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Abstract Several forms of social learning rely on the direct or indirect evaluation of the fitness 

of cultural traits. Here we argue, via a simple agent-based model, that payoff uncertainty, that is the 

correlation between a trait and the signal used to evaluate its fitness, plays a pivotal role in the 

spread of beneficial innovation. More specifically, we examine how this correlation affects the 

evolutionary dynamics of different forms of social learning and how each can generate divergent 

historical trajectories depending on the size of the sample pool. In particular, we demonstrate that 

social learning by copying the best model is particularly susceptible to a sampling effect caused by 

the interaction of payoff uncertainty, the number of models sampled (the sample pool) and the 

frequency with which a trait is present in the population. As a result, we identify circumstances in 

which smaller sample pools can act as ‘cultural incubators’ that promote the spread of innovations, 

while more widespread sampling of the population actually retards the rate of cultural evolution. 

 

Social learning is the key process underlying the spread of cultural traits in a living population. The 

last thirty years have seen productive application of models inspired by population biology to 

specific questions of interest to anthropologists, archaeologists and ethologists, including: what 

evolutionary ‘problem’ social learning solves (Boyd and Richerson 1988, 1995; Perreault 2012; 

Plotkin and Odling-Smee 1982); the spread of innovations (Henrich 2001; Kandler and Steele 2009); 

the loss of cultural traits (Henrich 2004); the effect of population size on cultural complexity 

(Shennan 2001; Powell et al. 2009, 2010); and the rationality of human decision-making (Bentley 

and Ormerod 2012). The latter, in particular, points to a convergence of interest with economists 

interested in bounded rationality which, although more commonly investigated using the 

mathematical apparatus of game-theory, exhibits population thinking (Boyd and Richerson 2000) in 
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the explicit use of replicator dynamics to explore optimal strategies for copying with payoff 

uncertainty (Schlag 1998). In this paper we cross-cut some of these established themes by exploring 

the impact of population size/sampling and payoff uncertainty on the early stages in the spread of 

innovations. Our finding augments the results of some existing studies (e.g., Baldini 2012, 2013; 

Lake and Crema 2012), but also identifies circumstances in which the positive correlation between 

population size and the rate of cultural evolution (Henrich 2004; Powell et al. 2009, 2010; Shennan 

2001) is significantly modified by the joint effect of payoff uncertainty and sample pool size. We 

begin with a brief review of findings from the most immediately relevant recent literature on the 

value of social learning, the nature of payoff and success-biased social learning and how it is 

mediated by payoff uncertainty and population size and/or the way in which the population is 

sampled. 

The Value of Social Learning. The textbook definition of social learning is copying some 

cultural trait from another individual rather than independently developing it by trial-and-error. The 

extent to which copying from others is unambiguously separable from trial-and-error—also called 

individual or ‘asocial’ (Laland 2004)—learning is debated in terms of the underlying psychological 

mechanisms (Heyes and Plotkin 1989) and may vary by context (Mesoudi et al. 2014) and, indeed, 

the window of observation, since an individual can potentially copy a trait, modify it and then pass 

it on to another individual—so-called ‘guided variation’ (Boyd and Richerson 1985). Furthermore, 

it is now well understood that individual learning and social learning are interdependent at 

population level. Evolutionary epistemologists had long surmised that the function of social 

learning is to bring about adaptive responses to selective pressures over a timescale intermediate 

between (slow) natural selection and (fast) individual learning (Campbell 1974; Odling-Smee 1983, 
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but see Kendal et al. 2009 for a cautionary note), but it was Boyd and Richerson’s (1985, 1988) 

‘costly information hypothesis’ which identified the selective benefit to individual organisms of 

social learning: that it incurs a lower cost than individual learning, provided that the rate of spatial 

and temporal variation in the environment is not so great as to render the socially learned 

information useless. Rogers (1988) subsequently demonstrated, however, that social learning does 

not increase the average fitness of the population as a whole, because imitators are selected against 

once their lower cost of learning is offset by the benefit of more accurate environmental tracking, in 

other words, when the fitness of the two types is equal. Further analysis (Boyd and Richerson 1995) 

upheld Rogers’ conclusions, with the result that research is now focussed on the existence of mixed 

equilibrium distributions of both individual and social learners (e.g., Kendal et al. 2009; Rendell et 

al. 2010), and on the circumstances under which individuals should engage in social learning 

(Laland 2004; Kandler and Laland 2013; Kendal et al. 2005; Kendal et al. 2009). 

Social Learning and Payoff Signals. Even if beneficial social learning requires at least some 

individual learning, it is nevertheless clear that many behaviours are predominantly acquired by 

copying (Bandura 1977; Boyd and Richerson 1985). Laboratory experiments have revealed the 

extent to which human beings are cognitively predisposed to copy from others (Herrmann et al. 

2007) and the extent to which cultural norms reflect that predisposition has been demonstrated by 

comparative field studies (e.g., Rice and Feldman 1997; Hewlett et al. 2002). Furthermore, Henrich 

(2001) demonstrated that biased social learning that excludes individual trial-and-error is required 

to account for the ‘S-shape’ curves that describe the uptake of the vast majority of well-studied 

innovations. There has been significant interest lately in the explanatory power of models based on 

random social copying (Bentley and Shennan 2005; Bentley and Ormerod 2012) and we include 
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this in a variant of our model, but our principal interest is forms of social learning in which the 

selection of a cultural trait from a set of alternatives in a sample pool is biased by direct or indirect 

(Boyd and Richerson 1985) estimation of its ‘worth’. 

 Contemporary social learning nomenclature distinguishes ‘content’ bias from ‘context’ bias 

(Henrich and McElreath 2003). Content biases are those which arise from the intrinsic properties of 

a trait, either because learners have a psychological predisposition (either biologically or culturally 

determined) toward certain kinds of information, or because they engage in “more generalized cost-

benefit calculation” (Henrich and McElreath 2003: 129). Recently, Mesoudi (2011: 67) has 

suggested that all 5 of the characteristics of successful innovations identified by Rogers (2003) can 

be considered forms of content-bias. Traits are more likely to be adopted if they are: (i) 

advantageous relative to existing traits; (ii) compatible with existing traits; (iii) simple enough that 

their use is easily learned; (iv) testable, so that their advantage can be discerned; and (v) readily 

observable. Henrich and McElreath’s notion of “cost-benefit calculation” and Rogers’ “relative 

advantage” are both examples of what is elsewhere termed ‘payoff bias’ (Kendal et al. 2009) and is 

the form of social learning most commonly studied by economists (e.g., Schlag 1998). 

 Context biases arise when learners utilise cues in the learning environment as proxies for the 

‘worth’ of a trait: either its frequency or the characteristics of those individuals (models) who 

already possess that trait. Frequency dependent bias occurs when the probability of an individual 

copying the most common trait is higher (conformism) or lower (anti-conformism) than it would be 

if they randomly sampled the population of traits. Although frequency dependent social learning is 

in itself a low-cost form of learning, it is particularly susceptible to the trade-off, already discussed 

above, between low learning cost and the potentially high cost of failure to adequately track the 
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environment (Wakano and Aoki 2007; Kandler and Laland 2013). The other form of context bias is 

model-biased social learning, which entails treating the prestige (Henrich and Gil-White 2001), 

success (Baldini 2012; Henrich and McElreath 2003), similarity, or some other property of a 

potential cultural model as a proxy for the ‘worth’ of a cultural trait which that model possesses. 

 Although success bias is classified as a context bias because the learner evaluates a trait 

indirectly via its contribution to the reproductive fitness or material well-being of individuals who 

possess it (Baldini 2012; Henrich and McElreath 2003) there might be circumstances in which the 

result would not be very different from direct evaluation of the trait payoff, which is classified as a 

content bias. Indeed, the structural similarity of the two forms of bias is attested by the fact that the 

same game-theoretic analysis by Schlag (1998) is cited in both Henrich and McElreath’s (2003) 

discussion of success bias and Kendal et al’s (2009) discussion of payoff bias; in fact, there are no 

terms in Schlag’s model which would unambiguously differentiate the two forms of bias. Perhaps 

the best way of conceiving what is at stake in the attempt to differentiate payoff bias, success bias 

and prestige bias is to think in terms of a spectrum in which evaluation of the trait is increasingly 

prone to false inference about its true worth. Put another way, while all three biases entail paying 

attention to ‘payoff signals’, they differ in the likely correlation between the signal and the target 

trait owing to an increasing number of factors that may contribute to the generation of the payoff 

signal. Thus payoff biased social learning is vulnerable to stochasticity inherent in the use or 

performance of a trait, while success bias layers on top of this the possibility that the model is 

systematically better or worse equipped than the learner to use the trait. For example, a hunter might 

measure the advantage of a given target trait (e.g., the shape of an arrowhead) via the success (e.g., 

number of prey captured) of its bearer (cf. Mesoudi and O'Brien 2008a, 2008b). This will, however, 
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depend on the type of bow used, the strength and skill of the hunter and their knowledge of prey 

species, layered on top of stochastic factors that might equally affect both learner and model, such 

as the availability of the prey and sheer luck. All these factors will contribute to the payoff signal, 

so that two hunters with identical arrowheads will capture different numbers of prey. Prestige bias 

renders evaluation of the trait even more indirect because learners defer evaluation of the success of 

the model to others (Henrich and Gil-White 2001, Atkisson et al. 2012). For this reason, in our 

model we do not explicitly differentiate between payoff bias and success bias, preferring instead to 

focus on the magnitude of what, following Baldini (2012), Schlag (1998) and others, we simply 

label ‘payoff uncertainty’. 

 The Effect of Payoff Uncertainty Payoff uncertainty arises when the payoff signal is 

noisy, which may be because of inherent stochasticity and/or because the signal is also a function of 

the context in which it was generated, for example other cultural and biological traits possessed by 

the model, or the environment where the trait is manifest. A number of studies have modelled 

payoff uncertainty by assuming that a given cultural trait g generates a payoff signal p drawn from a 

parametric probability distribution f(p), such that the variance can be regarded as a measure of the 

correlation between the signal and the target trait. 

 Boyd and Richerson (1995) adopted a variant of this approach in a model designed to 

explore whether copying can increase the average fitness of learners by allowing individuals to 

learn more selectively in a changing environment. Boyd and Richerson modelled payoff uncertainty 

in the result of individual—rather than social—learning, such that the observed difference between 

the payoff of each of two traits is a normal random variable. In these circumstances learners can 

ensure greater accuracy by insisting on a greater difference between the observed payoffs before 
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adopting the trait with the higher apparent payoff, but this will also result in more cases where the 

difference threshold is not met and so the result of their individual learning is indeterminate, in 

which case they copy a randomly chosen individual. What Boyd and Richerson found was that the 

average fitness of a population at equilibrium in terms of the frequency of copying could be higher 

than that of a population of learners who do not copy, but only for particular probabilities of 

environmental change. 

 Boyd and Richerson’s model employed unbiased social learning, but more recently Kendal 

et al. (2009) described a model in which increasing the payoff associated with the novel trait 

allowed payoff-biased social learning to evolve in environments characterised by a higher 

probability of change. Although, as Baldini (2012) notes, Kendal et al’s model of payoff is not 

stochastic, there is nevertheless a sense in which the relative payoff of the two traits is at least a 

partial measure of the strength of the payoff signal. Baldini’s (2012) own model of the evolution of 

success-bias does employ stochastic payoffs, such that the successes associated with the two traits 

are independently and normally distributed. Baldini demonstrated that if the measure of success 

used by social learners is also that upon which natural selection acts to alter the frequency of social 

learning strategies, then increasing the strength of selection favours greater reliance on success bias 

since it effectively also increases the strength of the payoff signal by better differentiating the 

average payoffs of the competing traits. 

 Baldini’s model of success-bias assumes that the learner pays attention to the mean payoff 

of all the sampled models possessing each unique cultural trait, although the extent to which the 

learner actually favours higher mean payoffs is parametrised. This is a natural choice for a model 

extended to explore the evolution of success bias when the payoff signal is also that upon which 
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natural selection acts, but as he concedes, it is not the only possible success-biased learning rule. 

Other possibilities include copying the most successful model (copy-the-best), copying a model 

who is more successful than the learner (copy-if-better) and copying with a probability that is 

proportional to how much more successful the model is relative to the learner (copy-proportionally) 

(Laland 2004). 

 The copy-the-best and copy-if-better rules both suffer from an inability to differentiate 

between “lucky and certain (or highly probable) payoffs” (Schlag 1998: 142). Indeed, Baldini (2013) 

has recently shown how a social learning strategy based on copying the best individual (Schlag 

1999; Apesteguia et al. 2007) can occasionally lead to the spread of suboptimal traits if trait payoff 

distributions overlap, but the variance of the payoff is higher for the suboptimal variant. 

Furthermore, Lake and Crema (2012) have demonstrated that even if the variances are equal, payoff 

uncertainty can result in copy-the-best learning failing to identify a superior trait if it is rare, simply 

because the rarer the superior trait is, the more likely that at least one model possessing the inferior 

trait will have obtained a higher payoff. It turns out that this sampling effect reduces the optimal 

amount of payoff-biased copy-the-best social learning when there is payoff uncertainty because it 

causes the early loss of innovations, although Lake and Crema go on to suggest (but did not 

formally explore) that this effect is also a function of the fraction of the total population of potential 

models that is actually sampled (the size of the ‘sample pool’). 

 Copy-proportionally serves to mitigate false inferences arising from the ‘lucky’ realisation 

of improbable payoffs (Schlag 1998), as does copying the best average payoff of each cultural 

variant (as per Baldini 2012; see also Schlag 1999). The latter ‘copy-the-best-average’ algorithm is 

not affected by the difference in payoff variance so long as the sampling is truly random such that 
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models with higher payoff are no more likely to be used to evaluate the average payoff of each 

variant than other models. Although success-biased rules by which learners sample multiple models 

and then average the payoffs associated with competing traits have the advantage of suppressing 

false inference from improbable payoffs, Baldini (2012) has demonstrated that—perhaps counter-

intuitively—they are also biased towards rare traits, with the effect that they can perform less well 

than unbiased learning when the optimal trait is common. Baldini observes that the bias towards 

rare traits is a consequence of the fact that by considering the average payoff of each variant, the 

choice between them is effectively made on the basis of only one observation per variant. Thus, for 

example, if trait A is twice as frequent as trait B, but both have the same payoff distributions, then 

the probability of choosing between them on the basis of their average payoffs is nevertheless close 

to 0.5; consequently, the rarer trait B will be chosen with greater probability than its frequency, so 

altering the trait distribution in favour of the rarer trait. 

The Effect of Population Size.  The effect of population size on cultural evolution resulting 

from payoff/success-bias has been formally modelled in several studies (Henrich 2004; Powell et al. 

2009, 2010; Shennan 2001), with the general conclusion that larger populations promote cultural 

evolution by accelerating adaptive change and/or permitting the spread of more complex (harder to 

learn) cultural traits. A recent social learning experiment by Derex et al. (2013) claims to provide 

empirical support for the positive effect on cultural evolution of increasing group size, although 

Andersson and Read (2014) have disputed this, pointing out that the experimental result that larger 

groups produced complex artefacts more frequently than smaller groups could simply be a sampling 

effect. 

 Shennan (2001) presented two models of the innovation and spread of fitness enhancing 
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craft skills in different size populations. In both cases he modelled the fitness of an individual as the 

multiplicative sum of the states of each of a fixed number of craft attributes possessed by that 

individual. The states of these individual craft attributes could be altered by innovation, such that 

most innovations have relatively little effect but some have a significant effect (ibid. p6-7). In the 

first model craft attributes are passed vertically from parent to offspring, so that change in the 

frequency of any given attribute state is a function of the differential reproduction of the individuals 

who possess it and whose fitness is partially dependent upon it. The second model added oblique 

cultural transmission such that individuals probabilistically either acquire attribute states from their 

same sex parent or from a pool of k randomly chosen cultural models. If k = 1 social learning is 

effectively unbiased transmission, but if k > 1 the individual copies the most attractive individual 

among the k models, thus introducing a copy-the-best learning rule, albeit one that does not appear 

to include any evaluation of whether the model is actually better than the individual who is copying. 

This cultural transmission process occurs on a per-attribute basis, such that the most attractive 

individual among the k models is chosen with respect to the trait in question (ibid. p10). Using what 

he considered realistic parameters for hunter-gatherers, Shennan found that increasing the 

population size increased the long-term geometric mean fitness of the population, with the effect 

most pronounced for smaller sizes and less so for larger population sizes; this was true for both 

models. The effect of oblique transmission was to increase the absolute geometric mean fitness for 

any given population size (at least at the innovation rate for which explicit comparison is provided), 

but the positive effect of increasing population size decreases as the rate of oblique transmission is 

increased (ibid. fig 3). 

 Shennan’s broad conclusion about the positive correlation between population size and 
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cultural evolution was supported by Henrich’s (2004) model of the social learning of skills. Henrich 

modelled oblique transmission of skills in which individuals attempt to copy a skill from the most 

skilful individual in the population, in other words, using a copy-the-best social learning rule. He 

also analysed a variant which incorporated a fraction of vertical transmission, but this produced the 

same qualitative results. Importantly, and central to the claim that his model is “rooted in the 

cognitive details of social learning and inference” (ibid: 197), Henrich’s model uses the Price 

equation, thereby explicitly incorporating the effects of both cultural selection and errors in social 

learning. In particular, he modelled the latter by drawing the skill-level achieved by the learner from 

a Gumbel distribution, such that the copied skill level is most likely to be lower than the model’s 

skill, but that there is nevertheless some non-zero probability of it being higher; in other words, 

Henrich assumed that social learning is mostly imperfect, usually with deleterious consequences, 

but occasionally producing improvements. By varying the mode, α, and dispersion, β, of the 

Gumbel distribution, Henrich was able to separately parameterise the difficulty of learning a 

particular skill (its complexity) and the likelihood that those attempting to copy it make similar or 

potentially very different errors (in a sense ease or difficulty of innovating). Henrich analysed the 

size of the population required for the change in average skill to be positive, that is, for there to be 

“cumulative adaptive cultural evolution” (ibid: 202), and found that it depends on the ratio between 

the difficulty of learning and ease of innovating. Skills that are more complex (large α) and/or more 

difficult to innovate (low β) are only maintained or cumulatively improved in larger populations. 

 Shennan and Heinrich’s seminal contributions to understanding the importance of 

population size for cultural evolution have since been extended by Powell et al. (2009, 2010). 

Powell et al. were motivated by the same anthropological problem that initially motivated 
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Shennan’s 2001 model, the so-called ‘explosion’ of cultural complexity at the European Middle-

Upper Palaeolithic Transition. In order to explore the plausibility of demographic change as a prime 

driver of this transition, Powell et al. (2009) re-implemented Henrich’s 2004 model, albeit with 

three changes. First, and of least significance for our purposes, they simplified the treatment of 

errors in social learning by collapsing α and β into one parameter. Second, they eschewed Henrich’s 

simple oblique transmission model with one which they claim better captures a more realistic 

assumption that “cultural skills and behaviours are often first, and sometimes only, learned from 

parents” and also that “identification of the most skilled model will be inaccurate” (Powell et al. 

2009: supplementary material). This entails “vertical” unbiased copying of skills from individuals 

in the previous generation followed by ‘oblique” biased copying from individuals in the same 

generation (ibid.). The bias in the ‘oblique’ copying results from a social learning rule in which 

each individual attempts to copy a skill from among those models who have a higher skill-level than 

that which it inherited from the previous generation. The chosen model is selected probabilistically 

in proportion to the magnitude of the difference its skill-level and that of the learner. Third, Powell 

et al. added spatial structure to the population by dividing it into G groups, each of size N, placed in 

an environment. Individuals can migrate between groups at a rate which is a function of the density, 

D, with which the groups are placed in the environment. Powell et al. found that increasing the 

overall population size (a function of G, since N is fixed) does promote increased skill complexity, 

but the effect is most pronounced for smaller population sizes and is much diminished or even non-

existent for larger population sizes (ibid:fig. S2). In the latter case (G > 50) the principal 

determinant of population average skill-level is the amount of migratory activity. Experiments with 

a fixed and large number of groups demonstrated that the positive effect of increased inter-group 
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migration on skill-level is greater for more complex skills, in the sense that as skills become harder 

to learn so increasing the migration rate has an effect that is the equivalent of greatly increasing the 

size of a single unstructured population. Although Vaesen (2012) has argued that the assumptions 

made by Powell et al. mean that their model does not provide a sufficiently severe test of their 

substantive hypothesis, their results do nevertheless extend the set of specific learning rules for 

which it appears that there is a positive correlation between increasing population size and/or 

density (see Powell et al. 2009, fig. S1) and the rate at which payoff/success-biased social learning 

can drive cultural evolution. Furthermore, their study also points to the importance of population 

structure for this relationship. 

Combining Payoff Uncertainty and Sampling Effects. We suggested above that payoff 

uncertainty potentially affects any form of social learning that makes use of a payoff-signal to 

evaluate the worth of a cultural trait, whether that is content-biased social learning such as payoff-

biased learning, or context-biased social learning such as success or prestige-biased learning. In all 

these cases a simple stochastic model of payoff can be used to capture the fundamental structural 

issue, which is the strength of the correlation between the observed payoff signal and the true 

‘worth’ of the trait. As we have discussed, several studies employing such a model have 

demonstrated that payoff bias significantly affects the optimal amount of social learning in a range 

of different scenarios. Moreover, it is also now clear that the exact form of the social learning rule 

matters: copy-the-best can lead to false inferences when payoff uncertainty is high, whereas copy-

the-best-average payoff is more robust, but on the other hand favours rare variants. 

 We have also documented how a separate strand of theoretical modelling has demonstrated 

that population size and/or the way in which the population is sampled mediates the effect of 
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payoff/success-biased learning, and this appears to be true for both copy-the-best and proportional 

copying rules. Deleterious sampling effects caused by small population sizes are predicted to reduce 

the rate of adaptive cultural evolution and even lead to cultural trait loss. Larger populations, on the 

other hand, are predicted to support the social-learning of more complex traits even when the 

learning process is error prone, and increasing the migration rate in populations broken into 

subgroups also has this effect. It has recently been noted, however, that empirical studies do not 

unambiguously support these theoretical insights (Collard et al. 2013). There are various possible 

reasons for this, ranging from the effect of population size being swamped by other factors, to the 

empirical studies not adequately measuring the interacting as opposed to total (census) population. 

The possibility that particularly interests us here is that existing models of the effect of population 

size/sampling on cultural evolution do not adequately take account of the effect of payoff 

uncertainty on social learning. This is particularly problematic if Caldwell et al. (2014) are correct 

in their supposition that social learning of human technology invariably involves payoff uncertainty 

because of the spatio-temporal separation of tool manufacture from tool use. 

 While it is clear from existing studies that both payoff uncertainty and population 

size/sampling alter the effect of social learning on cultural evolution, it is striking that all the 

models reviewed above incorporate one or the other, but not both, so their interaction has not been 

fully explored1. Furthermore, in our discussion above we noted studies (Baldini 2012; Lake and 

Crema 2012) which provide reason to think that when payoff is uncertain the efficacy of particular 

forms of social learning can also be affected by the relative frequency with which a ‘better’ trait is 

                                                
1 Appendix D of Henrich (2004) presents a variant of his model in which selection of the cultural model is based 
on an indirect cue for the underlying skill, but this is not explored in the body of the paper and, in any case, he was not 
concerned with population structure. 
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present in a population. In particular, we have previously demonstrated that a rare better trait can be 

lost as a result of payoff uncertainty because of a sampling effect in which if enough models with 

the more common inferior trait are sampled it becomes probable that one of them will have a rare 

high payoff that is greater than the highest payoff exhibited among the smaller sample of models 

with the rare but better trait (Lake and Crema 2012). This effect suggests to us a mechanism which 

could reduce the benefit of larger population sizes, or of higher migration rates between subgroups, 

especially when the better trait is rare, as would be the case in the earliest stages of the diffusion of 

an innovation. In section 2 of this paper we describe a model designed to explore exactly that 

possibility and in section 3 we present results which confirm that there are indeed scenarios in 

which certain payoff/success-biased social learning rules are predicted to produce faster rates of 

cultural evolution in smaller rather than larger populations. Moreover, it seems that smaller 

communities within populations can act as initial ‘cultural incubators’ which promote the early 

survival of beneficial innovations, and we note the far-reaching significance of this in our 

concluding comments in Discussion and Conclusion. 

Modelling Cultural Transmission with Uncertain Payoff Signals 

We first describe a model of the cultural transmission of discrete traits whose payoff is variable, 

such that individuals have imperfect knowledge of the true worth of traits possessed by others in the 

population. Three variants of this model differ according to the learning rule employed, which is 

one of: random copying (unbiased transmission), copy-if-better and copy-the-best. We provide a 

commentary on aspects of the model and then go on to outline our experimental design. 

<B>The Model.</B> Consider a population of N individuals, each possessing a cultural trait g 

represented by an integer, and a payoff signal p that varies at each time-step and is a function of g. 
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We assume that neither g nor p affects the reproductive fitness of the agents (i.e. N is held constant), 

and that the simulation proceeds synchronically rather than sequentially (i.e. all agents execute each 

step before proceeding to the subsequent one). At each discrete time-step, t, all individuals 

undertake the following: 

 

1. Expression of the payoff-signal: a payoff signal pi is emitted by each individual as a 

random draw from a normal distribution with mean gi and standard deviation σ. We 

assume that σ is equivalent for all values of g. 

2. Social learning: With some probability z, each individual, i, engages in social learning 

which may result in it copying a trait from a model chosen from among k individuals 

who comprise the sample pool, Si. The choice of model and decision whether to adopt 

the model’s trait is governed by one of three learning rules (all individuals use the same 

learning rule in any given experiment)  

a. Random copying (RC). The focal individual, i, randomly selects a model, j, from 

the sample pool and adopts that model's trait irrespective of its properties or 

payoff. 

b. Copy-if-better (CIB). The focal individual, i, randomly selects a model, j, from 

the sample pool. It then compares its own payoff, pi with the model’s payoff, pj, 

and adopts the model’s trait only if pj > pi (otherwise it retains its original trait). 

c. Copy-the-best (CB). The focal individual selects the model, m, with the highest 

payoff, pm, among the k individuals in the sample pool Si. The focal individual 

subsequently compares its own payoff, pi, with that of the model and if pi < pm, it 
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copies the cultural trait gm of the model. 

3. Innovation. For the sake of simplicity we assume innovation to be incremental and 

beneficial, the latter solely in the sense that it entails a higher cultural selective 

advantage. Innovation occurs with frequency µ and consists of an update of cultural trait 

gi by an amount b so that at time t, gi(t) = gi(t-1) + b. Note that we allow for convergence, 

so two agents can, with probability µ2, independently reach the same g(t) if they also had 

the same g(t-1). 

 

As discussed in section 1, the stochasticity of the payoff signal (σ) is a direct proxy for the 

correlation between g and p. When σ=0, there is no uncertainty in the payoff, and agents are 

assumed to be capable of fully isolating the adaptive performance of a given cultural trait, and 

hence can correctly identify whether a variant is “better” or the “best,” depending on the social 

learning rule. With increasing values of σ, the correlation declines and consequently traits with 

lower g can occasionally be associated with a payoff signal that is higher than that associated with 

other traits that have higher g. 

 Random copying (RC; unbiased transmission) provides a benchmark expectation for a 

comparative assessment of the two social learning rules that incorporate selection. Random copying 

assumes a copying process in which only the frequencies of the variants determine their probability 

of adoption (Bentley et al. 2004). The copy-the-best rule (CB) involves a process of selection (the 

identification of the individual in the sample pool who has the highest payoff, p) and evaluation 

(comparison of the focal individual and model’s payoff signals) prior to copying. Copy-if-better 

(CIB) offers a compromise between undirected random copying and the strongly directed copy-the-
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best rule. On the one hand there is no directed selection of the model (which is picked at random 

from the sample pool), but on the other hand copy-if-better retains the element of evaluation in that 

the model’s trait is adopted only if it has a higher payoff, p, than the focal individual’s current trait. 

We noted in section 1 that Powell et al. (2009), doubting the realism of the copy-the-best rule, 

implemented a form of copy-if-better social learning in which individuals have an opportunity to 

copy a better skill with a probability proportional to the magnitude of improvement it represents. It 

could be argued that for Powell et al. the probabilistic copying provides a partial implementation of 

payoff uncertainty—in the sense that higher skill-levels are more likely to be perceived as worth 

copying—, but on the other hand, it does not ultimately capture the uncertainty about which models 

have higher skills. Our version of copy-if-better allows payoff uncertainty to dictate the accuracy of 

inference about which models have higher skills and is more weakly directed than Powell et als’ 

rule, but on the other hand it should be less susceptible to false inference from rare payoffs than 

both their rule and the copy-the-best rule. 

 An important element in our model is the parameter k, the number of individuals in the 

sample pool. This allows us to relax the assumption that social learning is unconstrained by 

physical or cognitive constraints (i.e. that cultural transmission is panmictic) since it implies that the 

sampling capacity of the focal individual is finite, perhaps as a function of cognitive capacity (cf. 

Dunbar 1993), or the result of cultural isolation caused by distance (cf. Premo and Scholnick 2011). 

Both Shennan (2001, second model only) and Lake and Crema (2012) parameterised the size of the 

sample pool, but neither subjected it to systematic exploration and Shennan was not, in any case, 

concerned with the effect of payoff uncertainty. Powell et als’ (2009) use of discrete groups 

(subpopulations) connected by migration is analogous to specifying finite sample pools with non-
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identical but partially overlapping membership, but again, they were not explicitly concerned with 

the relationship between sample pool size and payoff uncertainty. The parameter k can be loosely 

interpreted as the size of the strongly interacting social clique who learn from one-another, which 

potentially varies from the entire population of size N, to diads comprising just 2 individuals; 

however, in our formalisation we always exclude the focal individual (the one who is learning) from 

the sample pool, so k can take values from N-1 to 1. In this way our model assumes that the focal 

individual never attempts to copy from itself, although it can subsequently evaluate a candidate trait 

against its own trait (in copy-the-best and copy-if-better social learning). Consequently, model 

selection and evaluation (the decision to adopt a candidate trait) are explicitly treated as separate 

parts of the social learning process. 

Experimental Design. In this paper we present the results of three experiments. The first explores 

how different values of σ (uncertainty in the payoff signal), k (the size of the sample pool) and the 

social learning rule interact to affect the earliest stage of beneficial innovation. Our specific concern 

is to establish the probability that a rare beneficial innovation is lost from the total population, N, as 

a result of sampling effects. We achieve this by assuming that there is one innovator who has a 

superior trait and that all other individuals in the population share an inferior trait (with lower g and 

therefore lower mean p). For simplicity we assume that the innovation and the existing trait both 

have the same payoff variance, σ. In this first experiment we are not concerned with population 

sampling, so in all cases k = N - 1. In other words, the sample pool is simply the entire population 

minus the focal individual, and thus by altering k we are effectively altering the population size. In 

this way, this first experiment shares with Shennan (2001) and Henrich (2004) a principal interest in 
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the effect of overall population size2 rather than different sampling fractions. 

 The second and third experiments focus on how different values of σ (uncertainty in the 

payoff signal), k (the size of the sample pool) and the social learning rule interact to determine the 

long-term rate of cultural evolution. The latter is measured as the average value of g after a pre-

defined number of time-steps. In other words, we seek to identify conditions where, holding 

constant the rates of innovation (µ) and the amount of improvement (b), we see the fastest spread of 

beneficial cultural traits. Furthermore, in this case we abandon the assumption of panmixia and 

instead explore the effect of population sampling. We achieve this by implementing the model as a 

simple agent-based simulation in which we randomly place the agents in a bounded space and 

define the sample pool of each focal agent as its k nearest-neighbours (see figure 1). Thus, when k < 

N - 1 we model some degree of isolation by distance whereas when k = N - 1 we model a panmictic 

population. Note that modelling the membership of the sample pool as a fixed number of 

neighbours (rather than, say, those falling within some euclidean search radius) guarantees a fixed 

size sample pool per agent and, importantly for interpretation of N, that there are no completely 

isolated population subgroups. In experiment 2 we hold the total population, N, constant and vary k, 

hence we are no longer modelling the effect of population size per se, but rather the completeness 

with which the population is sampled. In that regard this second experiment is closer to some of the 

experiments conducted by Powell et al. (2009) than it is to the earlier studies of Shennan (2001) and 

Henrich (2004), although of course it is different in its very explicit treatment of payoff uncertainty. 

                                                
2 Although if one is concerned with absolute numbers it should be noted that both Shennan and Henrich report 
results for N/4, reflecting their shared assumption that individuals predominantly learn from same-sex parents (Henrich 
adds a further 20% reduction to reflect the reduced likelihood of learning from the oldest potential models). This is 
really just scaling for the purposes of anthropological comparison; indeed, although both Shennan and Henrich refer to 
N/4 as the “effective population” they do not appear to mean that in the technical sense of it being equal to the size of a 
Fisher-Wright population that would exhibit the same amount of drift. 
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In experiment 3 we vary both the census population size (N) and the sample pool size k. Table 1 

records the range of parameter values used in the three experiments. 

 

 [Table 1] 

Table 1: Model parameters and values used in the three experiments. 

Symbols Description Exp. 1 Exp.2 Exp. 3 

N Number of agents 2-151 1,000 
1,000, 2000, and 

4000 

σ Uncertainty of the payoff signal 0.5, 1 0-3 0, 0.4, 1.5, and 4 

z Frequency of social learning 1 1 1 

k 
Size of the sample pool of potential model 

agents 
N-1 1-500 1-500 

µ Innovation rate - 0.005 0.005 

c Convergent innovation rate 0, 0.005 - - 

b Amount of beneficial innovation 1 1 1 

 

[Figure 1] 
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Figure 1: Schematic illustration of how k is defined in experiments 2 and 3. Focal individuals are 

depicted as solid squares, with their respective pool of social teachers (the k nearest neighbours) 

shown as round dots of the same colour. Green dots represent the shared portion of the pool, while 

the grey dots are individuals which fall outside the sampling pool (N=1000, k=100). 

 

Results 

Experiment 1: Loss of a Beneficial Innovation. When the mode of social learning is random 

copying we can calculate the probability of the population losing the innovation, P(loss of B), as 

follows. First, recall that we assume that one individual has innovated a better trait, B, and all other 

N - 1 individuals possess an inferior trait, A. Recall also that we fix k = N - 1, which means that 

individuals do not copy themselves. The probability that the population loses B is the product of the 

probability, P(innovator loses B), that the innovator loses B by copying A and the probability, 
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P(others do not copy B), that none of the other N - 1 individuals copies B from the innovator. 

Considering each in turn: 

 

P(innovator loses B) = z, because the innovator will always loose B if it engages in unbiased social 

learning as all other individuals from which it can learn have trait A; 

 

P(others do not copy B) = (1-z/k)k, because the probability of any one of the k = N - 1 individuals 

who are not the innovator not copying trait B is 1-z/k. 

 

It follows that: 

 

P(loss of B) = z(1-z/k)k 

 

This solution does not, however, allow for the possibility that each of the individuals who has trait 

A might gain B, not by copying it from the innovator, but by convergent innovation of its own. 

Although this possibility might be remote (but perhaps less so for simpler traits), we take a 

conservative stance by incorporating it: if the innovation is lost even with the possibility of 

convergence then the probability of loosing it without convergence would be even higher. 

Assuming that copying trait B and independently innovating it are not mutually exclusive 

possibilities and that the probability of convergent innovation is c, then by the law of addition, the 

probability of any one individual who is not the original innovator acquiring the trait B is z/k+c-cz/k. 

 Substituting this revised formulation back into our original solution, we find the probability 
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of trait B being lost from the entire population to be: 

 

P(loss of B) = z(1-z/k+c-cz/k)k 

 

We did not identify an analytical solution for the copy-if-better and copy-the-best models, and 

hence we solved the probability of innovation loss via simulation3. Figure 2 highlights how the 

three models are affected by the size of the sample pool, k, and the uncertainty in the payoff signal, 

σ, assuming that gA=1, gB=3, and z=1. In general terms, the lowest values of P(loss of B) are 

achieved by copy-if-better social learning, while copy-the-best social learning can be better or 

worse than random copying depending on the degree of payoff uncertainty. Payoff uncertainty is 

detrimental to the retention of the optimal variants under both copy-the-best and copy-if-better 

social learning, although the magnitude of its negative effect is much larger for the former. The 

relationship between k and P(loss of B) also varies between the three models. Random copying and 

copy-if-better social learning show a stable relationship (albeit the former has a lower probability of 

loss when k < ca. 15), while in the case of copy-the-best learning we observe a continuous increase 

in P(loss of B) as function of k. In other words, random copying and copy-if-better social learning 

are almost unaffected by the size of the sample pool (with the latter minimally affected by payoff 

uncertainty), whereas copy-the-best social learning is strongly dependent on both payoff uncertainty 

and size of sample pool. When we allow for convergent evolution (fig.2-b), the deleterious effect of 

larger k on copy-the-best social learning is mitigated by the larger number of potential innovators. 

                                                
3 Source codes are available both on the online supplement material and on the following 
repository: http://dx.doi.org/10.5281/zenodo.17243. 
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This leads to a non-linear relationship between k and P(loss of B), with the highest values of the 

latter obtained for intermediate values of the former. 

 [Figure 2] 

Figure 2: Probability of losing a single optimal variant (B) as a function of k for different models of 

social learning: a) without convergent innovation; b) with convergent innovation (c=0.005). In all 

cases gB=3 and gA=1. Probabilities obtained from 10,000 simulations for each value of k, except for 

the random copying model. 

 

Experiments 2 and 3: Spread of Innovation through a Population. The results of the first 

experiment suggest that when social learning uses a copy-the-best rule, a decreased correlation 

between g and its corresponding payoff signal p (i.e. larger σ) can lead to smaller sample pools, k, 

better supporting the retention of rare, beneficial traits. However, small k also implies a smaller 
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chance that a beneficial innovation occurs within the social clique (sample) in the first place. There 

are thus two contrasting forces: low k promotes the retention of beneficial innovations, but 

decreases the probability of such innovations being present in the social clique; high k increases the 

probability of erroneously selecting suboptimal traits present at higher frequencies, but also 

increases the probability that a beneficial innovation is present (and is thus available to be copied) 

within the social clique. 

 We now explore the balance between these two contrasting forces in a spatially explicit 

population of N randomly distributed agents, where the sample pool size is determined by the local 

interaction radius, defined as the k nearest neighbours to each focal agent. High values of k allow 

wider interaction, increasing the probability that a sampled model possesses a beneficial mutation, 

while low values of k produce more localised interaction with a concomitantly lower probability of 

innovation loss. For experiment two, we use Latin hypercube sampling (McKay et al. 1979) to 

ensure uniform coverage of a parameter space comprising 30,000 unique combinations for each of 

the three models, with σ bounded between 0 and 3, k between 1 and 500, and fixing N to 1,000, b 

and z to 1.0, and µ to 0.005. In all cases we initialised the entire population with g=0, executing 

1,000 time-steps and recording the average final cultural trait value ḡ. Notice that the theoretical 

maximum of ḡ is 1,000, that is the number of time-steps plus the value of g at initialisation (0). 

 Figure 3 shows the relationship between the final average cultural trait and the size of the 

sample pool (interaction radius), k, for different ranges of payoff uncertainty, σ. For all parameter 

settings we find that random copying is the slowest social learning strategy, with ḡ ~ 5, which is 

what we expect given that the rate of innovation was 0.005 and the number of time-steps 1000. 

When σ is close to zero, meaning that payoff uncertainty is low (or put another way, that the 
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correlation between the payoff signal and the underlying trait is high), copy-the-best is by far the 

most effective social learning rule. Under these circumstances both copy-if-better and copy-the-best 

social learning are positively affected by k, albeit in different ways. Copy-if-better social learning 

exhibits a positive correlation with sample pool size only up to k=20; above this threshold we do not 

see any increase in the rate of evolution. On the other hand, copy-the-best social learning always 

benefits from increasing sample pool size and the curve reaches the theoretical maximum of ḡ when 

k is close to 500. Thus, when payoff uncertainty is low, larger sample pools promote the correct 

detection of the most successful variants and at the same time ensure the rapid diffusion of these 

across the entire population. 

 As payoff uncertainty increases, the performance of both copy-if-better and copy-the-best 

social learning deteriorates. In both cases there is an increased chance of accidentally adopting a 

suboptimal variant. However, in copy-if-better learning the sampling bias introduced by payoff 

uncertainty affects only the evaluation stage, and hence its effect is smaller than the in copy-the-best 

learning where instead the bias is also present in the selection of the social model. Indeed the 

difference between the rates of evolution of the two learning strategies decreases with increasing 

payoff uncertainty, such that once σ > 1.5, copy-if-better social learning actually yields higher ḡ 

than copy-the-best learning when k is large. In other words, increasing payoff uncertainty decreases 

the strength of cultural selection more severely in the case of copy-the-best than it does in the case 

of copy-if-better. With copy-the-best social learning we observe how the beneficial effect of a 

larger sample pool size, k, is counterbalanced by the increased chance of inadvertently copying the 

trait of an individual who by chance produced a high payoff value despite possessing a suboptimal 

variant. As a result, when payoff uncertainty is increased, a smaller sample pool can, counter-
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intuitively, promote a faster rate of cumulative cultural evolution because the benefit of minimising 

the risk of accidentally adopting suboptimal cultural traits outweighs the cost of reducing the 

potential pool of new beneficial variants. 

 [Figure 3] 

Figure 3: Effect of payoff uncertainty (σ), and sample pool size (k) on the rate of cumulative 

cultural evolution (average cultural trait value after 1,000 time-steps) for three social learning rules 

(red=copy-the-best; blue=copy-if-better; yellow=random copying; darker colour indicates higher 

payoff-uncertainty within each plot). 

 In experiment three we further explored the relationship between census population (N) and 

sample pool size (k), by running the copy-the-best and copy-if-better models with four settings of σ 

(0, 0.4, 1.5, and 4) and three settings of N (1000, 2000 and 4000). The results (fig.4) show that, 

overall, payoff-uncertainty, σ, is still the major driver of change in the rate of cumulative cultural 

evolution, ḡ, for both learning strategies. Census population size, N, is the second best predictor for 

the copy-if-better model, but in the case of copy-the-best social learning the relative effect of N and 

k on ḡ is a function of σ. When payoff uncertainty is low increasing either the population size, N, or 
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the sample pool size , k, or both, increases the rate of cultural evolution. In contrast, when payoff 

uncertainty is high, increasing the population size always increases the rate of evolution for any 

given sample pool size, but the effect of increasing the latter can be sufficiently deleterious that it 

nullifies the advantage of increased population size. 

 [Figure 4] 
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Figure 4: Effect of payoff uncertainty (σ), sample pool size (k) , and census population size (N) on 

the rate of cumulative cultural evolution (average cultural trait value after 1,000 time-steps) for 

copy-the-best and copy-if-better social learning rules. 

 

 

Discussion and Conclusion 

In section 1 we reviewed some of the extensive literature concerning the impact of different social 

learning rules and population size on cumulative cultural evolution. We then set out and reported 

the results of a model designed to investigate the less well explored question of how payoff 

uncertainty and population size/sampling might interact to promote or retard the social learning of 

initially rare innovations. Here we comment on the implications of our results in relation to the 

existing literature. 

 Beneficial traits often fail to spread through a population as a result of key events occurring 

at the earliest stage of adoption. The decision making of early adopters can potentially drive long-

term evolutionary trajectories, often leading to the permanence of suboptimal traits and the loss of 

more beneficial innovations. This is particularly likely to occur when it is difficult to measure the 

value of each variant and, consequently, the comparative advantage of a novel trait is hard to 

evaluate (Rogers 2003). The increased learning costs of cumulative knowledge (Mesoudi 2011), a 

decreased investment in individual learning (Whitehead and Richerson 2009), and early chance 

events (Greve and Seidel 2014) can all lead to the retention of suboptimal traits and slow-down in 

the rate of cultural evolution. Our results suggest that a copy-the-best social learning strategy 

centred on the imitation of a smaller subset of highly visible, successful individuals can also 
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generate a decrease in the rate of cumulative cultural evolution when there is payoff uncertainty. 

The dynamics we demonstrate closely resemble what economists refer to as survivorship bias 

(Elton et al. 1996), a particular form of sampling bias where only highly positive payoff signals are 

considered, hindering the correct evaluation of the full spectrum of a cultural trait. Indeed, our 

simulation experiments show that when payoff is highly uncertain and the sample pool of potential 

cultural models is larger there is bias favouring the retention of suboptimal traits present at higher 

frequency. As a direct consequence, newly introduced variants, which will always initially have a 

lower frequency, are at an intrinsic disadvantage relative to traits that are common and whose value 

is measured via payoff signals that have high variance. 

 We noted in section 1 that payoff bias, success bias and prestige biased social learning all 

entail paying attention to ‘payoff signals’, but they differ in the likely correlation between the signal 

and the target trait owing to an increasing number of factors that may contribute to the generation of 

the payoff signal. The shape of the payoff distribution we examined here assumes an additive 

interaction of its generative constituents (i.e. the target trait and everything else contributing to the 

payoff signal), but a multiplicative interaction yielding a skewed distribution (Limpert et al. 2001) 

is also possible. In this scenario the correlation between the target traits and its payoff signal would 

be reduced and the association between the two even harder to disentangle. Although there are good 

reasons to believe that in many behavioural domains the payoff signal is normally distributed 

(Frank 2009), some empirical data on prestige and success do indeed show a positively skewed 

distribution, for example income (Drăgulescu and Yakovenko 2001) and number of academic 

citations (Gupta et al. 2005). We suspect that such asymmetric and right-tailed payoff distributions 

would further strengthen the effect of survivorship bias, promoting the retention of suboptimal traits 
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even more frequently than already observed with our model based on normally distributed payoffs. 

For this reason, we expect success biased and prestige biased social learning effected by copying-

the-best to be even more susceptible to deleterious sampling effects than predicted by our model. 

 Our most striking result is that smaller, but not too small, social cliques can—perhaps 

counter-intuitively—promote the survival and spread of beneficial variants with copy-the-best 

learning strategies when payoff uncertainty is relatively high. As discussed in section 1, previous 

studies have demonstrated that cumulative cultural evolution requires a large enough population 

(Shennan 2001; Henrich 2004) or a high enough migration rate between subpopulations (Powell et 

al. 2009) to offset losses due to drift and the low fidelity of social learning. However, we also noted 

that empirical evidence does not unambiguously support this expectation (Collard et al. 2013) and 

our results suggest two possible reasons why increasing population size might not always be 

beneficial in the case of copy-the-best learning strategy. The results of our first experiment 

demonstrate that when there is payoff uncertainty increasing population size increases the 

probability of loss of a beneficial novel trait when it is very rare. To some extent this is the case for 

all three forms of social learning that we modelled, but is most pronounced for the copy-the-best 

learning rule. Although our results also demonstrate that (unsurprisingly) the deleterious sampling 

effect caused by the interaction between payoff uncertainty and population size can be offset by 

high rates of convergent innovation, we note Henrich’s (2004) finding that it is harder-to-copy 

and/or harder-to-innovate traits that are most dependent on larger population sizes for their 

maintenance and/or further evolution. The results of our second and third experiments demonstrate 

that when payoff is uncertain, the rate of cultural evolution resulting from copy-the-best social 

learning is not a monotonic function of sample pool size, but is maximised by social learning within 
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social cliques of intermediate size. This result is broadly consistent with recent network analysis 

(Montanari and Saberi 2010) which found that innovations spread faster in locally connected 

networks than in larger well-integrated social infrastructures. The deleterious effect of larger sample 

pool sizes on the early stages of innovation suggests that the way in which social learners sample a 

population can be as or more important than the variation in the overall census population size when 

payoff uncertainty is high. In fact, while it is true that increasing the census population can be 

expected to increase the rate of evolution if the sample pool size remains unchanged, when payoff 

uncertainty is high it may be possible to obtain an even higher rate of evolution by reducing the 

population size while simultaneously reducing the sample pool size (see fig. 4). Consequently, it 

appears that when payoff uncertainty is high the subdivision of the census population into 

overlapping “cultural incubators” can increase the rate of cultural evolution as much or more than 

simply increasing the population size. This cautions against predicting the rate of cumulative 

cultural evolution on the basis of population size alone. It also suggests (contra Powell et al. 2009) 

that increasing connectivity between subpopulations may not always increase the rate of cumulative 

cultural evolution. 

 Finally, we note that there are circumstances in which copy-the-best social learning is 

expected to produce a lower rate of cumulative cultural evolution than the less-strongly directed 

copy-if-better learning rule. Our results demonstrate that when payoff uncertainty is low copy-the-

best social learning leads to a higher rate of cultural evolution than either of the other learning rules, 

even as its efficacy declines with increasing sample pool size. However, as payoff uncertainty 

increases there comes a point where copy-if-better social learning out-performs copy-if-better 

learning for all except the very smallest sample pool sizes, because it is not subject to the 
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deleterious sampling effect that undermines copy-the-best learning as sample pool sizes increase. 

Empirical values for the sample pool size are difficult to estimate, although we might expect that for 

most part of human history it was comparatively small and close to our cognitive limits on the 

maintenance of stable social relationships (ca 150, Dunbar 1993). Consequently, for much of human 

history, copy-the-best social learning might have been more effective than other social learning 

strategies even despite its susceptibility to false inference in the face of payoff uncertainty. 

However, the situation might be different today, since the exponential development of information 

technology over the last 50 years has greatly increased the pool of potential social models (k), quite 

possibly creating scenarios beyond those we modelled here. Any concomitant slow-down in cultural 

evolution might not be visible in absolute terms (since the rate of cultural evolution could still be 

increasing given the larger N), but we would expect the effect of survivorship bias (and the 

consequent mis-evaluation of cultural traits) to become stronger, and the advantage of a copy-the-

best social learning strategy to greatly decrease relative to alternative social learning strategies in 

the presence of high payoff uncertainty. 
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