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CHAPTER 1 :  INTRODUCTION 

In this chapter, the concept of Scientific Workflows will be introduced along with 

our research motivation, challenges, goals, and contributions. Finally, an organization of 

the rest of the dissertation is outlined. 

1.1  Motivation, Challenges, and Approach 

Recently, scientific workflows have become increasingly popular as a new method 

for scientists to develop and design complex and distributed scientific processes to enable 

and accelerate many scientific discoveries [25, 27]. Scientific workflows are becoming an 

efficient way to model and automate these complex computations and automating such 

complex scientific experiments. Scientific workflows are rapidly becoming recognized as 

an important unifying mechanism to combine scientific data management, analysis, 

simulation, and visualization tasks [19]. A scientific workflow is a formal specification of 

a scientific process, which represents, streamlines, and automates the analytical and 

computational steps that a scientist needs to go through from dataset selection and 

integration, computation and analysis, to ultimately data products presentation and 

visualization [57, 68]. In scientific workflows, it is very important to seamlessly access 

and integrate various heterogeneous and distributed datasets and to integrate and reuse 

various third-party analysis tools. The design of a scientific workflow system often 

focuses on “data flows,” i.e., how the input data is streamlined into various analyses 

using data channels to produce multiple intermediate data products and ultimately final 

workflow output data products. 
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Many scientific problems involve processing huge amounts of data and other 

complex computations which may require the use of many other tools to analyze data and 

execute accordingly.  Typically, scientists spend tremendous amounts of effort to handle 

manual work and computations.  The results from such computations are shared among 

the interested scientists for further analysis or modification. Scientific workflows can 

provide such a supportive and creative environment for scientists in their research by 

integrating complex computations and automating complex scientific analysis.  

Workflow design is often concerned with the automation of procedures whereby files 

and data are passed between participants according to a defined set of rules to achieve an 

overall goal [43]. Automation is a major benefit of the scientific workflow approach. A 

scientist may want to execute the same data analysis pipeline repeatedly with many 

different input datasets and/or the same dataset using different parameter settings. 

Another benefit is the sharing and the reusing of computational components and/or whole 

workflows. Analysis and results of scientific workflows can be easily shared among 

collaborators. Workflow systems can be designed to easily implement additional 

computational steps that are eventually associated by data links to existing workflows.  

Several scientific workflow systems have been developed (e.g. Taverna [68], Swift 

[84], Kepler [57], VIEW [53], Pegasus [28], Triana [87]).  Some are visualization-based 

system and others are script-based systems. Most of the systems have their proprietary 

language representations.  Based on a scientific problem that is being researched, a 

scientist may need to manually combine the results and analyses from multiple systems 

which can be quite time consuming. 
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Based on an evaluation conducted on five scientific workflow management systems 

(SWFMS) using the reference architecture for SWFMSs [53], none of the systems meets 

all the requirements.  Pegasus and Swift provide weak user interaction support while 

Taverna, Kepler, and Triana provide better user interaction support [53].  Almost all 

systems have poor support for user interface customizability. Taverna, Kepler, and Triana 

have partial support for the integration of heterogeneous service and software tools, while 

Pegasus and Swift focus only on Grid-based applications [53]. Pegasus and Swift have 

better support to high-end computing, while other systems are being enhanced in such 

support. Taverna and Kepler provide custom tasks to communicate with the Grid 

environment, while Triana uses the GAT interface to access Grid jobs [53]. No system 

provides the ability to reuse existing workflows implemented by other systems. 

The problems noted with existing scientific workflow management systems provide 

the rationale for the development of a new system for the efficient use of heterogeneous 

scientific workflow systems and the utilization of Grid computing. When developing a 

scientific workflow, some functionality may be missing in one workflow system, yet 

available by another, so with a system that supports heterogeneous scientific workflows, 

the user can develop the targeted scientific workflow.  Also, scientific workflows can be 

shared among users.  To illustrate, a user can implement a Taverna workflow and pass it 

to another user who does not know how to use Taverna; however he can add the 

workflow to his GENOMEFLOW workflow using a user friendly interface. 

By analyzing the results of our research and processing time when running the 

Recombination Simulation Scientific Workflow [3] and Intragenomic Gene Conversion 
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[6], we realized the importance of a scientific workflow system that supports the 

execution of heterogeneous workflows using various services. 

1.2  Contributions 

Although several scientific workflow management systems (SWFMSs) have been 

developed, there is a great need for an integrated scientific workflow system that enables 

the design and execution of higher-level scientific workflows, which integrate 

heterogeneous scientific workflows enacted by existing SWFMSs. On one hand, science 

is becoming increasingly collaborative today, requiring an integrated solution that 

combines the features and capabilities of different SWFMSs, which are typically 

developed and optimized towards one single discipline.  One the other hand, such an 

integrated environment can immediately leverage existing and emerging techniques and 

strengths of various SWFMSs and their supported execution environments, such as 

Cluster, Grid, and Cloud.  

The dissertation goal is to address the design of scientific workflow systems and how 

they can be utilized to serve the bioinformatic community both from the theoretical and 

practical perspective.   

The dissertation makes the following research contributions: 

 We present a scientific workflow system that can support the design, 

development, and execution of heterogeneous scientific workflow systems. We 

implemented the GENOMEFLOW scientific workflow system to design, 

develop, and execute heterogeneous tasks in heterogeneous environments. We 

present a GENOMEFLOW scientific workflow application to demonstrate the 
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capabilities of GENOMEFLOW in support of user interaction of intensive 

scientific workflows in a heterogeneous and distributed computing environment 

[2]. 

 We propose a scientific workflow scheduling algorithm t o enable the parallel 

execution of such heterogeneous scientific workflows in their native 

heterogeneous environments [2]. 

 A scientific workflow to simulate the DNA recombination process was 

developed. History of the recombinant events is saved for further comparison 

and analysis. The known history of recombination occurring in the simulation 

was compared with the output of putative recombinations detected by a well 

known highly ranked recombination detection program (GENECONV). The 

results show that the recombination detection software fails to identify more 

than 50% of recombination events, designated as “cryptic recombinations.” 

 We implemented GENOMEFLOW towards the life science community and 

developed several GENOMEFLOW scientific workflows to demonstrate the 

capabilities of our system for genome data analysis applications. 

 A method for generating initial populations of DNA sequences of any given 

Average Pairwise Difference (APD) is described [3]. 

 The effect of varying the recombination rate according to the pairwise 

difference between the potentially recombining sequences was examined [3]. 

Two effects of varying the recombination rate were:  
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a. Under some conditions of initial pairwise differences and steepness of the 

pairwise difference:recombination rate relationship, multiple populations 

could arise, illustrating a mechanism that could underlie sympatric 

speciation 

b. Decreasing recombination rate according to the pairwise difference between 

potentially recombining sequences decreased the percentage of simulated 

recombinations that could be detected by GENECONV. Thus, the problem 

of „cryptic recombination‟, identified by Alhiyafi et al. [4] using constant 

recombination rates, is exacerbated by the effect of pairwise differences on 

recombination rate. 

 We conclude that variation in recombination rate owing to sequence 

mismatches should be taken into account when estimating recombination rates 

and when designing recombination detection experiments. 

 Compare Intragenomic Gene Conversions (IGC) in the many additional 

Escherichia and Shigella genomes now available to test the hypothesis about the 

relationship of IGC frequency to pathogenicity more critically. A scientific 

workflow system for automating IGC analysis in multiple genomes is developed 

[6]. Furthermore, since sequences flanking both ends of the potential conversion 

sites have been shown to affect the detectability of gene conversions [4], IGCs 

were also analyzed with neighboring sequences included, a procedure that 

allowed the detection of IGCs larger and in greater numbers than had previously 

been described. Finally, the types of genes exhibiting IGCs were characterized. 
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 Considering the amount of time it takes to complete a single run-through of all 

currently available bacterial genomes lead us to put these principles into a high 

performance computing environment.  Since each genome is analyzed 

individually, these processes are ideal for incorporating the workflow into a 

parallel processing grid.  

 We have developed a realistic method to do bioinformatic analysis on large 

numbers of whole genomes, designing processors that can be used for other 

bioinformatic tasks and also establishing a structure into which additional 

bioinformatic analyses can be incorporated. 

1.3  Organization 

The remaining chapters of the dissertation are organized as follows. Chapter 2 

reviews the research on scientific workflow management systems, using a high 

performance environment when executing scientific workflows, scientific workflow 

scheduling algorithms and intragenomic recombination. Chapter 3 presents our scientific 

workflow system, GENOMEFLOW, and our scheduling algorithm.  Chapter 4 presents 

the use of our scientific workflow system to simulate genomic recombination and 

detectability of recombination. Chapter 5 introduces our Intragenomic Gene Conversion 

analysis. Finally, Chapter 6 concludes the dissertation and lists some of the remaining 

interesting research problems. 
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CHAPTER 2 : RELATED WORK 

Significant research has been done in the area of scientific workflow management 

system and scientific workflows scheduling algorithms. In this chapter, we limit 

ourselves to reviewing the research that is most closely related to the work we have done 

here: Section 2.1 reviews research in Scientific Workflow Management Systems, Section 

2.2 presents the use of Grid for scientific workflow systems, Section 2.3 introduces some 

of the existing Scientific Workflow Scheduling Algorithms, and Section 2.4 summarizes 

related work in Intragenomic Recombination. Finally, Section 2.5 gives a comparison 

between GENOMEFLOW and other systems. 

2.1  Scientific Workflow Management Systems   

Many scientific workflow management systems are available today that are open 

source and specifically designed for different disciplines such as biology, astronomy, 

ecology, chemistry, engineering, and medical imaging. Scientific workflow management 

systems (SWFMSs) provide an environment to model, develop and run scientific 

workflows efficiently. Here are some examples with brief information of existing 

scientific workflow management systems:  

Taverna. Taverna is a scientific workflow management environment developed by 

my
Grid, a UK project [68]. In Taverna, a workflow can be described as a set of processors 

and the relations between those processors used to define a complex process. A processor 

is the smallest reusable component, which performs some well-defined function within a 

process. Data links transfer information from workflow input, or an output of one 
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processor, to the input of another processor, or to a workflow output. A control link 

enables you to set dependencies to be set between services in a workflow that do not 

directly share data (i.e. that are not otherwise linked by passing data from one to the other 

directly or indirectly). A control link allows delaying the invocation of a service until 

another has finished.  

VIEW. VIsual SciEntific Workflow Management system (VIEW) has been 

developed by a group of researchers in the Scientific Workflow Research Laboratory at 

Wayne State University. VIEW  [22, 53] is a service-oriented scientific workflow 

management system. VIEW comprises a workbench [22] to visually design workflows, a 

workflow engine [33] to execute workflows, a task manager to manage the execution of 

workflow tasks, a provenance manager [21] to store and query workflow provenance, and 

a data product manager to store and manage data products. VIEW is the first system that 

features a service-oriented architecture conforming to the reference architecture for 

scientific workflow management systems [53]. Also, VIEW is the first system that 

supports dataflow-based MapReduce-style scientific workflows for data-intensive 

scientific applications [33], and it supports an innovative task abstraction and mapping 

technique that uniquely addresses the type-II shimming problem, which occurs due to the 

incompatibility between the ports of a task and the inputs/outputs of its internal task 

component [54].  

Swift [84]. Swift is a system for scheduling large scale scientific projects. It provides 

a scripting language that allows the users to express operations on datasets in terms of 

their local organization [102]. Swift supports the parallel and distributed execution of 
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computationally demanding and data intensive scientific computations [83]. With Swift, 

the performance gains depend primarily on the parallelism that the workflow exhibits 

[83]. 

Kepler [57]. Kepler is an open source workflow management system that is 

available for download at the Kepler website [48]. Kepler is based on Ptolemy II, 

developed at UC Berkeley, and provides a platform for building and executing 

workflows. Kepler is an Actor-oriented workflow system designed specifically to 

improve component reusability. 

Triana [87]. Triana is an open source graphical problem solving environment 

available for download at the Triana website [88]. Triana enables creation and execution 

of scientific applications, especially signal, text and image processing tasks. Triana is not 

only a powerful visual programming tool but also provides Grid technology as a means to 

providing an “easy to use” environment to scientists who may not be interested in the 

complex details of its implementation. 

VLE-WFBus [103]. VLE-WFBus is a scientific workflow management system 

developed to support workflow interoperability. Legacy SWFMSs are wrapped as 

federated components and are loosely coupled as one workflow system. The supported 

workflow systems are called subworkflows.  The VLE-WFBus support is limited to 

certain workflow systems. 

Pegasus [26] (Planning for Execution in Grids) is a workflow mapping engine 

developed and used as part of several projects in physics, astronomy, gravitational-wave 

science, earthquake science, and others. Pegasus bridges the scientific domain and the 
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execution by automatically mapping the high-level workflow descriptions onto 

distributed resources such as the TeraGrid, the Open Science Grid, and others. 

2.2  Use of Grid for scientific workflow systems   

Along with the scientific workflow systems, scientific communities are utilizing 

Grids to share, manage and process large data sets [99]. In order to support complex 

scientific experiments, distributed resources such as computational devices, data, 

applications, and scientific instruments need to be orchestrated while managing the 

application workflow operations within Grid environments [61].  

Grids [34] have emerged as a global cyber-infrastructure for the next-generation of 

e-Science applications by integrating large-scale, distributed and heterogeneous 

resources. Imposing the workflow paradigm for application composition on Grids offers 

several advantages [82] such as utilization of resources that are located in a particular 

domain to increase throughput or reduce execution costs, and execution spanning 

multiple administrative domains to obtain specific processing capabilities.  

Some of the existing scientific workflow management systems have tried to exploit 

the advantages of using Grid technology with scientific workflows.  A scientific 

workflow as a service [85] was implemented based on the Taverna workflow engine and 

gRAVI (Grid Remote Application Virtualization Interface) as the wrapping tool to 

improve execution performance. Scientific communities are utilizing Grids to share, 

manage and process large data sets [99]. In order to support complex scientific 

experiments, distributed resources such as computational devices, data, applications, and 
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scientific instruments need to be orchestrated while managing the application workflow 

operations within Grid environments [61].  

Some of the features of scientific workflow in Grid environment are:  (1) resources 

are highly distributed, (2) scientific workflows often contain many tasks and involve 

large data sets which requires intensive computation, so it will be easy  to use on the Grid 

environment [86], and (3) many computational tasks can be processed in parallel. 

2.3  Scientific Workflow Scheduling Algorithms   

Scheduling of workflows is a problem of finding a correct execution sequence for the 

workflow tasks [78].  Scientific workflow scheduling in high performance computing 

environments usually focuses on the optimization of performance when executing 

workflows.  In most cases, the scheduler is required to predict the performance of tasks 

on the various resources in order to guarantee performance [1].  

The ultimate goal of the schedule is to minimize the scientific workflow execution 

time and maximize resource utilization or throughput. To implement a scientific 

workflow schedule, the following challenges will be presented [11]:  (1) Precedence 

constraints or control dependencies  where outputs from one task in the workflow will 

serve as inputs to other tasks.  In this case, the task that produces this output should be 

executed as early as possible, (2) Data transfer overhead or data dependencies where all 

data needed for any task should be available and ready to be transferred to the compute 

node where the workflow task is to be executed, (3) the ability for the workflow tasks to 

access the required Grid resources [59], (4) Efficient selection of resources for the 
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components in order to achieve good performance [59], and (5) satisfying all 

dependencies and automating the Grid execution of the entire workflow [59]. 

A scientific workflow is a collection of tasks organized in a way to achieve a specific 

target. Scientific workflow tasks can be categorized into a Simple task  or a 

synchronization task [101].  A synchronization task is a task that has more than one 

parent or child task. Synchronization Task Scheduling (STS) [101] only considers one 

task to decide the service for executing that task.  If there is only one simple task in a 

branch (Branch Task Scheduling (BTS)) then the solution for BTS is the same as STS. 

However, if there are multiple tasks, the scheduler needs to make a decision on which 

service to execute each task after the completion of its parent task [101]. Simple or Static 

Scheduler is based on well-known advance reservation based co-allocation techniques. 

Static scheduler performs sub-deadline re-calculation and re-negotiation if the initial co-

allocation request fails, whereas the Simple scheduler does not. Dynamic Scheduler is 

where the tasks of an application are scheduled Just-in-time. Scheduling of scientific 

workflows on the Grid is a complex optimization problem which may require 

consideration of different scheduling criteria. The most important criteria are the 

expected execution time and the cost of running an activity on a machine [71]. 

Min-Min [56, 59]. The Min-Min heuristic algorithm makes decisions based on a set 

of parallel independent tasks. It assigns priority and schedules the task based on its 

Expected Completion Time (ECT) for the task over all available resources.  It produces 

good results but is computationally expensive [32]. For each component, the resource 

having the minimum estimated completion time (ECT) is found. The component having 
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the minimum ECT value is chosen to be scheduled next. This is done iteratively until all 

the components have been mapped. The concept behind Min-Min is to consider all 

unmapped independent tasks during each mapping decision. [73]. 

Max-Min. The first step is exactly same as in the Min-Min heuristic. Then the 

resource having the maximum estimated completion time (ECT) is found and the 

corresponding component is mapped instead of choosing the minimum. The intuition 

behind this heuristic is that by giving preference to longer jobs, there is a hope that the 

shorter jobs can be overlapped with the longer job on other resources [59]. It is similar to 

Min-Min except that in each iterative step, a task having the maximum ECT is chosen to 

be scheduled on the resource that is expected to complete the task at the earliest time. 

Once the machine that provides the earliest completion time is found for every task, the 

task that has the maximum earliest completion time is determined and then assigned to 

the corresponding machine [58]. Intuitively, Max-Min attempts to minimize the total 

workflow execution time by assigning longer tasks to comparatively better resources. 

Both Min-Min and Max-Min have been used for scheduling workflow tasks in Pegasus 

[59, 73]. The Max-Min is likely to do better than the Min-Min heuristic in the cases 

where we have many more shorter tasks than long tasks [58]. 

Sufferage. The first step in the Sufferage algorithm [59] is to find both the minimum 

and second best minimum ECT values. The difference between these two values is 

defined as the sufferage value. In the second step, the component having the maximum 

sufferage value is chosen to be scheduled next. The intuition behind this is that jobs are 

prioritized on relative affinities. The job having a high sufferage value suggests that if it 
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is not assigned to the resource for which it has minimum ECT, it may have an adverse 

effect because the next best ECT value is far from the minimum ECT value. A high 

sufferage value job is chosen to be scheduled next in order to minimize the penalty of not 

assigning it to its best resource [59].  

Bi-criteria Scheduling. Bi-criteria Scheduling [71] restricts the user to certain 

criterion pairs. It requires the user to identify preferences either as (1) weights assigned 

each criterion or as (2) fixed constraints defined for one criterion. The first approach has 

the drawback that combining multiple criteria into a single objective function is not 

always intuitive to the end-user, while the second requires a priori knowledge about the 

result of the first criterion scheduling result.  

Dynamic Constraint Algorithm (DCA). DCA addresses the optimization problem 

of the two independent criteria: execution time and economic cost tradeoff.  DCA is 

based on dynamic programming [71].  The user is expected to identify primary and 

secondary criteria, and a sliding constraint. DCA algorithm consists of two phases: (1) 

primary scheduling for optimizing for the primary criterion only; and (2) secondary 

scheduling for optimizing for the secondary criterion while keeping the primary criterion 

cost within the defined sliding constraint. 

Heterogeneous Earliest Finish Time (HEFT). HEFT algorithm makes decisions 

based on a critical path of the tasks.  This strategy selects the task with the highest 

upward rank value at each step. This is the length of the critical path from a task to the 

exit task, including the computation cost of this task. It assigns higher priority to the 

workflow task having higher rank value. It calculates rank value based on the average 
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execution time for each task and average communication time between resources of two 

successive tasks, where the tasks in the „critical path‟ get comparatively higher rank 

values. The selected task is then assigned to the processor that minimizes its earliest 

finish time. The algorithm is designed for scheduling DAG (Directed Acyclic Graph) so 

it is not so efficient for scheduling a huge number of concurrent workflow instances [56]. 

The advantage of using this technique over Min-Min or Max-Min is that while assigning 

priorities to the tasks, it considers the entire workflow rather than focusing on only 

unmapped independent tasks at each step [73].  

Greedy Randomized Adaptive Search Procedure (GRASP). GRASP is an 

iterative randomized search technique. In GRASP, a number of iterations are conducted 

to search a possible optimal solution for mapping tasks on resources. A solution is 

generated at each iterative step and the best solution is kept as the final schedule. This 

searching procedure terminates when the specified termination criterion, such as the 

completion of a certain number of iterations, is satisfied. GRASP can generate better 

schedules than the other scheduling techniques stated previously as it searches the whole 

solution space considering entire workflow and available resources [18, 73]. 

Portable Batch System (PBS) [38, 67].  The Portable Batch System is a 

management and batch job scheduling system.  It schedules and distributes various types 

of application runs (serial, parallel, distributed memory, etc.). It supports parallel 

programming libraries such MPI and openMP. It also can be used as a scheduler for 

scientific workflow systems such as Swift or can serve as a front end to Globus, 



17 

 

permitting the user to submit jobs requesting Globus resources using the normal PBS Pro 

commands.  

In conclusion, Min-Min, Max-Min, Sufferage, Greedy Randomized Adaptive 

Search Procedure (GRASP), and Heterogeneous-Earliest-Finish-Time (HEFT) algorithm 

only attempt to minimize workflow execution time and do not consider users‟ budget 

constraints [100].  Several tools, including Kepler, Triana, and Taverna, provide 

interfaces and tools to specify and execute scientific workflows. The emphasis of these 

tools is on formalizing and constructing workflows and providing access to 

heterogeneous data and distributed web services [20]. 

2.4  Intragenomic Recombination  

DNA consists of many genes and provides genetic information to regulate and 

reproduce cells. Information from each gene encodes a unique protein, which performs 

necessary tasks for the cell to function. Bacteria are very small single cell organisms that 

are found almost everywhere, in the air, water, soil, food, and human body. Bacteria are 

prokaryotes, which indicate that they contain a single cell that does not contain a nucleus. 

Instead, their genetic information is within a single circular chain of DNA. Even though 

they are small organisms, many live in groups and can multiply quickly by cell division, 

by which a single cell splits into two new daughter cells both with the same genetic 

material, and can conjugate (~ have sex) with each other to exchange and insert genetic 

material from one cell to another by homologous recombination. Recombination of 

bacterial genomes is widespread, occurring in soil bacteria [91] and numerous pathogens, 
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such as Neisseria meningitides [39]. Recombination is the transfer, insertion or 

replacement of a length of DNA into a genome from another source and results in the 

exchange of genetic information between organisms [70]. The seminal discovery of 

recombination by bacterial conjugation was made by Lederberg [49]. During conjugation, 

a single strand of replicated DNA is transferred sequentially through a bridge connecting 

the donor to the recipient cell. Genes or fragments of genes can integrate into the 

recipient‟s chromosome by homologous recombination, in which portions of the recipient 

cell‟s chromosome are replaced by similar or identical sequences from the donor. The 

result of this one-way transfer of DNA sequence is known as gene conversion.  

Gene conversion can occur between two cells or between different genomic regions 

of the same cell. Intragenomic Gene Conversion (IGC), which is an outcome of a 

recombination event, is defined as the non-reciprocal transfer of genetic information from 

one gene to another related gene elsewhere in the genome. IGCs play an important role in 

the evolution of multigene families of bacteria and the generation of antigenic variations, 

where some pathogenic bacterial strains are avoiding the host immune system [68]. More 

details on the occurrence of IGCs are given below.  

Computer modeling of genomic data is a powerful tool for simulating mechanisms 

maintaining diversity and mediating evolution of organisms and for testing methods 

measuring such mechanisms. For example, bacterial populations are highly diverse. 

Whittam estimates average pairwise differences over several genes of E. coli of about 2% 

[96]. Average pairwise differences reported by Alhiyafi et al. [4] in the fimH and uidA 

genes in natural populations of E. coli were 2.1% and 2.0%, respectively. While point 
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mutations can certainly create pairwise differences between bacterial strains, genetic 

change can also come about through horizontal gene transfer by recombination. A central 

problem in understanding the diversity and evolution of organisms, therefore, is knowing 

how much genetic change has come about through recombination. This problem is 

complicated by the fact that recombination is both affected by sequence diversity and is a 

mechanism that helps maintain it. Evidence that recombination frequency between strains 

is decreased by higher levels of DNA sequence mismatches has been found in many 

studies. Among recombinations of five bacterial strains (two strains of E. coli, and one 

each of Shigella flexneri, E. fergusoni, and Salmonella typhimurium, each reciprocally 

crossed with E. coli K12) recombination frequency decreased exponentially with amount 

of DNA sequence divergence [92]. 10% divergence of DNA sequences decreased 

recombination frequency by approximately three orders of magnitude. Similarly, 

recombinations between E. coli strains from Lenski‟s long-term closed cultures [50, 51] 

decreased in frequency approximately 0.5 log units with a 0.2% sequence divergence 

[93]. Extrapolating their data suggests a decrease of 5 orders of magnitude for a 2% 

sequence divergence. In studies of recombination between homologous DNA sequences 

in plasmids and phage lambda in E. coli (K12) hosts, Watt et al. [94] observed a 2- to 4-

fold decrease in recombination frequency with a single mismatched base out of 53, and 

Shen and Huang [79] observed up to a 300-fold decrease in recombination with a 16% 

DNA sequence mismatch. Fraser et al. [35] also summarizes data in Bacillus subtilis, 

Bacillus mojavensis, Streptococcus pneumoniae, and E. coli that suggest an average 

1000-fold decrease in recombination with a 16% DNA sequence mismatch. While 
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considerable variations in the quantitative estimates are apparent, there is no 

disagreement with the general observation that recombination frequency decreases with 

greater pairwise difference between potentially recombining genomes.  

Although recombination is usually thought of as occurring between two different 

cells, IGCs can also occur in which recombination occurs between genes in gene 

families, i.e., genes with similar sequence that can be found in the same genome. For 

example, the concerted evolution of multiple copies of genes coding for ribosomal RNA 

may depend on intragenomic recombination between the homologous copies to keep all 

copies more or less “in synch” [52]. In addition to the concerted evolution of rRNA 

genes, intragenomic recombination has been demonstrated experimentally between the 

tufA and tufB genes in Salmonella typhimurium [9, 46]  and the gadA and gadB genes in 

Escherichia coli [15]. Since the main requirement for this type of genetic exchange to 

occur is similarity of sequence, families of genes sharing similar sequence within a 

genome may be fertile ground for IGCs. IGC in bacteria has been suggested to occur 

more frequently in pathogenic species or strains than in non-pathogenic strains [63, 64, 

75]. A computational analysis comparing the genomes of a non-pathogenic strain of E. 

coli (K12) and three pathogenic strains (CFT073 & O157:H7 Sakai and EDL933) 

concluded that IGCs were more frequent and require less sequence similarity in the 

pathogenic strains than in K12 [63]. One of the major issues considered in this 

dissertation is whether the differences in IGC frequency between pathogenic and non-

pathogenic E. coli are representative of a general difference between pathogenic and non-

pathogenic bacteria. However, the conclusion of Morris and Drouin [63] that “gene 
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conversions are more frequent and much less dependent on sequence similarity in 

pathogenic strains than in K-12” depended on a comparison of only one non-pathogenic 

strain and a select subset of pathogenic E. coli strains. In contrast, a subsequent study of 

the same four genomes by Morris and Drouin found no difference in the Intragenomic 

Gene Conversion rates when only “backbone” genes were considered, i.e., only those 

genes found in common among the four strains [65]. A larger number of whole genome 

sequences of other pathogenic and non-pathogenic strains of E. coli are now available for 

determining the representativeness of their conclusions. In addition, other bacterial 

species in which such pathogen:non-pathogen comparisons can be made are also 

available.  

In order to detect whether recombination or gene conversion has occurred in the past, 

divergent sequences can be analyzed for vestiges of previous genetic transfers. Many 

methods have been developed during the last 15 years to detect the presence of 

recombination in sequence alignments. Methods work by identifying discontinuities in 

sequence similarities or genetic distance (e.g., GENECONV [76, 77] and MAXCHI [70, 

80] or by phylogenetic methods that, for example, identify incongruous tree topologies 

(e.g., RECPARS[42]). Many methods have been evaluated [69, 70, 97], and new ones 

continue to be developed. GENECONV is among the most highly ranked methods and is 

included in the RDP2 analysis suite [60]. In a comparison of 14 different gene 

recombination detection methods, GENECONV was consistently among the best [69, 

70]. GENECONV has been applied successfully to various biological data sets to analyze 

recombination among alleles of homologous genes [10, 15, 31, 89]. GENECONV was 
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also used to demonstrate IGCs between genes in gene clusters in both yeast and E. coli 

genomes[29, 63] and was the method used to compare pathogenic and non-pathogenic 

strains of E. coli. The detection of recombination from DNA sequences by such methods 

is therefore relevant to the understanding of evolutionary and molecular genetics in 

bacteria.  

2.5  A comparison between GENOMEFLOW and related systems 

The problems noted with existing scientific workflow management systems and 

scheduling algorithms provide the rationale for the development of a new system for the 

efficient use of heterogeneous scientific workflow systems and the utilization of Grid 

computing. In this dissertation, we propose a scientific workflow system, 

GENOMEFLOW, with a scheduling algorithm to execute heterogeneous scientific 

workflows.  

GENOMEFLOW scientific workflow system has the following specifications and 

advantages compared to other scientific workflow systems: 

 GENOMEFLOW is a scientific workflow system that is designed and 

implemented by following the Reference Architecture for Scientific Workflow 

Management Systems. 

 GENOMEFLOW has a user friendly interface, workbench, which gives the user 

the ability to design scientific workflows by clicking on existing tasks and 

adding them to the workflow design window.  No need to learn a scripting 

language (e.g. Swift scripting language) in order to develop the workflow. 
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 GENOMEFLOW has a user friendly interface, workbench, which gives the user 

the ability to design scientific workflows by clicking on existing tasks and 

adding them to the workflow design window.  No need to learn a scripting 

language (e.g. Swift scripting language) in order to develop the workflow. 

 GENOMEFLOW scientific workflow system supports the design, development, 

and execution of heterogeneous scientific workflow systems. When developing 

a scientific workflow, a user may need to use a function that is missing from the 

workflow system that he is using, yet available by another, so with a system that 

supports heterogeneous scientific workflows, the user can develop the targeted 

scientific workflow.   

  Scientific workflows can be shared among users.  To illustrate, a user can 

implement a Taverna workflow and pass it to another user who does not know 

how to use Taverna; however he can add the workflow to his GENOMEFLOW 

workflow using a user friendly interface. 

 GENOMEFLOW scientific workflow system supports the execution of tasks in 

a heterogeneous environment.  

 GENOMEFLOW executes tasks using its own scheduling algorithms.  It 

executes heterogeneous scientific workflows in parallel processing in a high 

performance computing environment. GENOMEFLOW scheduling algorithms 

optimize the process and execution time of the GENOMEFLOW workflow. 

Most of the existing scheduling algorithms depend on knowing in advance how 
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workflow tasks work and setting criteria or priority weights that will help make 

scheduling decision.   

 Using GENOMEFLOW will give the user the advantages of using two levels of 

execution: local and global. The GENOMEFLOW scheduling algorithm looks 

at the workflow as a whole and also focuses on GENOMEFLOW individual 

tasks.  It then uses the local scheduler (e.g. PBS) to minimize the scientific 

workflow execution time and maximize resource utilization or throughput.  
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CHAPTER 3 : GENOMEFLOW Scientific Workflow System 

In this chapter, we introduce our GENOMEFLOW Scientific Workflow System and 

propose our scientific workflow scheduling algorithm. The rest of the chapter is 

organized as follows. Section 3.1 discusses motivation and challenges for our research. 

Section 3.2 presents the service-oriented architecture for GENOMEFLOW. Section 3.3 

introduces the GENOMEFLOW Specification Language (GSL). Section 3.4 defines the 

scheduling algorithm. Section 3.5 presents the system execution and evaluation. Finally, 

Section 3.6 summarizes the chapter.  

3.1  Motivation 

Scientific workflows have become increasingly popular as a new computing 

paradigm for scientists to design and execute complex and distributed scientific processes 

to enable and accelerate many scientific discoveries. Although several scientific 

workflow management systems (SWFMSs) have been developed, there is a great need 

for an integrated scientific workflow system that enables the design and execution of 

higher-level scientific workflows, which integrate heterogeneous scientific workflows 

enacted by existing SWFMSs. On one hand, science is becoming increasingly 

collaborative today, requiring an integrated solution that combines the features and 

capabilities of different SWFMSs, which are typically developed and optimized towards 

one single discipline.  One the other hand, such an integrated environment can 

immediately leverage existing and emerging techniques and strengths of various 

SWFMSs and their supported execution environments, such as Cluster, Grid, and Cloud.  
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Based on an evaluation conducted on five scientific workflow management systems 

(SWFMS) using the reference architecture for SWFMSs [53], none of the systems meets 

all the requirements.  Also, by analyzing the results of our research and processing time 

when running a recombination simulation scientific workflow [4] and another scientific 

workflow to study the Intragenomic Gene Conversion [5, 6], we realized the importance 

of a scientific workflow system that supports the execution of heterogeneous workflows 

using various services. The advantages of high-performance Grid-based computing for 

scientific workflows, and the problems noted with existing scientific workflow 

management systems (SWFMSs), provide the rationale for the development of a new 

scientific workflow system for the efficient use of heterogeneous scientific workflow 

systems and utilizing Grid computing. 

3.2  Service-Oriented Architecture for GENOMEFLOW 

The system was designed and implemented by following the Reference Architecture 

for Scientific Workflow Management Systems [53]. The system consists of the following 

major sub-systems (Figure  3.1A): Interface and workflow design subsystem, Workflow 

Engine, Workflow Monitor, Task Manager, Data Product Manager, and the Provenance 

Manager.  The interface and design subsystem is represented by a workbench that will 

give the user the ability to visually design the scientific workflow. 
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Figure  3.1: (a) Service-oriented architecture for the GENOMEFLOW system;                    

(b) GENOMEFLOW Task Manager for the execution of heterogeneous tasks. 

A list of available built-in tasks is available. If a task is not available, the user can 

create a new task which will be then available for future usage as well (Figure  3.2). A 

workflow consists of one or more tasks and each task has input/output ports.  Each task 

represents a workflow that was built by a scientific workflow developed by a third party 

SWFMS. The user will have to enter data for the input ports and/or create data links 

between input ports and output ports of another task which indicate a dependency step. 

The Workflow Monitor monitors the workflow and task execution status.  The Task 

Manager will execute workflow tasks.  The Data Product Manager will store, query, and 

manage data products, and the Provenance Manager stores and queries provenance.  

Database storage, along with a file repository, holds the task workflows and implemented 
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workflows.  The results from running the workflows will also be saved in the storage 

based on the name of the workflow.  Inputs and outputs are transferred back and forth 

between the local machine and the remote machines when necessary; if the actual 

execution is occurring remotely. 

 

Figure  3.2: Create a GENOMEFLOW workflow task. 

Figure  3.1B represents a service-oriented architecture for the Task Manager. The 

Task Manager consists of heterogeneous scientific workflows and their executable 

programs with other software tools, including high-end computing environments. The 

execution of the workflow starts by transferring the GENOMEFLOW Specification 

Language (GSL) file (.xml) that represents the workflow and internal tasks to the remote 

machine along with job script execution file.  The job script file is called to start the 

execution and once it finishes, the resultant data is transferred back to the local machine. 
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When implementing GENOMEFLOW, we applied the key architectural 

requirements for a SWFMS [53].  The system has user interface and support user 

interaction (Requirement 1).  The end user can develop scientific workflows by using the 

user friendly workbench. One of the user interfaces is to create control or data links 

between the workflow tasks (Figure  3.3). The system also meets the second requirement 

that it supports reproducibility of results by re-executing the workflow.  Provenance data 

will be stored to support this requirement.  The core of this system is to support 

heterogeneous and distributed services and tools (Requirement 3).  GENOMEFLOW 

gives the end user the ability to develop workflows that contain tasks implemented by 

heterogonous scientific workflow systems and tools.  As shown in Figure  3.1B, the Task 

Manager can execute tasks that represent Taverna workflow, Swift workflow, etc. The 

system also supports heterogeneous and distributed data product (Requirement 4).  

GENOMEFLOW also supports high-end computing by executing tasks and 

subworkflows in parallel mode on the Grid when needed. 

3.3  GENOMEFLOW Specification Language (GSL) 

Many systems were developed to execute scientific workflows as described in 

section 2.1 and each one has its own language to represent its workflow.  Each system 

only supports workflows designed and implemented by itself. However, 

GENOMEFLOW supports heterogeneous workflows that were implemented by other 

systems and will be connected and represented via GSL.  In this section, I will introduce 

the GENOMEFLOW Specification Language (GSL) that will represent a scientific 

workflow consisting of one or more tasks. Each task represents a workflow implemented 
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by any one of the other systems. Two tasks are represented in the sample GSL (Figure 

‎3.4); one for a Swift workflow and the other one for a Taverna workflow.  The language 

will also show the data links between tasks where an output of a task can be an input for 

another one. Figure ‎3.5 displays a schema representation for the GSL file.  It shows that a 

workflow can contains one or more tasks. Each task contains inputs and outputs.  The 

workflow also can have data links to represent data dependency or control dependency.   

 

Figure  3.3:  GUI to enter input data for a task or create a data link between two tasks. 
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< Workflow> 

<Workflow_Name>IGC-DownloadFiles</Workflow_Name> 

<Workflow_ID>10</Workflow_ID> 

<Workflow_Description>test</Workflow_Description> 

<Tasks> 

 <Task> 

  <Task_Name>CreateGenomeFiles</Task_Name> 

  <Task_ID>20</Task_ID> 

  <Task_Description>Create Genome Files</Task_Description> 

  <Task_Executor>Swift</Task_Executor> 

  <Task_Workflow_Content> 

      type file{};     type messagefile {}; 

       …..... 

  </Task_Workflow_Content> 

  <Inputs><Number_of_Inputs>1</Number_of_Inputs> 

    <Input>  <Input_Name>GenomeList</Input_Name> 

    <Input_Type>File</Input_Type> 

    </Input>  

  </Inputs> 

  <Outputs> <Number_of_Outputs>1</Number_of_Outputs> 

    <Output> 

    <Output_Name>Input</Output_Name> 

    <Output_Type>Files</Output_Type> 

    </Output>  

  </Outputs> 

</Task> 

<Task><Task_Name>GetGenomeInfo</Task_Name> 

  <Task_ID>11</Task_ID> 

  <Task_Description>……</Task_Description> 

  <Task_Executor>Taverna</Task_Executor> 

  <Task_Workflow_Content> 

 <s:scufl xmlns:s="http://org.embl.ebi.escience/xscufl/0.1alpha"  version="0.2" log="0"> 

   ……..   

  </Task_Workflow_Content> 

  <Inputs> <Number_of_Inputs>1</Number_of_Inputs> 

    <Input> <Input_Name>Bacteria</Input_Name> 

    <Input_Type>String</Input_Type> 

    </Input>  

  </Inputs> 

  <Outputs> <Number_of_Outputs>4</Number_of_Outputs> 

    <Output>  <Output_Name>NCBIRef</Output_Name> 

    <Output_Type>String</Output_Type> 

    </Output> 

      …… 

  </Outputs> 

</Task> 

</Tasks> 

<Data_Links><Number_of_DataLinks>20</Number_of_DataLinks> 

   <Data_Link>  

     <Source><Task_Name>CreateGenomeFiles</Task_Name> 

       <Port_Name>Input</Port_Name> 

       <Port_Type>Files</Port_Type>  

     </Source> 

     <Destination><Task_Name>GetGenomeInfo</Task_Name> 

       <Port_Name>Bacteria</Port_Name>     

       <Port_Type>String</Port_Type> 

     </Destination> 

   </Data_Link> 

    ... 

</Data_Links> 

</Workflow> 

Figure  3.4:  Example of a GENOMEFLOW workflow specification. 
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Figure  3.5:  A schema representation for a GSL file. 

3.4  GENOMEFLOW Scheduling Algorithm (GSA) 

In this section, we propose a scheduling algorithm to execute scientific workflows in 

order to optimize the process and execution time of the GENOMEFLOW workflow. 

Scheduling of workflows is a problem of finding a correct execution sequence for the 

workflow tasks [78].  One of the features that distinguishes various scientific workflow 

systems is the scheduling algorithm that it uses.  The goal is to optimize the execution of 

the scientific workflow task while utilizing the available resources.  Most of the existing 

scheduling algorithms depend on knowing in advance how workflow tasks work and 

setting criteria or prioritizing weights that will help make scheduling decisions.  Some 



33 

 

systems use either task scheduling, which only looks at the tasks within the workflow, 

and others look at the workflow as a whole.  One of the main features for 

GENOMEFLOW is that it supports the design of scientific workflows from 

heterogeneous scientific workflow systems.  Since each GENOMEFLOW task is 

representing a scientific workflow system, it automatically uses the scheduling 

algorithms integrated with the task executor.  In addition to this, we propose our 

GENOMEFLOW Scheduling Algorithm (GSA) that will look at the whole workflow.  

We schedule the execution of each task based on control and data dependency and based 

on the available resources.    

Algorithm GSA, given in Figure  3.6 corresponds to the scheduling algorithm 

implemented in GENOMEFLOW.  The end user will design a scientific workflow using 

the GENOMEFLOW workbench.  Once it is saved, the system will follow the algorithm 

to prepare the execution job script files.  The input for the algorithm will be an XML file 

representing the GENOMEFLOW workflow designed in the previous step. 

The XML will contain information about the tasks involved in the workflow, 

inputs/outputs for each task, and the task executor.  A task executor is the program that 

will understand and execute the workflow language representation integrated in each 

task.  The output will be the results from executing each task. In line 8, the system will 

parse the XML file and capture a list of all tasks with inputs (name, type) associated with 

each task.  In line 9, based on the dependency of each task, a list of subworkflows will be 

created by applying algorithm FindSubWorkflows (Figure ‎3.8). In line 10, a dependency 

list will be created based on parsing the workflow file and the data link section of the 
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workflow file.  In line 11, corresponding job scripts to execute each subworkflow will be 

prepared (waiting list).  In line 14, the algorithm starts going through each job script in 

the waiting list.   

 

Figure  3.6: Algorithm GSA. 
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If a subworkflow does not depend on any previous tasks then the job script file that 

contains this subworkflow will be executed after allocating resources necessary to 

execute it. All the jobs that were executed will be added to the running jobs list (line 18) 

and deleted from the waiting list (line 19). Once going through all the jobs for the first 

round, the algorithm parses through all the jobs that are running.  For any job that was 

done, its output files are collected (line 25), it is deleted from the running jobs (line 26), 

and the completed task is added to the completed jobs list (line 27). Then the algorithm 

goes through all the jobs in the waiting list (lines 30-37) as follows: For every job J in the 

waiting list, if the subworkflow that it contains depends on another subworkflow that was 

executed and completed already, job J is executed after allocating the necessary 

resources. J is also added to the running list and deleted from the waiting list. The last 

steps (lines 23-37) are repeated until all the jobs in the waiting list have been executed 

and the waiting list doesn‟t contain any jobs to run. 

Algorithm FindSubWorkflows, given in Figure 3.7 corresponds to the algorithm 

implemented to find all the subworkflows within a GENOMEFLOW workflow and it 

represents line 9 of algorithm GSA (Figure 3.6). 
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Figure  3.7:  Algorithm FindSubWorkflows. 
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Figure  3.8: Example to illustrate the scheduling and portioning algorithms. 

Figure ‎3.8 illustrates both algorithms: GSA and FindSubWorkflows. For a workflow 

that consists of 6 tasks, the arrows represent the flow of tasks and dependency.  Based on 

both algorithms, the following tasks and lists are generated: 

Line 8 of GSA: WF = ({Task1, Task2, ..,Task6}, …..)                            Equation ‎3.1 

Line 9 of GSA which is the outcome of running FindSubWorkflows:   

WFList = [W1(Task1), W2(Task2, Task4), W3(Task3, Task5),W4(Task6)]  Equation ‎3.2 

Line 10 of GSA:   

DependencyList = [D1(Null), D2(W1), D3(W1), D4(W2,W3)]                    Equation ‎3.3   

Line 11 of GSA: WaitingJobs = [J1, J2, J3, J4]                                          Equation ‎3.4   

Hence, equation 3.1 represents all the tasks, input ports, output ports, and data links 

in the GENOMEFLOW workflow GSL file. Equation 3.2 represents the subworkflows 

after partitioning the main workflow based on the dependency found between the tasks. 

The output of the partitioning step shows that subworkflow W1 contains one task, 

subworkflows W2 and W3 contains two tasks each, and subworkflow W4 contains one 

task.  Equation 3.3 represents the dependency among the subworkflows found in the 
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previous step.  Subworkflow W1 depends on nothing; however, W2 and W3 each depend 

on the output from W1.  W4 depends on output from subworkflows W2 and W3.  Equation 

3.4 corresponds to each subworkflow listed in equation 3.2.  

After partitioning the GENOEMFLOW workflow into subworkflows and preparing 

the Grid job script files, a list of available free nodes on the Grid will be gathered where 

its CPU usage is 0%.  The job script will be submitted to the Grid to start the execution.  

For the above example (Figure ‎3.8), subworkflow W1 will be executed first. Then 

subworkflows W2 and W3 will be executed in parallel after W1 is finished.  Lastly, W4 will 

be executed. 

 

Figure  3.9:  Example 2 to illustrate the scheduling and portioning algorithm. 

Another example is showing in  Figure  3.9: 

WF = ({Task1, Task2, ..,Task6}, …..)       

WFList = [W1(Task1), W2(Task2, Task4), W3(Task3, Task5),W4(Task6),   

W5(Task7), W6(Task8),W7(Task9 , Task10), W8(Task11) ]   

DependencyList = [D1(Null), D2(W1), D3(W1), D4(W2,W3), D5(W1), D6(W5), 

D7(W5), D8(W4,W7)]   

WaitingJobs = [J1, J2, J3, J4, J5, J6, J7 , J8]  
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3.5  System Execution and Evaluation  

This section demonstrates the implementation of a scientific workflow application in 

GENOMEFLOW to analyze Intragenomic Gene Conversions (IGC).  Previously [6], a 

methodology to analyze the complete bacterial genomes for intragenomic recombination 

was identified. Intragenomic recombination, genes which share sequence similarity and 

therefore exchange or transfer genetic material through recombination, is analyzed by 

identifying groups of genes having sequence similarity in a genome and then analyzing 

each group for gene conversions.  

Recombination is the transfer, insertion, or replacement of a length of DNA into a 

genome from another source. This can occur between two cells or different regions of the 

same cell. The usual requirement for recombination to occur is a similarity of sequence 

between recombining regions. Gene conversion, which is an outcome of a recombination 

event, is the non- reciprocal transfer of genetic information from one gene to another. 

Recombination and gene conversion can occur between separate genes with related 

sequences within the same genome, a process known as Intragenomic Gene Conversion 

(IGC). IGC plays an important role in the evolution of multigene families of bacteria and 

the generation of antigenic variations [75]. Genome-wide analysis is the key to 

identifying sequences likely to have resulted from IGC events. 

Despite the public availability of the microbial genome sequences and various 

sequence analysis tools, current IGC analysis relies on a manual and error-prone 

procedure. The procedures include downloading multiple datasets from public databases, 

integrating protein and genome data, modifying the format of the output of one analysis 
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tool, and then transferring it into another analysis tool, and so on. IGC analysis and other 

genomic analysis procedures typically involve over 50 steps of human or computational 

tasks, and require an inordinate amount of time and labor for analysis. 

 

 

Figure  3.10:  GENOMEFLOW scientific workflow workbench.  
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Figure  3.11: A Taverna workflow 

 

Figure  3.12: A Swift workflow 

Taking into consideration the importance of IGC, a methodology to analyze the 

occurrence of IGC in bacterial genomes has been developed. This application performs 

genome wide analysis to identify gene conversions found among multigene family 

members of entire microbial genomes. To accomplish this task, complete genomes are 
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retrieved from GenBank, and then BLASTClust, ClustalW, GENECONV, and various 

parsing and statistical computations are applied to the genomic data. 

We thought of implementing the tool as a scientific workflow, considering the 

importance and usefulness of scientific workflow concepts and the important role it can 

have in the bioinformatics field where a large amount of data is available. Biological data 

processing involves several time consuming and error prone procedures such as 

downloading from several databases, copying and pasting from one web-based tool to 

another, annotating data manually, etc. So an effective way of automation is necessary to 

perform the complex scientific computations using the large amount of biological data 

and tools. 

Figure  3.10 shows the scientific workflow that processes IGC.  It consists of several 

heterogeneous tasks that were implemented by Swift and Taverna.  Figure  3.11 shows a 

Taverna workflow and Figure  3.12 shows a Swift workflow.  These tasks are reusable 

and can be used again when designing a scientific workflow application. 

The experiments reported in this section utilized two environments: a frontend 

system and a backend system.  Inputs are entered via a user interface implemented in C# 

on a windows PC with 2.8 GHz and 1 GB memory.   The Windows client machine 

connects to the backend via a secure channel.  The backend is the Wayne State University 

Grid with AMD and Intel machines.  They have 8-16 GB RAM and 2-2.3 GHz operated 

by Linux machines.  Once the user designs and executes the workflow, it passes the 

necessary data to the Grid for processing after applying the scheduling algorithm 

mentioned in section 3.4. After the execution is complete, the output data are transferred 
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back to the user‟s machine.  Output files are organized by the workflow name and other 

related provenance data. 

 

Figure  3.13: Execution time when using Taverna workbench to process IGC vs 

GENOMEFLOW. 

Preliminary results show that the time it took to process 19 genomes individually for 

IGCs in Windows using the Taverna GUI system is about two hours and 46 minutes. 

Using GENOMEFLOW to process two genomes at the same time in the Grid 

environment resulted in processing all 19 genomes in one hour and three minutes (Figure 

 3.13). 

3.6  Summary and Future Work  

Scientific workflows are emerging as an important technology for solving complex 

scientific problems and thereby contributing to scientific development. Many scientific 

discoveries are achieved through complex and distributed computations.  The advantages 

of high-performance Grid-based computing for scientific workflows, and the problems 

noted with existing scientific workflow management systems, provide the rationale for 

the development of our GENOMEFLOW system for efficient use of heterogeneous 



44 

 

scientific workflow systems and utilizing Grid computing. When some functionality is 

missing in one workflow system, it might be available by another, so with a system that 

supports heterogeneous scientific workflows, the user can integrate the targeted scientific 

workflows.  Also, scientific workflows can be shared among users.  To illustrate, a user 

can implement a Taverna workflow and pass it to another user who doesn‟t know how to 

use Taverna but can add the workflow to his GENOMEFLOW workflow using a user 

friendly interface. By analyzing the results of our previous research [3] and [6], we 

realized the importance of a scientific workflow system that supports the execution of 

heterogeneous workflows using various services. 

In this chapter, we presented a scientific workflow system that allows users to 

execute heterogeneous tasks where each task represent a third party SWFMS.  We 

implemented an application to validate the feasibility of GENOMEFLOW.  Ongoing 

work includes the extension of our system to support more scientific workflow systems 

and optimizing data movements between heterogeneous environments. 
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CHAPTER 4 :  SIMULATION OF GENOMIC 

RECOMBINATION AND DETECTABILITY OF 

RECOMBINATION 

 

The detection of recombination from DNA sequences is relevant to the 

understanding of evolutionary and molecular genetics. While programs such as 

GENECONV have been identified as detecting recombination more reliably than others, 

previous studies have not analyzed how many recombinations they fail to detect. In this 

chapter, we will introduce a scientific workflow approach to simulate the genomic 

recombination and the detectability of recombination. The rest of the chapter is organized 

as follows: Section 4.1 presents the motivation and challenges for this research. Section 

4.2 presents the DNA simulation model and how the initial population is created for the 

simulation. Section 4.3 introduces the DNA sequence data used in the simulation.  

Section 4.4 describes the GENECONV detection method.  Section 4.5 presents the 

experimental parameters, and Section 4.6 introduces Preliminary GENECONV Analysis 

while using fixed recombination rate.  Section 4.7 shows the experimental results while 

using variable recombination rate. Finally, Section 4.8 summarizes the chapter. 

4.1  Motivation and challenges 

The genomic era has produced a plethora of DNA sequences that provide 

opportunities for computational biologists to discover meaningful information about 

biological processes. DNA sequences have information with great relevance to the 

evolution of organisms; to ongoing genetic processes that mediate antibiotic resistance, 
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genetic diseases, and adaptation; and to bioengineering applications for both beneficial 

(e.g., pharmaceuticals) and nefarious (e.g., bioterror) purposes. Among the most 

important processes that may play a role in all of these phenomena is horizontal gene 

transfer, in which a new section of DNA sequence appears in the DNA sequence of an 

organism, often from exogenous sources. Similarly, new combinations of DNA sequence 

are produced by sex, which causes an intentional mixing (or “recombination”) of genes 

from both parents to create a novel daughter sequence. As will be described, 

computational analysis of DNA sequences can sometimes detect where such 

“exceptional” insertions of DNA sequences have occurred. 

DNA recombination can be categorized into two kinds of processes: homologous and 

heterogeneous recombination. Homologous recombination occurs between two 

homologous DNA molecules and can itself be divided into two kinds: gene conversion 

(replacement), in which one DNA donates part of its genetic information to another DNA 

(Figure  4.1A), or crossing over (exchange), in which both parental DNAs exchange part 

of their genetic information (Figure  4.1B). Gene conversion includes donating larger or 

smaller pieces of DNA to create a daughter sequence that has portions of sequence from 

both parental sequences. Gene conversion can occur due to a double-crossing-over event, 

as occurs during recombination in normal meiosis. Heterogeneous recombination occurs 

where a completely unrelated sequence is inserted into a sequence from a non-

homologous region of DNA. The present chapter focuses on the detection of gene 

conversion events. 
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Figure  4.1: Different forms of Homologous Recombination. 

The evidence for recombination as a potential mechanism for genetic change lead 

computational biologists to develop statistical methods to compare existing DNA 

sequences to identify evidence and locations of prior recombination. Methods work by 

identifying discontinuities in sequence similarities or genetic distance (e.g., GENECONV 

[76, 77] and MAXCHI [70, 80]) or by phylogenetic methods that, for example, identify 

incongruous tree topologies (e.g., RECPARS [41]). Many methods have been evaluated 

[69, 70, 97] and new ones continue to be developed. In comparisons of recombination 

analysis software, GENECONV was among the most highly ranked [70] and is included 

in the RDP2 analysis suite [60]. 

How well do recombination detection programs work? Since recombination 

detection programs detect putative recombinant fragments based on identifying 

significant differences in sequence, and recombination occurs at least as frequently 

between similar sequences as between divergent ones, how frequently do programs, such 

as GENECONV, fail to identify recombinations that are known to have occurred? This 

chapter tests the hypothesis that such programs fail to identify a significant number of 

recombination events and characterizes how the pairwise differences between the 

parental sequences affect the recombination detection success rate. Pairwise Difference 
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(PD) is the total number of base pairs different between the alleles of a particular gene of 

two individuals. The method described here involves simulating recombination, so that 

an explicit history of recombination in a set of DNA sequences is known, and then testing 

the resultant DNA sequences with GENECONV to see how frequently it failed to detect 

recombination events known to have occurred to produce the simulated sequences. As a 

result, this chapter identifies the occurrence of “cryptic recombination,” i.e., recombinant 

events that are known to have occurred but were not identified by the recombination 

detection program.  

4.2  Methods 

4.2.1  Simulation Model:  Scientific Workflow Method 

An allele is one of the variant forms of a gene sequence. Recombination rate (RR) is 

the probability that the alleles of two arbitrary individuals will recombine. In the first 

phase of our experiments, RR was chosen to have a fixed value (RRfixed) that resulted in 

the number of alleles surviving after 1500 generations being close to the initial number of 

alleles at the start of the simulation. Variable rates of recombination are also considered. 

Our scientific workflow simulates recombination, replication, and selection through 

many generations. One of the key features of this algorithm is that a history of all of the 

recombination events that occurred in each generation is recorded. 
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Figure  4.2:  Processors, links, and workflow inputs and outputs of the recombination 

simulation scientific workflow. 

 

Simulated populations of sequences were generated and analyzed by a scientific 

workflow (Figure  4.2) that employs a workflow system method in a grid environment and 

simulates recombination, replication, and selection through many generations. We used 

the scientific workflow method to automate the process, to rerun the analysis multiple 

times, and to follow the workflow execution. Figure  4.3 shows a GENOMEFLOW 
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scientific workflow to simulate a population of sequences and analyze the detectability of 

recombination.  Each task in the workflow is a scientific workflow implemented by 

Taverna. Figure  4.4 is a Taverna workflow that is integrated behind the first task of the 

GENOMEFLOW workflow showing in Figure  4.3.  It simulates the DNA recombination 

and outputs a FASTA file representing all the surviving allele in the last generation, and a 

history of all the recombination events that occurred during the simulation.  Theses 

outputs are passed to other tasks for further processing. 

 

Figure  4.3:  A simple GENOMEFLOW scientific workflow to simulate a population of 

sequences and analyze the detectability of recombination. 
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Figure  4.4:  A Taverna representation for the DNA Simulation task. 

For simplicity, the model does not include point mutations since we wanted to test 

the influence of pairwise difference on recombination on population structure and 

detection of recombination when recombination was the only mechanism causing 

changes in sequence.  By initializing simulations with populations of any given pairwise 

difference, the method did not depend on a random mutation model to generate the 

diversity being analyzed. Another feature is that this model utilizes a neutral model of 

population regulation, without selection.  As in a previous stochastic model of bacterial 
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recombination [35], the use here of a neutral model is not a denial of selection, but rather 

an attempt at exploring the diversity of sequences in a null model, upon which selection 

can be subsequently imposed. 

4.2.2  Creating the initial population 

Creating the initial population consists of two steps.  The first step is creating the 

initial alleles of the population as we describe below, and the second step is making N/K 

copies of each allele, where N is the size of the population and K is the number of alleles 

created.   

Creating the initial alleles. An algorithm was developed to create initial alleles of 

sequences of any given average percentage pairwise difference (APD).  The inputs for 

this process are desired APD, sequence length (L), and number of alleles (K) in the initial 

population.  Each sequence consists of characters from a given character set (for genetic 

sequences:  A, G, C, and T).  The goal is to generate a uniformly distributed family 

containing K sequences, each of length L, having average number of differences AD 

between all sequences where AD = APD * L. The problem is non-trivial since each 

additional sequence added to the population must be considered with respect to its 

pairwise differences from every previously existing allele, a complex combinatorial 

challenge. The method uses a calculation of the estimated average number of changes 

expected at a particular position in a set of sequences that we derived as follows: 

Calculating the changes per column: Stepping across the rows. Assume a given 

family of K sequences each of length L has the desired APD.  After aligning all 

sequences, one above the other, the letters at each sequence position represent a column 
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of values.  From these K sequences, the average number of differences per column 

(differences per column) is calculated. The total number of sequence comparisons to 

calculate the APD of this family would be:  K(K-1)/2.  It follows that the total number of 

character comparisons will be L*K(K-1)/2.  The total number of character differences 

found across the length of all the sequence comparisons will be    

AD * K (K - 1) / 2 = total number of character differences.                Equation  4.1 

The total number of character differences can also be determined by finding the 

average number of character differences in each column, then multiplying by the L rows.  

That is (differences per column) * L = total number of character differences 

This gives:             

(differences per column) * L = AD * K (K - 1) / 2.                            Equation  4.2 

Substituting AD = APD * L and dividing both sides by L gives:  

(differences per column) = APD * K (K - 1) / 2.                             Equation  4.3 

Stepping down the columns. Next, a worst-case scenario and best-case scenario for 

the average number of differences per column (differences per column) is calculated by 

looking at individual columns.  Consider a column of length K and a base character 

chosen randomly from a given character set.  C positions in the column are chosen to 

contain a random character from the character set that is not the same as the base 

character.  The remaining K-C positions contain the base character.  The range in the 

number of character differences in this column is estimated as follows: 
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Case 1 – “Best”‎ Case: Suppose the same character is chosen for each of the C 

positions.  The number of character differences in this column is:  

(differences per column) = (K - C) C.                                             Equation  4.4 

Case 2 – “Worst”‎Case: Suppose a different character is chosen for each of the C 

positions, so that none of the C positions contain the same character.  This column then 

contains (K-C)C differences between the base characters and the set of C characters.  

Within the set of C characters, since all characters are different, an additional C(C-1)/2 

differences are introduced: 

(differences per column) = (K - C) C + C (C - 1) / 2.                 Equation  4.5  

Equation (4.4) and (4.5) indicate the range of differences that results due to changes 

made to a column.  Equation (4.4) represents the fewest number of differences that may 

result when changing C characters in a column, and equation (4.5) represents the largest 

number of differences from changing C characters in a column. Combining these 

equations with equation (4.3) gives the average number of difference per column for a 

sequence family with K sequences and a given APD, as follows:   

APD * K (K - 1) / 2 = (K - C) C,                               Equation  4.6 

and 

APD * K (K - 1) / 2 = (K - C) C + C (C - 1) / 2,                             Equation  4.7 

corresponding to equation (4.4) and (4.5), respectively, which can be rearranged into 

the following quadratics in terms of C, respectively: 

C
2
 – (K * C) + (APD * (K

2 
- K) / 2) = 0                                        Equation  4.8               
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C
2
 + ((1 - 2 * K) * C) + (APD * K (K - 1)) = 0.                             Equation  4.9                

Solving the quadratic equation for C gives bounds on the average number of changes 

per column.  For each quadratic, only one solution for C fits the scenario of the problem. 

Averaging each of the proper solutions gives an approximate number of changes per 

column to use in the Creating Initial Population Process algorithm.   

Creating Initial Population Process. Algorithm CreateInitialPopulation, given in 

Figure  4.5, is the first step in the simulation task. In line 10 of the algorithm, the loop 

starts with the i
th

 character of each sequence.  In line 11, the average number of changes 

per column based on equation (4.8) and (4.9) above is calculated. In line 12, a random 

base char (A, G, C or T, corresponding to the four DNA nucleotides) is selected from the 

character set.  In line 13, the loop to generate the i
th

 character of each sequence begins. In 

each iteration, a random number between one and the average number of changes per 

column is generated. If the random number is one, then the i
th

 character of the current 

sequence is assigned randomly to a character from the character set.  Otherwise, the i
th

 

character of the current sequence is set as the base character selected in line 12.  Then the 

algorithm moves to the next sequence and generate its i
th

 character. Once the i
th

 character 

is generated in all of the K sequences, the program proceeds to the next i
th

 character and 

repeats steps in lines 11 through 19. The above steps are repeated until we generate L 

characters for each sequence.  Once all alleles are generated, the initial population 

consisting of N/K copies of each allele is generated. 

The above model was used to generate populations with initial APD varying from 

1% to 10%.  Although bacterial “species” have APDs typically of just a few percent (e.g., 
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~2% in E. coli; Alhiyafi et al. 2007), larger differences are considered because they are 

relevant to recombination between species and between sequences in gene families [6]. 

 

Figure  4.5: Algorithm CreateInitialPopulation. 

4.2.3  Recombination Rate Processes 

Recombination rate (RR) is the probability that the alleles of two arbitrary 

individuals will recombine. The model described here varies RR as a function of pairwise 

differences between the potentially recombining alleles.  Previously used constant 

recombination rates (i.e. not varying according to pairwise differences, as in Alhiyafi et 

al. [4] had been chosen to result in approximately the same number of alleles in the 

population after simulation of 1500 generations.  The current study used a similar average 
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recombination rate for the entire population of sequences, taking into account that more 

closely related sequences would recombine more frequently whereas more divergent 

pairs would have a lower rate.  This enabled the comparison of populations that began 

with nearly identical initial average recombination rates, despite differences in individual 

pairwise rates. 

The constant recombination rate to which the average recombination rate in the 

variable rate model is made equivalent in the current study is called the fixed 

recombination rate (RRfixed). The effect of mismatches on recombination rate was 

incorporated into the calculations with the following equation, which yields an 

exponential decrease in recombination rate (RRik), dependent on the pairwise difference 

(PDik) between the potentially recombining sequences, i and k: 

RRik = RR0* (10
((Δ - PD

ik
) / Δ)

)                               Equation  4.10 

Delta () determines the steepness of the relationship.  Since empirical estimates of 

Δ have varied over a broad range, we tested values of Δ over a broad range (1.67 – 55).  

RR0 is a constant determined prior to the simulation to adjust the initial average 

recombination rate for the population to be the same as simulations with a fixed 

recombination rate, RRfixed, with which results are being compared.  In that way, 

populations can start out with the same average recombination rate.  RR0 is calculated as: 

                   N    N 

RR0 = RRfixed  / [(Σ  Σ (10
((Δ - PD

ik
) / Δ)

))/(N(N - 1)/2)]                          Equation  4.11                           
                                         i=1  k=i+1 

 ranged from 1.67 (a very steep decrease in recombination rate with decreases in 

recombination rate of about 6 orders of magnitude for each 1% difference in sequence) to 
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55 (produces a 1000-fold decrease in recombination rate for each 16% increase in 

pairwise differences, similar to rates reviewed by Fraser et al. [35]).  As previously noted, 

initial average pairwise differences in simulated populations varied up to 10%. 

Calculate recombination rate process.  Prior to running the simulation, 

recombination rates for all possible pairwise differences are calculated 

(“calculate_recomb_rate” process in Figure  4.2).  During the multigenerational 

simulation, the “recombine” process uses these pre-calculated rates. 

4.2.4  Simulation of multiple generations 

Recombination Process. The third component of the workflow runs the main 

recombination process.  This process is identical to Algorithm Recombination shown in 

Figure  4.6 except that in line 15, the recombination rate for the two potentially 

recombining sequences is calculated based on the pairwise difference between the two 

sequences (by lookup in the table generated by the calculate_recomb_rate process) rather 

than being equal to RRfixed.  Algorithm Recombination determines probabilistically for all 

possible pairs of sequences whether a recombination event has occurred and if it has, then 

employs a roulette wheel algorithm to determine where the starting position is located for 

recombining a fragment of length L from “parent” one into the sequence of “parent” two 

to produce a new daughter sequence for the next generation. 

After setting various parameters (initial number and diversity of alleles, sequence 

length, population size, recombination fragment size, recombination rate (see above 

regarding variation of recombinant rate according to pairwise differences), the model is 

run for a number of generations, M.   
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In M generations, recombination events, replication, and selection processes occur. 

Algorithm Recombination given in Figure  4.6 corresponds to the recombination process 

during each generation. In line 11, the first potential partner gene gi of the recombination 

is chosen and checked to see if it has not previously recombined in that generation. If 

gene gi is in the recombination set, then another gi is chosen; otherwise, in line 14, the 

second partner gene gj is randomly chosen from the partner set. In line 15, the 

recombination rate for these two genes is calculated. In the case illustrated, a fixed 

recombination rate RRfixed is used for all recombination events (an alternative program 

that uses variable recombination rates modifies this step). In line 16, a random floating 

point number between 0 and 1 is compared to the recombination rate, RRfixed. If this 

random number is less than or equal to the recombination rate then both genes gi and gj 

will recombine. If gene gj does not recombine with gi, the program jumps to line 23 

where gj is removed from the partner set and the program returns to line 14 to choose 

another gene gj from the partner set. 
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Figure  4.6: Algorithm Recombination. 

This iteration continues until a recombination has occurred or until all genes in the 

partner set have been given a chance to recombine. If recombination occurs between gi 

and gj, the DNA fragment that is moved from one sequence to another for recombination 

has a length RL, and the following steps occur: in line 17 the starting position of the gene 
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where recombination will happen is randomly chosen. The starting position is a random 

integer between -(RL) (recombination length) and (L) (length of the sequence). 

In line 18, the end position of the recombinant fragment is calculated as min (L-1, 

startpos+RL). In line 19, the substring gj (startpos, endpos] is replaced by the substring 

gi[startpos, endpos]. In line 20, both genes are added to the recombination set for that 

generation. 

After all recombinations for one generation are determined probabilistically, the 

resultant population is replicated (process:  replication), simulating cell division to a 

potential population size of 2 * N.  However, to keep population size constant, as would 

be the case for a stable biological population, N individuals are randomly chosen from the 

total 2 * N population for the next generation (process:  selection).  By randomly 

choosing which individual sequences to eliminate, this process simulates neutral 

selection; however, this step could be modified in future versions to yield non-neutral 

selection. 

One series of the processes of recombination, replication, and selection count as 

one generation and is repeated for M generations. A history of all recombination events is 

recorded for future comparisons and analysis.  

Once the process of simulating DNA recombination is finished, the system produces 

a FASTA file containing the surviving alleles. This FASTA file is one of the inputs for 

the GENECONV detection program. 
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4.3  DNA Sequence Data 

The choices of L and RL and the range of APD used for the simulations were based 

on biological data from Escherichia coli. For the gene for beta-glucuronidase, 525 bases 

(bases 331 to 855) were sequenced in 1323 strains of E. coli 148 alleles were identified, 

of which 76 occurred in the population at least twice. The APD was 10.5 bases, or 

approximately 2%. GENECONV identified significant recombination in the 76 multiply 

occurring alleles, identifying an average gene conversion fragment size of 243 bp. For the 

fimH gene, 531 bases (bases 80 to 610) were sequenced in 52 strains known to have 

different beta-glucuronidase alleles. 40 alleles were identified. The APD was 11.0 bases, 

or approximately 2.1%. GENECONV identified significant recombination among the 40 

alleles, identifying an average gene conversion fragment size of 241 bp. 

E. coli sequence data has also been analyzed with GENECONV for ectopic 

recombination, for which it is hypothesized that intragenomic recombination takes place 

between genes coding for similar proteins identified by BLASTCLUST [63]. We 

repeated the analysis to identify additional variables not previously reported. For 4 

different E. coli genomes (U00096, AE014075, BA000007, AE005174), the average 

lengths of aligned DNA analyzed by GENECONV sequences, weighted according to the 

number of sequences in each cluster, were 965, 828, 871, and 919, respectively. The APD 

within each cluster, weighted according to the number of sequences in the clusters, 

averaged 13%, 14%, 10%, and 10%, respectively. The average lengths of gene 

conversion fragments identified by GENECONV in these clusters were 440, 198, 271, 

and 315, for an overall average of approximately 300 bp.  
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Populations simulated in this study had APD values ranging from 1% to 10%, which 

overlaps with the APD range actually observed and analyzed with GENECONV in the 

above biological experiments. Similarly, sequence lengths, L, were 531 or 1,000 bp, 

which overlaps with the biological data, and the models simulated gene conversion 

fragment lengths of 261 and 300 bp, also in the range of the biological data. 

4.4  GENECONV Detection Method 

To determine the detectability of simulated recombination events, the FASTA file of 

DNA allele sequences present at generation 1500 of each simulation was submitted to 

GENECONV, which generated lists of pairs of sequences identified as having putative 

gene conversions.  To estimate how many known recombination events were not detected 

(cryptic recombination) by GENECONV, the analyze process compares the record of 

simulated recombination events that generated the population being analyzed to the list of 

putative gene conversions identified as significant pairwise inner fragments by 

GENECONV. As in our previous study of simulated recombination with fixed 

recombination rates [4], this comparison was done for only the recombination products 

known to have been generated in the last ten generations of the simulation since multiple 

recombination events could have obscured the recombinant products of earlier 

generations. The effects of pairwise differences of the parent sequences and of Δ, the 

variable that determines the steepness of the relationship between pairwise differences 

and the recombination rate, on the detectability of the resultant gene conversion events by 

GENECONV were analyzed. 
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As in previous studies by Alhiyafi et al. [4], with constant recombination rates, the 

overall statistical significance of the pairwise inner fragments identified by GENECONV 

was determined by comparison to the number of pairwise inner fragments generated with 

the “randomize Sites” parameter turned on. Significance was determined from the Z 

value, where Z is calculated as follows: 

Z = (avg. observed data – avg. randomized data) / (sqrt (avg. randomized data))    

Values of Z greater than ~2.5 indicate that the number of gene conversion fragments 

identified in the submitted data is significantly greater than would have occurred by 

chance. 

To identify cryptic recombination, the saved history of recombination events 

generated by the simulation was compared to the list of putative gene conversions 

identified by GENECONV. Since multiple recombination events could obscure the 

recombinant products of earlier generations, only the recombination products known to 

have been generated in the last ten generations of the simulation were compared to the 

GENECONV output list. The effects of pairwise differences of the parent sequences, the 

start position of the recombined fragment, the pairwise difference of the recombined 

fragments from the replaced fragments, and the pairwise difference of the non-transferred 

segments of the parent sequences were analyzed for their effect on the detectability of the 

resultant gene conversion events by GENECONV. 
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4.5  Experimental Parameters 

Two sets of parameters were used in the simulation. One set used length of sequence (L) 

equal to 531 bp with 263 bp for the recombination length (RL). The other set used 1000 

bp for the length of sequence (L) with 300 bp for the recombination length. Each 

individual run of the simulation used 1500 generations (M), 1000 individuals in the 

population (N), 3.2 x 10
-6

 as the fixed recombination rate (RRfixed), and 40 alleles (K) at 

the beginning of the simulation.  As explained above, delta (∆) in equation 4.10 

determines the steepness of the relationship.  The simulation was run with various delta 

values (1.67, 5, 10, 15, 20, 25, and 55) and various APD values (1%, 2%, 5%, and 10%). 

4.6  GENECONV Analysis while using fixed recombination rate 

After analysis of the final set of alleles by GENECONV, Z values were always much 

larger than 2.5, indicating that the number of gene conversion fragments identified in the 

submitted data was significantly greater than would have occurred by chance. For 

example, the value of Z for 49 alleles resulting from running the simulation for 1500 

generations with L = 1000 and RL = 300 bp, was 32.42. Another run of GENECONV 

with 44 alleles resulted in Z = 25.05. 
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Figure  4.7: Effect of APD % on recombinations detected by GENECONV. 

If GENECONV is ideally sensitive, then all recombinations known to have occurred 

in the last 10 generations should have been identified; however, the program often failed 

to identify the majority of them. For example, with 2% APD, in the last 10 generations of 

one run, 41 recombinations occurred and 49 alleles were given to GENECONV. 

GENECONV detected 257 recombinations, but only 11 of the 41 that actually occurred 

in the last 10 generations of the simulation process. In another example, where 5% APD 

was used and 52 alleles were submitted to GENECONV, 39 recombination events 

occurred in the last 10 generations, and GENECONV detected only 22 of them. Figure 

 4.7A shows that low parental PD reduces recombination detectability. For the last 10 

generations of the simulation, the total number detected for various PD were divided by 

the total number of occurrences in the 10 runs. Figure  4.7B, C summarize how APD 
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affects whether GENECONV detects known recombinations at different APDs. We used 

ANOVA in Figure  4.7B & C where p < 0.001. 

 

Figure  4.8: Lack of effect of position of recombined fragment on detectability. 

The number of non-detected recombinations, i.e., “cryptic recombinations,” 

decreases as the APD increases and is a more significant problem when APD is low. 

Subsequent experiments analyzed whether the percent detected could be related to 

specific characteristics of the recombination event, such as the position of the recombined 

fragment and the pairwise difference present in the transferred or nontransferred 

fragments. 

Figure  4.8 show that detectability was virtually the same regardless of the position of 

the recombined segment. The example shown is for sequences analyzed from simulations 

with initial APD of 2%. Populations with other APD values also failed to show any 

consistent differences with fragment position, showing the same differences of 
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detectability at all positions as the overall detectability varied between different APD 

groups. 

 

Figure  4.9: Effect of pairwise differences of the non-transferred segment of parental 

sequences on detection of recombinations by GENECONV. 

Analysis of whether the pairwise difference of the recombined fragment affected its 

detectability also showed no difference across a wide range of values. However, as 

illustrated in Figure  4.9, the pairwise difference of the nontransferred segment has a 

significant influence on the detectability of the recombination event. For 10 runs of each 

initial APD %, the total number of recombinations detected in the recombination history 

of the last 10 generations was divided by the total number of recombinations in the same 

period for various pairwise differences of the non-transferred segments. At 1% and 2% 
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parental APD, the percent detected increased over the entire range of the pairwise 

differences of the non-transferred segments, and for 5% and 10% parental APD percent 

detected increased to a plateau of around 60% for pairwise differences of the non-

transferred segment greater than approximately 2.5% of the non-transferred segment. 

4.7  Experimental Results while using variable recombination rate 

4.7.1  Changes in population structure 

Although all simulations began with 40 alleles, the final number of alleles after 1500 

generations increases or decreases depending on the initial APD.  For example, Table  4.1 

shows the number of surviving alleles for various APD and Δ set to 15.  With 1%, 2%, 

5%, and 10% APD, the average number of alleles after 1500 generations was 29.8 + 1.7, 

52.1 + 7.1, 4.8 + 0.6, and 2.9 + 0.3 (mean + sem, n = 12, 12, 6, and 9), respectively. 

Number of replicates varied from 6 to 12. Regardless of the initial APD, after 1500 

generations, the APD of the final population decreased to about 50% of the initial 

population APD (Figure  4.10). The number of recombinations occurring in 1500 

generations with the above mentioned parameters was approximately 4,750 and 14,500 

recombination events when using fixed and variable recombination rates, respectively, an 

average of 3 and 9 recombinations/generation. The final set of alleles is the input for the 

GENECONV program to detect recombination events that will be compared to the 

recombination history recorded during the simulation process.  In the last 10 generations 

that were compared with GENECONV output, 35-50 recombination events occurred 

when using a fixed recombination rate, and more than 135 recombination events occurred 
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when using variable recombination rate. However, we discuss here first the effects of 

APD and Δ on population structure, and their effect on GENECONV performance in a 

later section.   

Table  4.1: Number of surviving alleles after running the simulation. 

APD 

(%) 

Fixed recombination rate Variable recombination rate 

Initial Population Final Population Initial population Final population 

1 40 30 40 29.8 

2 40 34.2 40 52.1 

5 40 42.3 40 4.8 

10 40 37.8 40 2.9 

 

 

 

 

 

 

 

Figure  4.10: Decrease in PDs between initial and final populations. 

Simulated populations appear to change in structure over many generations.  

Depending on the values of APD and Δ, populations sometimes separate into multiple 

groups or clusters some of which appear to become extinct with passing generations.  

This is illustrated in representative population history diagrams in Figure  4.11, in which 

the number of pairs with a given pairwise difference in each generation is quantified as 

different colors, over 1500 generations.  Figure  4.11 show the representative changes in 
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population structure over the course of 1500 generations for initial Average Pairwise 

Differences (APDs) of 1% and 2% and steepness of the recombination rate/pairwise 

difference relationship (Δ) equal to 15. The graphs illustrate the numbers of pairs with a 

various numbers of Pairwise Differences (PD) in each generation (up to 1500 

generations), represented by color according to the log10(number of pairs having that 

difference). Zero representatives for a particular PD is plotted as Log(0.1) = –1 which is 

the darkest blue color. 

In Figure  4.11A, recombination of an initial population with an initial average 

pairwise difference of 10 (i.e. 1% of the 1000 bp sequence) and Δ of 5 (a relatively steep 

decline in the probability of recombination with pairwise difference) almost immediately 

lost its most extreme pairwise differences and then slowly drifted towards populations 

with smaller pairwise distances. Lower Δ means a steeper fall-off of recombination rate 

with pairwise difference. 

In Figure  4.11B and C, with initial average pairwise distances of 2% and 5%, 

respectively, and Δ of 10 and 20, respectively, populations similarly narrowed initially, 

but one now sees that various subpopulations appear and disappear over time.  In both 

examples, sequences with smaller pairwise differences than the initial population arise 

due to recombination.  In some cases, particularly in Figure  4.11C, a specific pairwise 

difference would appear in the population for some generations and then disappear, 

presumably because the Selection process that maintains a constant population size had 

by chance eliminated them.  Hence, subgroups in the population become extinct. 
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  “Extinction” also occurred in Figure  4.11B for many subgroups, including alleles 

with pairwise differences of 31 which briefly broadened around generation 600 only to 

become extinct before generation 800.  On the other hand, it‟s perhaps no surprise that 

with recombinations between near relatives favored, that a population with pairwise 

differences of less than 10 arose in Figure  4.11C and continued until the end of the 

experiment.  Another notable feature of Figures Figure  4.11B and C is that by the end of 

1500 generations the population seems to have broken up into several distinct subgroups, 

at least three in Figure  4.11C, and at least two distinct populations in Figure  4.11B (and 

perhaps three groups, depending on how one might interpret the smaller numbers (less 

reddish color) with pairwise differences between 5 and 10).   

 

Figure  4.11: Representative changes in population structure over the course of 1500 

generations. 
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In Figure  4.11D, with a value of Δ of 55, the largest considered in this study, a 

population starting with an initial average pairwise distance of 20 (i.e., 2%), the 

population history somewhat resembles that shown in Figure  4.11A, with much smaller Δ 

and APD.  Relatively small numbers of the population with large PD disappear relatively 

quickly, and the average pairwise difference in the population drifts towards lower values 

as the experiment proceeds.  A similar population history to Figure  4.11D occurs when 

the simulations are done with a constant recombination rate that does not vary with 

pairwise difference (data not shown). 

The occurrence and relative stability of separate populations at the end of some of 

these 1500 generation simulations (e.g., Figure  4.11B and C) is a remarkably different 

outcome compared to a single population that slowly drifts towards lower average 

pairwise differences in other experiments (Figure  4.11A and D).  The presence of 

multiple populations at generation 1500 was analyzed for a large number of simulations 

over a range of various values of initial APD and Δ.  Multiple populations resulted from 

only a few sets of paramaeter combinations and never occurred with a constant 

recombination rate.  More than 50% of the runs had multiple populations with APD  = 

5% and Δ = 20 or 25.  Multiple populations at generation 1500 were also occasionally 

seen with APD = 1%, Δ  = 5 and APD = 2%, Δ = 10.  All other combinations of APD and 

Δ rarely (no more than once) or never resulted in multiple populations, as tested with 8 to 

17 runs of each APD, Δ combination. 
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4.7.2  Detectability of Recombination 

Sequences at generation 1500 were analyzed for evidence of recombination using 

GENECONV, and the identified related pairs were compared to the actual history of 

recombination recorded by the workflow system.  The number of identified gene 

conversion fragments identified by GENECONV was always much greater than would 

have occurred by chance.  For example, for the four representative populations illustrated 

in Figure  4.11A – D, the numbers of gene conversion fragments identified in the 

populations at generation 1500 were 32, 68, 243, and 295, for which values of Z were 

11.7, 23.4, 59.1, and 67.3, respectively (values of Z > than 2.5 indicates significance at p 

< 0.05).  

However, despite detecting a significant number of gene conversions, when the gene 

conversions detected by GENECONV were compared to those that had actually occurred 

in the simulation, it was apparent that GENECONV missed a large proportion of them.  

A typical result is illustrated in Figure  4.12, for populations that had been initiated with 

APD = 2%.  Compared to the number of recombinations that actually occurred in the last 

10 generations (generations 1491 to 1500) GENECONV detected only 8.1% + 0.9% of 

them.  The percent detected improved somewhat in simulations with higher values of Δ, 

but was still only a little higher than 20% for Δ = 25.  In comparison, with an equivalent 

fixed recombination rate, 30.0% + 1.6% were detected.  Results followed similar trends 

for populations with other initial values of APD:  as delta increased, the percent of 

recombinations detected increased.  Bars in Figure  4.12 represent the percentage of allele 

pairs known to have had gene conversions in the last ten generations of the simulation 
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that were also identified by GENECONV as having gene conversion fragments. Also 

shown for comparison, is the result for simulations with APD = 2% when the 

recombination rate had a fixed value. 

A specific example, for the population illustrated in Figure  4.11B (2% APD and Δ = 

10) is the following: At the end of 1500 generations, 25 alleles remained and were passed 

on to GENECONV. GENECONV detected 68 recombinations, but these included only 

14 of the 255 gene conversions that actually occurred in the last 10 generations of the 

simulation process.  The remainder of the 68 gene conversion fragments may represent 

recombinations that occurred in prior generations; however, this would still only account 

for a small fraction of the actual number of simulated recombinations, since in 1500 

generations for this run, a total of 28,888 recombinations had occurred in the simulation, 

far more than the total detected by GENECONV. 

 

 

Figure  4.12: Effect of Δ on the percentage of simulated gene conversions detected by 

GENECONV for simulated populations with initial APD = 2%.  
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4.8  Summary and Future Work 

DNA recombination detection systems underestimate the amount of recombination 

since they are unable to detect the most frequent recombinations that occur between 

similar sequences. For DNA sequences with average pairwise differences of 1% to 2%, 

more than 70% of recombinations that are known to have occurred failed to be detected. 

These figures are based only on comparing sequences from the most recent 10 

generations of simulation; however, even considering the entire 1500 generations, the 

total set of gene conversions identified by GENECONV is often much less than the 6,000 

such events known to have been simulated in 1500 generations; viz., the representative 

example cited below Figure  4.7. Potentially, by knowing the APD of a population being 

analyzed, the number of cryptic recombinations can be estimated from the quantitative 

analysis provided here. These results would yield a higher recombination rate than 

previous analyses have suggested. 

The causes of the low detectability of some recombinations does not seem to be 

related to the position of the recombined piece (Figure  4.8) nor the number of bases 

different in the transferred piece of DNA. Since the pairwise difference of the parents 

appears to affect detectability (Figure  4.9) but the pairwise difference of the transferred 

fragment does not, then a key variable mediating detectability may be the pairwise 

difference of the non-transferred segment, an observation supported by results illustrated 

in Figure  4.9. Future studies should further investigate the causes of non-detectability in 

order to reduce this problem or estimate its magnitude in future analyses. 
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The present study demonstrates that the population APD is a key variable in 

affecting recombination detectability. Pairwise differences could also affect quantitative 

estimates of recombination in another way: biological studies have determined that 

recombination is more likely to occur between similar sequences (i.e., those with a lower 

pairwise difference) than between more distant sequences [79, 92]. Thus, the 

recombinations that are hardest to detect, according to the present study, also occur most 

frequently. The stochastic simulation model developed in the present model is an ideal 

platform for analyzing the impact of pairwise differences on estimates of recombination 

rates. Preliminary results with simulations in which recombination rates decrease with 

increasing pairwise differences indicate that an even higher proportion of recombinations 

fail to be detected than is demonstrated here using a fixed rate of recombination. 

This chapter also demonstrates that distance-modulated rates of recombination affect 

population structure and the detectability of recombination.  The project also illustrates 

the use of a grid-based scientific workflow system for efficient simulation and analysis of 

the DNA recombination process and several useful algorithms in its implementation. The 

initial average pairwise differences in the population and the magnitude of the pairwise 

difference effect on recombination both affected whether populations remained unitary or 

broke up into distantly related subgroups.   

The present model shows that changes in population structure akin to sympatric 

speciation can occur due simply to the effect of pairwise differences on recombination 

rate.  Only certain combinations of pairwise differences and steepness of the pairwise 

difference:recombination rate relationship appear to favor such population clustering.   
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The value of Δ seems key. Empirical estimates of the effect of pairwise differences on 

recombination rate vary widely.  The observations of Vulić et al. [93] suggest a decrease 

of 5 orders of magnitude for a 2% sequence divergence, which corresponds in our 

calculations to a value of Δ of approximately 4, while the rate effect reported by Fraser et 

al. [35] corresponds to our Δ = 55. Part of the explanation for this difference of the effect 

of sequence divergence on recombination rate is that the experiments of Vulić et al. [93] 

were carried out in strains in which the mismatch repair mechanism was defective, 

possibly exaggerating factors that affect recombination.  Vulić et al. [93] have suggested 

that variations in the mismatch repair mechanisms may promote speciation.  This 

suggestion is supported in the present study by the fact that multiple populations emerged 

here with Δ within this range of possible values.   Moreover, since the present 

recombination analysis model is run without simulated point mutations or non-neutral 

selection, the clustering of subgroups produced under some conditions could be enhanced 

where selection and point mutations are allowed.  Recent empirical data indicates that 

sympatric speciation can occur in nature [12, 16, 36].  This study indicates how the 

pairwise effect of sequence divergence on recombination rate may play a role in 

speciation. 

Sequence divergence effects on recombination rate also exaggerated the difficulty of 

detecting gene conversion events. The present study shows that variation of 

recombination rates with pairwise differences needs to be taken into account when 

estimating recombination rates and when designing recombination detection experiments. 

GENECONV often failed to identify more than 80% of recombination events, an error 
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rate that increased as the mismatch effect became larger (i.e., lower Δ).  In order to make 

a more realistic estimate of the rate of recombination in any given population, it may be 

necessary not only to ascertain the average pairwise difference by sequencing portions of 

representative strains in the population but also to do experiments to determine the value 

of Δ in any given population.  These results thus confirmed our hypothesis that the 

pairwise difference effect on recombination frequency decreases the efficacy of 

recombination detection programs in detecting recombination. 
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CHAPTER 5 : INTRAGENOMIC GENE CONVERSION 

ANALYSIS 

Intragenomic Gene Conversion (IGC) is important in the evolution of bacteria but 

has only been analyzed computationally in a few strains of Escherichia coli.  This chapter 

describes a scientific workflow approach to analyze IGC in all NCBI bacterial genomes. 

We analyze for the first time the large variation of IGC in the pathogen Streptococcus 

pyogenes, and also in non-pathogenic bacteria.  Also, Intragenomic Gene Conversion 

(IGC) has been suggested to mediate concerted evolution of genes.  Previous studies on 

four E. coli strains suggested that IGC occurs more frequently in pathogenic strains.  

These hypotheses are investigated by (a) analyzing IGC in seven E. coli and six Shigella 

genomes, and (b) identifying specific bacterial genes in which IGC has occurred. The 

workflow system approach enables organizing large-scale computational analyses of 

multiple genomes and will facilitate future comparative studies of genome organization. 

The rest of the chapter is organized as follows. Section 5.1 discusses the motivation 

and challenges. Section 5.2 presents an introduction on intragenomic gene conversions.  

Sections 5.3 introduce the intragenomic recombination analysis pipeline. Section 5.4 

describes the implementation of the workflow.  Section 5.5 presents the genome 

sequences used in this research. Section 5.6 presents the computational methods used. 

Section 5.7 displays the experimental results. Section 5.8 presents the biological results.  

Finally, Section 5.9 summarizes the chapter.  
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5.1 Motivation and Challenges 

Recombination is the transfer, insertion, or replacement of a length of DNA into a 

genome from another source. This can occur between two cells or different regions of the 

same cell. The usual requirement for recombination to occur is a similarity of sequence 

between recombining regions. Gene conversion, which is an outcome of a recombination 

event, is the non-reciprocal transfer of genetic information from one gene to another. 

Recombination and gene conversion can occur between separate genes with related 

sequences within the same genome, a process known as Intragenomic Gene Conversion 

(IGC). IGC plays an important role in the evolution of multigene families of bacteria and 

the generation of antigenic variations [75]. Genome-wide analysis is the key to 

identifying sequences likely to have resulted from IGC events. 

Despite the public availability of the microbial genome sequences and various 

sequence analysis tools, current IGC analysis relies on a manual and error-prone 

procedure. The procedures include downloading multiple datasets from public databases, 

integrating protein and genome data, modifying the format of the output of one analysis 

tool, and then transferring it into another analysis tool, and so on. IGC analysis and other 

genomic analysis procedures typically involve over 50 steps of human or computational 

tasks, and require an inordinate amount of time and labor for analysis. 

Taking into consideration the importance of IGC, a methodology to analyze the 

occurrence of IGC in bacterial genomes has been developed. This application performs 

genome wide analysis to identify gene conversions found among multigene family 

members of entire microbial genomes. To accomplish this task, complete genomes are 
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retrieved from GenBank, and then BLASTClust, ClustalW, GENECONV, and various 

parsing and statistical computations are applied to the genomic data. These procedures 

have previously been applied manually to four genomes of Escherichia coli [63]; 

however, the massive amount of work that is involved in testing the results with different 

control parameters and extending the analysis to all bacterial genomes necessitated 

automating the analysis by developing a scientific workflow system.  

In this dissertation, a scientific workflow approach is demonstrated for analyzing 

IGC in complete microbial genomes. We have developed a system to automate this 

complex procedure, including protein and genomic data retrieval from the web and the 

invocation of various wrapped local protein and genome sequence analysis tools. We 

used the scientific workflow system to efficiently analyze the microbial genomes 

available from the National Center for Biotechnology Information (NCBI) via the 

internet. 

5.2  Intragenomic Gene Conversions  

DNA consists of many genes and provides genetic information to regulate and 

reproduce cells. Information from each gene encodes a unique protein, which performs 

necessary tasks for the cell to function. Bacteria are very small single cell organisms that 

are found almost everywhere, in the air, water, soil, food, and human body.  Bacteria are 

prokaryotes, which indicate that they contain a single cell that does not contain a nucleus. 

Instead, their genetic information is within a single circular chain of DNA. Even though 

they are small organisms, many live in groups and can multiply quickly by cell division, 

by which a single cell splits into two new daughter cells both with the same genetic 
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material, and can conjugate (~ have sex) with each other to exchange and insert genetic 

material from one cell to another by homologous recombination. 

Homologous recombination, which can occur between two similar DNA sequences, 

is the exchange or replacement (conversion) of genetic information in one DNA sequence 

by a homologous DNA sequence from the other sequence (Figure  5.1). This is an 

important factor for the survival and evolution of the cells. Although recombination is 

usually thought of as occurring between two different cells, intragenomic recombination, 

including IGC, can also occur in which recombination occurs between genes in gene 

families, i.e., genes with similar sequence that can be found in the same microbial 

genome.  Where concerted evolution of related sequences occurs, e.g., the highly related 

multiple copies of ribosomal RNA genes, the similarity of the multiple copies may be 

maintained by intragenomic recombination [52].  Coevolution of the tufA and tufB genes 

of Salmonella typhimurium by IGC is supported by experimental analysis of 

recombination products  [9, 46].   In addition, a bioinformatic approach has been applied 

by Morris and Drouin [63] to several strains of Escherichia coli, in which gene families 

were identified and then their members were compared for evidence of previous gene 

conversions using GENECONV [76], software that identifies non-random similarities 

between sequences as evidence for conversion events. In comparison with the K12 

laboratory strain of E. coli, for which comparatively few intragenomic events were 

detected, numerous instances of IGC were identified in the genomes of three pathogenic 

strains of E. coli [63].  In order to understand the evolutionary role of IGC and also to 

analyze whether high IGC levels are especially characteristic of pathogenic bacteria, we 
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used the complete set of bacterial genome sequences available in NCBI‟s GenBank to 

perform the analysis of IGC among members of identified multigene families. 

 

 

 

Figure  5.1: Gene Conversion. A Segment of one DNA sequence is replaced by a segment 

from the other sequence. 

5.3  Intragenomic recombination analysis pipeline 

Analysis of Intragenomic Gene Conversion was begun in collaboration with M.S. 

student Cavitha Sabesan. She implemented the initial code of this workflow. I then added 

the Analysis of protein identifications (PIDs) of genes as a process to the workflow also 

another process to check similarities between genes. Modifications to the workflow were 

added to maintain the changes that were occurring in the NCBI website where we parse 

and download necessary data for the analysis.  I also ran the workflow to analyze IGC in 

all current NCBI bacterial genome. The description here is similar and describes 

extensions to that collaborative work. 

Figure  5.2 illustrates a pipelined view of the analysis of IGC as a set of processes 

and data flows among those processes. Except as noted, the processes and parameters 

follow the methodology applied previously to four E. coli genomes [63].  The protein 

sequence of a complete genome was obtained from GenBank and all multi-gene families 

of that genome were identified using the BLASTClust program [17]. BLASTClust 

identifies the multi-gene families and produces an output file that lists one family per line 
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such that each line contains all members of that family.  Each family member is indicated 

by the Protein Identifiers for genes, separated by spaces. Parameters were set so that two 

protein sequences need to be 60% identical over at least 50% of the area covering their 

length to be included in a family. 

The corresponding DNA sequence for each member in the families was obtained and 

aligned using ClustalW [24]. These aligned DNA sequences were then processed using 

GENECONV [37] to identify gene conversions. Converted genes were identified as 

genes for which global inner fragments with p<0.05 were identified. G-scale, which is the 

mismatch penalty between different sequences and allows for point mutations to have 

occurred since the most recent recombination, was set to 2 to obtain more significant 

fragments. When GENECONV identifies the global inner fragments in a given sequence 

it lists each and every conversion identified in each pair of sequences. When considering 

a multi-gene family, this can result in a list of duplicate conversions if gene duplication 

had occurred after the recombination rather than before. In order not to count a single 

conversion multiple times, duplicate conversions were removed and counted only once, 

resulting in a conservative estimate of the number of gene conversions.  

When considering the gene conversions identified by GENECONV, some converted 

fragments start at the beginning or end of the gene sequences being analyzed. This 

implies that if the analysis to detect gene conversions were to be carried out in genes with 

additional sequence flanking the region of interest, then the actual beginning or end of the 

fragment in the flanking region could be identified, rather than be limited by the ends of 

the sequences being considered.  Also, by providing more sequence with which to 
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identify gene conversions, converted sequences that previously were too short to be 

detected might be identified.  Thus, the workflow pipeline incorporated methods of 

finding and adding on the flanking DNA sequences to all members of the gene families 

being considered prior to application of GENECONV. Since GENECONV also identified 

some conversions purely in the added flanking region and those conversions are fully 

outside of the gene clusters being compared, fragments completely contained within the 

flanking regions were eliminated in the final count. Size of the flanking region that was 

added to the DNA sequences prior to GENECONV analysis was an input parameter, 

which we generally set at 0 (“no flank” method) or 600 (“flank 600” method), which pilot 

experiments determined would reduce the number of conversions that started at the 

beginning or end of the sequences being analyzed to be less than 5% of the total number 

of identified gene conversions. 

The final process in the workflow pipeline analyzed a number of statistical features 

regarding the conversions obtained, including numbers of multigene families, numbers of 

members in each family, maximum number of genes identified in those families, numbers 

of gene conversions and sizes of gene conversions. 
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Figure  5.2: Pipelined view of the intragenomic recombination analysis. 

5.4  Implementation of the workflow 

A scientific workflow system [6] was built to analyze IGC in complete bacterial 

genomes using both local and remote resources. The intragenomic recombination 

analysis workflow (Figure  5.3), can be considered not only a complete processor, but it 

can easily be shared, modified, and reused within other more comprehensive 

bioinformatics workflow systems. The various processors that are used in the workflow 

were implemented using Taverna scientific workflow system.  Then, the workflow was 

implemented using GENOMEFLOW (Section 3.5) in order to incorporate the use of a 

high performance environment and to process more than one genome at the same time.  
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Figure  5.3: A scientific workflow for Intragenomic Recombination Analysis. 

5.5  Genome Sequences 

Complete bacterial genomes were obtained from the GenBank repository that is 

available from the NCBI ftp site (ftp://ftp.ncbi.nih.gov/genomes/Bacteria). The protein 

sequence (.faa), DNA sequence for proteins (.ffn), complete DNA sequence (.fna) and the 

reference table for proteins (.ptt) files were retrieved for each genome in the analysis.  
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The genomes analyzed in the present study were Escherichia_coli_K12_MG1655 

(U00096), Escherichia_coli_CFT073 (AE014075), Escherichia_coli_O157H7_EDL933 

(AE005174), Escherichia_coli_O157:H7_Sakai (BA000007), Escherichia_coli_536 

(CP000247), Escherichia_coli_UTI89 (CP000243), Escherichia_coli_W3110 

(AP009048), Shigella_boydii_Sb227 (CP000036), Shigella_dysenteriae_Sd197 

(CP000034), Shigella_flexneri_2a_301 (AE005674), Shigella_flexneri_2a_2457T 

(AE014073), Shigella_flexneri_5_8401 (CP000266), Shigella_sonnei_Ss046 

(CP000038). The labels in parentheses are the Genbank accession numbers of the core 

nucleotide sequence of each strain.  The first four genomes are the same as studied by 

Morris and Drouin [63], except that their download was in 2002 and several updates of 

the sequences have been made in the intervening period (data in the present research are 

based on sequences downloaded in March, 2007).  Strain 536 is an O6 serotype UPEC 

strain obtained from the Institut fur Hygiene und Mikrobiologie, Universitat Wurzburg, 

Germany [14] whose complete genome was reported by Hochhut et al. [42]. UTI89 is a 

strain provided by Langerman from a patient having acute bladder infection [66] and 

completely sequenced by Chen et al. [23]. Strain W3110 is an ancestral K12 strain whose 

complete genome was reported by Hayashi et al.  [40].  Shigella strains Sb227, Sd197, 

and Ss046 were all isolated during epidemics in China in the 1950s and obtained from the 

Institute of Epidemiology and Microbiology, Chinese Academy of Preventive Medicine, 

for complete sequencing by Yang et al. [98].  S. flexneri variants are from epidemic 

strains that were sequenced by various authors:  strain 301 was isolated from a patient 

with severe shigellosis in Beijing in 1984 [47]; strain 2457T 2a was obtained from the 
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Walter Reed Army Institute of Research and sequenced by the Blattner group [95]; and 

strain 8401 is from an epidemic in China and provided by the National Institute for 

Communicable Disease Control and Prevention, Chinese Centre for Disease Control and 

Prevention [47]. 

5.6  Computational methods 

Various software applications were incorporated as processes within the workflow 

system. The initial methods reproduced and verified the procedures of Morris and Drouin 

[63], which were then modified as described below. BLASTClust, used to identify multi-

gene family members in the genome, was obtained from the NCBI ftp site 

(ftp://ftp.ncbi.nih.gov/blast).  ClustalW, used to align sequences, was obtained from EBI 

(http://www.ebi.ac.uk/clustalw). GENECONV was obtained from Sawyer‟s web site 

(http://www.math.wustl.edu/~sawyer/geneconv) and used to identify gene conversion 

events between pairs of aligned DNA sequences. Duplicate gene pairs were removed 

from the GENECONV output with self-written software by a method described below.  A 

graphical view of the IGC analysis scientific workflow is shown in Figure  5.3. 

Processes and parameters used in the analysis were as follows:   

Protein sequences within a genome were classified as members of multigene families 

with BLASTClust using 60% identity over at least 50% of their lengths as the criterion.  

Sequences of family members were then aligned with ClustalW.  Initially, Morris 

and Drouin‟s results were verified using their procedure of aligning the protein sequences 

(a procedure that inserts gaps when needed according to the amino acid sequence), 

followed by aligning the corresponding DNA sequences in the same register.  However, 
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since recombination takes place at the level of homologous DNA sequences rather than 

the protein sequence, it seemed more logical to align the DNA sequences of family 

members directly with ClustalW as this would more closely mimic the alignment 

presumed to occur during recombination.  Therefore, after verification of previous 

results, subsequent alignments applied ClustalW directly to the DNA sequences 

corresponding to protein sequence family members identified as output from 

BLASTClust.  Results will show that both methods produce comparable although not 

exactly identical values. 

Aligned DNA sequences were processed using GENECONV to identify the gene 

conversions. Global inner fragments with p-values less than 0.05 were counted. The g-

scale value, which sets the mismatch penalty for single nucleotide differences in the 

converted region, to allow for the possibility that point mutations had occurred after gene 

conversion, was set equal to 2, the same value used by Morris and Drouin [63]. 

With large clusters, pairs of global inner fragments identified by GENECONV often 

included duplicate fragments between sets of different pairs, which might have been due 

to a single gene conversion event followed by subsequent genomic duplications and 

divergence.  In order to not count a single event multiple times, all but one representative 

of each set of duplicates were removed before counting up the gene conversion events. 

Since similar gene conversion events could have occurred multiple times, this duplicate 

removal procedure provides a conservative estimate of the number of Intragenomic Gene 

Conversion events. 
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In the course of running the above analyses and comparing to previous results, it 

became apparent that a significant number of gene conversion fragments actually started 

in the middle of the gene and ran all the way to the end.   In other words, very likely the 

converted fragment was longer than the initial analysis revealed but the actual length was 

not detected because only the coding sequence was subjected to GENECONV analysis.  

To remedy this and to obtain more accurate estimates of the lengths of converted 

fragments, sequences of the DNA flanking each member of the families were appended 

to the sequences prior to alignment and subjecting sequences to GENECONV analysis.  

As will be described, various lengths of flanking DNA sequences were tested, and longer 

lengths of some previously very short fragments were revealed.  In the count of 

conversion events in each cluster, we count only those fragments having at least one end 

beginning within the protein-coding region; additional conversion events that were 

wholly contained within the flanking sequences are not counted in the results presented, 

although these numbers are also available. 

In summary, the computational methods initially duplicated that of Morris and 

Drouin [63] but were subsequently modified by applying ClustalW directly to DNA 

sequences of family members and by adding flanking DNA sequences to the DNA 

sequences prior to alignment and GENECONV analysis. 

Subsequently, gene functions were identified with a new process added to the 

scientific workflow system to extract the annotations of genes in gene families from .ptt 

files downloaded from NCBI.  Subsets of these families exhibiting IGCs were 

subsequently analyzed. 
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5.7  Experimental Results  

5.7.1  Workflow performance 

During the process, we recorded the start and end times for analyzing all the 

genomes.  It took ~4.5 days to process >400 genomes, using both “no flank” and “flank 

600” methods.  It took about 1.8 days to process the genomes with the “no flank” method 

(median time per genome, 3.4 minutes) and about 2.7 days for genomes with the “flank 

600” method (median time per genome, 4.6 minutes; significantly longer than “no flank”, 

p<0.001, signed rank test).  

In addition to the effect of analysis method (flank v. no flank) on processing time, 

biological factors, such as genome size and numbers of gene families, also influence 

processing time.  Figure  5.4 shows process time generally rising with genome size, for 

both “no flank” and “flank 600” methods.  The relationships can be fit well (r
2 

= 0.735, 

no flank; 0.534, flank 600; p<0.001 for both) with power equations.  The processing time 

also increased with number of gene families identified in the genome (data not shown). 

Process times varied greatly, even among genomes that are approximately the same 

size, and the longest processing times were not obtained with the largest genomes.  

Instead, the longest processing times were obtained from several genomes of intermediate 

size.  Particularly notable in the graph for the “flank 600” output are 11 genomes that 

have processing times >50 min (circled in Figure  5.4, right).  They include five different 

strains of Shigella, two of Xanthomanas oryzae, and several other moderately sized 

genomes.  These genomes are among those in which the largest numbers of IGC were 
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identified, and will be discussed in the section on biological aspects of the output.  A 

similar group of points is present in the “no flank” graph of Figure  5.4. 

             

Figure  5.4: Processing time vs. genome size. 

5.8  Biological results 

5.8.1  Variation of IGC between and within species  

The numbers of intragenomic gene conversions in ~430 bacterial genomes varied 

greatly both between species as well as within species.  Analysis of the largest and 

smallest of the genomes and illustrate the species-to-species variation, even among 

strains that are similar in size to one another.  The 15 largest genomes (Table  5.1), 

varying from about 7 megabases to nearly 10 megabases, ranged in numbers of 

intragenomic gene conversions from a low of 3 (no flank) or 10 (flank 600) conversions 

in Pseudomonas fluorescens Pf-5 to as many as 153 (no flank) or 449 (flank 600) 

conversions in Trichodesmium erythraeum.  Similarly, among the smallest genomes 

analyzed, although most species show no intragenomic conversions (e.g., Ureaplasma 
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urealyticum, AF222894, 751,719 bp; Neorickettsia sennetsu, CP000237, 859,006 bp),  

three of the smallest strains have large numbers of IGC (Aster yellows witches-broom 

phytoplasma AYWB, CP000061, 706,569 bp, 21 IGCs no flank, 113 IGCs with flank; 

Mycoplasma mobile 163K, AE017308, 777,079 bp, 19 IGCs no flank, 20 IGCs with 

flank; and Mycoplasma pneumoniae, U00089, 816,394 bp, 78 IGCs no flank, 203 IGCs 

with flank). 

IGC also varies within species.  This principle is demonstrated here to be a general 

property of bacterial genomes, by examining all groups of genomes for species for which 

>3 whole genomes have been reported (Table  5.2).  The variation is particularly large 

among 8 strains of E. coli, ranging from 15 intragenomic gene conversions (no flank 

method) in the laboratory strain K12 to as many as 193, in the pathogenic strain O157:H7 

Sakai, a 12.9-fold range, and is similar to the variation previously reported by Morris & 

Drouin, [63]for four E. coli strains.  The data show here that Rhodopseudomonas 

palustris has a similarly large variation from a low number of 8 conversions (no flank 

method) in the BisB5 strain to as high as 102 conversions in the BisA53 strain, a 12.8- 

fold range.  An even larger fold-range of intragenomic gene conversions, if not as large in 

absolute terms, is found in the pathogen Streptococcus pyogenes, for which strains with 

as few as 4 gene conversions (flank 600 method) to as many as 80 gene conversions have 

been sequenced.  Because of the importance of S. pyogenes as a pathogen we look here at 

this species in greater detail. 

 

 



96 

 

Table  5.1: Intragenomic gene conversions among the 15 largest microbial genomes. 

Genome Name 
GenBank 

Reference 
Size 

Gene Conversions 

no flank with flank 

Mesorhizobium loti BA000012 7,036,071 25 61 

Pseudomonas fluorescens Pf-5 CP000076 7,074,893 3 10 

Pirellula sp BX119912 7,145,576 10 81 

Hahella chejuensis KCTC 2396 CP000155 7,215,267 22 51 

Bradyrhizobium ORS278 CU234118 7,456,587 34 98 

Frankia alni ACN14a CT573213 7,497,934 17 126 

Trichodesmium erythraeum IMS101 CP000393 7,750,108 153 449 

Rhodococcus RHA1 CP000431 7,804,765 55 118 

Saccharopolyspora erythraea NRRL 2338 AM420293 8,212,805 30 138 

Bradyrhizobium BTAi1 CP000494 8,264,687 50 142 

Streptomyces coelicolor AL645882 8,667,507 21 43 

Streptomyces avermitilis BA000030 9,025,608 29 62 

Bradyrhizobium japonicum BA000040 9,105,828 53 164 

Myxococcus xanthus DK 1622 CP000113 9,139,763 13 25 

Solibacter usitatus Ellin6076 CP000473 9,965,640 26 184 

 

5.8.2  Intragenomic recombination in Streptococcus pyogenes 

S. pyogenes, also known as Group A Streptococci (GAS), are common human 

pathogens that cause various throat and skin infections, some of which may be life-

threatening.  Among the diseases caused by S. pyogenes are strep throat, scarlet fever, 

and rheumatic fever.  Invasive GAS infections cause necrotizing fasciatis (“flesh-eating 

bacteria”) and streptococcal toxic shock syndrome, which have mortality rates >20%.  

GAS are categorized into specific serotypes based on cell surface protein antigens, of 
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which M protein is the most important (Table ‎5.3).  The serotype, genome size, and the 

GenBank reference are listed for twelve strains of S. pyogenes whose sequences were 

available for Intragenomic Gene Conversion analysis. 

Table  5.2: Variation of number of intragenomic gene conversions among species 

for which >3 genomes have been sequenced. 

Species name 
genomes 

sequenced 

Number of gene conversions      

(no flank, flank 600) 

Least Most Median 

Chlamydophila pneumoniae 4 0, 0 3, 8 1.5, 3.5 

Haemophilus influenzae 4 0, 0 3, 7 0, 0 

Legionella pneumophila 4 2, 8 17, 23 4.5, 15.5 

Mycobacterium tuberculosis 4 18, 70 32, 88 20.5, 82.5 

Francisella tularensis 5 0, 3 4, 119 0, 34 

Rhodopseudomonas palustris 5 8, 26 102, 280 40, 75 

Yersinia pestis 6 5, 35 20, 101 12, 70 

Escherichia coli 8 15, 38 193, 529 32, 60 

Prochlorococcus marinus 10 0, 0 36, 219 4.5, 10.5 

Staphylococcus aureus 10 7, 10 46, 69 31, 53 

Streptococcus pyogenes 12 0, 4 51, 78 6.5, 13.5 

 

The analysis of IGCs begins with identification of gene families having more than 2 

members, which shows considerable variation among the 12 S. pyogenes genomes (Table 

 5.4). The largest family, with 13 members, occurs in the M18 strain MGAS8232. 

MGAS8232 and the M3 strains SSI-1 and MGAS315 have the largest number of families 

with more than two members, 15, 18, and 17, respectively. A family with 10 members 

occurs in the M6 strain MGAS10394. Both the M3 strains SSI-1 and MGAS315 contain 

5 members in their largest family. Only a few multigene families are identified in other 

strains, and of those most have 5 or fewer members. 
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Table  5.3: Streptococcus pyogenes strains. 

Strain Name 
GenBank 

Ref. 
Serotype Size (bp) 

IGC fragment size                              

(no flank, flank 600) 

Median Maximum 

MGAS5005 CP000017 M1 1,838,554 46, 808 46, 1342 

M1 GAS AE004092 M1 1,852,441 
155.5, 

155.5 
813, 919 

MGAS10270 CP000260 M2 1,928,252 50, 322 50, 1429 

SSI-1 BA000034 M3 1,894,275 72, 88 497, 1499 

MGAS315 AE014074 M3 1,900,521 91, 109 1880, 2483 

MGAS10750 CP000262 M4 1,937,111 0, 862 0, 1813 

Manfredo AM295007 M5 1,841,271 47, 203.5 752, 2937 

MGAS10394 CP000003 M6 1,899,877 95, 146 593, 2111 

MGAS9429 CP000259 M12 1,836,467 44, 164 665, 1321 

MGAS2096 CP000261 M12 1,860,355 0, 254 0, 1152 

MGAS8232 AE009949 M18 1,895,017 90, 123.5 531, 1408 

MGAS6180 CP000056 M28 1,897,573 0, 797.5 0, 815 

  Averages   1,881,810 77,  336 647, 1602 

 

The genomes with the largest number of gene families and family members also 

tended to have the higher numbers of IGCs (Figure  5.5).  The highest number of IGCs 

was identified in strain MGAS8232, with 51 (no flank) or 78 (flank 600) conversions 

identified. Both the M3 strains SSI-1 and MGAS315 and the M6 strain MGAS10394 also 

have large numbers of conversions.  All other strains have fewer than 13 IGCs.  As noted 

earlier, addition of the flanking sequences enables the full length of converted fragments 

to be identified, as well as identifying fragments that were formerly too short to be 

statistically significant.  Thus, not only are more converted fragments identified, but the 

sizes of the fragments identified are increased as well, as shown in Table  5.3. 
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Table  5.4: Number of members of gene families of Streptococcus pyogenes. 

Strain Name Serotype 
Number of members of indicated family size1 

Total # of 

families of 

>2 

members 3 4 5 6 7 8 9 10 11 12 13 

MGAS5005 M1 2 1 1 1 - - 1 - - - - 6 

M1 GAS M1 3 1 - - - - - - - - - 4 

MGAS10270 M2 5 - 1 - - - - - - - - 6 

SSI-1 M3 11 5 2 - - - - - - - - 18 

MGAS315 M3 10 3 4 - - - - - - - - 17 

MGAS10750 M4 4 1 4 1 - - - - - - - 10 

Manfredo M5 4 5 - - - - - - - - - 9 

MGAS10394 M6 2 2 5 - - - - 1 - - - 10 

MGAS9429 M12 4 1 - - - 1 - - - - - 6 

MGAS2096 M12 3 1 1 - 1 - - - - - - 6 

MGAS8232 M18 5 8 1 - - - - - - - 1 15 

MGAS6180 M28 1 1 1 - - - - - - - - 3 

          1
a "-" means no gene families of the indicated size were found 

5.8.3  Species with largest number of IGCs 

A graph of genome size versus number IGCs (Figure  5.6) indicates a general upward 

trend of IGCs with genome size.  430 genomes were analyzed using the „no flank‟ 

method (Figure  5.6A) and the „flank 600‟ method (Figure  5.6B). Although there is a 

slight trend upward as genome size increases, the relationship is not significant. On 

Figure  5.6B, 17 points for which the number of IGCs equal to or greater than 370 appear 

in a „cloud‟ of points above the main distribution are circled and described in more detail 

in Table  5.5. Above the main trend lies a distribution of strains of intermediate genome 

size that have much higher numbers of conversions than most others. 
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Figure  5.5: Number of IGCs found in Streptococcus pyogene. 

  Table  5.5 lists the 17 genomes with largest number of IGCs (circled in Figure 

 5.6B). Seven of them are pathogenic variants of E. coli, including 2 strains of E. coli 

O157:H7 (AE005174 and BA000007) and 5 of Shigella (and AE014073, CP000266, 

AE005674, CP000036, CP000034), which are considered derivatives of E. coli [72]. Two 

strains from Xanthomonas oryzae are on the list, as well as two strains of cyanobacteria 

from a Yellowstone hotspring.  Xanthomonas oryzae causes bacterial blight of rice [45]; 

whereas, the cyanobacteria are species of Synechococcus and are not known pathogens 

[7].  The rest are a miscellaneous collection of pathogenic and non-pathogenic bacteria. 
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Table  5.5: Details of large number of conversions identified 

Genome Name 
GenBank 

Ref 
Size (Kb) Fam >2* 

Max 

mem/fam* 

Number of IGCs 

no flank flank 600 

Xanthomonas oryzae MAFF 311018 AP008229 4.9 39 76 195 1466 

Cyanobacteria bacterium Y B-

Prime 
CP000240 3 12 38 311 969 

Xanthomonas oryzae KACC10331 AE013598 4.9 44 108 134 889 

Magnetococcus MC-1 CP000471 4.7 94 20 418 779 

Shigella flexneri 2a 2457T AE014073 4.6 36 104 15 619 

Shigella flexneri 5 8401 CP000266 4.6 36 107 24 548 

Escherichia coli O157H7 BA000007 5.5 90 18 193 529 

Escherichia coli O157H7 EDL933 AE005174 5.5 93 21 148 505 

Shigella flexneri 2a AE005674 4.6 37 109 21 485 

Photorhabdus luminescens BX470251 5.7 84 30 200 484 

Cyanobacteria bacterium Y A-

Prime 
CP000239 2.9 12 20 46 474 

Trichodesmium erythraeum IMS101 CP000393 7.8 69 27 153 449 

Shigella boydii Sb227 CP000036 4.5 25 170 28 436 

Shigella dysenteriae CP000034 4.4 20 314 14 417 

Orientia tsutsugamushi Boryong AM494475 2.1 38 27 86 417 

Verminephrobacter eiseniae EF01-2 CP000542 5.6 35 22 123 378 

Lactococcus lactis cremoris SK11 CP000425 2.4 12 50 0 370 

*"Fam>2" is number of families with >2 members.  "Max mem/fam" is the number of members 

in the largest family. 

 

The origins of the large number of IGCs in this group of bacteria are probably 

varied. Some have very large numbers of gene families (e.g., E. coli O157:H7 and 

Magnetococcus), while others have fewer families but exceptionally large numbers of 

members in those families (e.g., various strains of Shigella and Xanthomonas oryzae). 
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                                    (A)                  (B) 

Figure  5.6: Number of IGCs vs. genome size. 

5.8.4 Number of Gene Families, Genes, and Gene Conversions 

As shown in Table  5.6, analysis of EDL933, Sakai, CFT073, and K12 (MG1655) 

strains of E. coli with BLASTClust, followed by ClustalW alignment of amino acid 

sequences, conversion to corresponding DNA sequences, GENECONV analysis, and 

elimination of duplicates gave results similar to Morris and Drouin  [63].  Thus, the 

EDL933 and Sakai O157:H7 strains had more multigene families (297 and 241, 

respectively, identical to Morris and Drouin [63]) than CFT073 (195 gene families in our 

analysis; 196 in Morris and Drouin‟s), which in turn was more than the MG1655 strain 

(107 here, versus 104 for Morris and Drouin).  Comparably, the current analysis 

confirmed that families with only two members were greater in the O157:H7 (204 and 

151) and CFT073 (142) pathogenic strains than in the non-pathogenic MG1655 strain 

(81).   Multigene families with more than two members were, respectively, 93, 90, 53, 

and 26.  Inspection of Table  5.6 confirms that other intermediate values in the analysis 

are similar, if not always identical to Morris and Drouin [63].  Finally, the important 
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result, with respect to gene conversions, is that multigene families with more than two 

members in the EDL933, Sakai, CFT073, and MG1655 genomes contained 142, 231, 52, 

and 16 gene conversions, respectively.  This result confirmed the higher rates of 

intragenomic gene conversions, as determined by GENECONV in this set of pathogens, 

compared to this particular non-pathogenic strain. 

Before continuing the analysis with other E. coli genomes, we made the adjustment, 

as explained in Section 5.4 and 5.5, of doing the ClustalW alignments on the DNA 

sequences corresponding to the members of the clusters, instead of aligning the amino 

acid sequences before converting to DNA sequences.  Results with this modification (see 

top 4 lines of data in Table  5.7) are close to, but not identical, to the original method 

(Table  5.6).  For example, with the revised method the numbers of gene conversions 

contained in multigene families with more than two members in the EDL933, Sakai, 

CFT073, and MG1655 genomes was 148, 193, 41, and 17, respectively.   The important 

result of higher numbers of gene conversions for the O157:H7 strains than the UPEC 

strain, and in turn more than the non-pathogenic strain is confirmed.  It‟s also clear that 

the changed method produces results that can be either slightly higher or lower than the 

original method (i.e., no systematic bias is introduced). 

Next, the method was applied to genomes of additional E. coli strains that had 

become available since 2002 and also to genomes of Shigella spp.  The results are 

summarized in lines 5 through 13 of Table  5.7.   
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Table  5.6: Verification of method by comparison to Morris & Drouin (M&D), 2004. 
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First, another K12 strain, W3110, has been sequenced.  The number of gene 

conversions in gene families with two or more members in W3110 is 15, compared to 17 

for the MG1655 strain, confirming the relatively low number of gene conversions in 

these non-pathogens. 

Second, genomes from several additional UPEC strains have been sequenced.  Gene 

conversions in gene families with two or more members in strains 536 and UTI89 were 

both 24, which is closer to the values (~16) for the K12 strains and only ~60% of the 

value of 41 observed for the previously studied UPEC strain, CFT073. 

Finally, analysis of Shigella genomes revealed only relatively low numbers of 

intragenomic gene conversions, all in the range of the newer UPEC genomes and the K12 

strains.  For example, only 14 gene conversions were detected by GENECONV in the 

genome of Shigella dysenteriae, the lowest value seen yet in an Escherichia-related 

genome.  Values of other Shigella species and strains were 28, 21, 15, 24, and 24 (see 

Table  5.7 for identification of strains). 
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    Table  5.7:  Gene conversion numbers and sizes in E. coli and Shigella spp. 
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As noted in the first paragraph of this section, the E. coli strains with the most gene 

conversions were also the ones with the most gene families.  Therefore, one could 

suppose that the numbers of gene conversions in Shigella might simply be a function of 

the numbers of gene families.  Indeed, there is a significant positive correlation of 

numbers of gene families with numbers of gene clusters if all 13 genomes are analyzed as 

a group (Figure  5.7, r
2
 = 0.895; p < 0.001).  However, this significant relationship is 

strictly a result of the extreme values due to the EDL933, Sakai, CFT073 strains.  

Leaving out those three strains still leaves 10 strains with values for both independent and 

dependent variables varying over almost a two-fold range and showing no significant 

correlation at all (Figure  5.7, r
2
 = 0.098; p = 0.378). In Figure  5.7, the two squares are 

values for O157:H7 strains and the circle is for the UTI E. coli strain CFT073. The 

dashed line shows the linear regression for all points, for which r2=0.985, while the solid 

line is the non-significant linear regression for all points excluding the O157:H7 and 

CFT073 strains. 

 

Figure  5.7: Relationship between number of IGCs identified in various E. coli and 

Shigella strains.  
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Another factor that might be expected to account for the low numbers of gene 

conversions in Shigella is the number of members of their multigene families.  Indeed, 

for the four genomes studied by Morris and Drouin, a significant positive correlation was 

found between the size of a multigene family and the number of conversions [63].  

According to this reasoning, Shigella would be expected to have small gene families; 

however, this is clearly not the case with Shigella.  A remarkable difference of all of the 

Shigella species from those of E. coli is the consistently larger numbers of members of 

the multigene families in Shigella.  As illustrated in Figure  5.8, the largest gene families 

in Shigella species ranged from 104 to 314 members; whereas, the largest multigene 

family in the E. coli genomes was 21 in EDL933.  Moreover, even though Figure  5.8 

highlights only the largest families, it is not only the largest family that stands out in 

these genomes.  For example, the ten largest gene families of Shigella boydii Sb227 have 

170, 125, 41 (3 families), 40, 34, 29, and 24 (2 families) members.  The average Shigella 

genome had 7 + 1 (mean + sem) families with >21 members in them; whereas, none of 

the Escherichia strains had families with >21 members. 
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Figure  5.8: Number of members in largest multigene families in E. coli and Shigella 

genomes. 

5.8.5  Lengths of gene conversion sequences 

The sizes of the gene conversions detected by the above methods (Table  5.6 and 

Table ‎5.7) for EDL933, Sakai, CFT073, and K12 (MG1655) strains of E. coli were 

practically identical to that reported by Morris and Drouin [63].  A particular gene family 

that will be discussed in the Discussion is the Rhs family which in the EDL933 O157:H7 

genome had IGC fragments of lengths 1216, 1212, 564, 357, 257, 196, 98, 97, and 96 

(median = 257; average = 455).  Neither the size ranges nor the mean converted lengths 

among these four strains differ significantly from one another.  When extended to the 

analysis of the newer E. coli genomes and the Shigella genomes (Table  5.7), the 

conversion lengths for most genomes are not significantly different from one another; 

however, the genomes at the extreme ends of the distribution do differ significantly from 

each other:  Shigella boydii, with a median converted length of 552 differs significantly 
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from the E. coli UPEC strains 536 (median length = 66) and UTI89 (median length = 82) 

(Kruskal-Wallis One-Way ANOVA on Ranks, p<0.001; Dunn‟s multiple pairwise 

comparison procedure, p<0.05; for all other comparisons, p>0.05).  For all strains and 

sequences considered together, the median length of converted fragments by these 

methods was 175 nucelotides.  The average size was 323 + 40 (mean + sem of mean sizes 

for each strain). 

However, upon examining these converted sequences in detail, we noticed that in 

many cases the ends of the identified converted sequence were coincident with the start 

or end of the clustered sequence (i.e., either began at position 1 of the sequences being 

tested or ended at a base number equal to the length of the sequence).  This suggested the 

possibility that the transferred sequence actually extended beyond the end of the sequence 

tested, which, by the method used, was limited to just the clustered gene.  In addition, we 

suspected that additional converted sequences that began in the clustered sequence but 

were too short to achieve statistical significance without testing their full length might 

also be present.  To test this, we extended the sequence further along the genome both 

upstream and downstream from the clustered sequence, in order to determine the full 

length of the converted fragment.  In pilot tests, extensions of various lengths (100, 200, 

300, etc.) were tested to see how long the extension should be in order that no more than 

5% of the identified conversions that had at least one end in the clustered sequence 

should start or end at the end of the tested sequence (which now included 100 or more 

additional upstream and downstream nucleotides).  The pilot test determined that 
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extensions of 600 nucleotides at either end achieved that goal for EDL933, Sakai, 

CFT073, and K12 (MG1655) strains of E. coli.   

Table  5.8: Gene conversions identified with flanking region of 600 bp included in the 

calculation. 

Strain name 

Gene conversions, flank = 600 

Total 

number 

Smallest 

(bp) 

Largest 

(bp) 

Median 

(bp) 
Mean (bp) 

Escherichia_coli_K12_MG1655 76 8 3836 718a,c 757 

Escherichia_coli_K12_W3110 68 8 3836 855a 935 

Escherichia_coli_O157H7_EDL933 683 15 3107 460d 569 

Escherichia_coli_O157H7(Sakai) 774 9 3882 428d 571 

Escherichia_coli_UTI_536 144 6 1464 232b,c,d 486 

Escherichia_coli_UTI_UTI89 87 6 1155 126b 303 

Escherichia_coli_UTI_CFT073 308 10 1500 234b 393 

            

Shigella_Boydii_Sb227 452 9 3417 668a 676 

Shigella_Dysenteriae 432 17 3912 715a 711 

Shigella_Flexneri_2a_301 514 7 1858 762a 771 

Shigella_Flexneri_2a_2457T 644 4 1817 668a 682 

Shigella_Flexneri_5_8401 592 8 2015 700a 741 

Shigella_Sonnei_Ss046 217 15 2762 648a 721 

IGC fragments wholly contained within the flanking regions have been excluded. 

*Values marked with the same superscripts are not significantly different from each other, but do differ    

significantly from values marked with no superscripts in common (Kruskal-Wallis One Way Analysis of 

Variance on Ranks, p<0.001; pairwise comparisons by Dunn‟s method, p < 0.05). 

 

Table  5.8 shows the lengths of converted sequences when a flanking extension of 

600 nucleotides from the genomic sequence was added onto both ends of each sequence.  

In determining lengths of conversion fragments, we excluded all conversions that started 

and ended only in the flanking region, and thus included only those conversions that were 

either fully contained or had at least one end within the clustered sequence.  The result is 

that the average size of converted fragments was much larger than detected with the 
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previous method.  For all strains and sequences considered together, the median length of 

converted fragments by these methods was 668 nucleotides.  The average size was 640 + 

47 (mean + sem of mean sizes for each strain).  The closer agreement between mean and 

median for these data than for the analysis without the flanking regions added also 

suggests a “better behaved” data set.  The Rhs family in EDL933 is somewhat of an 

exception, in that the number of IGCs increased to 17 IGCs but with a range of lengths 

from 38 to 1886 nucleotides, so that the median length actually decreased to 98 while the 

average length IGC decreased to 390. 

Also, with the length analysis accomplished with flanking sequences included in the 

calculation, significant differences by the previous method are still significant and some 

trends in the original data set now become significant:  As before, median converted 

lengths for the UPEC strains 536 (median = 232) and UTI89 (median = 126) had 

significantly smaller average lengths than Shigella boydii (median = 668).  In addition, 

other comparisons are significant.  Converted fragments of all of the UPEC strains (536, 

UTI89, and CFT073 (median = 234)) are significantly smaller than for not only Shigella 

boydii, but also compared to all of the other Shigella genomes, as well as compared to the 

W3110 strain of E. coli (see statistics summarized in Table  5.8).  Similarly, both 

O157:H7 strains (EDL933 and Sakai) also have significantly smaller converted lengths 

than all of the Shigella strains, as well as W3110 E. coli.  The MG1655 E. coli strain had 

average converted fragment lengths (718) near to the overall median and hence was only 

significantly different from two of the UPEC strains, UTI89 and CFT073.  Overall, one 

can conclude that the converted lengths of the Shigella species were significantly longer 
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than most, while the pathogenic E. coli strains, especially the UPEC strains, were shorter 

than most. 

5.8.6  Higher numbers of conversions when full conversion lengths are 

analyzed 

As previously noted, extending the DNA sequence of the clustered sequences might 

be expected not only to reveal the full length of converted sequences but also to allow the 

detection of sequences that in the core sequence were too short to have achieved 

statistical significance in the GENECONV analysis.  In fact, the number of gene 

conversions detected increased an average of approximately 3-fold for E. coli strains 

(Table  5.8) and approximately 25-fold for Shigella spp. over the numbers detected 

without the addition of the flanking sequences. 

As summarized in Figure  5.9, with flanking sequences in the analysis the numbers of 

apparent gene conversions in all Shigella spp. except for Shigella sonnei is now 

comparable to the numbers of conversions in the O157:H7 strains, about 500 

conversions.  However, two of the UPEC strains, 536 and UTI89, have only about 50 

conversions, which is comparable to the numbers in the K12 strains, while Shigella 

sonnei and the UPEC strain CFT073 are intermediate, with about 200 conversions.  The 

count of conversions does not include any that are fully contained within the flanking 

sequences (i.e., at least one end must be in the gene being analyzed). 
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Figure  5.9: Number of IGCs in E. coli and Shigella strains determined with flanking 

sequences 600 bp long including in the analysis.  

Without the flanking sequences, the very large multigene families in Shigella had not 

contributed much to the overall numbers of gene conversions.  The even larger increase 

in numbers of conversions in Shigella spp. than in E. coli strains when flanking 

sequences were taken into account appeared in many cases to be associated with 

conversions identified in the largest gene families.  For example, in Shigella boydii 

sb227, the multigene family with 170 members had 49 global inner fragment pairs 

identified as having evidence of gene conversions.  It therefore became of interest to 

identify the types of genes in these large families, as well as to consider how they may 

differ from other genes in which IGC fragments were identified. 

5.8.7  Genes exhibiting evidence of gene conversion 

Analysis of protein identifications (PIDs) of genes showing gene conversion reveals 

that these genes generally fall into four categories:  (1) enzymes and other functional 
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proteins coded for by multiple genes, (2) toxin-antitoxin pairs, (3) prophage proteins, and 

(4) proteins in insertion sequences and associated transposases. 

Only six families of functional bacterial proteins showed evidence of Intragenomic 

Gene Conversion in four or more of the strains analyzed (Table  5.9).  These families are 

multidrug efflux system and related efflux pumps, L-serine deaminases and dehydratases, 

FeS binding subunits of oxidoreductases and glutamate synthase, porins and related outer 

membrane proteins, proteins of rhs elements, and L-ribulose-5-phosphate 4-epimerase 

and related enzymes.  In contrast to the overall higher numbers of IGCs in the O157:H7 

strains, compared to the K-12 strains, the number of families exhibiting these IGCs in the 

Shigella species is significantly lower than in the K-12 strains (p<0.02; t test).  The total 

number of IGCs in these six genes averaged 14.5 for the K12 strains, 16 for the O157:H7 

strains, 6.7 for the UTI strains, and 4.5 for the Shigella strains. 

Among other types of proteins exhibiting IGCs, proteins of toxin-antitoxin pairs 

include, for example, the antitoxin of the YeeV-YeeU system found in both K12 strains 

and similar proteins identified in UTI strains.  For the strains that showed an enormous 

increase in family sizes (Shigella spp.) and the highest total number of IGCs (O157:H7 

strains), these increases came primarily from the presence of insertion sequences and 

families of prophage proteins, respectively.  For example, of the 37 families identified as 

having IGCs in the EDL933 O157:H7 strain (using the non-flank method), 33 families 

were identified as being proteins from various variants of prophage CP-933.  Even for 

K12 strains, prophages accounted for several of the IGCs:  for the MG1655 K12 strain, 

out of the 6 families exhibiting IGCs, three families are CP4 prophage protein families.  
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The PID annotations for the W3110 K12 strains have similar protein names to these 

prophage families but do not designate them as prophage proteins.  As noted earlier, 

relatively few IGCs were identified in Shigella species and strains unless the analysis was 

done with flanking sequences included.  However, with flanking sequences included, the 

majority of the families and almost all of the IGCs were in insertion sequences (ISs) or 

associated transposases.  For example, Shigella sonnei had only 24 identified IGCs (of 

which 4 were IS proteins) in 11 families without the flanking sequences.   When flanking 

sequences were used in the analysis, 28 families exhibited 217 IGCs, of which 138 in 12 

families were annotated as ORFs in ISs, and 14 in 3 families were in transposases. 
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Table  5.9: Intragenomic gene conversions identified in functional bacterial protein 

families with >2 members
1 

Strain name 
Genbank 

accession 

drug efflux 

systems2 

serine 

catabolism3 

FeS 

subunits4 

outer 

membrane 

pores5 

rhs core 

proteins6 

ribulose-

phosphate-

epimerase7 

Families 

with 

IGCs 

Escherichia_coli_K12_MG1655 U00096 + ++ + ++ ++ + 6 

Escherichia_coli_K12_W3110 AP009048 + ++ + - ++ + 5 

Escherichia_coli_O157H7_EDL933 AE005174 ++ ++ ++ + ++ - 5 

Escherichia_coli_O157H7(Sakai) BA000007 ++ ++ + + ++ - 5 

Escherichia_coli_UTI_536 CP000247 + - + ++ - + 4 

Escherichia_coli_UTI89 CP000243 + ++ ++ ++ - + 5 

Escherichia_coli_UTI_CFT073 AE014075 - ++ + ++ - - 3 

         

Shigella_Boydii_Sb227 CP000036 ++ ++ - - ++ - 3 

Shigella_Dysenteriae CP000034 ++ - - - + - 2 

Shigella_Flexneri_2a_301 AE005674 + ++ - + - - 3 

Shigella_Flexneri_2a_2457T AE014073 - ++ - - - - 1 

Shigella_Flexneri_5_8401 CP000266 ++ ++ - - - + 3 

Shigella_Sonnei_Ss046 CP000038 ++ ++ + - ++ - 4 

1
Listed proteins had IGCs in >4 of the 13 genomes analyzed.  ++, IGCs detected with and without flanking 

sequences included in the calculation; +, IGCs detected only with flanking sequence (600 bp) used in the 

calculation; -, no IGCs detected by either method. 
2
“drug efflux systems” family PIDs typically include acridine efflux pump, permease, acriflavine resistance 

protein, aminoglycoside pump, integral membrane protein, multidrug efflux, etc. 
3
“serine catabolism” family PIDs include L-serine deaminases and L-serine deydratases. 

4
“FeS subunits” family PIDs include the small FeS containing subunits of putative or predicted 

oxidoreductase and glutamate synthase. 
5
“outer membrane pores” family PIDs typically include several of the following descriptions:  porin, 

phosphoporin, outer membrane pore protein, outer membrane protein, etc. 
6
“rhs core proteins” family PIDs typically include several of the following descriptions:  rhsA(or B or C or 

G) protein in the rhs element, rhs core protein, putative protein in rhs element, etc. 
7
“ribulose phosphate epimerase” family PIDs include L-ribulose-5-phosphate 4-epimerase, putative 

epimerase/aldolase, and probable sugar isomerase. 
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5.9  Summary and Future Work 

In this chapter, we demonstrated the implementation of a scientific workflow 

environment to analyze IGCs in microbial genomes. A methodology to identify IGCs is 

described and that analysis is carried out on hundreds of complete bacterial genomes 

available from NCBI. This analytical tool not only automates the process of identifying 

IGCs, but also in the process of developing this tool we have created generic processors 

for accessing and downloading web-based data sets and for parsing and reformatting 

outputs of genetic analysis tools to be able to function as inputs of other tools.  The result 

is a developed tool that can be simply understood, shared, modified, and reused in other 

bioinformatic applications. 

The biological results demonstrate the generality of IGCs across a large number of 

species of bacteria. Several principles emerge:   

(1)  The number of IGCs varies greatly both between and within species.  Variation 

within a species was previously demonstrated for E. coli  by Morris and Drouin [63].  

This is now shown to be a general principle, as illustrated by at least 8 of the 11 species 

listed in Table  5.2, and further highlighted by detailed results for S. pyogenes (Figure 

 5.5).  

(2)  While pathogens frequently appear among the bacteria with the most IGCs, 

some species of non-pathogenic bacteria also have a large number of IGCs.  Moreover, 

pathogens are also among the species that have the lowest numbers of IGCs.  Thus, both 

Neorickettsia sennetsu and Ureaplasma urealyticum, which have no IGCs, are considered 

to be pathogens  [44, 74].  Prochlorococcus marinus, which is not considered a pathogen, 
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has strains that vary from no IGCs to many IGCs (Table  5.2).  The frequent occurrence of 

pathogens in the output of these analyses may partially reflect the fact that genomic 

sequencing thus far has mostly focused on bacteria that can cause harm to humans or 

livestock, and thus most of the genomes so far completed are pathogens.  While the 

relationship IGCs to pathogenicity is discussed further below, there clearly is no 

necessary relationship. 

(3)  The addition of flanking sequences to the core family sequence enables the full 

length and more significant instances of IGC to be detected (e.g., Table  5.1 and Table 

 5.3).  In a previous publication [4] we have discussed the phenomenon of “cryptic 

recombinations,” that is, recombinations that have occurred but cannot be detected by 

sequence analysis either because the converted sequence is too similar to the original 

sequence (hence, not enough differences to be detected statistically) or because there is 

not enough neighboring reference sequence to be able to differentiate the converted 

sequence from its unchanged context.  In that study, simulations of the gene conversion 

and detection process showed that longer neighboring sequences enabled greater 

detection of these previously “cryptic” events.  This conclusion is supported by the 

results of adding the flanking regions in order to detect these otherwise cryptic 

recombinations. 

(4)  E. coli, for which 4 genomes had previously been analyzed for IGCs [63], 

appears to be somewhat of a special case, given that the numbers of IGCs in several E. 

coli strains and their Shigella relatives are at the extreme end of the distribution, with 

respect to high numbers of IGCs and the numbers or sizes of gene families in which they 
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are observed.  These may be interesting genomes to investigate the mechanisms involved 

in the extremes of these phenomena; however, a species like S. pyogenes might be 

considered more “typical.” 

The data on S. pyogenes may be interesting from a clinical perspective.  The strains 

with the highest numbers of IGCs are in serotypes M3, M6, and M18.  M3 organisms are 

said to cause a disproportionate number of invasive disease cases, including necrotizing 

fasciitis, bacteremia, and streptococcal toxic shock syndrome and can exhibit epidemic 

behavior  [13]. In the U.S., serotype M18 has been associated with acute rheumatic fever 

outbreaks [81].  An interesting question therefore is whether the high level of DNA 

mobility suggested by the high IGC count in these strains may facilitate their pathogenic 

potential.  This is not to suggest that IGC is necessary for pathogenicity since, for 

example, a study in Canada [90] found that the most frequent serotypes of S. pyogenes 

infections in the blood, brain and cerebrospinal fluid were M1 (28.2%), M28 (9.2%), and 

M12 (9.1%), all of which have low IGC levels in the present study. 

We extended the IGC analysis of Morris and Drouin [63-65] but also contradicted 

the hypothesis that pathogenic strains have higher IGC levels than non-pathogenic 

strains.  By using a scientific workflow system to extend the analysis to include flanking 

sequences, larger numbers of IGCs can be detected and the full length of IGCs that 

formerly appeared to terminate at the end of the open reading frame of the genes being 

analyzed can be determined.  Specific bacterial proteins whose sequences may have 

undergone concerted evolution by exchanging genetic material have been identified. 
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With respect to the hypothesis that pathogenic strains have higher IGC levels, this 

chapter shows that the hypothesis is incorrect when additional pathogenic strains are 

taken into account.  We first verified the previous observation [63] that the O157:H7 

pathogenic strains of E. coli and the CFT073 UTI strain have higher IGC frequencies 

than does the K12 MG1655.  However, with additional data, the hypothesis is 

contradicted on several accounts: (1) analysis of two additional UTI strains had much 

lower IGC levels, closer to the number of IGCs in the two non-pathogenic K12 strains 

than to the CFT073 UTI strain previously analyzed; (2) when analyzed by the original 

method without adding flanking sequences to the analysis, the Shigella species and 

strains, all of which are pathogenic derivatives of E. coli, had low numbers of IGCs, 

including Shigella dysenteriae in which the IGC counts were below that of the K12 

strains; and (3) when considering the IGCs in only the functional bacterial genes (i.e., 

those genes listed in Table  5.9), the Shigella species and strains actually had lower 

number of genes with IGCs than the non-pathogenic K12 strains.  In this regard, the three 

pathogenic strains upon which the original analysis of Morris and Drouin [63] was based 

appear to be special cases of exceptionally high IGCs.  This is particularly evident in 

Figure  5.7, where it is clear that these three pathogenic strains appear distant from the 

main cluster of strains, and also that the significant increase in IGCs with family size is 

strictly dependent on the exceptional positions of the two O157:H7 strains.  The increase 

in IGCs is not a property associated with pathogenicity in general but rather a special 

property, particularly of the O157:H7 strains.  Alhiyafi et al [6] made a similar point with 

respect to pathogenicity of various strains of Streptococcus pyogenes, in which it was 
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concluded that the most frequent serotypes of S. pyogenes in infections in the blood, brain 

and cerebrospinal fluid actually had the lower IGC levels out of 9 S. pyogenes serotypes 

considered in that study. 

Also, we identify IGCs in six gene families of >3 members that code for bacterial 

proteins (as distinct from IS or prophage sequences that also have IGCs).  A recent report 

by Morris and Drouin [65] similarly listed “backbone” genes identified as having IGCs.  

While several genes, discussed below, are the same as those in the present report, many 

details differ significantly.  The differences may be due to the facts that (a) the present 

chapter analyzes a more recently updated set of genomes; (b) this chapter includes 

additional E. coli and Shigella species; (c) the analysis here encompasses neighboring 

sequences in order to allow identification of the full length of IGCs; and (d) the methods 

used here align nucleotide sequences with ClustalW prior to running GENECONV, 

which differs from Morris and Drouin‟s procedure of aligning the protein sequences with 

ClustalW first, a seemingly minor difference that inserts gaps in the resultant nucleotide 

sequences in slightly different places and does result in small quantitative differences in 

results.  The justification for our modification is that recombination depends on 

alignment of similar DNA sequences, and hence computational alignment should reflect 

the biological mechanism. 

Rhs gene families are interesting in that they served, in effect, as a positive control in 

identifying computationally a set of genes that had previously been shown to undergo 

intragenomic recombination experimentally.  The rhs genes were originally identified as 

“recombination hot spots” (hence, the rhs designation) with a measured rate of ectopic 
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recombination of 2 x 10
-4

 between rhsA and rhsB in K-12 [55].  Eight Rhs regions in the 

E. coli genome are said to contain a core region that has been maintained among the 

various Rhs cores by ectopic recombination.  RhsA protein is associated with outer 

membrane proteins and mutations of it affect polysaccharide biosynthesis [62]. Although 

Morris and Drouin [65]  listed gene conversion of rhs genes as “specific to the K12 

genome,” in our analysis GENECONV found numerous conversions among these 

families of genes not only in K-12, but also in O157:H7, and several Shigella genomes 

(Table  5.9).  The discrepancy may, in part, be due to the fact that several of the named 

genes in K12, RhsB and RhsD, do not appear to have a clearly annotated homolog in 

O157:H7, where several of the genes in the Rhs family of O157:H7 are simply designated 

as “unknown” or “hypthetical” proteins associated with an Rhs element.  In any case, the 

evidence that these genes actually do exhibit IGC experimentally corroborates identifying 

IGCs in the Rhs families computationally.  The present research analyzed IGCs only in 

families having more than two members.  Empirical demonstrations of gene conversions 

between gene pairs tufA/tufB [9, 46] and gadA/gadB [15] are similarly supported by 

GENECONV identification of IGCs in these two member families [65].  

Among the other functional bacterial genes that exhibit IGCs, the L-serine 

hydratase/deaminase family is of some interest because of the possibly important roles of 

serine accumulation and catabolism in mediating colonization by E. coli.  Mutation of L-

serine deaminase genes in CFT073 results in a competitive defect of these strains in 

colonization of murine urinary tract [8].  Perhaps a further indication of the importance of 

serine in colonization is the fact that differences in serine chemotaxis relative to aspartate 
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chemotaxis are present E. coli strains from different host animals [30].  Thus, the 

presence of redundancy of serine hydratases/deaminases and their concerted evolution 

maintained by IGC may be a positive fitness trait. 

Finally, we consider the large increase in identification of IGCs in Shigella when the 

flanking sequences are included in the computation and the high levels of IGCs in general 

in the O157:H7 strains.  These high levels of IGCs are primarily due to their 

identification in IS and prophage sequences.  For Shigella, the IGC detection method 

practically functioned as an “IS discovery method,” and one may wonder whether some 

of the “hypothetical proteins” that have IGCs according to GENECONV may represent 

as yet undescribed IS regions.  Although computationally equivalent to the identification 

of IGCs in “backbone” genes of the bacteria, a fair question to ask is whether apparent 

recombination among such sequences really represents a bacterial mechanism.  For 

lysogenic phage, which are really a type of viral infection of the genome, it is certainly 

possible that the multiple copies and versions of the prophages may represent pre-existing 

variation and/or recombination prior to the time of infection. Hence, the evidence of 

IGCs among these sequences may not represent bacterial mechanisms at all or at least not 

a mechanism mediated by their current hosts. Similarly, the mobility of IS sequences may 

mean that gene conversions among these sequences represent unique mechanisms that 

occur when the IS sequences are moving, rather than chromosomal mechanisms that 

would be required by genes such as serine deaminases or the rhs genes. 

The number and identity of genes exhibiting intragenomic recombination varies 

widely among pathogenic and non-pathogenic strains of Escherichia coli and its 
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derivative Shigella strains, indicating no consistent association with pathogenicity of the 

strains.  Six bacterial gene families determined computationally to exhibit intragenomic 

recombination include the Rhs gene family, previously shown empirically to undergo 

intragenomic recombination, and the serine deaminase/dehydratase family, for which 

concerted evolution via intragenomic recombination may help maintain serine utlization 

as a positive fitness trait. 
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CHAPTER 6 : CONCLUSIONS AND FUTURE WORK 

Scientific workflows have become increasingly popular as a new method for 

scientists to develop and design complex and distributed scientific processes to enable 

and accelerate many scientific discoveries. The advantages of high-performance Grid-

based computing for scientific workflows, and the problems noted with existing scientific 

workflow management systems (SWFMSs), provide the rationale for the development of 

a new scientific workflow system for the efficient use of heterogeneous scientific 

workflow systems and utilizing Grid computing. In this dissertation, we addressed how 

SWFMSs can be utilized to serve the bioinformatic community. In summary, our main 

contributions are: 

 We propose a scientific workflow system to design, develop, and execute 

scientific workflows from heterogeneous scientific workflows. 

 We propose a scheduling technique for the parallel execution of heterogeneous 

scientific workflows. 

 We present GENOMEFLOW-based scientific workflow applications to showcase 

the capability of our system. 

 We developed a recombination simulation scientific workflow for simulating 

recombination and using GENECONV to test the effect of pairwise differences in 

a diverse population on the detectability of recombination. A program to simulate 

the DNA recombination process was developed. History of the recombinant 

events is saved for further comparison and analysis. The known history of 

recombination occurring in the simulation was compared with the output of 
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putative recombinations detected by a well known highly ranked recombination 

detection program (GENECONV). The results show that the recombination 

detection software fails to identify more than 50% of recombination events, 

designated by this dissertation as “cryptic recombinations.” 

 Decreases in recombination rate owing to pairwise differences resulted in 

population clusters analogous to sympatric speciation under specific conditions 

and decreases in detectability of recombination, a phenomenon that we call 

„cryptic recombination‟. This computational method demonstrated the value of 

scientific workflow methods for analyzing a complex process and data driven 

problem. 

 Intragenomic Gene Conversion (IGC) is important in the evolution of bacteria but 

has only been analyzed computationally in a few strains of Escherichia coli. 

Results show that IGC varies greatly, both between different species and among 

multiple genomes of the same species. We analyze for the first time the large 

variation of IGC in the pathogen Streptococcus pyogenes, and also in non-

pathogenic bacteria. 

In the following, we list some interesting research directions for future work: 

 Extended GENOMEFLOW scientific workflow system to support more scientific 

workflow systems. 

 Extended GENOMEFLOW scientific workflow system to support more 

heterogeneous environment. 

 Optimize data movements between heterogeneous environments.  
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Scientific workflows have become increasingly popular as a new computing 

paradigm for scientists to design and execute complex and distributed scientific processes 

to enable and accelerate many scientific discoveries. Although several scientific 

workflow management systems (SWFMSs) have been developed, there is a great need 

for an integrated scientific workflow system that enables the design and execution of 

higher-level scientific workflows, which integrate heterogeneous scientific workflows 

enacted by existing SWFMSs. On one hand, science is becoming increasingly 

collaborative today, requiring an integrated solution that combines the features and 

capabilities of different SWFMSs, which are typically developed and optimized towards 

one single discipline.  One the other hand, such an integrated environment can 

immediately leverage existing and emerging techniques and strengths of various 
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SWFMSs and their supported execution environments, such as Cluster, Grid, and Cloud. 

The main contributions of this dissertation are: 1) We propose a scientific workflow 

system, called GENOMEFLOW, to design, develop, and execute higher-level scientific 

workflows, whose workflow tasks are themselves scientific workflows enacted by 

existing SWFMSs; 2) We propose a workflow scheduling algorithm, called GSA, to 

enable the parallel execution of such heterogeneous scientific workflows in their native 

heterogeneous environments; and 3) We implemented GENOMEFLOW towards the life 

science community and developed several GENOMEFLOW scientific workflows to 

demonstrate the capabilities of our system for genome data analysis applications. 
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