen}
{licenc,egreeneast,clipper,drink,claim,biker,safeti,clean,dod,motorcycl}

{vga,univ,pub,servic,educ,bill,robert,school,technic,game}
HT8 1.0 0.9 0.5 1.0 0.6 {intellect,chastiti,n3jxp,dsl,gebcadr,surrend,gebc,pitt,bank,shame}

{ground,amp,heat,circuit,hot,increas,gif,voltag,factor,typic}
HT9 1.0 0.9 0.5 1.0 0.6 {strnlghtnetcom,sternlight,arm,escrow,clinton,clipper,wiretap,nsa,kei,tap}

{flight,shuttl,launch,solar,moon,satellit,space,prbaccess,sky,planet}

the central data type (e.g., “document”). Moreover, from a technical point of view, it also acts

like feature selection when computing the new relational data matrix. The left panel of Table

4.8 lists the modality importance for the two relations: document-word and document-category

in SS-NMF with 1% constraints. A higher value in the table indicates more importance. It is

clear that the significance of “word” and “category” are quite different in different data sets.

Specifically, the document-word relation seems to play a more important role for document co-

clustering in the all data sets except HT3, HT5 and HT7, while the document-category relation

is more important in the remainder. This information provides a better understanding of the

underlying process that generates the document clusters.

Image High-order Co-clustering

Second, we present the experimental results on high-order co-clustering image data.

Co-clustering Accuracy: The bottom half of Table 4.6 lists image clustering accuracy ob-

tained by SRC, CMRF, NMF, SS-CMRF and SS-NMF (both with 15% constraints) for each

data set, together with averaged AC value over all seven data sets. Among the three un-
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Table 4.8: Modality importance for text high-order co-clustering: word v.s. category and for
image high-order co-clustering: color v.s. texture.

Name document-word document-category Name image-color image-texture
HT1 0.9996 0.3884 IT1 0.0001 0.2189
HT2 0.9999 0.4331 IT2 0.1890 0.0002
HT3 0.6837 0.9949 IT3 0.2188 0.0005
HT4 0.7607 0.7233 IT4 0.0088 0.2357
HT5 0.2479 0.9998 IT5 0.3040 0.0002
HT6 0.9999 0.1751 IT6 0.0001 0.2007
HT7 0.2390 0.9990 IT7 0.1102 0.0486
HT8 0.9996 0.5136
HT9 0.9990 0.6577

supervised approaches, on average NMF achieves slightly better results. Moreover, both of

the semi-supervised methods obtain 20% accuracy gain when compared with the correspond-

ing unsupervised ones, and they perform equally well on most of the data sets. SS-NMF is

slightly better than SS-CMRF on average. Figure 4.6(b) shows that the quality of the clus-

tering improves when the amount of constraints increases. Note that while we observe better

performance of SS-NMF over SS-CMRF in text data sets, it is clear to see that the performance

of SS-CMRF and SS-NMF is very close in image data sets regardless of the amount of con-

straints. This is mainly due to better performance of NMF in clustering high-dimensional data.

The highest feature dimension is 1, 000 in the text data, and only 45 for the image data.

Modality Selection: The semantic gap between the low-level features and the high-level

semantic concepts poses great challenge in content-based image retrieval. To this end, modality

selection in co-clustering is particularly beneficial because it not only provides the clusters of

images, but also shows why certain images are grouped together. That is, important visual

features are identified through simultaneous grouping with images. Specifically, the modality

factor obtained by SS-LDA in our algorithm reflects the relative importance of various feature

modalities such as color, texture, and shape in image grouping. The right panel of Table 4.8 lists

the weights associated with color and texture given by SS-NMF with 3% constraints. Usually,

images in the categories eggs, decoys, buses, firearms and cards have strong edges. This visual

observation is confirmed by our results, showing a larger weight for the texture features (e.g.,
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Gab, EDH and EDCV) than colors ( e.g., RGB, CH and CCV) in the data sets IT1 and IT4.

On the other hand, we observe that colors may be better suited for clustering images in dawn,

foliage, wave, abstract and texture. In these categories, colors are relatively constant. For

example, dawn usually has a red hue, while foliage has a dominate green hue. In these cases

(data sets IT2 and IT5), the modality factors are also consistent with our visual judgement, with

a larger value for color. Moreover, when we have many categories mixed together (e.g. data set

IT7), we obtain relative balanced weights between color and texture. The result indicates that

both modalities are important. If additional information regarding the image clusters is desired,

it can be gained by examining the corresponding feature clusters obtained in the co-clustering.

4.4.5 Time Complexity

Finally, we compare the computational speed of three unsupervised approaches: SRC,

CMRF, and NMF, and two semi-supervised approaches: SS-CMRF and SS-NMF. In a nut-

shell, the time complexity of SRC is O(tl(max (nc, np)
3 + kncnp)), unsupervised CMRF and

SS-CMRF are O(tl(max(n3
c , n

3
p))), SS-NMF is O(tl(n3

p + kncnp)), and unsupervised NMF is

O(tlkncnp), where t is the number of iterations, l is the number of data types, k = max (kc, kp)

is the maximum number of clusters in all data types, nc is the number of samples in the cen-

tral data type, and np is the maximum feature dimension for all feature modalities. So, given

t, l and k , the actual computational speed is usually determined by nc or np. Figure 4.7(a)

illustrates the computational speed for all five methods with increasing number of samples in

the central data type nc for a fixed np, while Figure 4.7(b) shows the computational speed with

increasing feature dimensions np for a fixed nc. The experiments are performed on a machine

with Dual 3GHz Intel Xeon processors and 2GB RAM. All algorithms are implemented using

MATLAB 7.0.

In both cases, unsupervised NMF is the quickest among the five approaches as it uses an

efficient iterative algorithm to compute the cluster indicator and cluster association matrices.

SS-NMF ranks second as nc increases while close to CMRF and SS-CMRF when np increases.
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Figure 4.7: Comparison of computational speed between unsupervised approaches (SRC,
CMRF, and NMF) and semi-supervised approaches (SS-CMRF and SS-NMF). The time re-
quired by each of the algorithms are displayed (a) in log(seconds) for increasing nc, and (b) in
seconds for increasing np.

The difference between SS-NMF and unsupervised NMF is mainly due to the additional com-

putation required to learn the new distance metric through SS-LDA, in which we need to solve

a generalized eigen-problem. We observe that in Figure 4.7(a), the computing time for SS-

NMF is close to unsupervised NMF because both methods have a linear complexity of nc

when np is fixed. On the other hand, as shown in Figure 4.7(b), time for SS-NMF increases

more quickly (O(tln3
p)) when nc is fixed. In addition, the speed of CMRF and SS-CMRF is

between NMF and SRC. The computing time of these two algorithms increases quickly in both

cases since their complexity is either (O(n3
c)) or (O(n3

p)) when the other is fixed. Moreover, we

observe that SRC is the slowest in both cases. Even though SRC is completely unsupervised,

it needs to solve a computationally more expensive constrained eigen-decomposition problem

and requires additional post-processing (k-means) to infer the clusters. From these results, it is

obvious that SS-NMF provides an efficient way for semi-supervised data co-clustering.



86

4.5 Summary
In this chapter, we present a novel semi-supervised approach for data co-clustering: SS-

NMF. In the proposed SS-NMF co-clustering model, users are able to provide supervision in

terms of must-link and cannot-link constraints on the central data type, which are used to derive

new relational matrices through iterative distance metric learning and modality selection. Tri-

factorizations of the new matrices are then performed to obtain the simultaneous grouping of

central data type and multiple feature modalities. Theoretically, we prove the convergence

and correctness of the proposed co-clustering algorithm and show the relationship between

SS-NMF with other data co-clustering models. Our experimental results on publicly available

data sets in text mining, bioinformatics and image grouping show the superior performance of

SS-NMF over existing methods for heterogeneous data co-clustering.
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Algorithm 3 Simultaneous Distance Metric Learning and Modality Selection
INPUT: Original relational matrix R(cp)(1 ≤ p ≤ l), central type Xc with must-link con-
straint M, and cannot-link constraint C
OUTPUT: Optimal distance metric L(cp), modality importance factor a, and new relational
matrix R̃

(cp)

METHOD:

1. Construct the target distance vector D̃ based on constraints M and C, where each
element d̃ij is 0 if (xi, xj) ∈ M, and 1 if (xi, xj) ∈ C,

2. Obtain the initial distance metric L(cp) by SS-LDA with constraints M and C,

3. Set the number of iterations t=0,

(a) Compute the new relational matrix R̃
(cp)

=
√

L(cp)R(cp),

(b) Compute the distance vector D(cp), which contains only data points with con-
straints,

(c) Obtain the modality importance factor through the following optimization

aopt
t = arg min

α
‖D̃ −

l∑
p=1

α(cp)D(cp)‖2,

(d) Let R(cp) = α(cp)R̃
(cp)

, and learn the new distance metric L(cp) by SS-LDA with
constrains M and C,

4. If at+1− at > ε, set t = t+1 and repeat steps a)-d); otherwise, stop, let R̃
(cp)

= R(cp),
and output the optimal distance metric L(cp), the modality importance factor a, and the
new relational matrix R̃

(cp)
.
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Algorithm 4 SS-NMF for High-order Co-Clustering

INPUT: New relational matrix R̃
(cp)

OUTPUT: Cluster indicator matrices G(c), G(p), and cluster association matrix S(cp)

METHOD:

1. Initialize G(c), G(p), and S(cp) with non-negative values,

2. Iterate for each i(1 ≤ i ≤ np) , h(1 ≤ h ≤ kp) and p(1 ≤ p ≤ l) until convergence,

(a) Cluster indicator matrices:

G(c)
ih ← G(c)

ih

∑l
p=1(R̃

(cp)
G(p)T

S(cp)T

)ih∑l
p=1(G

(c)S(cp)G(p)G(p)T S(cp)T
)

ih

, (4.5)

G(p)
ih ← G(p)

ih

(S(cp)T

G(c)T

R̃
(cp)

)ih

(S(cp)T G(c)T G(c)S(cp)G(p))ih

. (4.6)

(b) Cluster association matrix:

S(cp)
ih ← S(cp)

ih

(G(c)T

R̃
(cp)

G(p)T

)ih

(G(c)T G(c)S(cp)G(p)G(p)T
)ih

. (4.7)
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CHAPTER 5

EXEMPLAR-BASED VISUALIZATION OF LARGE DATA

COLLECTIONS

Visualization enables us to browse intuitively through huge amounts of data and thus could

expand the human ability for comprehending complex data sets. In this chapter, we focus on

studying one of important applications in data visualization: large text corpus visualization.

With the rapid growth of the World Wide Web and electronic information services, text

corpus is becoming available on-line at an incredible rate. No one has time to read everything,

yet in many applications we often have to make critical decisions based on our understanding

of large document collections. For example, when a physician prescribes a specific drug, he

frequently needs to identify and understand a comprehensive body of published literature de-

scribing an association between the drug of interest and an adverse event of interest. Thus, text

mining, a technique of deriving high-quality knowledge from text, has recently drawn great

attention in the research community. Research topics in text mining include, but not limited to,

language identification, document clustering, summarization, text indexing and visualization.

In particular, text visualization refers to the technology that displays text data or mining results

in a logical layout (e.g., color graphs) so that one can view and analyze documents easily and

intuitively. It presents a direct way to observe the documents as well as understand the rela-

tionship between them. In addition, text visualization allows people to explore the inside logic

of the model and offers users a chance to interact with the text mining model so that questions

can be answered.

In general, it is convenient to transform document collections into a data matrix [24],

where the columns represent documents and the row vectors denote keyword counting after

pre-processing. Thus, text data sets have a very high dimensionality. A common way of visu-
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alizing text corpus is to map the raw data matrix into a d-dimensional space with d = 1, 2, 3 by

employing dimensionality reduction techniques. The objective is to preserve in the projected

space the distance relationships among the documents in their original space. Depending on

the choice of mapping functions, both linear (e.g., principle component analysis (PCA) [67])

and nonlinear (e.g., ISOMAP [107]) dimensionality reduction techniques have been proposed

in the literature. Facing the ever-increasing amount of available documents, a major challenge

of text visualization is to develop scalable approaches that are able to process tens of thou-

sands of documents. First, from a computational point of view, large text corpus significantly

raises the bar on the efficiency of an algorithm. For a collection of more than ten thousand

documents, typical data projection methods, such as PCA, will fail to run due to insufficient

memory. Second, since all documents are shown at once in the resulting space, overlaps of

highly related documents are inevitable. Hierarchical clustering-based methods [43, 95] can

partially solve the memory problem and produce a tree structure for document exploration.

However, these algorithms run extremely slow. More important, they are not mathematically

rigorous due to lacking a well defined objective function. Finally, knowledge or information is

usually sparsely encoded in document collections. Thus, latent sematic structures (i.e., main

topics of a text corpus) are included into the projection techniques for text visualization, such

as Probabilistic Latent Semantic Analysis (PLSA) [54] and Least Square Projection (LSP)[96].

Generally, these models can provide a higher quality (i.e., more meaningful) visualization.

Therefore, we propose an Exemplar-based approach to Visualize (EV) extremely large

text corpus. Capitalizing on recent advances in matrix approximation and decomposition, our

method provides a means to visualize tens of thousands of documents with high accuracy (in

retaining neighbor relations), high efficiency (in computation), and high flexibility (through the

use of exemplars). Specifically, we first computes a representative text data subspace C and

a low-rank approximation X̃ by applying the low-rank matrix approximation method. Next,

documents are clustered through the matrix decomposition: X̃ = CWGT , where W is the
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weight matrix, and G is the cluster indicator matrix. To reduce the clutter in the visualization,

the exemplars in each cluster are first visualized through Parameter Embedding (PE) [60], pro-

viding an overview of the distribution of the entire document collection. When desired, on the

clicking of an exemplar, documents in the associated cluster or in a user-selected neighbor-

hood are shown to provide further details. In addition, hierarchical data exploration can also

be implemented by recursively applying EV in an area of interest.

In the following, we first present the EV model and derive the algorithm in Section 5.1.

Then, we give some theoretical results in Section 5.2, including the correctness and conver-

gence of the algorithm, time and space complexity analysis, and advantages of EV when com-

pared with other visualization models. Finally, in Section 5.3, we provide thorough experimen-

tal evaluation.

5.1 Model Formulation and Algorithm
The proposed EV model takes a three-step approach to visualize large-scale text corpus.

First, low rank matrix approximation is employed to select the representative subspaces and

generate the compact approximation of the word-document matrix X ∈ Rd1×n. Among various

matrix approximation methods, near-optimal low-rank approximation has gained increasing

popularity in recent years due to its great computational and storage efficiency. The represen-

tative ones include Algorithm 844 [9], CUR [97] and CMD [105]. Typically, a near-optimal

low-rank approximation algorithm first selects a set of columns C and a set of rows R as the

left and right matrices of the approximation. Then, the middle matrix U is computed by mini-

mizing ‖X−CUR‖2
F . Thus, at the end of the first step, we obtain the low-rank approximation

X̃ = CUR, the representative subspaces C (data exemplar set) and R (feature set).

In the second step, we use matrix factorization to obtain the “soft” cluster indicators in the

low-rank exemplar subspace, representing the probability of each document proportion to the
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topics in the topic model [33]. We formulate this task as an optimization problem,

J = min
W≥0,G≥0

‖X̃− CWGT‖2
F (5.1)

= Tr(X̃T X̃− X̃T CWGT −GWT CT X̃ + GWT CT CWGT ),

where W is the weight matrix and G is the cluster indicator matrix with each element gih ∈
[0, 1], indicating the probability distribution over topics for a particular document. In the opti-

mization process, we propose an iterative algorithm to get non-negative W and G while fixing

arbitrarily signed C and X̃. The updating rules are obtained by using the auxiliary functions

and the optimization theory as,

Wih ← Wih

√
(A1

+G)ih + (A3
−WGT G)ih

(A1
−G)ih + (A3

+WGT G)ih

, (5.2)

Gih ← Gih

√
(A2

+W)ih + (GWT A3
−W)ih

(A2
−W)ih + (GWT A3

+W)ih

, (5.3)

where A1 = CT X̃, A2 = X̃T C and A3 = CT C.

The third step is to use PE [60] to embed documents into a low-dimensional Euclidean

space such that the input probabilities G = p(Lh|xi) (where L is the topic label of a docu-

ment) are approximated as closely as possible by the embedding-space probabilities p(Lh|yi).

The objective is to minimize the difference between input probabilities and the correspond-

ing embedding-space probabilities using a sum of Kullback-Leibler (KL) divergences for each

document:
∑n

i=1 KL(p(Lh|xi)‖p(Lh|yi)). Minimizing this sum
∑z

h=1 p(Lh|yi) is equivalent

to minimizing the following sum of KL divergences,

E(yi, φh) = −
n∑

i=1

z∑

h=1

p(Lh|xi) log p(Lh|yi). (5.4)

The unknown parameters, a set of coordinates of documents yi and coordinates of topics φh in
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the embedding space, can be obtained with a gradient-based numerical optimization method.

The gradients of Equation (5.4) with respect to yi and φh are

∂E

∂yi

=
z∑

h=1

(p(Lh|xi)− p(Lh|yi))(yi − φh), (5.5)

∂E

∂φh

=
n∑

i=1

(p(Lh|xi)− p(Lh|yi))(φh − yi). (5.6)

Thus, we can find the locally optimal solution for embedding coordinates yi for each document

given φh.

The complete EV algorithm is given in Algorithm 5.

5.2 Theoretical Analysis
In this section, we first show that our algorithm is correct and converges under the updating

rules given in Equations (5.2)-(5.3). In addition, we show the efficiency of EV by analyzing its

space and time requirements. Finally, we point out the advantages of EV when compared with

other visualization methods.

5.2.1 Correctness and Convergence of EV

The correctness and convergence of the EV algorithm can be stated as the following two

propositions.

Proposition 8 (Correctness of EV). Given the object function of Equation (5.1), the con-

strained solution satisfies KKT complementary conditions under the updating rules in Equa-

tions (5.2)- (5.3).

Proposition 9 (Convergence of EV). The object function of Equation (5.1) is monotonically

decreasing under the updating rules in Equations (5.2)- (5.3).

We give an outline of the proof of the propositions and omit the details since the proof is

as similar as in 4.3. First, following the standard theory of constrained optimization, we fix
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Algorithm 5 Exemplar-based Visualization
INPUT: word-document matrix X ∈ Rd1×n, selected number of documents and words r, c ∈
Z+ s.t.1 ≤ r ≤ d1, 1 ≤ c ≤ n, number of topics z ∈ Z+ s.t. 1 ≤ h ≤ z, and the label set of
topics Lz

h=1

OUTPUT: Visualization of documents Y = {yi} ∈ Rd2×n (1 ≤ i ≤ n, d2 < d1) in the
embedding space

1. Use a near-optimal low-rank approximation method to get C ∈ Rd1×c, U ∈ Rc×r,
R ∈ Rr×n and X̃ ∈ Rd1×n,

2. Initialize W and G with non-negative values,

3. Iterate by the following updating rules for each i and h until convergence,

(a) Let A1 = CT X̃, A2 = X̃T C and A3 = CT C, then split each matrix into the
positive and negative parts:

A+
q = (|Aq|+ Aq)/2, A−

q = (|Aq| − Aq)/2,

where q ∈ {1, 2, 3},

(b) Weight matrix and cluster indicator matrix:

Wih ← Wih

√
(A1

+G)ih + (A3
−WGT G)ih

(A1
−G)ih + (A3

+WGT G)ih

,

Gih ← Gih

√
(A2

+W)ih + (GWT A3
−W)ih

(A2
−W)ih + (GWT A3

+W)ih

,

4. Normalize cluster indicator G = p(Lh|xi) such that
∑z

h=1 p(Lh|xi) = 1,

5. Use parameter embedding to obtain the embedding-space coordinates yi for each doc-
ument.
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one variable G and introduce the Lagrangian multipliers λ1 and λ2 to minimize the Lagrangian

function L(W, G, λ1, λ2) = ‖X̃ − CWGT‖2
F − Tr(λ1W) − Tr(λ2GT ). Second, based on the

KKT complementarity condition, we set the gradient descent of ∂L
∂W to be zero while fixing

G. Then, we successively update W using Equation (5.2) until J converges to a local minima.

Similarly, given W, we can set ∂L
∂G to be zero and update G using Equation (5.3) until J con-

verges to a local minima. W and G should update alternatively. Third, we construct auxiliary

functions to prove that Equation (5.1) decreases monotonically under the updating rules. An

auxiliary function Z(Wt+1, Wt) should satisfy the two conditions: Z(Wt+1, Wt) ≥ J(Wt),

and Z(Wt, Wt) = J(Wt) for any Wt+1 and Wt. We define Wt+1 = minW Z(W, Wt), then we

obtain the following equation J(Wt) = Z(Wt, Wt) ≥ Z(Wt+1, Wt) ≥ J(Wt+1). Thus, with

a proper auxiliary function, J(Wt) is decreasing monotonically. Similarly, we can also prove

J(Gt) is decreasing monotonically under an appropriate auxiliary function.

5.2.2 Time and Space Complexity

To visualize a large data set, efficiency in both space and speed is essential. In the following,

we provide detailed analysis on the time and space complexity of EV. To simplify the analysis,

we assume n = d1 and r = c though they are not necessarily equal in the algorithm.

In Algorithm 5, the near-optimal matrix approximation is very efficient, having time com-

plexity of O(nc2) given in [9]. In the decomposition step, even though X̃ is used in the de-

scription of the algorithm, the computation is actually done using the three small matrices, C,

U and R. Specifically, we first need to compute A1, A2 and A3 with the following time,

A1 : c(n× c + c2 + c× n),

A2 : c(n× c + c2 + c× n),

A3 : c2n.

Then, we need to compute W and G in Equations (5.2) and (5.3). Assuming that the number
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of iteration t = 1, the time for computing W and G are

W : 2(c2z + cz2 + z2n + cnz),

G : 2(c2z + cz2 + z2n + cnz).

Thus, the total time for matrix decomposition is O(c2n + (c2z + z2n + cnz)). In addition, the

time complexity of PE is O(nz). Since z ¿ min(c, n) and c ¿ n, the overall computational

complexity is O(n).

Regarding the space complexity, EV needs 2cn + c2 units to store C, U and R, and needs

cz and nz units for W and G, respectively. In addition, the temporal storage for computing Aq

and updating W and G require O(cn) units. Since c ¿ n, the total space used is O(n).

In summary, both the time and space complexity of EV are linear, and thus it is highly

scalable and suitable for visualizing a very large document collection.

5.2.3 Advantages of EV

From a theoretical point of view, EV has the following unique properties for visualizing

large-scale text corpus when compared with other visualization methods:

• Accuracy: EV is a probabilistic multidimensional projection model with a well-defined

objective function. Through iterative optimization, it can preserve the proximity in the

high-dimensional input space and thus provide accurate visualization results.

• Efficiency: EV has a high computational and spacial efficiency, and thus it is especially

useful to visualize large document data. Compared with the time complexity of other

visualization approaches, EV has a linear running time. Moreover, EV only needs to

compute the non-zero entries of the approximation matrix, which further reduces the

computational time for a sparse matrix (e.g., word-document matrix). EV also has the

space complexity of O(n) while other algorithms typically require O(n2) storage units.
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• Flexibility: EV decomposes a word-document matrix into three matrices with the repre-

sentative data subspace C, which contains the exemplar documents from the collection.

By choosing the subspace dimensions, EV can visualize text corpus with different gran-

ularity, effectively reducing the clutter/overlap in the layout and cognitive overload.

5.3 Experiments and Results
In this section, we compare EV with PLSA+PE, LSP, ISOMAP, MDS and PCA for visual-

izing text data sets. Specifically, we implement two EV models: EV-844 and EV-CUR, in our

experiments. In EV-844, Algorithm 844 [9] is used to successively select a column or row at a

time with the largest norm from text data, resulting in an unique subspace; while EV-CUR uses

CUR [97] to pick the representative samples based on their probability distributions computed

by the norms. Note that duplicates may exist in the CUR subspace because the samples with

large norms are likely to be selected more than once. In the following, Section 5.3.1 gives

the details of the data sets we used. In Section 5.3.2, we discuss the quantitative evaluation

methods used to report the experimental results. On several public text data sets (including two

large ones with 18, 864 and 15, 565 documents, respectively), we demonstrate the superior vi-

sualization results by EV in Section 5.3.3, in which we also compare the computational speed

of all the algorithms.

5.3.1 Data Sets

For the experiments on document visualization, we use the 20Newsgroups data [77] and

10PubMed data.

20Newsgroups data consists of documents in the 20 Newsgroups corpus. The corpus con-

tains 18, 864 articles categorized into 20 discussion groups 1 with a vocabulary size 26, 214.

Note that at its full size the data here is too large to be processed by all the algorithms ex-

cept EV. In order to make the comparison with existing methods, we construct two subsets

1http://www.cs.uiuc.edu/homes/dengcai2/Data/TextData.html
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Table 5.1: Summary of data subsets from 20Newsgroups used in the experiments.

Data Name Groups Name No. of Documents per Group Total Documents
20Newsgroups-I {comp.sys.ibm.pc.hardware}, 100 300

{rec.sport.baseball},{sci.med}
20Newsgroups-II all 20 groups 50 1000

Table 5.2: Summary of 10Pubmed data used in the experiments.

Document Name No. of Documents
1 Gout 543
2 Chickenpox 732
3 Raynaud Disease 343
4 Jaundice 503
5 Hepatitis A 796
6 Hay Fever 1517
7 Kidney Calculi 1549
8 Age-related Macular Degeneration 3283
9 Migraine 3703

10 Otitis 2596

of 20Newsgroups through uniform random sampling: 20Newsgroups-I and 20Newsgroups-II,

shown in Table 5.1.

10PubMed data consists of published abstracts in the MEDLINE database 2 from 2000 to

2008, relating to 10 different diseases. We use “MajorTopic” tag along with the disease-related

MeSH terms as queries to MEDLINE. Table 5.2 shows the 10 document sets (15, 565 docu-

ments) retrieved. From all the retrieved abstracts, the common and stop words are removed,

and the words are stemmed using Porter’s suffix-stripping algorithm [98]. Finally, we build a

word-document matrix of the size 22437× 15565.

5.3.2 Evaluation Measurement

We evaluate the visualization results quantitatively based on the label predication accu-

racy with the k-nearest neighbor (k-NN) method [36] in the visualization space. Documents

are labeled with discussion groups in the 20Newsgroups data, and with disease names in the

10PubMed data. Majority voting among the training documents in the k neighbors of a test

document is used to decide its predicted label. The accuracy generally becomes high when

2http://www.ncbi.nlm.nih.gov/pubmed/
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documents with the same label are located together while documents with different labels are

located far away from each other in the visualization space.

Quantitatively, the accuracy AC(k) is computed as,

AC(k) =
1

n

n∑
i=1

I(li, l̂k(yi)), (5.7)

where n denotes the total number of documents in the experiment, li is the ground truth label

of the ith document, l̂k(yi) is the predicted label by k-NN in the embedding space, and I is the

delta function that equals one if l̂k(yi) = li, and zero otherwise.

5.3.3 Results

First, we compare the neighbor-preserving accuracy in two-dimensional visualization gen-

erated by EV-844, EV-CUR, PLSA+PE, LSP, ISOMAP, MDS, and PCA on the data sets

20Newsgroups-I and 20Newsgroups-II. Through uniform random sampling, we create 10 inde-

pendent evaluation sets for each data set, with given number of topics (3 for 20Newsgroups-I

and 20 for 20Newsgroups-II) and documents (100 for 20Newsgroups-I and 50 for 20Newsgroups-

II). The average accuracy values are obtained using k-NN over the 10 sets with k = {1, 2, ..., 50},

shown in Figure 5.1.

Generally, the AC values obtained by the seven methods are higher for a small number

of topics (e.g., z=3 in Figure 5.1(a)) than those with a large number of topics (e.g., z=20 in

Figure 5.1(b)). Moreover, the accuracy achieved by the topic models (i.e., EV-844, EV-CUR,

PLSA+PE and LSP) is significantly higher than the traditional projection methods (i.e., PCA,

MDS and ISOMAP). These results indicate that topic information is very helpful for the data

visualization. When visualizing real-world text corpus, particularly the ones collected from

the World Wide Web, the number of topics is typically unknown and thus has to be estimated

through topic model detection. Some well-known approaches include Bayesian Inference Cri-

teria (BIC) and Minimum Message Length (MML). A detailed discussion of model detection
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Figure 5.1: Accuracy with k-NN in the two-dimensional visualization space with different k:
(a) 20Newsgroups-I (3 topics), and (b) 20Newsgroups-II (20 topics).

can be found in [89]. In our experiments, the number of topics for all the topic models is

simply set based on the ground truth. Another important observation from Figure 5.1 is that

EV-844 constantly provides a higher accuracy value than EV-CUR. This is mainly because

Algorithm 844 selects unique columns (exemplars) while CUR may choose replicated ones to

build the subspace. Thus, we use EV-844 in the rest of our experiments and refer it to EV

without special mention. Finally, as shown in Figure 5.1(a), the two probabilistic topic models

(i.e., EV and PLSA+PE) have comparable performance on 20Newsgroups-I. However, as the

number of topics increases, EV clearly outperforms PLSA+PE on 20Newsgroups-II in Figure

5.1(b). These results imply that EV can appropriately embed documents in a two-dimensional

Euclidean space while keeping the essential relationship of the documents, especially for a data

set with a large number of topics.

Figures 5.2 and 5.3 show the visualization results obtained by EV, PLSA+PE, LSP, ISOMAP,

MDS, and PCA on 20Newsgroups-I and 20Newsgroups-II, respectively. Here, each point rep-

resents a document, and the different color shapes represent the topic labels. For example, there

are three different color shapes in Figure 5.2, representing three groups of news: black diamond

for “comp.sys.ibm.pc”, green triangle for “rec.sport.baseball” and red circle for “sci.med”. In
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the EV visualization (Figure 5.2(f)), documents with the same label are nicely clustered to-

gether while documents with different labels tend to be placed far away. In PLSA+PE and

LSP (Figures 5.2(e) and (d)), documents are located slightly more mixed than those in EV. On

the other hand, with PCA, MDS and ISOMAP (Figures 5.2(a)-(c)), documents with different

labels are mixed, and thus the AC values of the corresponding layout are very low. These

results also imply that the topic models generally provide better visualization layout. Figures

5.3(a)-(f) show 20-topic news groups visualized by the six methods. Similarly, EV provides

the best view since news in similar topics are closer while news of distinct topics are placed

further away.

As discussed earlier, by choosing the dimension of the subspace, EV can visualize docu-

ments with different granularity and enhance the interpretability of the visualization. In Fig-

ures 5.2(g)-(i) and 5.3(g)-(i), the representative documents selected in the low-rank subspace

are embedded in a two-dimensional layout, for 20Newsgroups-I and 20Newsgroups-II, respec-

tively. In Figures 5.2(g)-(i), we provide a series of visualization for 20Newsgroups-I, from the

most abstract view to the visual layout with considerate amount of details as the number of se-

lected exemplars increases from 10 to 40. This result demonstrates that EV can use exemplars

to summarize the distribution of the entire document collection. Similarly, Figures 5.3(g)-(i) il-

lustrate the visualization from abstract to details when the number of exemplars increases from

100 to 400 in 20Newsgroups-II. In these figures, the overlapping in the original layout (Fig-

ure 5.3(f)) is greatly reduced, making users easier to understand the relations between news

documents.

Second, we compare the computational speed of six visualization methods: EV, PLSA+PE,

PCA, LSP, MDS and ISOMAP. From a theoretical perspective, the time complexity of EV is

O(n), PLSA+PE and PCA are O(n2), LSP is O(f(n, s)) = O(max{n 3
2 , n

√
s}), and MDS

and ISOMAP are O(n3), where n is the number of documents and s is the condition number

in LSP. Our experiments are performed on a machine with Quad 3GHz Intel Core2 processors
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Table 5.3: Comparison of computation time (in seconds) for: EV, PLSA+PE, PCA, LSP, MDS
and ISOMAP. A cross x indicates that an algorithm does not provide a result in a reasonable
time.

Data size EV PLSA+PE PCA LSP MDS ISOMAP
n O(n) O(n2) O(n2) O(f(n, s)) O(n3) O(n3)

1× 103 0.49 0.42 0.40 15.25 20.48 200.05
2× 103 0.95 1.50 1.36 30.40 216.62 1611.72
3× 103 1.43 3.20 2.24 80.62 801.30 x
4× 103 1.93 5.49 3.78 160.10 1881.00 x
5× 103 2.55 8.38 x x x x
1× 104 5.79 x x x x x

and 4GB RAM. In order to compare under the same condition, the running time are reported

based on a single iteration if an algorithm uses the iterative approach. Table 5.3 summarizes the

computation time in seconds for all six methods with increasing number of documents. From

Table 5.3, EV clearly is the quickest among the six, followed by PLSA+PE and PCA, while the

computing time of LSP, MDS and ISOMAP increases quickly with the number of documents.

More important, we observe that some algorithms fail to provide a result within a reasonable

time for relatively large document sets. Specifically, ISOMAP is the slowest and cannot give

a result when the matrix contains more than 3, 000 documents due to insufficient memory.

When we have more than 10, 000 samples, only EV can provide a result within a reasonable

computation time, while all other methods fail (indicated by a cross x in the table). Clearly,

EV is suitable to visualize large text corpus we are increasingly facing these days thanks to its

high computational efficiency.

We also develop an Exemplar-based Visualization software tool to offer a range of func-

tions of creating visualization with user-specified configuration and thus supporting visual ex-

ploration of document data. First, when choose “View All” menu, the system can show all

the documents at once for the 20Newsgroups and 10PubMed data sets. In this case, EV is

the only one among the six algorithms that can produce a projection in a reasonable time.

For example, Figure 5.4(a) shows visualization by EV for the 18, 864 documents in 20News-

grups. Again, each point represents a document, and the different color shapes represent the

topic labels. Note that it is difficult to see the details because the number of documents is
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very large, leading to extremely heavy overlapping. If one clicks “View Exemplars” and

sets the number of exemplars at 1, 000, Figure 5.4(b) shows the representative documents se-

lected by EV to summarize the whole document collection. Clearly, the cognitive overload

and serious overlapping are greatly reduced. Here, a big color shape indicates the mean co-

ordinate of documents for one group, calculated by µl = 1
nl

∑n
i=1 I(li = l))yi, where nl

is the number of documents labeled with l. Obviously, documents with the same label are

clustered together, and similar documents with closely related labels are placed nearby, such

as “comp.graphics’, “comp.os.ms.windows.misc’ and “comp.windows.x” in the “computer”

category, or “rec.autos”, “rec.motorcycles”, “rec.sport.baseball” and “rec.sport.hockey” in the

“recreation” news group. Based on the visualized exemplars, EV provides several additional

options for a user to further explore the data set. For example, on the click of “View Clus-

ters”, a magnified layout of all corresponding documents in the groups of “comp.graphics”,

“comp.os.ms.windows.misc” and “comp.windows.x” is given in Figure 5.4(c), which provides

further details. Similarly, a user can specify a neighborhood (the rectangle in Figure 5.4(b)),

clicking “Zoom In” will generate a magnified view of all or representative documents in the

selected area. Also, if desired, further clustering and visualization can be performed in an area

of interest, leading to a hierarchical structure for data exploration.

Figure 5.5 shows the EV model to visualize the 15, 565 documents in the 10PubMed data

set. Exemplars and means of 10PubMed data illustrated in Figure 5.5(a) help us gain a better

understanding on the distribution and relations of these documents. It is clear that documents

with same disease are likely to be located closely while documents with different diseases are

moved further away. We notice that there is less overlapping in the 10PubMed data set than in

20Newsgroups. One reason is that the number of topics in 10PubMed is less than in 20News-

groups while another one is that the abstracts in the literature for various diseases is actually

easier to be separated than the documents in different news groups. The average value of AC

is about 60% in the 10PubMed data set; it is only approximately 30% in 20Newsgroups. If de-
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sired, users can further explore the data set by clusters. In Figure 5.5(b), documents related to

two diseases (“Gout” and “Chickenpox”) are shown, where the selected exemplars (100 in to-

tal) are emphasized by the bigger black shapes. First, our method provides a clear visualization

with little clutter. Second, users can quickly browse the large document collection by reading

only the representative documents (exemplars) in each cluster. The actual time required by EV

to produce visualization for 20Newsgroups and 10PubMed (with 1, 000 exemplars and 1, 000

iterations) are 30 and 25 minutes, respectively. These results clearly show that EV provides a

very powerful tool for visualizing large text data sets.

5.4 Summary
In this chapter, we propose an Exemplar-based approach to Visualize (EV) extremely large

text corpus. In EV, a representative text data subspace is first computed from the low-rank ap-

proximation of the original word-document matrix. Then, documents are soft clustered using

the matrix decomposition and visualized in the Euclidean embedding space through parameter

embedding. By selecting the representative documents, EV can visualize tens of thousands of

documents with high accuracy (in retaining neighbor relations), high efficiency (in computa-

tion), and high flexility (through the use of exemplars).

The algorithms discussed here have been fully integrated into a visualization software pack-

age, which has been released publicly on the website 3. In the future, we plan to conduct practi-

cal user studies to solicit feedbacks so that the software can be improved with more convenient

and user-friendly features. We also intend to pursue incorporating topic detection model into

our system, making it more appropriate for real-world data visualization. Another direction we

are considering for the future work is to develop an interaction tool based on the EV model for

the visualization of other types of data.

3http://vii.wayne.edu
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Figure 5.2: Visualization of documents in 20Newsgroups-I (300 documents, 3 topics) by
(a)PCA, (b)MDS, (c)ISOMAP, (d)LSP, (e)PLSA+PE, (f)EV, and visualization of (g)10 ex-
emplars, (h)20 exemplars, (i)40 exemplars by EV.
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Figure 5.3: Visualization of documents in 20Newsgroups-II (1000 documents, 20 topics) by
(a)PCA, (b)MDS, (c)ISOMAP, (d)LSP, (e)PLSA+PE, (f)EV, and visualization of (g)100 exem-
plars, (h)200 exemplars, (i)400 exemplars by EV.
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Figure 5.4: Visualization of documents in 20Newsgroups (18,864 documents, 20 topics) by
EV. Each point represents a document; each color shape represents a news topic; and the
corresponding big color shape indicates the mean of a news group. Visualization of (a)
all documents, (b) 1000 exemplars with their means, and (c) three similar groups of news:
“comp.os.ms.windows.misc”, “comp.graphics” and “comp.windows.x”.
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Figure 5.5: Visualization of abstracts in 10PubMed (15,565 documents, 10 topics) by EV. Each
point represents an abstract; each color shape represents a disease; and the corresponding big
color shape indicates the means of an abstract group. Visualization of (a) 1000 exemplars
with their means, and (b) two distinct groups of diseases: “Gout” and “Chickenpox” with the
selected exemplars (100 in total), emphasized by the bigger black shapes.
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CHAPTER 6

CONCLUSION

The purpose of this chapter is twofold. We first summarize the contributions made by this

dissertation, then we point towards the future work.

6.1 Contributions
In this dissertation, we are dedicated to present matrix-based models for data clustering

and visualization. We have made contributions in different research topics through matrix

factorization, such as semi-supervised clustering, semi-supervised co-clustering, and exemplar-

based clustering and visualization. Specifically,

1. Proposed and implemented SS-NMF: a semi-supervised approach for clustering based

on non-negative matrix factorization. In the proposed framework, users are able to pro-

vide supervision in terms of must-link and cannot-link pairwise constraints on the data

objects. We derived an iterative algorithm to perform symmetric tri-factorization of the

data similarity matrix. We have mathematically shown the correctness and convergence

of SS-NMF. Moveover, we proved that SS-NMF provides a general and unified frame-

work for semi-supervised data clustering. Existing approaches can be considered as

special cases of it. Empirically, we showed that SS-NMF outperforms well-established

unsupervised and semi-supervised clustering methods in many real-world applications,

such us text mining, gene expression analysis, images grouping and other publicly avail-

able UCI data sets clustering [14, 15, 16].

2. Developed and implemented a novel semi-supervised approach for data co-clustering:

SS-NMF. In the proposed SS-NMF co-clustering model, users are able to provide super-

vision in terms of must-link and cannot-link constraints on the central data type, which

are used to derive new relational matrices through iterative distance metric learning and
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modality selection. Tri-factorizations of the new matrices are then performed to obtain

the simultaneous grouping of central data type and multiple feature modalities. Theo-

retically, we proved the convergence and correctness of the proposed co-clustering algo-

rithm. In addition, we discussed that the relationship between our model and other rep-

resentative co-clustering approaches. Our experimental results on publicly available data

sets in text mining, bioinformatics and image grouping showed the superior performance

of SS-NMF over existing methods for heterogeneous data co-clustering [17, 18, 19].

3. Proposed a novel method, EV, to visualize large document data sets in the low-rank sub-

space. From a theoretical perspective, EV presents a probabilistic multidimensional pro-

jection model with a sound objective function. Based on the rigorous derivation, the final

visualization is obtained through iterative optimization. By selecting the representative

rows and columns, EV obtains a compact approximation of the text data. This makes the

visualization efficient and flexible. In addition, the selected exemplars neatly summarize

the document collection and greatly reduce the cognitive overload in the visualization,

leading to an easier interpretation of the text mining results. Through extensive experi-

ments performed on the publicly available text data sets, we demonstrated the superior

performance of EV when compared with existing visualization techniques [20].

6.2 Future Work
This dissertation also opens several venues for future work, with the focus on open prob-

lems in data mining.

1. Exemplar-based Semi-supervised Learning for Complex Data: Today digital data

are accumulated at the faster than ever speed in science, engineering, biomedicine, and

business. Usually, these extremely large data are highly complex, sharing one or several

following prominent characteristics: they come unstructured with heterogeneous modal-

ities or relations; they are tremendous in size with millions of objects and millions of
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features; and user-guided knowledge is often embedded in large amounts of data. We

have integrated user-guided information into matrix-based model to mine the relations

among different objects or provided clear view of similar and disparate objects with rep-

resentative samples in the entire data collection.

It would be interesting to to develop a novel model to integrate semi-supervised learn-

ing and exemplar-based model into matrix factorization techniques: (1) For heteroge-

nous data, this model would soundly mine and visualize the rich structure of relations

among different objects; (2) For large-scale data with high-dimensionality features, it

would provide the most representative samples in the entire data collection by exemplar-

based learning and identify the most relevant or discriminant features by multiple kernel

manifold learning. Therefore, this model could facilitate effective and efficient clus-

ter/summary analysis and help convenient visualization through embedding the data into

a low-dimensional space; (3) For world knowledge within the learning system, it would

inject domain information into the knowledge discovery process, thus providing a higher

quality (e.g., accuracy) of mining results from complex data.

2. Mining Interesting Domain Knowledge for Learning: The major objective of data

mining is to obtain useful information for humans who are interested in. Therefore, there

is now a strong need for integrating data mining and knowledge inference. The biggest

gap between what data mining systems can do and what we would like them to do is to

relate the results of mining to the real-world decisions. Can we hand the results back to

the user automatically and effectively? Compared to mining interesting information from

complex data, the topic of mining interesting domain knowledge remains important.

In this dissertation, we have solved this problem by injecting simple domain information

into the knowledge discovery process. However, challenges remain as follows: how to

make the discovered patterns “interesting” from the end-user perspective, how to transfer

the “weak” or “soft” feedback or knowledge into the learning model, such as a user’s
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rating given as a percentage not a integer number.

In the future, our knowledge and experience gained in this dissertation will be applied to

keep pursing the new directions.
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Clustering is traditionally an unsupervised task which is to find natural groupings or clusters

in multidimensional data based on perceived similarities among the patterns. The purpose of

clustering is to extract useful information from unlabeled data. In order to present the extracted

useful knowledge obtained from clustering in a meaningful way, data visualization becomes a

popular and growing area of research field. Visualization can provide us a better understanding

of large and complex data sets by displaying them in a logical layout. The contribution of

this dissertation is two-fold: Semi-Supervised Non-negative Matrix Factorization (SS-NMF)

for data clustering/co-clustering and Exemplar-based data Visualization (EV) through matrix

factorization. Compared to traditional data mining models, matrix-based methods are fast, easy

to understand and implement, especially suitable to solve large-scale challenging problems in

text mining, image grouping, medical diagnosis, and bioinformatics.

In this dissertation, we present two effective matrix-based solutions in the new directions

of data clustering and visualization.

First, in many practical learning domains, there is a large supply of unlabeled data but

limited labeled data, and in most cases it might be expensive to generate large amounts of

labeled data. Traditional clustering algorithms completely ignore these valuable labeled data

and thus are inapplicable to these problems. Consequently, semi-supervised clustering, which
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can incorporate the domain knowledge to guide a clustering algorithm, has become a topic

of significant recent interest. Thus, we develop a Non-negative Matrix Factorization (NMF)

based framework to incorporate prior knowledge into data clustering. Moreover, with the fast

growth of Internet and computational technologies in the past decade, many data mining appli-

cations have advanced swiftly from the simple clustering of one data type to the co-clustering

of multiple data types, usually involving high heterogeneity. To this end, we extend SS-NMF

to perform heterogeneous data co-clustering. From a theoretical perspective, SS-NMF for data

clustering/co-clustering is mathematically rigorous. The convergence and correctness of our

algorithms are proved. In addition, we discuss the relationship between SS-NMF with other

well-known clustering and co-clustering models. Second, most of current clustering models

only provide the centroids (e.g., mathematical means of the clusters) without inferring the rep-

resentative exemplars from real data, thus they are unable to better summarize or visualize the

raw data. A new method, Exemplar-based Visualization (EV), is proposed to cluster and visu-

alize an extremely large-scale data. Capitalizing on recent advances in matrix approximation

and factorization, EV provides a means to visualize large scale data with high accuracy (in

retaining neighbor relations), high efficiency (in computation), and high flexibility (through

the use of exemplars). Empirically, we demonstrate the superior performance of our matrix-

based data clustering and visualization models through extensive experiments performed on

the publicly available large scale data sets.
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