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Abstract 

Hereditary hemochromatosis (HH) is caused by a potentially lethal recessive gene (HFE, 

C282Y allele) that increases iron absorption and reaches polymorphic levels in Northern 

European populations. Because persons carrying the allele absorb iron more readily than 

non-carriers, it has often been suggested HFE is an adaptation to anemia. We hypothesize 
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positive selection for HFE began during or after the European Neolithic with the 

adoption of an iron-deficient high grain and dairying diet and consequent anemia, a 

finding confirmed in Neolithic and later European skeletons. HFE frequency compared 

with rate of lactase persistence in Eurasia yields a positive linear correlation coefficient 

of 0.86. We suggest this is just one of many mutations that became common after the 

adoption of agriculture. 
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Contrary to received wisdom (Gould 2000), the human genome is undergoing rapid 

evolutionary change (Hawks et al 2007; Hughes et al 2008; Perry et al 2007; Bryk et al 

2008), especially loci related to the major shift in diet during food domestication and later 

(McCracken 1971; Perry et al 2007; Cochran and Harpending 2009). We suggest the 

hemochromatosis mutation is another polymorphic artifact of the Neolithic Revolution. 

 Hereditary hemochromatosis (HH) is a potentially lethal disorder of iron 

metabolism based on a partially recessive gene (HFE; OMIM 235200. 6p22.2; 6p21.3) 

reaching polymorphic levels throughout western Eurasia, especially northwest Europe 

(Barton et al 2010; Enattah et al 2007; Merryweather-Clarke et al 2000; Cummings 

2000). The disorder is characterized by increased levels of iron absorption and a gradual 

accumulation of excess iron stores in the liver and kidneys occasionally approaching 

lethal levels in homozygotes (Britton 2000). Heterozygotes have also slightly elevated 

levels of iron (Bulaj et al 1996: Edwards et al 2000, inter alia) but penetrance for clinical 

symptoms of HH is low in either zygosity (Waalen et al 2002). 

 The two most prevalent mutant alleles associated with hemochromatosis are the 

C282Y and H63D variants (Merryweather-Clarke et al 2000). The former allele is related 

to development of HH when inherited in the homozygous state but double heterozygotes 

of the two mutants may also produce increased iron levels (Cartwright et al 1979). Males 

are more often affected than females (Loreal et al 1992; Bulaj et al 1996). Clinical 

hemochromatosis may also develop from high levels of alcohol intake with or without 

presence of the HFE allele (Adams and Agnew 1996; Scotet et al 2003). 

 While excess iron poses an occasional threat to health, anemia is a more common 

and serious worldwide health problem (Greer and Arber 2014), characterized by lethargy, 
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fatigue, weakness, poor concentration and dyspnea. Anemia affects the health of over 2 

billion humans (Zimmermann and Hurrell 2007), costing up to a 4% loss in world GDP 

(Horton and Ross 2003) and continues to be extremely common in developing countries 

(DeMaeyer and Adiels-Tegman 1985; Kohlmeier et al 1998). It is still observed in 

developed countries, such as the United Kingdom (Heath and Fairweather-Tait 2002), 

France (Hereberg et al 2001), Russia (Kohlmeier et al 1998) and the United States 

(Scholl 2005). 

 Mothers suffering anemia may be at risk for poor maternal outcomes or higher 

mortality (Brabin et al 2001a; Khan et al 2006). Babies born of anemic mothers are often 

underweight (World Health Organization 2008) and at risk for health problems (Stuart-

Macadam 1989; Brabin et al 2001b). In a meta-analysis of 92 studies it was shown iron 

supplementation resulted in increased newborn weight (Haider et al 2013). Low birth 

weight infants in Europe had a lower frequency of the C282Y allele than expected (Maier 

et al 1999). A counter-argument is that iron deficiency may serve as an adaptation to 

some infectious diseases such as malaria, plague and tuberculosis (Denic and Agarwal 

2007). 

 Toomajian and Kreitman (2002) discovered that the C282Y allele was a young 

mutation at high frequency; his team later suggested it was due to rapid positive selection 

in an iron-deficient dietary environment (Toomajian et al 2003). Williamson et al (2007) 

disagreed, noting that the HFE allele is located in the area of chromosome 6 where the 

genes defining histones important in DNA synthesis are situated; Hartfield and Otto 

(2011) agreed with their interpretation and noted the importance of finding a lethal gene 

caught by linkage in a sweep for a beneficial gene, namely histones. Although not 
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mentioned in either critical study, HFE is also closely linked with numerous HLA and 

other loci that must be the objects of selection (Apanius et al 1997). 

 Motulsky (1979) first suggested that the HFE mutation might be an adaptation to 

iron deficiency, and others have made similar suggestions (Rotter and Diamond 1987; 

Salter-Cid et al 1998; Fairbanks 2000; Toomajian et al 2003; Raddatz et al 2003).  Denic 

and Agarwal (1999) first proposed the Neolithic Revolution as the historical event 

responsible for the presence of HFE. Naugler (2008) later hypothesized that the specific 

cause of anemia was adoption of a high grain diet. Phytates present on the surface of 

whole cereal grains and other seeds chelate dietary iron and several other minerals, 

making them physiologically unavailable (Committee on Food Protection, Food and 

Nutrition Board, National Research Council 1973; Hurrell 2003), thus increasing the risk 

of anemia. 

 We accept Naugler’s phytate hypothesis but believe the total dietary shift of the 

Neolithic Revolution provides a broader bio-cultural context in which the incidence of 

anemia is expected to rise. While the increased ingestion of phytates decreases the 

physiological availability of ingested dietary iron, the partial substitution of iron-poor 

milk products for heme iron-rich meat as a major protein source further diminished iron 

ingestion. 

 The Northern European hunter-gatherer diet with traditional iron-rich high 

dependence on mammals and/or shellfish shifted to heavy dependence on grains and milk 

products in the Neolithic (Straus 1977; Cordain et al 2000; 2002). Red meat and many 

species of shellfish provide a rich source of highly digestible heme iron (U.S. Department 

of Agriculture, Agricultural Research Service. 2012). Conversely, bovid milk is virtually 
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devoid of iron (Fox 1955; Pennington et al 1987), and calcium present in bovid milk 

inhibits iron ingestion (Baynes and Bothwell 1990). 

 The combination of reduced iron intake from the partial substitution of milk 

products for meat, in combination with the negative effects of phytates on mineral 

absorption, later compounded by the effect of increased parasitism associated with higher 

agricultural population densities (Gonçalves et al 2003) must have reduced effective iron 

ingestion among European agriculturalists which is first seen commonly in Neolithic 

skeletal material (e.g., Wittwer-Bachofen and Tomo 2008). We suggest this confluence 

of events resulted in a new set of diet-based pressures that created an environment ripe 

for anemia to develop among the early farmers, thereby making advantageous a mutation 

increasing iron absorption. 

 Thus, we hypothesize a strong statistical association between the geographic 

distributions of the allele frequencies of the C282Y allele of hemochromatosis (HFE) and 

phenotypic lactase persistence (LP) as a measure evolutionarily derived of historic milk 

dependence and population-wide adoption of European style agriculture in general. 

 

Materials and Methods 

To test this hypothesis we compared the frequency of the major mutant allele associated 

with HH (C282Y), and the prevalence of phenotypic lactase persistence (LP). Our 

hypothesis is restricted to populations traditionally living in Eurasia and surrounding 

geographical zones. This would include Europe, proper, and nearby North Africa and 

Western and Southwestern Asia; four East Asian populations for which we have both 
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HFE and LP data were also included for the sake of completeness but have little 

influence on the statistical outcome.  

 HFE data for this study were taken from two major databases that include genetic 

data from European populations in Distante et al (2004) and Merryweather-Clarke et al 

(2000), as well as other sources published subsequently; a complete listing is found in 

Table 1. 

 Lactose tolerance data were taken from the University College, London, Global 

Lactase Persistence Association Database in May of 2013. 

(http//:www.ucl.as.uk/macelab/resources/glad/LP_phenotype and 

http//:www.ucl.as.uk/macelab/resources/glad/LP_genotype).  

 The HFE and LP geographic locations were linked as closely as possible. When 

HFE studies specified the study site, that location was used for comparison with the 

closest within-country location in the LP dataset. Our analysis relates specifically to 

populations most likely affected by or tested for the C/T (-13910*T) “European” allele of 

the LP gene. Much is known concerning the distribution of African and Arabian LP 

variants that have been well described in the literature, but there are too few available 

data regarding these variants from Europe to conduct a reliable analysis of their 

prevalence. Separate ethnic groups within countries such as the Saami, Basques and 

Roma (Gypsies) were considered independent of the national population. 

 In some cases there was only one datum for either the HFE or the LP frequencies. 

Where there were multiple studies done in a similar location we transformed the 

corresponding data to a single sample-weighted mean. For instance, for Northern Italians 

we had a single value for LP but numerous results for the HFE allele; these latter were 
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merged into a single sample-weighted value to compare with the sole LP value. In the 

case of Turks both the HFE and LP data were merged to present a single datum point for 

each (Table 2). Accumulating many small samples into a single value also had the 

advantage of reducing variability due to the random fluctuations inherent in small 

samples. 

 

Results 

There is a high positive linear relationship (r = 0.86; adjusted r2 = 0.68; t = 9.23; F = 

85.19, d.f. = 41, p < 0.0001) between the frequency of the C282Y allele of HFE and the 

prevalence of lactase persistence (Figure 1). The resulting regression equation is “HFE 

(%) = -1.2838+0.0812 (LP%)”. The alternative mutation involved in hemochromatosis, 

H63D, is unrelated to LP (r2 = 0.030; p=0.93).  In an attempt to relate grain consumption 

to C282Y frequencies we compared these to wheat per capita consumption rates in 

Europe (FAO 2007); the results demonstrated the lack of relationship between these rates 

and the HFE allele (r = 0.014) and also LP (r = 0.040). 

 Because we are comparing two genetic-based traits in the same species our results 

are obviously autocorrelated. To account for this statistical violation we followed the 

suggestion by Legendre (1993) and generated a series of partial correlation coefficients 

using 19 loci for which there are adequate national sample sizes for controls 

(Roychoudhury and Nei 1988). Despite many attempts at statistical correction the 

relationship between the C282Y allele and LP remained strongly positive and significant 

(Table 3). 
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Discussion 

Niche Construction Theory posits that populations are adapted to stable surroundings, but 

should a change occur in the selection environment, the initial response to stress will 

likely be cultural or behavioral. If the cultural response is inadequate the next level of 

response is genetic (Laland and Brown 2002; 2006:95). Lactase persistence is one of the 

most obvious and widely cited cases of niche construction (e.g., Gerbault et al 2011). 

Here we propose that for agricultural Europeans the failure to provide a strong behavioral 

response to anemia led to a genetic adaptation that eventually allowed for more 

successful milk and grain utilization. 

 The Agricultural Revolution of 11,000 years ago initiated the most dramatic 

change in the human diet since the adoption of a high meat regimen some two million 

years earlier (Cordain et al 2002).  At the time of the Neolithic Revolution a sudden 

dietary shift occurred, from the Paleolithic and Mesolithic hunter-gatherer foods with 

high independence on meat and/or shellfish (Stiner et al 2000; Cordain et al 2000; 2002; 

Eaton and Eaton 2000) that provide rich sources of iron (U.S. Department of Agriculture, 

Agricultural Research Service. 2012) to primary dependence on grain and milk products. 

The bio-archaeological record clearly demonstrates that human populations, European in 

particular, were highly dependent on meat or and seafood resources during the Late 

Paleolithic and were only slightly less so during for the Mesolithic (Price 2000; Richards 

et al 2005). These diets would have provided ample sources of iron and few sources of 

phytates so that iron-deficiency anemia would be expected to have been less common. 

 The switch to farming resulted in a shift in the diet from one higher in iron-rich 

foods to one higher in carbohydrates but poorer in iron. Bovid milk is virtually devoid of 
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iron (Fox 1955; Pennington et al 1987). Additionally, calcium present in milk inhibits 

iron intake and iron ingestion from bovid milk, but lactoferritins present in human milk 

adequately supply the child with iron at a level two and a half times higher than from 

cow’s milk (Hallberg et al 1992). 

 Fresh milk ingestion early in the Neolithic must have been difficult for adults but 

gradual increase of the lactase persistence (LP) allele, primarily the -13910 C>T mutation 

allowing production of lactase beyond childhood, would have facilitated ingestion. Early 

on when the LP allele was in low frequencies reduction of lactose content could be 

accomplished by transformation of milk to yogurts, cheeses, butter and alcoholic 

beverages (Kolars et al 1984). 

 Once adopted, the transition to agriculture was extremely rapid and complete in 

Britain (Legge 1981, 2008; Brown 2007; Schulting and Richards 2002) and elsewhere in 

Northern Europe (Whittle 1996; Price 2000; Richards et al 2003; Bogaard and Jones 

2007; Rowley-Conway 2011). Dates for the first evidence of dairying coincide with the 

first evidence of grain utilization in Britain. Both appear to have arrived around or 

slightly before approximately 4000 BC and increased in prominence for the next 

thousand years (Brown 2007).  Analysis of lipid residues in ceramic shards show 

evidence of fats derived from milk or milk products from the earliest Neolithic horizons 

(Copley et al 2003; Soberl and Evershed 2009). Later sites of Stanwick (Iron Age to 

Roman) and West Cotton (late Saxon to Medieval) show a substantial continuation of the 

dairying tradition (Dudd and Evershed 1998).  

 The archaeology of Central Europe paints a similar dietary history (Schibler 

2006). The Arbon 3 site in Switzerland, dated to the Late Neolithic (3384-3370 BC) also 



	  
Pre-‐print	  version.	  Visit	  http://digitalcommons.wayne.edu/humbiol	  after	  1	  October	  2015	  to	  acquire	  the	  
final	  version.	  

11	  

shows signs of milk lipid residues on pottery (Spangenberg et al 2006). Other 

archaeological evidence for early milk processing in Central Europe has been found in 

ceramic sieves of the LBK Culture dating earlier than 4500 BC that are similar to historic 

period strainers used to separate curd lumps from lactose-rich liquid whey (Bogucki 

1984; Sherrat 1981) and may be an indicator of milk processing to a lower lactose 

product. Earliest dates for milk processing comes from Northwest Anatolia and 

southeastern Europe dated at 6000 to 6500 BC (Evershed et al 2008). The hooks of 

Galium aparine (Goosegrass), a plant commonly found in LBK Neolithic sites (Colledge 

et al 2005), was used by ancient Greek shepherds and modern Swedes as sieves to filter 

milk (Grieve 1971:207),  

 Plant sources of ascorbic acid may ameliorate negative effects of iron depletion 

by phytates. However, as farming spread from Southwest Asia into Central and 

Northwestern Europe, an increasingly impoverished version of the original Neolithic 

Crop Package is carried out of the Fertile Crescent. Only two of the five original grains, 

three of the original five pulses and about a third of the non-crop/weed taxa are found in 

LBK sites. Colledge et al (2005) ascribe this depletion to a combination of inhospitable 

northern climate and cultural preference. Because of the difficulty in sampling biases, 

they also only use a present/absent datum for plants at each site. 

 Colledge et al (2005) also note the difficulty in ascribing dietary roles to other 

plant remains that they cautiously call “other plants or weeds.” Surely other plants were 

used either as foods or as medicines or ceremonially. Leafy plants must have been used in 

warmer seasons, but oxalates or other chelating compounds are commonly present in 

plants such as rhubarb or seeds such as acorns and may have been used sparingly. 
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Conversely, many plant parts contain ascorbic acid that would have facilitated absorption 

of iron (Grieve 1971; Hopping and Ruliffson 1966). 

 Both the LP and HFE mutations appear at or after the adoption of milk-based 

agriculture in the Middle East or Europe, though estimates vary widely. The European 

lactose persistence gene (-13910 C>T) is dated from 8000 or 10,000 years BP (Holden 

and Mace 1997) to about approximately 4310-6730 years BP (Itah et al 2009) and the 

HFE C282Y mutation at from 1000 to 4000 years ago (Thomas et al 1998; Rochette et al 

1999; Pietrangelo 2004; Ajioka et al 1997; Toomajian et al 2003) to over 6000 years ago 

(Distante et al 2004). Earlier, Raha-Chowdhury and Gruen (2000:87) found 23 mutations 

in 730 meioses, suggesting an age for the original C282Y mutation of approximately 200-

250 generations earlier, or roughly 6000+ years ago, assuming 30 years per generation. If 

HFE has been the subject of strong selection the more recent dates for mutation may be 

overly conservative (Maruyama 1974). 

 The earlier estimated mutation dates for HFE would coincide with the arrival of 

agriculture in Britain or its earlier existence appearance on the continent (James 1997; 

Cunliffe 2003; Thomas 2003) and the Middle East. Klitz, et al (1992) estimated the ages 

of the HLA-A and HLA-B complexes which are closely-linked with HFE and concluded 

that their spread corresponds chronologically with the spread of agriculture from the 

Middle East, approximately 10,000 years ago (Sokal et al 1991).  The extremely low 

frequencies of the C282Y allele in the Mediterranean and Near East argue against an 

early farming origin in these regions.  The H63D mutation is more widespread within the 

populations described, but exhibits a less structured distribution; it appears to be much 

older, having arisen several thousand years earlier (Rochette et al 1999; Candore et al 
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2002). If the H63D geographical distribution resulted from positive selection, its spread 

would be relatable to an event independent of and earlier than dairying. 

 Two major bioarchaeological skeletal indicators of iron deficiency increase 

dramatically in the Early Neolithic relative to earlier periods (Stuart-Macadam 1998). 

Both porotic hyperostosis and cribra orbitalia appear to have been almost completely 

absent in the central European Mesolithic, but are common in the early Neolithic 

(Wittwer-Backofen and Tomo 2008). A similar pattern is observed in the Eastern 

Mediterranean (Angel 1984), Iraq and Iran (Rathbun 1984), Estonia (Jankauskas and 

Palubeckaité 2006) and the Ukraine, even before evidence of dense settlements that 

would be have been associated with increased parasitization (Zvelebil and Lillie 

2000:81). Central European communities remained small for long periods and did not 

enlarge to the level of permanent towns until the Late Bronze Age, about 800-600 BC 

(Wells 1984:38). Urbanization did not arrive in the British Isles until the founding of 

Londinium by the Romans (Wells 2008:88-120). 

 These two bioarchaeological markers may indicate dietary deficiencies of either 

vitamin C (ascorbic acid) or iron. However, functionally the two nutrients are linked 

because vitamin C is important in iron ingestion and metabolism, and a decrease in 

vitamin C would leads to a reduction in the physiological bioavailability of iron (Prom-

U-Thai 2006). Addition of vitamin C to the diet reduces the chelating effect of phytates 

on iron metabolism (Macfarlane et al 1988). 

 Another trend in skeletal morphology from Upper Paleolithic to Neolithic in 

Europe is a steady decrease in stature (Meiklejohn and Babb 2011) and has also been 

reported as a general trend elsewhere (Ruff 2002), but because a number of competing 
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environmental stresses may result in a generalized decrease in stature, by itself this 

cannot be considered a definitive indicator of nutritional inadequacy (Brues 1959; Frayer 

1981). However, in New World populations the most significant skeletal factor 

associated with stature suppression is anemia (Steckel et al 2002). The role of iron in 

stature diminution is not known. Because iron is found in bone collagen rather than in the 

mineral portion of bone (Klepinger 1984; Ezzo 1994), it is likely to be involved in the 

growth process. Recently Cippa and Krayenbuehl (2013) found that Swiss male and 

female C282Y homozygotes on average were 4.3 and 3.3 cm taller, respectively, than 

age- and sex-matched controls suggesting an important role of hemochromatosis, and by 

implication, iron in growth. Iron is water-soluble and is rapidly leached from or absorbed 

into bone after death making paleo-osteological analysis of bone for iron content dubious 

(Klepinger 1984). 

 Parasites form a significant risk for iron loss and anemia in modern, densely 

settled populations (Kent 1986; Awasthi and Bundy 2007).  Early to Middle Neolithic 

settlements in Central Europe seem to have consisted primarily of isolated households or 

small groups of houses, but by Late Neolithic some settlements appear to have 

experienced a rapid growth in size and density (Bogaard 2004:11,13, 16-17). The 

incidence of parasitism as an aggravating factor would be expected to intensify through 

the Neolithic as population densities rose and settlements were inhabited for longer 

periods of time, resulting in an additional factor contributing to dietary stress (Holland 

and O’Brien 1997; Gonçalves et al 2003). The extent of this effect is difficult to measure, 

but should not be forgotten. However, paleopathological signs of anemia appear in the 

European Neolithic context well before settlement size and density could be considered 
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to have been major factors affecting the frequency of the skeletal indicators of dietary 

stress discussed above. (Zvelebil and Lillie 2000:81). 

 Iron may leach from cooking vessels and provide an indirect dietary source. 

While the Early Iron Age began in Central Europe at 600 BC, bronze and ceramic 

remained the primary materials for cooking vessels until after 400 BC when iron became 

readily available (Wells 1984:119, 135). Despite the widening use of iron vessels, 

indicators of anemia continued to be present in archaeological and European historical 

populations through the 19th century, as in continental Roman (Miritoiu 1992), British 

Roman and Medieval (Stuart-Macadam 1991; Wells 1982; Lewis 2002; Roberts and Cox 

2003; Hart and Holbrook 2011) and industrial (Molleson and Cox 1993; Lewis 2002) 

skeletal series with some pre-adult series showing cribra orbitalia frequencies between 50 

and 60% in children (Lewis 2002). 

 In the Middle East and Eastern Mediterranean cribra orbitalia values vary from 

0% in the Iranian Paleolithic to 100% in the Levant Neolithic; no post-Paleolithic sample 

had a value less than 8% and most were in the 20-40% range (Papathanassiou 2005). 

Greek Neolithic series have the cribra orbitalia and porotic hyperostosis lesions reaching 

prevalences of 40% to 50% (Papathanasiou 2003). A small Polish skeletal series yielded 

cribra orbitalia frequencies of 59% for the Neolithic and 44% for the Early Bronze 

samples (Glén-Haduch et al 1997). 

 Hemochromatosis is not found among East African herders who do utilize milk 

and, have a different LP lactase persistence mutation, thus possibly indicating an 

independent milking and dairying history. The frequency of anemia in these populations 

is not expected to be present at the levels observed in European and Europe-adjacent 
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populations, due at least in part, to the practice of mixing bovine blood with milk before 

ingestion (Little and Leslie 1999), thus fortifying iron-poor milk with a supply of iron-

rich blood. Here a cultural adaptation has eliminated the necessity for a genetic 

resolution, as predicted by Laland and Brown (2006:95; 2012). It appears that Africans 

were able to directly solve the anemia problem culturally while Europeans may not have 

done so. 

 While over three quarters of hemochromatosis patients are homozygotes for the 

C282Y allele, among Europeans the vast majority of alleles are carried by C282Y/wt 

heterozygotes, a ratio of approximately 23.5:1 (9.2/0.4). If double heterozygotes 

(C282Y/H63D) are included the ratio increases to 27.5:1 (9.2 + 1.8/.4) (Hanson et al 

2001). Thus, selection will have the most likely opportunity to act on the heterozygote 

phenotype. 

 HFE induces higher absorption of iron into the body than the wild-type (“wt”) 

allele. This is so in the homozygous state (282/282), double heterozygous state (282/63) 

and, to a lesser so extent, also in the heterozygous state (282/wt) (Cartwright et al 1979; 

Raddatz et al 2003).  

 Iron dietary absorption is similar in wt or heterozygote C282Y carriers, although 

the studies have included only very small sample sizes. Roe et al (2005) found no 

significant differences in most absorption measures but heterozygotes had consistently 

higher pre-test values (initial serum iron 11%, serum ferritin 13% and transferrin 

saturation13% higher) and increased post-test intake of Fe-57 (12%) and Fe-54 (8%); 

they noted that increasing sample size from their 30 subjects to 332 would yield 

statistically significant results. Heterozygotes also had a significantly increased ability to 
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absorb non-heme iron but not heme iron. In a meat-deficient diet non-heme iron would be 

the significant or major source of iron (Roe et al 2005). 

 Heterozygotes have serum iron concentrations 17 µg/dL higher and mean 

transferrin saturation 9% higher than wt/wt homozygotes. In both measures there is a 

progressive increase in values from wt/wt, H63D/wt, C282Y/wt, H63D/H63D, 

C282Y/H63D and C282Y/C282Y genotypes; the increase is especially noticeable in the 

last two genotypes (Bulaj et al 1997; Edwards et al 2000; Adams et al 2005). 

 Blood iron levels are highest in homozygotes but are also elevated in 

heterozygotes. Mean ferritin levels are the best estimate of body iron stores, (McDonnell 

and Witte 1997), and are closely associated with clinical manifestations (Bradley, 

Hadlow and Palomaki 1996). The proportion of ferritin levels are significantly elevated 

in heterozygous males 31 to 60 years old and females 31 to 90 years old. In other 30-year 

groups there are no significant differences between heterozygotes and wt homozygotes. 

Serum iron and transferrin saturation are both higher in heterozygotes for all age 

categories from 1 to 90 in both sexes (Cartwright et al 1979; Bulaj et al 1996). 

 Proportion of individuals with anemia (sub-normal serum ferritin concentrations 

of < 12µg/L) is lower in female heterozygotes than wt/wt normals (21% vs. 32%, 

respectively; p = 0.02). In males 2% of heterozygotes have low serum ferritin 

concentrations compared with 4% of normal, a result not statistically significant (p = 

0.44) (Edwards et al 2000; Bulaj et al 1996). Iron deficiency is less common in 

heterozygous women in screening tests conducted in California and Australia; (Rossi et al 

2000; Rossi et al 2001; Beutler et al 2000). 
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 Heterozygotes almost never present clinically but there are two possible effects 

that may be triggered by environmental factors, especially high levels of alcohol 

consumption. One is direct damage by an elevated iron concentration and the other is 

ailments associated with hemochromatosis homozygotes (hepatic fibrosis, steatohepatitis, 

diabetes, and arthritic pain and associated arthritic symptoms) (Barton et al 1994). 

 To summarize, heterozygotes have slightly but significantly elevated values of 

iron storage and circulation but little evidence of pathological sequelae. Fewer 

heterozygous women are anemic but men show no difference. 

 While increased iron intake uptake is almost universal in C282Y heterozygotes 

and homozygotes, today few die from symptoms related to hemochromatosis. During 

adulthood, especially after age 40, the excess iron accumulation in the tissues of the body 

can produce the serious or potentially lethal sequelae of classic hemochromatosis: 

including general fatigue, cirrhosis, liver fibrosis and cancer, cardiac disease, changes in 

pigmentation, orthopedic complications, and, in men, reduced libido and impotence 

(Adams et al 1997; Buettler et al 2002; Kelly et al 1984). Manifestation of these clinical 

symptoms is extremely variable presenting clinically in 1.2% of homozygotes or less 

(McCune et al 2002; Anderson et al 2004). Indeed, while increased iron intake is almost 

universal for all carriers, they rarely present clinically in either the homozygous (Beutler 

et al 2002) or heterozygous (Bulaj et al 1996) states. Thus, there is high penetrance for 

increased iron absorption, but low penetrance for manifestation of clinical symptoms 

(Adams and Barton 2007).  

 Severity of symptoms depends upon whether the mutation is found on an 

ancestral haplotype (Barton et al 1996; Piperno et al 1996), the presence of other 



	  
Pre-‐print	  version.	  Visit	  http://digitalcommons.wayne.edu/humbiol	  after	  1	  October	  2015	  to	  acquire	  the	  
final	  version.	  

19	  

modifying genetic factors (e.g., Merryweather-Clarke et al 2003; Pelucchi et al 2012; 

Livesey et al 2004) and environmental influences such as alcoholism (Adams and Agnew 

1996; Adams and Barton 2007). 

 Health-affecting symptoms seldom manifest before age 40, so that reproductive 

capacity is not negatively affected in the most productive years (Edwards et al 2000). The 

beneficial effects of carrying some variety of the HFE mutation are probably manifested 

in the early and reproductive years. Although survival even beyond the childbearing 

years can have a positive effect on evolutionary success (Hawkes 2003, 2004; Kaptijn et 

al 2010) selection preferentially favors attributes that directly influence generative 

capacity during reproductive years. These chronic conditions associated with 

hemochromatosis may have a negative influence late in life, but not until after the 

majority of the childbearing years have passed. Thus, a balance between the positive 

effects of increased iron early in life and negative effects of clinical manifestations in 

middle to late adulthood may be struck. 

 Despite the increasing risk of clinical sequelae with age, there may be no 

additional risk of death. Studies in France (Coppin et al 2003), Holland (Van Aken et al 

2002), Germany (Niederau et al 1996; Niederau et al 1985), Italy (Fargion et al 1992) and 

Canada (Adams et al 1991) found no change in proportion of HFE carriers in the 

population with advancing age and thus weak selection against them. 

 A problem with our analysis is the absence of LP data from major European 

countries. While we have HFE data for Norway, Iceland, Holland, Switzerland, Spain 

and Portugal, we have no LP information for comparison.  We may guess the appropriate 

values, but having the actual data would be extremely useful as a retest of our hypothesis. 
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Conclusions 

Both the C282Y HFE allele and LP phenotype are more common in Northwestern 

Europe where bovid dairying practices are ancient and widespread (Beja-Pereira et al 

2003) and reduced in southern Europe where fresh milk products are have historically 

been more difficult to preserve and less commonly consumed (Kindstedt 2012:12). 

 Dairying became a major food source in the European Neolithic. Before mutation 

of the LP locus, maximum utilization of unprocessed milk was not possible, but with the 

mutation of the LP locus it became so (Gerbault et al 2011). Unless artificially fortified, 

non-human sources of milk are deficient in iron. As soon as there is evidence of early 

dairying in Europe there is strong evidence of iron deficiency in skeletons of the same 

period, in the form of porotic hyperostosis and/or cribra orbitalia. As iron-deficiency 

anemia is a potentially life-threatening condition, we suggest that the C282Y mutation of 

the HFE gene, which induces higher absorption of iron into the body than the wild-type 

(“wt”) allele, was an advantageous change in the genome in the dietary context arising in 

the Neolithic and that this fact explains why HFE is so common in areas in which milk 

ingestion has been historically common. 

 In conclusion, despite ethnic-based hypotheses regarding the origin and spread of 

the HFE C282Y variant (Whittington 2006, Milman and Pedersen 2003, inter alia) we 

suggest the high prevalence of hemochromatosis is directly related to the adoption of 

dairying and phytate-heavy grains in the northern Europe diet, where genes increasing 

iron absorption were favored after foraging was abandoned for the lure of high 

carbohydrate production and the more productive utilization of milk. In addition, this 
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adaptation is potentially a balanced polymorphism, trading the advantage of anemia 

avoidance in youth and early adulthood with potentially lethal pathology late in life for a 

small proportion of affected individuals. 

 The genes associated with hemochromatosis and lactase persistence are only two 

of a number of loci that have been seriously affected by the adoption of agriculture. Other 

notable examples are the increased number of amylase repeats (Perry et al 2007) and milk 

proteins in cattle (Beja-Pereira et al 2003). It seems clear that there are many other falling 

ancestral dominos to be discovered in this evolutionary cascade precipitated by 

agriculture in Northern Europe and elsewhere (Cochran and Harpending 2009; Voight et 

al 2006; Wang et al, 2006; Weinberg 1999). 
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Table 1. List of samples along with sample sizes, allele frequencies (%) and references 

for the HFE (C282Y) allele used in the analysis.  

Population Sample 

Size 

C282Y 

Allele  

Frequency 

Reference 

England, Northeast 117 7.7 Grove et al 1998 

England, 

Birmingham 

368 6 Merryweather-Clark et al 1997 

 England,  

East Anglia, 

Norwich 

200 8.5 Willis et al 1997 

England, Oxford 330 10 Mullighan et al 1998 

Northeast Scotland, 

Aberdeen 

188 1.4 Merryweather-Clarke etal 2000 

Miedzybrodzka et al 1999 

Northern Ireland 404 9.9 Murphy et al 1998 

Orkney Islands 103 4.9 Merryweather-Clarke et al 2000 

Ireland 45 10 Merryweather-Clarke et al 1997 

Ireland 150 6 Merryweather-Clarke et al 1997 

Ireland 800 11.4 Merryweather-Clarke et al 2000 

Ireland 1119 10.1 Merryweather-Clarke et al 2000 

Ireland, Dublin 109 14 Ryan et al 1998 

Ireland, Dublin 411 10.9 Byrnes et al 1999, in Byrnes 2001 

Ireland, Dublin 100 10.4 Byrnes et al 2001 
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Finns, Jyvaskyla 38 0 Merryweather-Clarke et al 1997 

Finland, Kuopio 1361 3.4 Tuomainen et al. 1999 

Finland, North  173 5.2 Beckman et al. 1997 

Finland, Oulu 128 5.1 Parkkila et al 2001 

Denmark 876 5.6 Pedersen et al 2008 

Denmark, Aalborg 200 6.8 Steffensen et al 1998 

Denmark, Aalborg 219 8.2 Merryweather-Clark et al 1999 

Denmark, 

København 

37 9.5 Merryweather-Clark et al 1997 

Denmark, 

København 

420 6.2 Simonsen et al 1999 

Denmark, 

København 

9174 5.6 Ellervik et al 2001 

Denmark, 

København 

1889 5.7 Milman et al 2005 

Sweden 358 5.2 Merryweather-Clarke et al 2000 

Sweden, Stockholm 117 3.8 Cardoso et al 1998 

Sweden, Umea 206 7.5 Beckman et al 1997 

Swedish Saami 151 2 Beckmann et al 2001 

Germany, Bremen 53 1.9 Merryweather-Clark et al 1997 

Germany, Hsmburg 157 4.8 Nielsen et al 1998 

Germany, Frankfurt 153 2.6 Gottschalk et al 1998 

Germany, Frankfurt 251 3.6 Gottschalk et al 2000 
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Germany, Cologne 250 3.2 Höhler et al 2000 

Germany, Göttingen 500 4.6 Raddatz et al 2003 

Germany, Central 126 2.4 Hellerbrand et al 2001 

Germany, East 425 3.8 Merryweather-Clarke et al 2000 

Germany, East 115 4 Merryweather-Clarke et al 1997 

Germany, Bavaria 62 5.6 Merryweather-Clarke et al 1997 

Germany, 

Regensburg 

180 7.2 Braun et al 1998 

Austria, Salzburg 271 4.1 Datz et al 1997 

Austria 487 4.8 Kazemi-Shirazi et al 1999 

Czech Republic 139 5 Zdarsky et al 1999 

Czech Republic 100 4.5 Hrachovinova et al 1999 

Czech Republic, 

Prague 

254 3.9 Cimburova et al 2002 

Hungary 277 5.6 Tordai et al 1998 

Hungary, East 304 2.6 Raszeja-Szakony et al 1999 

Hungary, Budapest 994 3.4 Andrikovics et al 1999 

Poland, North 117 4.7 Wyszomirska et al 2008 

Poland, Central 871 3.1 Moczulski et al 2001 

Roma, Slovakia 367 4.9 Gabriková et al 2012 

Roma, Hungary 140 1.1 Szakony et al 1999 

Russia, Moscow 850 3.5 Potekhina et al 2005 
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Russia, Novosibirsk 150 3.7 Mikhailova et al 2003 

Russia, Obninsk 260 3.3 Khondrashova et al 2006 

Russia, Udmurts 46 0 Merryweather-Clark et al 1997 

Russia, Mansis 43 0 Mikhailova et al 2003 

Russia, Khantys 53 0 Mikhailova et al 2003 

Ashkenazim 381 1.4 Reish et al 2010 

Tunisia, Tunis & 

Nabeul 

97 0.5 Zorai et al 2003 

 Tunisia, Tunis 570 0.1 Sassi et al 2004 

Iran, Hormozgan 294 0 Karimi et al 2004 

Iran Fars (Shiraz) 506 0 Karimi et al 2004 

Iran, Tehran 104 9 Jazayeri et al 2003 

France, Paris 126 4 Mercier et al 1998b 

France, Amiens 991 5 Merryweather-Clarke et al 2000 

France, Toulouse 95 4.2 Borot et al 1997 

France, South 60 3.3 Aguilar Martinez et al 1997 

France, Catalans 166 2.1 Mercier et al 1998a 

France, Brittany 62 5.6 Mercier et al 1998a 

France, Brittany 410 7.7 Mura et al 1999 

France, Brittany 139 2.9 Moirand et al 1999 

France, Brest 7000 7.8 Merryweather-Clarke et al 2000 

France, Rennes 1000 6.5 Jouanolle et al 1998 
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France, West 254 9.4 Jézéquel et al 1998 

Italy, Naples 91 0.5 Merryweather-Clark et al 1997 

Italy, Rome 139 1.1 Piperno et al 1998 

Italy, South 458 1.7 Restagno et al 2000 

Italy, South 100 0 Campo et al 2001 

Sardinia 61 0.5 Candore et al 2002 

Sicily 106 0 Candore et al 2002 

Italy 1331 2.1 Restagno et al 2000 

Italy, Brescia 114 1.8 Costarelli et al 2007 

Italy, Piemonte 104 4.8 Candore et al 2002 

Italy, Piemonte 189 1.1 Longo et al 1999 

Italy, North 50 1 Carella et al 1997 

Italy, Torino 310 2.7 Restagno et al 2000 

Italy, Northeast 131 2.3 Borgna-Pignatti et al 1998 

Italy, Friuli 100 6 Candore et al 2002 

Italy, Emilia 

Romagna 

207 1.7 Candore et al 2002 

Italy, Cimbri 

(Verona) 

149 4.8 Pozzato et al 2001 

Italy, Genoa 130 4.2 Racchi et al 1999 

Italy, Milan 128 0.8 Sampietro et al 1998 

Italy, Milan 139 1.1 Piperno et al 1998 
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Italy, Modena 2100 1.6 Cassanelli et al 2001 

Italy, Modena 149 3.4 Pozzato et al 2001 

Italy, Monza 606 4.7 Salvioni et al 2003 

Greece 139 1.4 Merryweather-Clark et al 1997 

Greece 158 0.3 Papanikolaou et al 2000 

Greece 196 0.9 Papanikolaou et al 2000 

Greece, 

Alexandropoli 

264 0 Papazoglou et al 2003 

Greece, Cyprus 57 0 Merryweather-Clark et al 1997 

Turkey 31 0 Merryweather-Clark et al 1997 

Turkey, Istanbul 158 0 Barut et al 2003 

Turkey, Istanbul 138 0.7 Yönal et al 2007 

Turkey, Cyprus 39 0 Merryweather-Clark et al 1997 

Estonia, West 158 5.1 Mikelsaar et al 1999 

Estonia, Southeast 92 4.3 Mikelsaar et al 1999; Pärlist et al 

Estonia, Saaremaa 96 2.1 Mikelsaar et al 1999; Pärlist et al 

Estonia, Hiiumaa 96 1.6 Mikelsaar et al 1999; Pärlist et al 

Estonia, Hiiumaa 442 3.5 Mikelsaar et al 1999 

Basques, France, 

Biarritz 

92 1.6 Mercier et al 1998a 

Basque, Spain 28 3.6 Merryweather-Clark et al 1997 

Basque, Spain 51 2 Baiget et al 1998 
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North India 275 0 Gurjeewan et al 2005 

Japan, Fukuoka 252 0 Sohda et al 1999 

Taiwan, Taipei 596 0.3 Chang et al 1997 

China, Linhai 395 0 Lin et al 2007 

Table 2.  Samples used in the regression analysis – The C282Y values and the 

corresponding Lactase Persistence values. Statistical software used to analyze was 

StatPlusMac 2009, Build 5.8.3.8. 

Population Number 

of Studies 

Sample 

Number 

C282Y 

Frequency (%) 

Lactase 

Persistence 

(%) 

     

England 4 1015 8 95 

Scotland 2 1197 10.6 95 

Northern Ireland 1 404 9.9 100 

Ireland 7 3636 10.5 96 

Orkney Islands 1 103 4.9 90 

Finland 5 1700 3.6 84 

Denmark 8 18835 5.7 96 

Sweden 4 931 5.8 93 

Saami 1 151 2 31 

North Germany 3 919 4.7 91 

Central Germany 5 1280 3.7 86 

East Germany 2 540 3.8 78 
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Bavaria 2 242 6.8 86 

Austria 2 758 4.5 81 

Czech Republic 3 493 4.3 82 

Hungary 3 1575 3.6 63 

North Poland 1 117 4.7 71 

Central Poland 1 871 3.1 63 

Roma 2 507 3.9 44 

Russia, Russians 3 1260 3.5 42 

Russia, Udmurts 1 46 0 41 

Russia, Mansis 1 43 0 28 

Russia, Khantys 1 53 0 29 

Ashkenazim 3 381 1.4 16 

Tunisia 2 667 0.2 16 

Iran 3 904 0 14 

North France 2 1117 4.9 78 

South France 3 321 2.9 43 

France, Brittany 6 8865 7.6 78 

South Italy 7 3112 1.5 52 

Sardinia 1 61 0.5 14 

Sicily 1 106 0 29 

North Italy 17 8614 3.1 49 

Greece 5 814 0.5 13 
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Turkey 4 366 0.3 31 

Estonia 4 442 3.5 50 

Basques 3 171 1.5 89 

North India 1 275 0 55 

Thailand 1 154 0 2 

Japan 1 252 0 28 

Taiwan 1 596 0.3 12 

China 1 395 0 8 
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Table 3. Correlations of HFE allele C282Y and Lactase Persistence partialled by 19 other 

loci for which there are at least 16 comparable samples. Chromosome loci from OMIM; 

Table numbers from Roychoudhury and Nei (1988). 

 

Type Locus Allele Sample 

Number 

Chromosome 

Locus 

Rp 

Value 

Significance Table # 

        

Enzyme ACP1 

(1) 

a 22 2p25 .726 *** 2 

 ADA 

(2) 

1 24 20q13.11 .832 *** 6 

 AK 1 

(3) 

1 24 9q34.13 .758 *** 7 

 C1 (4) u 18 3q25.2 .84 *** 20 

 ESD 

(5) 

1 22 13q14.2 .695 ** 29 

 GPT 

(6) 

1 26 8q24.3 .921 *** 42 

 GLO1 

(7) 

1 19 6p21.3 .653 ** 47 

 PGD 

(8) 

A 22 1p36.2 .744 *** 64 
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Protein PI (9) M 20 14q32.1 .835 *** 77,77.1 

 Gc 

(10) 

Gr2 28 4q12 .794 *** 104,104.1 

 HPA 

(11) 

2 25 16q22.1 .649 *** 105,105.1 

 BF 

(12) 

S 26 6p21.3 .902 *** 127 

 T (13) C 26 6p22.2 .807 *** 136 

Blood 

Gp. 

ABO 

(14) 

O 25 9q34 .8 *** 141 

 LU 

(15) 

Lu(a) 16 19p13 .686 ** 154 

 MNS 

(16) 

MS 23 4q28 .773 *** 156 

 P (17) P1 22 3q25 .636 ** 158 

 RH 

(18) 

cde 23 1q36.2 .558 ** 159 

Misc PTC 

(19) 

T 20 7q24 .765 *** 217 

 

** = < .01 

*** = < .001 
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(1) Acid Phosphotase (ACP1); (2) Adenosine Deaminase (ADA); (3) Adenylate Kinase 

1; (4) Cholinesterase (serum) 1; (5) Esterase D (ESD); (6) Glutamic Pyruvate 

Transaminase (GPT); (7) Glycoxalase I (GLO1); (8) Phosphogluconate dehydrogenase 

(PGD); (9) Alpha-1 Antitrypsin (PI); (10) VDBG (Gc); (11) Haptoglobin, alpha (HPA); 

(12) Properdin Factor B (BF); (13) Transferrin; (14) Landsteiner ABO; (15) Lutheran 

(LU); (16) MNSs (MNS); (17) P System (P); (18) rhesus system (RH); (19) PTC 

Sensitivity. 
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Figure 1. Lactose Persistence Frequency by C282Y Allele Frequency. Linear Regression: 

r = .86, r2 = .68, t = 9.23; F = 85.19, d.f. = 41, p < 0.0001 
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