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Abstract. Thi~ paper is devoted to the study of non convex models of welfare economics with public 
gooclH and infinite-dimensional commodity spaces. Our main attention i~ paid to new extensions of 
the fundamental second welfare theorem to the models under consideration. Based on advanced 
tools of variational analysis and generalized differentiation, we establish appropriate approximate 
and exact versions of the extended second welfare theorem for Pareto, weak Pareto, and strong 
Pareto optimal allocations in both marginal price and decentralized price forms. 
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1 Introduction 

In this paper we consider general nonc:onvex models of welfare economics involving both 
private and public goods in infinite-dimensional spaces of commodities. Models of this type 

have been well recognized from both theoretical and practical viewpoints. Despite a. number 

of excellent works in this area, there are great many of important unsolved problems some 
of whieh are addressed in our study. 

Reeall that in general equilibrium theory a. commodity is defined not only by its physical 
properties but also by the date, the location, and the state of its nature that precise the 

condition of its availability. The classical general equilibrium theory deals with a finite 

number of commodities, which implies that the economic activity extends over only finitely 

many dates, location, and events. Such an assumption, contrary to the framework of many 
applied models particularly involving location, growth, and finance, dramatically limits the 

scope of applications of the results obtained to understand the real economic life. 

Moreover, the physical property of a commodity can vary continuously depending on 

some characteristics. In such dynamic settings, a. commodity is defined as a point in a 
space of characteristics describing, e.g., its location, design, quality, functioning, etc. To 
give a solid foundation to analysis of allocation over time or state of nature was the primary 

motivation for the study of infinite-dimensional economies; see, e.g., the paper by Debreu 

and Hildenbrand [11], which was one of the first to seriously address this and related issues. 

Our paper concerns the study of infinite-dimensionalnonconvex economic models from 

the viewpoint of Pareto optimality/ efficiency. It has been fully recognized that the concept 

of Pareto optimality and its variants play a. crucial role in equilibrium models to make the 
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best decisions for competitive economies; see, e.g., [2, 3, 9, 10, 17, 20, 31] with detailed 

discussions and the references therein. 
The classical (foundation) approach to the study of Pareto optirnality in models of wel­

fare economics with only private goods and smooth data in finite-dimensional spaces of 

commodities consists of reducing them to conventional problem of mathematical program­

ming and and the subsequent usage of first-order necessary optimality conditions involving 

Lagrange multipliers; see Hick [15], Lange [22], and Samuelson [33, 34]. It was shown in 
this way that the marginal rates of substitution in consumption and production sectors are 

identical at any Pareto optimal allocation of resources. 
The underlying hypothesis in the foundation works on welfare economics [15, 22, 33, 34] 

was the smoothness/differentiability of the production and utility functions involved in the 

models. In the beginning of 1950s, Arrow [3] and Debreu [10] made the next crucial step in 

general equilibrium theory considering models of welfare economics with possibly nonsmooth 

but convex data in finite-dimensional commodity spaces. Based on the classical separation 

theorem for convex sets, they established a key result called the second fundamental theorem 

of we~f'a:re economics. This theorem, which is a convex counterpart of the aforementioned 
result on the marginal rates of substitution, states that any Pareto optimal allocation can 
be decentmlized as price equilibrium, i.e., it can be sustained by a nonzero price at which 

each consumer minimizes his/her expenditure and each firm maximizes its profit. 

The Arrow-Debreu decentralization approach to Pareto optimality has played a profound 
role in general equilibrium theory and particularly in welfare economics. On the other 

hand, the relevance of convexity hypotheses is often doubtful in mai1y applications, e.g., for 

practically realistic models involving the increasing return to scale in the production sector. 
In fact, it was observed by Samuelson [34, pp. 231-232], even before the appearance the 

Arrow-Debreu model, that the convexity assumptions are fulfilled "only be accident." 
In his pioneering study on price decentralization of Pareto optimal allocations in non­

convex economies with private goods, Guesnerie [14] imposed convexity assumptions not 

on the initial production and preference sets, but on their tangential approximations via 

the Dubovitskii-Milyutin cone of interior displacements. Starting with [14], the results of 
the second welfare theorem type for nonconvex models are interpreted as marginal price 

eqnilibTi,a, where marginal prices at Pareto optimal allocations are formalized via the cor­

responding normal cone that is dual/polar to the tangent cone in question. Guesnerie's 
approach to nonconvex welfare economics and its elaborations are strongly based on the 

convexity assumption imposed on the approximating tangent cone. 
Further progress in this direction has been achieved by using Clarke's tangent cone in 

the Guesnerie scheme for various welfare models; see e.g., [6, 9, 21] and their references. 

An advantage of Clarke's tangent cone is that it is automatically convex, but a strong 

disadvantage comes from the fact that the corresponding normal cone happens to be too 

large (often the whole space) and thus does not allow us to bring useful infonnation for 

marginal price equilibria. These issues have been recognized and discussed by Khan [20]. 

Khan's new approach to marginal price equilibria goes back, in a sense, to the founda­

tion works in welfare economics [15, 22, 34], which do not use convex separation techniques 
but reduce the welfare model to an optimization problem that contains at that time nondif-
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ferentiable data. He employs, in the case of finite commodities, the metric approximation 

method developed by Mordukhovich in nondifferentiable programming [26, 27] and arrived 

in this way, under appropriate constraint qualifications, at the marginal price equilibrium 

formalized via the Mordukhovich normal cone, which is much smaller than the Clarke one. 
Further results in this directions for various models of welfare economics can be found in 

more recent publications [4, 7, 12, 16, 17, 18, 23, 28, 29, 31, 37] and their references. 

Concerning economies with public goods, the first fundamental result in the "founda­
tion" direction was obtained by Samuelson [35] who showed that at Pareto optimal allo­

cation the marginal rates of transformation of public goods are equal to the sum of the 

individual marginal rates of substitution. After more than decade from Samuelson's result, 

Foley [13] and Milleron [25] established appropriate versions of Arrow-Debreu second wel-

. fare theorem for economies with public goods under convexity assumptions. I\1ore recent 

results for nonconvex models of welfare economics involving public goods were obtained in 
[19, 20, 21, 36, 37]; see also the references therein. 

The main setting of this paper is a general model of nonconvex welfare economics with 

public goods formulated in the framework of Asplund commodity spaces; see Section 2 
for mode details. We develop an approach to the study of this model based on advanced 

tools of variational analysis and generalized differentiation revolving around the extremal 

pTinciple; see [30, Chapter 2]. The latter fundamental principle (in its both approximate and 

exact forms) provides, on one hand, necessary conditions for a certain extremal relationship 

between closed sets while, on the other hand, can be treated as a variational nonconvex 

counterpart of the classical separation principle in convex analysis. This approach was 
suggested in [28] for welfare models with only private goods and then developed in [4, 5, 

23, 29, 31] and other publications. We also refer the reader to [7, 12, 16, 17, 18] and the 
bibliographies therein for similar nonconvex separation ideas closely related to the extremal 
principle. To some extent, this variational approach via the extremal principle can be viewed 

as a common roof for the foundation ideas of using first-order optimality conditions as well 

as for the Arrow-Debreu developments based on convex separation. To the best of our 
knowledge, such an approach has never been implemented in models of welfare economics 

with public goods, even in the case of finite commodities. 
Developing the variational lines of research, we derive in this paper several new versions 

of the extended second welfare theorem for nonconvex economies. Vle start with an approx­

imate/fuzzy version of the second welfare theorem for Pareto and weak Pareto optimal al­

locations, where marginal prices are formalized via Frechetjregular normals. Results of this 

type hold under rather unrestrictive assumptions, but they apply merely to some suboptimal 

feasible allocations nearby the optimal ones. Imposing additional "normal compactness" 

requirements on the sets involved in the model, we arrive at an exact/pointwise version of 
the extended second-welfare theorem with marginal prices formalized via the Mordukhovich 
normal cone. Furthermore, the usage of the advanced tools of generalized differential and of 

the associated variational techniques allows us to establish certain decentralized versions of 
the marginal price results by employing some nonlinear prices. Considering finally, strong 

Pareto optimal allocations, the notion introduced by Khan [19] and largely underinvesti­

gated in the literature, we obtain the corresponding versions of the extended second welfare 
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theorem for nonconvex economies with public goods in the absence of the conventional 

qualification conditions needed for Pareto and weak Pareto optimal allocations. 

The rest of the paper is organized as follows. In Section 2 we describe and discuss 

a nonconvex model of welfare economics with both private and public goods in infinite­

dimensional commodity spaces. We also formulate general qualification conditions employed 

in the paper for studying Pareto and weak Pareto optimal allocations and present some 

sufficient conditions for their fulfillment. 
Section 3 contains required preliminaries from variational analysis and generalized dif­

ferentiation needed for deriving the main results of the paper on the extended versions of 

the second welfare theorem, which are given in the subsequent sections. 

In Section 4 we first establish an approximate version of the second welfare theorem with 
rna.r:qina.l price.s formalized via the Frechet normal cone at Pareto and weak Pareto opti­

mal allocations under the corresponding net demand qualification conditions for nonconvex 
economies involving public goods. After discussing some remarkable consequences of this 

result, we derive its decentralized (Arrow-Debreu type) version by using 11onlinear prices. 

This is based on a smooth variational description of of Frechet normals. 

Section 5 is devoted to exact versions of the second welfare theorem for weak Pareto 

and Pa.Teto optimal allocations under the so-called .sequential normal compactness (SNC) 

conditions imposed on (some of) the sets in question. Conditions of this type are automatic 
in finite dimensions and always hold for sets with certain Lipschitzian properties in infinite­

dimensional spaces and can be viewed as far-going extensions of the classical nonempty 
interior property of convex sets; we do not require the latter even in convex settings. 

The final Section 6 concerns welfare economies with ordered commodity spaces. First 

we establish the price po.sitivity for such models under natural assumptions of the de.sirabil­

ityjfree di.spo.sal type and then derive new results on the fulfillment of an extended version 

of the second welfare theorem specific for .strong Pareto optimal allocations of convex and 

nonconvex economies with private and public goods. 

Our notation is basically standard in variational analysis and economic modeling; cf. 

[20, 30, 31, 37]. Unless otherwise stated, the generic space X under consideration is Banach 

with the norm II ·II and the canonical pairing (·, ·) between X and its topological dual X* 
endowed with the weak* topology w*. Recall that IB and JB* stand for the closed unit ball 

in X and X*, respectively; IN:= {1,2, ... } is the collection of natural numbers. Given a 

set-valued mapping F: X =t X*, denote by 

w* 
3 sequences Xk ---+ x, x/:, ---+ x* as k ---+ oo 

with x/:, E F(xk) for all k E IN} 
(1.1) 

the .sequential Painleve-Kuratow.ski ov.terjupper limit of F as x -; x. Some more specific 
symbols are defined in the text below. 
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2 Nonconvex Economies with Private and Public Goods 

Let us first formulate a general and well-recognized by now model of ~elfare economics with 

private and public goods; see, e.g., [20, 35]. This model denoted byE involves two categories 

of commodities: private and public. Consumption of the first type is exclusive, i.e., what is 

taken by one individual automatically becomes unavailable for all the others. In contrast, a 

good is public if its consumption is identical across all the individuals. Ivlathematically this 

means that the commodity space E is represented as the product of two spaces E = E1r x E9 , 

where E1r stands for the commodity space pertaining to private goods while E9 is the 

commodity space of public goods. 
The consumption set for the ith consumer is given by a subset Ci of E that describes 

those consumption bundles that can be realized. A consumption plan for the ith consumer 

is a bundle :z: E C;. A consumption plan specifies some amount of goods and labor, which 
the ith consumer is able to realize; thus the ith consumption set Ci c E is the collection of 

all these consumption plans. 

Production refers to a process by which certain commodities (inputs) are transformed 

into different ones (outputs). A production plan for the l" firm, denoted by y1 E E, 
specifies the amount of inputs that are required to obtain some outputs. A production set 
for the l" firm, denoted by SJ C E, is the collection of all the production plans that are 

possible for the l" firm according to the technological knowledge available to it. 

2.1 The Model 

The economy E under consideration consists of n E IN consumers with the corresponding 

consumption sets Ci = c~ X c~ as i = 1, 0 0. 'n, where c~ c E'Tr and c~ c Eg, and mE IN 
production sets SJ c E = E'Tr X Eg as j = 1, 0 0 0 '1n. We suppose for simplicity that c~ = Cg 
for all i = 1, ... , n, i.e., everyone in the consumer sector chooses the same consumer bundles 

.1:" of public goods and different bundles of private goods. The results of this paper show, 
in particular, that each consumer faces different prices for public goods but the same price 
for all the private goods of the economy. 

For each consumer i E { 1, ... , n} we have the preference set 

defined as the collection of all elements in Ci preferred to xi by this consurner at the 

consumption plan x = (xi I i = 1, ... , n). It follows from the definition that xi ~ pi(x) 

for all i = 1, ... , n. In an economy with public goods it is natural to assurne that at 

least one individual desires the public good, i.e., P~(x9 ) =f. 0 for the corresponding index i. 

For convenience we put clPi(x) = {xi} if Pi(x) = 0. Observe that we do not use utility 

functions to describe preference sets and also do not impose any preordering and/or other 

conventional assumptions of welfare economics. 

Let us finally consider a general net demnnd constmint set W = W'Tr x VV9 E E allowing 
us to describe market constraints of the economy and unify some conventional situations 

in economic modeling; cf. [28, 31] for welfare economies with only private goods. In the 

classical "markets clear" setting we have W = (w, 0), where w E W7r is an aggregate initial 
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endowment of scarce resources and 0 E W9 means that there is no endowment of public 

goods. Another conventional situation corresponding to the so-called "implicit free disposal" 

of private commodities is modeled by W9 = {0} and W1r := w- (E1r )+,where (Err)+ stands 
for the closed positive cone of an ordered private commodity space E1r; see, e.g., [9, 20]. 

In general the net demand set vV describes natural situations tha.t may happen when the 

initial aggregate endowment is not exactly known due to, e.g., incomplete information. The 

latter particularly reflects uncertainties in economic modeling. 

Next. we define the notions of feasible allocations for the economy E under consideration. 

Definition 2.1 (feasible allocations). We say that (x, y) E TI~=l Ci x I17'=1 Si is a 

FEASIBLE ALLOCATION of [ if the market constraint 

n m 

(2.1) 
i=l j=l 

i.s satisfied with the given net demand constraint set liV. 

The main goal of this paper is to study the following Pareto-type notions of optimal 
allocations for E from the viewpoint of deriving necessary optimality conditions for them, 

which provide in fact. extended Versions of the second welfare theorem for economies with 
(private and) public goods. 

Definition 2.2 (Pareto-type optimal allocations). Let (x,y) be a feasible allocation 

of the economy E with the local satiation property 

xi E cl Pi(x) for all i = 1, ... , n. (2.2) 

Then we say that: 

(i) (x,y) is a WEAK PARETO OPTIMAL ALLOCATION o.fE if for any feasible allocation 

(:r, y) of E we have the relationships: 

xi tf. Pi(x) for some index i E { 1, ... , n }. (2.3) 

(ii) (x, y) is a PARETO OPTIMAL ALLOCATION of [ if .for any .feasible allocation (x, y) 

of E we have the relationships: 

eitheT :rJ tf. clPi(x) for some i E {1, ... ,n} or xi tf. Pi(x) for all i = 1, ... ,n. (2.4) 

(ii) (:f:, :iJ) is a STRONG PARETO OPTIMAL ALLOCATION of [ if foT any feasible allocation 

(:r:, y) with x =f. x we have 

xi tf. cl Pi(x) for some i E {1, ... , n }. (2.5) 

It is clear that (iii)==>(ii)==>(i) but not vice versa. Note the notions of Pareto and 
weak Pareto optimal allocations are conventional in welfare economics. The notion of 

strong Pareto orrtimal allocations was introduced by Khan [19] and then was studied, e.g., 
in [4, 5, 20, 23, 29, 31], particularly for economies with only private goods. 
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We can naturally define appropriate local versions of the above Pareto-type optima.! 
allocations, but in this paper we confine ourselves with the study of the (global) versions 
from Definition 2.2. In the recent paper [4] the reader can find more discussions on the 
relationships between local and global Pareto-type notions and the corresponding versions 
of the extended second welfare theorem for economies with only private goods. 

2.2 Qualification Conditions 

We formulate and discuss here the mild qualification conditions introduced in [28) and then 
used in [23, 29, 31] for studying Pareto and weak Pareto optimal allocations of welfare 

economies with only private goods. 

Definition 2.3 (net demand qualification conditions). Let ( x, y) be a feasible alloca­

tion of the economy [, and let 

n m 

w := L (x~,x9)- L:v.i. (2.6) 
i=l j=l 

Given£ > 0, consider the set 

n m 

6" := L [cl pi(i:) n (xi+ cJB)] - L [cl sJ n (Y.i + cJB)] - c1 w n (w + cJB) (2.7) 
i=l .i=l 

and say that: 

(i) The NET DEMAND WEAK QUALIFICATION (NDWQ) CONDITION holds at (x, y) if 

ther-e o:re a nv.mber s > 0 and a sequence { ek} C E with ek ~ 0 as k ~ 0 such that 

n m 

6£ + ek c L pi(x)- L s.i - w for all large k E IN. (2.8) 
i=l j=l 

(ii) The NET DEMAND QUALIFICATION (NDQ) CONDITION holds at (x, y) ~f there are 

a nv.rnber £ > o; a. sequence { ek} C E with ek ~ 0 as k ~ 0, and a consumer index 

i 0 E {1, ... , n} such that 

n m 

6£ + eh' c pio(x) + L cl pi(x)- L s.i- w for all large k E IN. (2.9) 
i#in j=l 

Since we obviotisly have the inclusion 

n n 

i=l i#io 

the ND\VQ condition implies the NDQ one while, as it is easy to see, not vice versa.. 
Note that for economies with only private goods and markets clear constraints-i.e., when 
W = (w, 0) E E1r x E9 in (2.1)-the NDQ condition was defined and applied in [17, 18] 
with discussing sufficient conditions for its validity that cover those from [6, 9] and other 
publications. Some extension of the NDQ condition has been recently introduced in [16] 
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for private good economies; see also [4, 5] for further extensions and more discussions. In 
[13, 21, 19, 20, 25, 35, 36] the reader can find qualification conditions for economies with 

public goods implying the NDQ condition from Definition 2.3. 

Observe that the NDQ condition is designed to handle Pareto optimal allocations of 

welfare economies while the ND\iVQ one is more appropriate for the study of weak Pareto 

optimality; see below. We refer the reader to [4, 5, 12] for some specifications of the NDWQ 

condition for weak Pareto optimal allocations and their relationships with l\llas-Collel's 

uniform properness [24] and its modifications for economies with private goods. 

To present next verifiable conditions ensuring the NDQ and NDWQ ones, we recall an 

important property of sets broadly used in the paper. A nonempty subset n c X of a 

normed space is epi-Lipschitzian around x E cl n (in the sense of Rockafellar [32]) if there 

are neighborhoods U of x and 0 of 0 E X, a number 'Y > 0, and a vector c E X such that 

0 n U +tO CD+ tc for all t E (0, "(). (2.10) 

If the set n is closed around x, property (2.10) with c "I 0 is equivalent to a local homeomor­

phic representation of n via the epigraph of a real-valued Lipschitz continuous functions; 
that as where the name comes from. It is worth mentioning that the closure of n is epi­

Lipschitzian around x E cl D if the set D enjoys this property around this point, but not 

vice versa .. Furthermore, a convex set n is epi-Lipschitzian around each of its point if and 
only if intO -:?0; see, e.g., [30, Proposition 1.25]. 

The following proposition gives sufficient conditions for the fulfillment of the NDWQ 

and NDQ properties of Definition 2.3. 

Proposition 2.4 (sufficient conditions for the validity of net demand constraint 

qualifications). Let (x, y) be a feasible allocation of the economy [ with pv.blic goods 

defined above. The following assertions holds: 

(i) AsS'u.me that the sets SJ, j = 1, ... , m, and 1¥ are closed around the points yj and 

f/1 fmm (2.1), respectively. Then the NDQ condition is satisfied at (x,Y) ~f there are E > 0, 

i E { 1, ... , n}, and a desirability sequence { eik} C E with eik ---+ 0 as k ---+ oo such that 

cl P;(x) n (xi+ dB) + eik c pi(x) for all large k E IN. (2.11) 

Moreover, the NDWQ condition is satisfied at (x,y) if a desirability sequence {eik} in (2.11) 
eJ:ists for each i E { 1, ... , n} with some E > 0. 

(ii) Assv.me that xi E clPi(x) for all i E {1, ... , n}. Then the NDWQ condition is 

satisfied at (x, y) if the set 

n m 

D.:= l:::Ptr)- I.::sj- w (2.12) 
i=l j=l 

is epi-Lipschitzian at 0 E clb.. It happens, in particular, when either one among the sets 

P; (x) fori = 1, ... , n, SJ for j = 1, ... , m., and W or some of their partial combinations 

in (2. 12) is epi-Lipschitzian around the corresponding point. 
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(iii) Ass·u.me that n > 1. The NDQ condition is satisfied at (x, fl) if theTe is a. consumeT 

·i0 E {1, ... ,n} such that pio(x) =f=. 0 and the set 

I; := L cl pi(x) (2.13) 
i#io 

·is epi-Lipschitzian at the point I:i#io iJ. It happens, in paTticulaT, when either- one among 

the sets Pi(x) faT i E {1, ... ,n} \ {io} OT some of theiT paTtial combinations in (2.13) is 

epi-Lipschitzia:n aTound the coTTesponding point. 

Proof. Similar to that in [31, Proposition 8.4] for economies with private goods. !:::. 

Note that condition (2.11) is a direct generalization of the desirability direction condition 

in [24], which is related to the classical "more is better" assumption for convex economies 

with only private goods and commodity spaces ordered by their closed positive cones having 

nonempty interiors. Furthermore, it is important to observe that we do not need to impose 

any assumption on the preference and/or production sets for the validity of both qualifi­

cation conditions in Definition 2.3 if the net demand constraint set H! is epi-Lipschitzian 
around w; this easily follows from Proposition 2.4(ii). The latter covers, in particular, the 

case of free-disposal Pareto optimum; see, e.g., [9, 20]. 

3 Tools of Variational Analysis 

This section contains some constructions and preliminary results from variational analysis 
and generalized differentiation that are widely used in this paper to derive extended versions 

of the second welfare theorem in nonconvex economies with public goods. We mostly follow 
the book [30], where the reader can find all the proofs and more discussions. 

3.1 Generalized Normals 

\i\Te start with constructions of generalized normals to subsets of Banach spaces. 

Definition 3.1 (generalized normals to sets). Let D be a nonempty subset of E. 

(i) Given :r: E D and c ~ 0, the SET OF €-NORMALS to D at x E D is defined by 

N~ ( r.) { * E* I L' (x*' u - x) } c: :r:; H := x E m;
1
sup llu _ :z:ll :::; c: , 

U---+X 

(3.1) 

wheTe Limsup stands for the Painleve-Kuratowski outer limit (1.1) and where the symbol 
n , , ~ ~ 

u---+ :r: means that u---+ x wzth u ED. When c = 0 zn (3.1), the cone N(x; D) := No(x; D) 
is called the FRECHET NORMAL CONE to D at :r:. 

( ii) Given x E D, the outer limit 

N(x; D) :=Lim sup Nc:(x; D) 
n_ 

X----+X 

dO 

·is called the l\IIORDUKHOVICH NORMAL CONE to D at x. 
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Note that construction (3.1) with € = 0 is also known in the literature as the prenormal 
or r-egular normal cone while (3.2) as basic, limiting, or M -normal cone. If Dis locally closed 
around x and the space E is Asplund (i.e., each of its separable subspace has a separable 

dual), then the normal cone (3.2) admits the simplified representation 

N(x; D):= Lim sup N(x; D). 
n" 

~J;--t:J; 

(3.3) 

The class of Asplund spaces is sufficiently large including, in particular, every reflexive 

Banach space and every space with a separable dual; see [30] for more details and references. 
If E = JRn and n is locally closed around x, representation (3.3) is equivalent to the original 
definition in [26] given by 

N(x; D)= Lim sup [cone(x- II(x; D))] 
x~x 

(3.4) 

via the Euclidean projector II(x; D) of X on D, where the symbol 'cone' signifies the conic 

hull spanned on the set in question. 

In the case of convex sets we have the following representations of generalized normals 

from Definition 3.1 showing, in particular, that both cones N(x; D) and N(x; D) under 

consideration extend the classical one in convex analysis. 

Proposition 3.2 (normals to convex sets). Let D be convex. Then given arbitrary 
i: E D and c ~ 0, we have 

Ne:(x;D) = N(x;D) +dB*= {x* E E*l (x*,x- x) ~ cllx- xll .for all X En}, (3.5) 

which implies the representations 

N(x;D) = N(x;D) = {x* E E*l (x*,x- x) ~ 0 .for all XED} (3.6) 

Note that in the general nonconvex case the first equality of (3.5) is replaced by 

Ne:(x; D) => N(x; D)+ dB*, c > o. 

In what follows we also employ the following useful formulas for representing generalized 
normals to products of arbitrary sets. 

Proposition 3.3 (normal cones to products of sets). Let D; C E;, i = 1, 2, be 

nonempty subsets of Banach spaces, and let X= (xl,X2) E Dl X D2· Then we have 

N(x;D1 x n2) = N(x1;D1) x N(x2;D2),. 

N(x; D1 x n2) = N(x1; D1) x N(x2; D2). 

The next important results taken from [30, Theorem 1.30] provide smooth variational 
representations of Frechet normals that play a crucial role in nonlinear price descriptions of 
decentralized eq1tilibria in the extended second welfare theorems for economies with public 

good established in this paper. Note that assertion (i) of Theorem 3.4 below holds in arbi­
trary Banach space, while assertion (ii) gives an essentially stronger description of Frechet 

normals under an additional geometric assumption on the space in question. 
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Recall that a Banach space E is Frechet smooth if there is an equivalent norm on E 

that is Frechet differentiable at any nonzero point. In particular, every reflexive space is 

Frechet smooth. Observe also that every Frechet smooth space is Asplund, and hence we 

can use formula (3.3) for representing our basic normals. 

Theorem 3.4 (smooth variational descriptions of Frechet normals). Let 0 be a. 

nonempty s·ubset of a Banach space E, and let x E 0. The following assertions hold: 
(i) Given x* E E*, assume that there is a function s: U -) lR defined on a neighbor­

hood of x and Prechet differentiable at x such that \7 s(x) = x* and s(x) achieves a local 

ma:~;imum relative to D at X. Then x* ,E N(x; D). Conversely, for every x* E N(x; D) 

there is a fv.nction s: E-) lR such that s(x) :::; s(x) = 0 whenever xED and that s(·) is 

Fr·echet differentiable at x with \7 s(x) = x*. 
(ii) Assume that E is Frechet smooth. Then for every x* E N(x; D) there is a concave 

Fr·echet differentiable fv.nction s: E -) 1R that achieves its global maximum relative to D 
·u.niqv.ely at i: and such that \l.s(i:) = x*. 

One of the major features of the 1\11-normal cone (3.2) is its nonconvexity, even in the 
case of rather simple nonconvex sets in finite dimensions, e.g., when Dis either the graph of 

the function l:rl at (0, 0) E JR2 or the epigraph of the function -lxl at the origin. This does 
not allows us to employ conventional techniques of convex and 'convexified' analysis, mainly 

based on convex separation theorems and related results, to the study and applications of 

the .M-normal cone and the associated constructions for functions and (single-valued and 
set-valued) mappings. Also the nonconvexity of (3.2) indicates that this normal cone is 

not dual/polar to any tangent cone, since polarity always implies convexity. Nevertheless, 

the .M-nonnal cone and the corresponding subdifferential and coderivative constructions 
enjoy full calc1tlu.s and other nice properties crucial in applications, mainly in the general 
framework of Asplund spaces; see [30, 31] and the references therein. These phenomena are 

based on advanced variational/extremal principles of modern variational analysis. 

In the next subsection we present the basic extremal principle in Asplund space used 
in this paper for deriving extended versions of the second welfare theorem for nonconvex 

economies with infinite commodities and public goods. 

3.2 Extremal Principle 

First we present and briefly discuss the required definitions and then formulate the under­

lying results on the extremal principle. The reader can find full proofs, more discussions, 

and references in [30, Chapter 2] and the commentaries therein. 

Definition 3. 5 (local extremal points). Let D1 , ... , Dn with n 2: 2 be nonempty sv.bsets 

of a normed space E. We say that x E nj= 10i i.s a LOCAL EXTREMAL POINT of the set 
system {01, ..• , On} ~t' there are sequences {an c E, i = 1, ... , n, and a neighborhood U 

of i: .such that a7 -) 0 as k -) oo and that 

n n (Di - a~') n U = 0 for all large k E IN. 
i=l 
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The system of sets having at least one local extremal point is called an EXTREMAL SYSTEM. 

As shown in [30, 31] and their references, the concept of set extremality encompasses 

various notions of optimal solutions to problems of scalar and vector /multiobjective op­

timization. On the other hand, a number of nonva.riational issues (e.g., calculus rules, 
stability, etc.) reduce to extremal systems of sets by using a. variational approach. In this 

paper we show that the above notions of Pareto optimal allocations in economies with public 

goods can be reduced to extremal points of appropriate set systems under the im.posed net 

demand qualification conditions for the cases Pareto and weak Pareto optimal allocations 

and with no such conditions for strong Pareto ones. 
The next theorem contains two versions of the extremal principle used in what follows. 

The first version is approximate, which does not require any extra assumptions but expresses 

the result. in terms of Frechet normals to the sets·n; at points nearby the local extremal one. 
The second version provides an exact extremality condition formulated via the 1\!I-normal 

cone at the local extremal point in question under certain additional assumptions on the 
sets !1;. These assumptions are automatic in finite dimensions while imposing a sufficient 
amount of "normal compactness" in infinite-dimensional spaces. In the sequel we use the 
following condition, perhaps the weakest one of this type needed for general systems of sets. 

Definition 3.6 (sequential normal compactness). Let .n c E1 x Ez be a set in the 

pmdv.ct of two normed spaces . We say that: 

(i) !1 is SEQUENTIALLY NORMALLY COMPACT (SNC) at x E !1 if for any sequences 

Ek J. 0, Xh- ---> X with Xk E !1 satisfying 

we hnve the implication 

(ii) n is PARTIALLY SNC (PSNC) at x with respect to the first component if for any 

sequences (o:k, Xk, xj/, xk2) from (i) we have the implication 

(iii) n is STRONGLY PSN c at X with respect to the .first component if for any sequences 

(Ek, :~:kl :rk1 , xk2 ) from (i) we have the implication 

If n is a locally closed subset of an Asplund space, we can equivalently put Ek = 0 
in all the relationships of Definition 3.6. Observe that, besides sets in finite-dimensional 
spaces, the SNC property holds for any subset of a Banach space that is compactly epi­

Lipschitzian (CEL) around x En in the sense of of Borwein and Str6jwas [8], which means 

that a singleton { c} in definition (2.10) of the epi-Lipschitzian property is replaced by some 
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compact set C C E. More subtle conditions of the Lipschitzian type ensuring tl1e PSNC 

and strong PSNC properties can be found in [30] 

Now we are ready to formulate both approximate and exact versions of the extremal 

principle proved in [30, Theorem 2.20 and Theorem 2.22], respectively. 

Theorem 3. 7 (extremal principle in Asplund spaces). Let x be a local extr-emal point 

of the set system {!11, ... , Dn} in an Asplund space E. Assume that all the sets !l; are locally 

closed around x. Then the following assertions hold: 

(i) For any e > 0 there are Xi E !1; n (x +dB) and x; E E* satisfying the relationships 

x; E N(x;; !1;) +dB* for all i = 1, ... , n, (3.7) 

n 

:Lxi = 0, (3.8) 
i=1 

n 

L llxill = 1. (3.9) 
i=1 

(ii) In addition to the assumptions above, suppose that all but one of the sets !l; as 

i = 1, ... ,n ar-e SNC at x. Then there are 111-norm.als 

x; E N(x;!l;) for all i = 1, ... ,n (3.10) 

satisfying the relationships in (3.8) and (3.9). 

It. is easy to see from Proposition 3.2 that for the case of two convex sets 0 1 and !12 

relationships (3.8)-(3.10) of the exact extremal principle reduce to conventional convex 
separation theorem, where the SNC requirement imposed on one of the sets is a far-going 
extension of the classical interiority condition, even in the case of convexity. Relationships 

(3.7)-(3.9) of the approximate extremal principle can be treated as a nonconvex counterpart 

of the celebrated Bishop-Phelps density theorem for convex sets with empty interiors; see 

[30, Section 2.1] for more discussions. 
Combining these observations with the fact that the extremal principle gives necessary 

conditions for set extremality and thus can be considered an "extended Lagrange nmltipliers 

rule," our extremal principle approach to the second welfare theorem provides a unification 

of the classical foundation approach and the Arrow-Debreu separation/decomposition ap­

proach to welfare economics in general nonconvex and nonsmooth settings. 

4 Approximate Versions of the Extended Second Welfare 
Theorem for Economies with Public Goods 

In this section we derive necessary optimality conditions for Pareto and weak Pareto optimal 
allocations of welfare economies with public goods given in certain approximate forms under 

the underlying NDQ and NDWQ qualification conditions. The essence of such results, 

which provide extended versions of the second welfare theorem for convex and nonconvex 
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economies, is that their formulations involve not only the optimal allocation in question, 

but also feasible allocations nearby. The results obtained in approximate forms hold with 

no extra assumptions on the initial data in infinite-dimensional commodity spaces. 

We present two versions of the approximate second welfare theorem for econoTnies with 

public goods mentioned in Section 1. Let us start with the first version, where (linear) 
nw.1yinal prices are formalized via Frechet normals. The results are given and proved in a 

parallel wa.y for Pareto and weak Pareto optimal allocations. 

Theorem 4.1 (extended second welfare theorem via approximate marginal prices). 

Let (i:, '[j) be a Pareto ( resp. weak Pareto) optimal allocation of the economy £ with pnblic 

goods. Assv.me that the commodity space E is Asplnnd and that the NDQ ( resp. NDWQ) 

conrhtion 1;s satisfied at (x, y). Then given any E > 0, there are a commodity bnndle 

(.1:,:y,·w) E f1;~ 1 clP;(x) X f1:;: 1clSJ X clW as well as maTginal prices (p~,p~) E E; X E; 
and P.~i E E; fori = 1, ... , n satisfying the relationships: 

n 

"'""" i* . * ~Pg =pg, 
i=l 

(p;,p~) E N(yj; ciSJ) +dB*, yj E yj +dB, j = 1, ... , m,, 

(p;,p~) E N(w; cl W) +dB*, wE 'Iii+ sD3, 

1- s/2 :S max {ll(p;,p;i)lliE{l, ... ,n}> liP~ II} :S 1 + s/2 

Proof. Define the product space X := En+m+l equipped with the sum norm 

In this case the corresponding dual norm on X* is given by 

Observe that the space X is Asplund as a product of Asplund spaces. 

( 4.1) 

(4.3) 

( 4.4) 

( 4.5) 

( 4.6) 

To prove both results formulated in the theorem (for Pareto and weak Pareto optimal 
allocations), we use the approximate extremal principle in the Asplund space X applied to 

the system of the two closed sets defined as follows: 

n m 

i=l j=l 

n m 

( 4.8) 

Let us check that (x,y,w) is an extremal point of the set system {D1,D2} defined in (4.7) 

and (4.8). Indeed, we have by (2.1) and (2.2) that (x,y,w) E f21 nn2. It remains to show 
that there is a sequence { ak} C X with ak --+ 0 as k --+ oo such that 

( 4.9) 
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in the case of the Pareto (resp. weak Pareto) optimal allocation (x, y) of [ under the 

fulfillment of the NDQ (resp. NDWQ) qualification requirements from Definition 2.3. 

Let s > 0 and { ek} C E be such that the corresponding condition (2.8) and (2.9) is 

satisfied. Form a sequence {ak} C X by 

ak := (0, ... , 0, ek) for all k E IN ( 4.10) 

and get by construction that ak ----; 0 as k ----; oo. Arguing by contradiction, sup])OSe that 

relationship ( 4.9) does not hold along a subsequence of k --> oo. Then we find triples 
(x:k, yk, wk) E 01 such that (xk, yk, wk)- ak E 02 for the corresponding numbers k E IN. It 

follows from the constructions in (4.7), (4.8), and (4.10) that 

x:ki E c1 pi(x) n (xi+ dB), i = 1, ... , n, 
ykj E cl SJ n (yJ + dB), j = 1, ... , 1n, 

wkEclWn(w+clB), and 
n m 

L ( x~i, x~) - L lj - wk + ek = 0 
i=l j=l 

fork E IN sufficiently large. Comparing (4.11) with (2.8), we have 

n m 

o E L:Pi(x)- :z=sj- w, 
i=l j=l 

(4.11) 

which contradicts the weak Pareto optimality of the allocation (x, y). The comparison of 
(4.11) with (2.9) gives us the inclusion 

n m 

0 E pin(x) + L cl pi(x)- L SJ- W, ( 4.12) 
i#iu j=l 

which contradicts the Pareto optimality of (x, y). Thus (x, y, w) is an extremal point of the 

set system {01, 02} in both cases under consideration. 

Applying the extremal principle from assertion (i) of Theorem 3. 7 to the system {01, 0 2 } 

at (i:,y,·uJ), for any c > 0 we find elements u = (x1, ... ,x11 ,y1, ... ,ym,w) E 01, v E 02, 

.1:* EX* with llx*ll = 1, and 

( 4.13) 

satisfying the relationships 

x* - u* E (c /2)JB*, -x* - v* E (c /2)JB*, 

xiExi+(s/2)JB for i=1, ... ,n, 

yj E yj + (s/2)JB for j = 1, ... ,m, 

wE w + (s/2)JB, and 
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1- c/2::; llv*ll::; 1 + s/2, llv* + u*ll ::; E. (4.14) 

Since the set D2 in ( 4.8) is a. linear subspace of X, we get by (3.6) and the choice of ( v, v*) 
in ( 4.13) the equality 

(v*, 8) = (v*, v) for all 8 E D2. (4.15) 

Let us now show that there are prices p; E E; and p;i E EZ for i = 1, ... , n such that 

the vector v* in (4.15) admits the representation 

( 4.16) 

where p; is given hy (4.1). Indeed, writing v* E (En+m+1)* as 

( 4.17) 

it is not hard to observe from ( 4.15) and the structure of the set D2 in ( 4.8) that 

n 

L(x~i,z) + (w~,z) = 0, 
i=l 

(:1:;i,z)+(y;.i,z)=O, (x;i,z)+(w;,z)=O forall i=1, ... ,n and j=1, ... ,m 

whenever vector z E E9 is chosen. The latter clearly gives that 

d •i - •.i - * f . ll l . . an x7l' - -y1l' - -w1l' 01 a suclt,J. (4.18) 

In the same way we get that 

n 

L(.T;':,z)+(y;.i,z)=O forall.fE{1, ... ,m} and zEE9 , 

i=l 

which implies the relationships 

as .i = 1, ... ,m,. (4.19) 

Taking into account that x;i, y;.i, and y;.i are in fact independent of i and j by ( 4.18) and 

( 4.19), respectively, and denoting 

?1* ·- ~·•i. 
1-'tr .- .(.,7f' 

* ·- *.i d •i ·- •i f . . - 1 p
9 
.- Yg , an p

9 
.- x9 01 2 - , .•• , n, 

we get from ( 4.17), ( 4.18), and ( 4.19) the claimed representation ( 4.16) of the normal vector 

v* from (4.18), where the public goods price p; satisfies (4.1). 

It follows from the first relationship in (4.14), representation (4.16), and the form of the 
dual norm ( 4.6) that the nontriviality estimates in ( 4.5) hold. From the second relationship 

in (4.14) we further get that 

-v* C u* + (s/2)JB* C N(u; Dl) +siB*, 
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which implies by (4.16) that 

Employing the first product formula in Proposition 3.3 to the set n1 in (4.7) and observing 

that all the above triples (.rei, yi, w) belong to the corresponding €-neighborhoods of the 

optimal one (x,'f},w), we conclude from the latter inclusion that all the relationships in 

( 4.2)-( 4.4) are satisfied, which completes the proof of the theorem. 6 

Observe that the equality relationship (4.1) between the marginal prices in the public 

goods sector confirms and extends the fundamental conclusion of welfare economics with 

public goods that goes back to Samuelson [35]: the marginal rates of transformation for 

public goods eqv.al to the sum of the individual marginal rates of substitution at Pareto and 

weak Pareto optimal allocations. 

Let us present a specification of Theorem 4.1 in the conventional case with no initial 

endowment of public goods, i.e., when w = vV7l" X {0}. 

Corollary 4.2 (approximate marginal prices for economies with no initial en­

dowment of public goods). Let (x, '!}) be a Pareto ( resp. weak Pareto) optimal allocation 

of the economy [ with Hf = H171" x {0}, W7l" C E7l", under the corresponding assumptions of 

Theorem 4.1. Then for any E > 0 there are (x,y,w) E TI~=l clPi(x) x I1j=1 cl S1 x c!W 

n8 well as marginal prices (p;, PZ) E E; x E; and PZ; E E; for i = 1, ... , n satisfying 
Telation8hip8 (4.1)-(4.3) and (4.5) with the replacement of (4.4) by 

Proof. Follows directly from Theorem 4.1 and Proposition 3.3. 

The next consequence of Theorem 4.1 gives a specification of the results in the case 

of conve:d.ty assumptions imposed on preference and production sets. In this case the 

marginal price relationships reduce, respectively, to global minimization (maximization) 

of the perturbed consumer expenditures (firm profits) over the corresponding preference 

(production) sets. This provides an approximate decentralized price equilibrium in convex 

models with no standard interiority assumptions. 

Corollary 4.3 (approximate decentralized equilibrium in convex economies with 

public goods). In the framework of Theorem 4.1, assv.me that the preference 8et8 cl Pi(x), 

i = 1, , .. , n, and the pmduction 8et8 SJ, j = 1, ... , m, are convex. Then for any c > 0 
the·re exi8t (x, y, w) E TI~=l cl Pi(x) x IJj cl SJ x cl W and prices (p;, p;) E E; x E; and 

P.~i E EZ for i = 1, . , , , n 8atis.fying relation8hips ( 4.1), ( 4.4), ( 4.5), and the following ones: 

((p;,p;i), (u, v)- (x~,x9 )) :::: -cll(u, v)- (x~, x9 )11 for all (u, v) E c!Pi(x), i = 1,, .. , n, 
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Proof. Follows from conditions ( 4.2) and ( 4.3) of Theorem 4.1 and the representation of 

.s-normals to convex sets given in Proposition 3.2. 6 

The next theorem, developing the corresponding results of [29, 31] to economies with 

public goods, establishes a decentralized price equilibrium of the convex type as in Corol­

lary 4.3 but for general nonconvex models. The "price to pay" for this is the usage of non­

lineaT prices in nonconvex models instead of conventional linear prices as in Theorem 4.1 

and Corollary 4.3. Note that the essence of nonlinear prices used here as well as in [29, 31] 

is different from that of [2] and related publications dealing with convex economies. 

Theorem 4.4 (decentralized approximate equilibrium in nonconvex models with 

public goods via nonlinear prices). Given any .s > 0, the .following assertions hold: 

(i) Let all the assumptions of Theorem 4.1 be .fu(filled .for a Pareto (resp. weak Pareto) 

optimal allocation ( x, fi) of the economy E. Then there exist a commodity bundle ( x, y, w) E 

IT~~ 1 cl pi ( x) x Ilj cl SJ x cl W, marginal prices (p;, p;) E E; x E; and p;i E E; as 

i = 1, ... , n satisfying relationships ( 4.1), ( 4.4), and ( 4.5) as well as real-valued functions 

f; as i = 1, ... , n and hJ as j = 1, ... , 1n + 1 on E that are Frechet differentiable at xi, yJ, 

and 'W, Tespectively, with 

( 4.20) 

and sv,ch that each Ji ,· i = 1, ... , n, achieves its global minimum over cl Pi(x) at xi, each 

h), j = 1, ... , m, achieves its global maximum over cl SJ at yJ, and hm+l achieves its global 

m,a;~;imv:rn oveT cl Hi at w, 

(ii) 1f' in addition to the assumptions in (i) the commodity space E is H·echet smooth, 

then the nonlineaT prices fi and hJ can be chosen to be Fn!chet differentiable on E and such 

that each fi, i = 1, ... , n, is convex and achieves its global minimum oveT cl pi ( x) uniquely 

at :r:i while each hJ, j = 1, ... , m, + 1, is concave and achieves its global maximum oveT cl SJ 

foT j = 1, ... , m and oveT cllV foT j = 1n + 1 uniquely at yJ and w, respectively. 

Proof. Take the marginal prices (p;,p;,pt*) satisfying all the conclusions of Theorem 4.1 

and then, by (4.2) and (4.3), find (JJ;,iJ;,fJb*) such that 

-(p;,p;i) E N(xi;clPi(x)), ll(~,iJ;;)- (p;,p;;)ll :<:; .s for i = 1, ... ,n, 

(4.21) 

Applying now the smooth variational descriptions of Frechet normals in ( 4.21) from asser­

tions (i) and (ii) Theorem 3.4, we complete the proof of this theorem. 6 
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5 Exact Versions of the Extended Second Welfare Theorem 

for Economies with Public Goods 

In this section we establish necessary optimality conditions for Pareto and weak Pareto 

optimal allocations of the nonconvex economy £ with public goods in the exact/pointwise 

form of the extended second welfare theorem under additional SNC assumptions in1posed on 

the sets involved in the description of the economy£. Note that SNC property and its partial 

modifications seem to be the weakest among compactness-like requirements needed for exact 

forms of the second welfare theorem. As mentioned in Section 3 and fully discussed in [30, 

Subsection 1.1.4], the basic SNC property is generally weaker that the CEL assumption 

imposed in the corresponding extensions [12, 17, 18] for economies with only private goods. 
In this way we get improvements of the second welfare theorem even in the classical settings 
of convex economies with both private and public goods. We also present a decentralized 

version of the exact second welfare theorem for nonconvex economies via nonlinear prices. 

Vve begin with the basic version of the second welfare theorem with marginal prices 

formalized via the 111-norma.l cone (3.2) at Pareto and weak Pareto optimal allocations. 

Theorem 5.1 (exact form of the extended second welfare theorem via marginal 

prices). Let (x, y) be a Pareto (resp. weak Pareto) optimal allocation of the economy£ with 

pv.blic goods satisfying the corresponding assumptions of Theorem 4.1. Assume in addition 

that the preference sets cl Pi(x) are SNC at xi for all i = 1, ... , n. Then there exist marginal 
. ( * *) E* E* d *i E* . 1 'th pnces JJ1n p

9 
E 11' X 9 an p

9 
E 

9 
as~= , ... , n w~ 

(p;,p~i) =F 0 for at least one i E {1, ... ,n} (5.1) 

satisfying the normal cone inclusions 

(5.2) 

(5.3) 

(5.4) 

and the underlying equality ( 4.1) for the prices associated with public goods. 

Proof. Vve know from the proof of Theorem 4.1 that (x, y, w) is an extremal point of the 

systems of sets {S11,S12} defined in (4.7) and (4.8) under the NDQ (resp. NDWQ) condition 
in the case of Pareto (resp. weak Pareto) optimal allocations of the economy £. To get 

a pointwise version of extended second welfare theorem, we can apply the exact extremal 

principle from assertion (ii) of Theorem 3.7. In this way we obtain, similarly to the proof 
of Theorem 4.1, the conclusions of Theorem 5.1 under consideration in the case of finite­

dimensional commodity spaces. However, in infinite dimensions this approach requires 

imposing the SNC assumption on all of the sets 

clPi(x),i=1, ... ,n; clSJ,j=1, ... ,rn; clW. (5.5) 
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In what follows we do not apply the exact extremal principle directly but pass to the limit 

from the results of Theorem 4.1 based on the approximate version of the extremal principle. 
This allows us to arrive at all the conclusions (4.1), (5.1), (5.2)-(5.4) of Theorem 5.1 under 
less restrictive SNC assumptions made; see also Remark 5.2 below. 

To proceed, take any sequence of Ek l 0 as k----; oo and find by Theorem 4.1 triples 

n 1n 

( h· he k)EIJ lPi(-) lllSj llr; 'tl ( k k k) (-- -) k :~_; , y , 111 C X X C X C 11 WI 1 X , y , W ----; X, 'Y, W as " ----; 00 

i=l j=l 

and prices (p;k,p;k,p;ik) satisfying all the conclusions of Theorem 4.1 for c = Ek. 
It follows from ( 4.5) that the price sequences {(p~,p~ik)} are bounded for all i = 1, ... , n. 

Taking into account that the commodity space E is Asplund and hence any bounded subset 
of E* is sequentially compact in the weak* topology of E*, we find (p;, p*i) such that 

along some subsequences, without relabeling. Setting 

n 

P* ·- ""' •i . g.- ~Pg 

i=l 

and passing to the weak* limit in the equality 

i=1, ... ,n, 

k E JN, 

(5.6) 

we get that p;k ----; p; as k ----; oo. Passing further to the weak* in the relationships ( 4.2)­
(4.4) with c = Eh, as k----; oo and using definition (3.2) of theM-normal cone allow us to 
conclude that the limiting prices (p;,p;,p~i) satisfy the relationships in (5.2)-(5.4). 

It remains to justify the nontriviality condition (5.1) under the SNC requirements im­
posed in the theorem. To proceed, assume the contrary, i.e., 

p; = 0 and p;i = 0 for all i = 1, ... , n. 

Then we have by (5.6) that 

This implies by the SNC assumptions imposed in the theorem that 

(5.7) 

It follows from (5.7) and (4.1) that IIP;kll ----; 0 ask----; oo. The latter combined with (5.7) 
contradicts (4.5) as c = Ek for large k E IN and thus completes the proof. !:::, 

Remark 5.2 (SNC assumptions). It follows from the proof of Theorem 5.1 and Defini­
tion 3.6(ii,iii) that the SNC requirements on the preference sets cl Pi(x) in the theorem can 
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he relaxed to keep the nontriviality condition (5.1) with taking into account the product 

structure of the commodity space E =En x E9 . Indeed, it is sufficient to assume that: 

• either one of the sets in (5.3) and (5.4) is strongly PSNC with respect of the first 

component while all the sets in· (5.2) are PSNC with respect to the second cmnponent at 

the corresponding points; 
• or all the sets in (5.2) are strongly PSNC with respect to the second component 

while one of the sets in (5.3) and (5.4) is PSNC with respect to the first component at the 

corresponding points. 

Observe that in the case of economies with only private goods both requirements above 

reduce to imposing the SNC property on one of the set in (5.5) at the corresponding point, 
which is the content of [31, Theorem 8.8]. 

Next we present two useful specifications of Theorem 5.1 for economies with public 

goods and additional structural requirements on their initial data. The first one concerns 

economies with a special structure of the net demand constraint set, which includes the 
case of 1:mplic1:t free disposal of commodities. 

Corollary 5.3 (excess demand condition). Suppose that in the setting of Theorem 5.1 
the net demand constraint set lV C En x E9 admits the representation 

li\1 = (wn,w9 ) + clr, (5.8) 

wheTe ( w", w9 ) E ell¥ and r is a nonempty convex subcone of En x E9 . There there 

o:re rna:rginal prices (p;, p;) E E; x E; and p;; E E; as i = 1, ... , n satisfying all the 

Telat·ionships in (4.1), (5.1)-(5.3) and such that 

n m 

( (p;,p~), 2:(x~, xt)- LYj- (wn, w9 )) = 0. (5.9) 
i=l j=l 

Proof. By Theorem 5.1 it remains to show that inclusion (5.4) for the special conic struc­

ture of Ti\1 in (5.8) implies the zem value of excess demand condition (5~9) at marginal prices, 
which is an economic manifestation of the complementary slackness condit1on in optimiza­

tion. To proceed, observe from relationships (5.4), (5.8) and the normal cone representation 

(3.6) for convex sets that 

(5.10) 

Hence ((p;,p;), (V:)- (wn,w9 )) 2 0. On the other hand, we have 

clue to the conic structure of r, which implies by (5.10) that ((p;,p;),w- (wn, w9 )) :::; 0. 
This yields (5.9) and completes the proof of the corollary. /::, 

In the case of economies with convex preference and production sets considered in the 

next corollary of Theorem 5.1, relationships (5.2) and 5.3-unified with those in (4.1) and 

(5.2) for prices corresponding to public goods-reduce to the classical consumer expenditure 
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m.inimization and firm profit maximization conditions of the second fundamental theorem 

of welfare economics. We are able, however, to significantly improve the classical interiority 

condition required for the validity of the second welfare theorem with infinite cornmodities 

in convex settings. As known from [30, Theorem 1.17], the SNC property imposed in our 

Theorem 5.1 is equivalent, in the case of convex sets with nonempty relative interiors, to 

their finite codimension. Furthermore, convex sets in Asplund spaces may be SNC even 

having empty relative interiors; see [30, Example 3.6]. The PSNC extensions discussed 

above in Remark 5.2 signify further far-going departures from the interiority condition. 

Corollary 5.4 (second welfare theorem in convex settings with no interiority 

requirements). In addition to the assumptions of Theorem 5:1, suppose that the sets 

cl P1(x) as i = 1, ... , n and cl Si as j = 1, ... , m are convex. Then there are prices (p;, PZ) E 

E; x E; and pZ1 E E; as i = 1, ... , n satisfying the relationships in ( 4.1 ), (5.1), ( 5.4), and: 

(5.11) 

(5.12) 

Proof. Follows from Theorem 5.1 due to the normal cone representation (3.6). 

Let us next present a decentralized counterpart of Theorem 5.1 via nonlinear prices. 

Theorem 5.5 (decentralized version of the extended second welfare theorem for 

nonconvex economies with public ·goods). Let (x,y) be a Pareto (resp. weak Pareto) 
optimal allocation of the economy [ under the corresponding assumptions of Theorem 5.1 

(or the relaxed PSNC assumptions in Remark 5.2), and let (p;, p;) E E; x E; and PZ; E E; 
rJ.s i = 1, ... ,n be marginal prices satisfying the conditions in (4.1) and (5.1)-(5.4). Then 

the following assertions hold: 

(i) There exist sequences of nonlinear prices fk = (ff, ... ,JJ:) and hk = (hl, . .. ,hk'+1) 

as well as sequences of suboptimal allocations 

n m n m 

(xk, Yk) E II cl pi(x) X II cl si with Wk := I::>~ -~ y~ E cl w 
i=l j=l i=l J'=l 

such that for all k E IN we have the decentralized relationships: 

• each Jt and h{ is Frechet differentiable at xL ~' and wk achieving its global minimum 
over cl pi(x) and its global maximum over cl Si and cl TV at these points fori = 1, ... , n, 

j = 1, ... , 1n, and j = m, + 1, respectively; 

• (xk, Yk> wk) ---+ (x, y, w) as k ---+ oo with the equilibrium price convergence 

i = 1, ... ,n, 

j = 1, ... ,nt, 

( *m+l *m+l) ·- "hm+l( ) w* ( * *) as k---+ 00. P1rk ,pgk .- v k Wk .---+ P1r,Pg 
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(ii) rf' in addition to the assumptions in (i) the commodity space E is Fnichet smooth, 

then the nonlinear prices fk and h{ can be chosen to be Frechet differentiable on E and 

such that each Jk, i = 1, ... , n, is convex and achieves its global minimum over cl Pi(x) 

u.niqu.ely a.t xi while each h{, j = 1, ... , m + 1, is concave and achieves its global maximum 

oveT cl SJ for j = 1, ... , m and oveT cl W for j = m + 1 uniquely at yJ and w, respectively. 

Proof. It follows by using the arguments similar to those in the proof of Theorern 5.1 with 

applying there Theorem 4.4 at each approximation step k E IN and taking into account the 

strong convergence of the derivatives in ( 4.20) for c: = C:k 1 0 as k --+ oo. 1::. 

Vl/e conclude this section with some discussions on possible developments and general­

izations of the results obtained for nonconvex economies with public goods. 

Remark 5.6 (further developments). Similarly to recent developments for economies 

with only private goods, we have the following modifications and generalizations of the above 

versions of the extended second welfare theorem for non convex economies with public goods: 

(i) Counterparts of the results above hold for strong Pareto optimal allocations and for 

the new notion of strict Pareto ones [4] under the corresponding modifications of the net 

demand qualification conditions defined in [4] for economies with only private goods. 

(ii) In [16] some refinement of the NDQ condition for Pareto optimal allocation was 

introduced and employed to the second welfare theorem for economies with only private 

goods. Analogs of this condition for strong and strict Pareto optimal allocations and the 

corresponding versions of the second welfare theorem were given in [5] for private goods 

economies. Following the scheme in [5], we can extend these conditions and results to 

nonconvex economies with public goods. 

6 Nonconvex Economies with Ordered Commodity Space 

This concluding section of the paper concerns nonconvex economies with public goods and 

onleTed infinite-dimensional spaces of commodities. First we specify the results obtained 

above for Pareto and weak Pareto optimal allocations and then establish their new coun­

terparts for the case of strong Pareto optimal allocations. 

Let E be an ordered Banach space with the closed positive cone 

E+ := { e E Ej e ~ 0}, 

where the standard partial ordering relation is denoted by "~' in accordance to the con­

ventional notation in the economic literature. The associated dual closed positive cone E+, 
which is the closed positive cone of the ordered space E*, admits the representation 

E~ := {e* E E*j e* ~ 0} = {e* E E*j (e*,e) ~ 0 for all e E E+}, 

where the order onE* is induced by the given one "~" on E. 
The next theorem provides efficient conditions ensuring the positivity of the marginal 

prices associated with both private and public goods in our extended second welfare theorem. 

The result is given for weak Pareto optimal allocations, and hence it holds for any stronger 

notions of Pareto optimality in the welfare economic model under consideration. 
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Theorem 6.1 (price positivity in the extended second welfare theorem for or­
dered commodities). Let (x, y) be a weak Pareto optimal allocation of the model£ with 

pv.blic goods, where E = En x E9 is an ordered commodity space. Suppose the fu(fillment of 

all the assumptions of Theorem 5.1 but the NDWQ condition and assume instead that each 

consv.mer i E { 1, ... , n} satisfies the following desirability condition: 

(6.1) 

Then there exist positive marginal prices (p;,p;) E E; x E; and p;i E E; as i = 1, ... , n 

for which all the conclusions (4.1), (5.1)-(5.4) hold. 

Proof. First observe that the desirability condition (6.1) implies the NDWQ condition by 
Proposition 2.4(ii). Furthermore, by [31, Lemma 8.12] we have the implication 

[D-E+ c D] ===? [N(e;D) c E~] (6.2) 

for an arbitrary closed subset D c E of an ordered Banach space and any e E n. Thus all 
the conclusions of Theorem 5.1 holds for the weak Pareto optimal allocation (x, y) of the 
economy £. Then it follows from (5.2) that p; 2: 0 and p;i 2: 0 for all i = 1, ... , n. This 
yields p; ;::: 0 by ( 4.1) and completes the proof of the theorem. 6 

Remark 6.2 (more on price positivity under free disposal or implicit free dis­
posal of commodities). Consider the following conditions of the free disposal type: 

• There is j E { 1, ... , rn} such that the lh firm satisfies the free disposal condition 

(6.3) 

• The net demand constraint set VV exhibits the implicit free disposal of con:unodities 

cl W - E+ c clli\1. (6.4) 

Then it follows from (5.3), (5.4), and (6.2)-(6.4) that we have (p;,p;) ;::: 0 provided that 
either condition (6.3) holds for some j E {1, ... , nt }, or condition (6.4) is satisfied. In par­
ticular (unifying the conclusions of Theorem 6.1 and this remark), for the case of economies 
with only private goods we have that p; ;::: 0 if either one of the consumers i E { 1, ... , n} 
satisfies the desirability condition (6.1 ), or one of the firms j E {1, ... , rn} satisfies the free 
disposal condition (6.3), or the implicit free disposal condition (6.4) holds. 

Next we derive refined versions of the extended second welfare theorem for strong Pareto 
optimal allocations of economies with public goods. In contrast to the corresponding results 

of Theorem 5.1 for Pareto and weak Pareto optimal allocations, the NDQ and NDWQ 
conditions may not be satisfied. Recall that the closed positive cone B+ C E is generating 

for E if E = E+- E+. The class of normed spaces ordered by their generating positive cones 
is sufficiently large including, in particular, all Banach lattice (or complete Riesz spaces); 
see, e.g., [12, 24] and the references therein. 
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Theorem 6.3 (extended second welfare theorem for strong Pareto optimal al­
locations). Let (x, y) be a strong Pareto optimal allocation of the economy £ with public 

goods, and let all the assumptions of Theorem 5.1, except the NDQ/NDWQ conditions, be 

satisfied. Suppose instead that the positive cone E+ of the commodity space E = Err x E9 

is genemting, that the sets Si and W are locally closed around yi and fii, respectively, and 

that one of the following conditions holds: 

• the .fr·ee disposal of commodities 

Si -E+ c Si for some j E {1, ... ,m}; 

• the implicit free disposal of commodities ( 6.4); 
• n > 1, and there is io E { 1, ... , n} with cl pio ( x) =f. 0 such that 

clPi(x) + E+ c clP;(x) for some i E {1, ... , n} \ { io}. 

Then there exist marginal prices (p;, p;) E E; x E; and p;i E E; as i = 1, ... , n 

satisfying conditions (4.1) and (5.1)-(5.4). Jf in addition assumption (6.1) holds for all 

i E { 1, ... , n}, then we have the price positivity 

(6.5) 

Proof. For definiteness, consider only the case of the implicit free disposal of commodities 
(6.4); the other two cases of the theorem are treated similarly. Observe first that 

n m 

i=l j=l 

is a bov.nda:ry point of the net demand constraint set W. Indeed, assuming the contrary 
gives us a pointe= (err, e9 ) =1- 0 such that w + e E W, which implies (x + e, y) is a feasible 
allocation of the economy £. This contradicts the strong Pareto optimality of ( x, y). Since 
·rv is a boundary point of TV, there is a sequence { ek} C E converging to zero and such that 

w + ek tf. W for all k E IN. (6.6) 

Taking into account that the cone E+ is generating and employing the the classical Krein­
Smulian theorem from [1 J, we find· a constant M > 0 such that for every e E E there exist 

· vectors u, v E E+ satisfying the conditions 

e=u-v and max{llull,llvii}::::;MIIell· 

The latter and the relationship in (6.6) apply the existence of sequences {uk} c E+ and 
{·rl} C E+ with ek = uk - vk and 

w + uk tf. W for all k E IN and uk ~ 0 as k --' oo. (6.7) 

Consider now the sets n1 and n2 defined in ( 4. 7) and ( 4.8), respectively, where the 
closure operation for Si and W can be omitted. Let us show that (x, fj, w) E n1 n n2 is an 
e:rtremal point of the system { f21, n2}. We need to find a sequence { ak} c En+m+l with 
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ak ---? 0 as k ---? oo such that the extrema.lity condition ( 4.9) is satisfied. To proceed, define 
ak := (0, ... ,uk) and suppose that (4.9) does not hold along this sequence {ak}, i.e., there 
are (:z:h',yk,wk) E !11 such that (xk,yk,wk- uk) E !12 for all k E IN. This yields that 

n m 

L (x;i,xZ)- LYkj = wk- uk E W, 
i=l j=l 

which implies that (xk,yk) is a. feasible allocation of the economy£. By the strong Pareto 

optimality of (x, y) we get that (xk, yk) = (x, y) for all k E IN and hence 

n m 

"" ( -i - ) "" -j + k L....- xn, x9 - L....- y u 

n m 

L (x;i,xZ)- LYkj +uk 
i=l j=l 

which contradicts (6.7) and thus justifies the extremality of (x, y, w). Applying now the 
e~dTemal principle from Theorem 3.7(i) to the system {!11,!12} at (x,y,w) and arguing 
as in the proof of Theorem 4.1, we obtain approximate marginal prices satisfying all the 
conclusions of the latter theorem with E = Ek l 0 as k ---? oo. Passing then to the limit as 
k ---? oo as in the prove of Theorem 5.1 under the SNC assumptions made allows us to arrive 
at the marginal prices (p~,p;,p;i) satisfying conditions (4.1) and (5.1)-(5.4). Finally, the 
price positivity (6.5) under the additional assumption (6.1) follows from Theorem 6.1. 6 
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